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Abstract

We introduce a Julia implementation of the recently proposed Nevanlinna analytic con-
tinuation method. The method is based on Nevanlinna interpolants and inherently pre-
serves the causality of a response function due to its construction. For theoretical cal-
culations without statistical noise, this continuation method is a powerful tool to ex-
tract real-frequency information from numerical input data on the Matsubara axis. This
method has been applied to first-principles calculations of correlated materials. This
paper presents its efficient and full-featured open-source implementation of the method
including the Hamburger moment problem and smoothing.
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1 Introduction

In finite-temperature quantum field theories ranging from condensed matter to high-energy
physics, many sophisticated numerical techniques have been developed. For instance, per-
turbative theories [1–7] are a powerful tool for studying impurity effects [8], Fermi liquids
[9, 10], and symmetry breaking phenomena such as charge-, spin-density waves [11–13], or
superconductivity [14, 15]. For investigating Mott transitions and renormalization effects of
quasiparticles near the Fermi energy, or Kondo effects, we may employ the non-perturbative
dynamical mean-field theory [16] with discrete- [17] or continuous-time [18–21] quantum
Monte Carlo impurity solvers. In the field of high-energy physics, lattice quantum chromo-
dynamics algorithms are used for ab initio investigations of the masses of hadrons, the quark
confinement, or of chiral symmetry breaking [22–24].

These theories are formulated in “imaginary time”, where finite-temperature statistical
mechanics computations are tractable. The result of the computation is the numerical data of
the Matsubara Green’s function G(iωn) defined on the imaginary axis of the complex frequency
plane. The spectral function ρ(ω) = −(1/π)ImGR(ω) contains information about the single-
particle excitation which, in electronic systems, are related to measurements in photoemission
spectroscopy. An analytic continuation step relating the Matsubara Green’s function G(iωn) to
the retarded Green’s function GR(ω) is therefore needed as a post-processing step. This need
for numerical analytic continuation exists not only for fermionic systems but also for bosonic
systems [25,26] including He [27,28], supersolids [29], and warm dense matter [30]. Thus, a
highly precise and efficient numerical analytic continuation method is desired for quantitative
studies of quantum many-body systems.

Regardless of its practical importance, the numerical analytic continuation of the Green’s
function is an ill-conditioned problem whose direct solution is intractable. To address this is-
sue, many approximate methods have been developed. Examples include continued fraction
Padé approximation methods [31], the maximum entropy method [32,33], the stochastic an-
alytic continuation [34–38], machine learning approaches [39], genetic algorithms [28], the
sparse modeling method [40, 41], the Prony method [42], and a pole fitting approach [43].
Most of these methods are based on a regularized fit and fail to restore sharp structures in
the large-ω region even for numerically exact input data. The Padé approximation, which is
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an interpolation method, does not ensure causality and often results in negative values of the
spectral function and a violation of the sum rule, particularly at high frequencies.

The Nevanlinna analytic continuation method [44], an interpolation method, inherently
respects the mathematical structure of causal response functions, thereby providing a mathe-
matically rigorous numerical analytic continuation that ensures causality. The formalism has
been extended to matrix-valued Green’s functions [44,45].

While the Nevanlinna analytic continuation method has an elegant mathematical founda-
tion, the numerical solution of the Nevanlinna continuation equations requires special care.
The continued fraction expressions used in the method are sensitive to numerical precision,
which means that the interpolation must be performed using at least quadruple floating-point
arithmetic, even if input data is only known to double precision. In addition, selecting a subset
of the input data such that it respects the so-called Pick condition, which guarantees causal-
ity [44], is essential to avoid overfitting. For a solvable non-degenerate problem, Nevanlinna
theory guarantees the existence of an infinite number of valid analytical continuations. In
practical applications, a single “best” one of these needs to be chosen, typically by imposing
an additional smoothness constraint.

The sample C++ code published by the authors of [44] as a supplement to the original pa-
per serves to illustrate Nevanlinna continuation but does not implement this smoothing step
or a selection algorithm for choosing a subset of causal data. In this paper, we describe a
full-featured implementation of the Nevanlinna analytic continuation method in the Julia lan-
guage. Our implementation incorporates interpolation executed in arbitrary-precision arith-
metic, which ensures a stable interpolation. We execute the smoothing based on numerical
optimization, utilizing the automatic differentiation of the cost function, which is faster and
more accurate than the numerical finite difference method. The code is straightforward to
install and comes with Jupyter Notebooks illustrating typical use cases. The implementation
in the Julia language makes the code easily customizable for future extensions, e.g., to matrix-
valued Green’s functions [45]. We expect that providing the user community with a ready-to-
use and simple package that implements these additional steps will accelerate the adoption of
the Nevanlinna method in finite temperature Green’s function calculations.

2 Theory

In the Nevanlinna analytic continuation, the analytic properties of Green’s function play an
essential role. We, therefore, describe the analytic structure of both Matsubara Green’s func-
tion and the retarded Green’s function, focusing on the Lehmann representation in Sec. 2.1.
In Sec. 2.2, the definition of Nevanlinna functions is given. Green’s functions as Nevanlinna
functions, the Pick criterion, and the Schur interpolation algorithm are summarized, and the
Hardy optimization procedure is explained with some technical remarks. The fundamental
principles of the Hamburger moment problem are presented in Sec. 2.3. For the purpose of
constructing a solution, the Hankel matrix and two distinct types of polynomials are intro-
duced. The theory outlined here follows Refs. [44–46]. Additional technical and theoretical
details explained in this paper may be useful for users of the code.

2.1 Analytic continuation from Matsubara frequency to real frequency

In this paper, we focus on correlation functions between the fermionic annihilation operator, ĉ,
and the creation operator, ĉ†, which we call Green’s function. The Matsubara Green’s function
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and retarded Green’s function are defined as follows:

G(τ) = −〈Tτ ĉ(τ) ĉ†(0)〉 , (1)

GR(t) = −iθ (t)〈{ĉ(t), ĉ†(0)}〉 , (2)

in the imaginary-time domain and in the real-time domain, respectively. Their Fourier-
transformed functions are given by

G(iωn) =

∫ β

0

dτ eiωnτG(τ) , (3)

GR(ω) = lim
η→+0

∫ ∞

−∞
d t eiωt−ηt GR(t) (η > 0) , (4)

where 〈· · · 〉= tr{e−β(Ĥ−µN̂) · · · }/Ξ, ĉ(τ) = e(Ĥ−µN̂)τ ĉe−(Ĥ−µN̂)τ, and ĉ(t) = ei(Ĥ−µN̂)t ĉe−i(Ĥ−µN̂)t

with Hamiltonian Ĥ, particle number operator N̂ , the inverse temperature β = 1/T , and the
chemical potentialµ. We here set the Boltzmann constant kB equal to 1. Here, Ξ= tr{e−β(Ĥ−µN̂)}
is the partition function and iωn = i(2n + 1)πT are fermionic Matsubara frequencies [47].
These two Green’s functions are related by the Lehmann representation [48–51],

G(z) =

∫ ∞

−∞
dω
ρ(ω)
z −ω

. (5)

Namely, the Matsubara Green’s function G(iωn) is given by the limit z→ iωn, and the retarded
Green’s function GR(ω) is given by the limit z→ω+ iη (η→ +0). Here, the spectral function
ρ(ω) is

ρ(ω) =
1
Ξ

∑

n,m

e−β(En−µNn)(1+ e−βω)| 〈n| ĉ |m〉 |2δ(ω− Em + En +µ) , (6)

where En and Nn are energy and particle number of eigen state |n〉. From this definition, we
see that the spectral function ρ(ω) is always non-negative (ρ(ω)≥ 0), and it satisfies the sum
rule:

∫

ρ(ω) dω=
1
Ξ

∑

n,m

�

e−β(En−µNn) + e−β(Em−µNm)
�

〈n| ĉ |m〉 〈m| ĉ† |n〉 (7)

=



{ĉ, ĉ†}
�

= 1 . (8)

Using the following formula

lim
η→+0

∫

f (x)
x + iη

d x = P

∫

f (x)
x

d x − iπ f (0) , (9)

the spectral function can be evaluated from retarded Green’s function,

ρ(ω) = lim
η→+0
−

1
π

Im GR(ω+ iη) . (10)

The central objective in this paper is to estimate GR(ω+η) and ρ(ω) from the data of G(iωn),
namely, numerical analytic continuation between GR(ω+η) and G(iωn).

4

https://scipost.org
https://scipost.org/SciPostPhysCodeb.19


SciPost Phys. Codebases 19 (2023)

2.2 Nevanlinna analytic continuation procedure

2.2.1 Definition and notations

First, let us summarize the notations used in this paper. The upper half-plane C+ and the open
unit disk D are

C+ = {z ∈ C | Im z > 0} , (11)

D = {w ∈ C | |w|< 1} . (12)

Their closures are denoted by C+ and D, respectively. Nevanlinna functions are holomorphic
functions from C+ to C+, and Schur functions are holomorphic functions from D to D. We
denote the set of Nevanlinna functions and that of Schur functions as N and S, respectively.
Note that an one-to-one correspondence exists between z ∈ C+ and w ∈ D by Möbius trans-
formation hξ and the inverse h−1

ξ
for ξ ∈ C+:

w= hξ(z) =
z − ξ
z − ξ∗

, (13)

z = h−1
ξ (w) =

wξ∗ − ξ
w− 1

. (14)

Another Möbius transformation maps w ∈D to w′ ∈D for ζ ∈D:

w′ = gζ(w) =
w+ ζ

1+ ζ∗w
, (15)

w= g−1
ζ (w

′) =
w′ − ζ

1− ζ∗w′
. (16)

2.2.2 Green’s functions as Nevanlinna functions

As discovered in Refs. [44,45], the negative of the fermionic Green’s function is a Nevanlinna
function. Indeed, from Eq. (5),

G(x + i y) =

∫ ∞

−∞
dω

ρ(ω)
x + i y −ω

=

∫ ∞

−∞
dω
ρ(ω)(x −ω− i y)
(x −ω)2 + y2

. (17)

Given that ρ(ω)≥ 0,

−Im G(x + i y) =

∫ ∞

−∞
dω

ρ(ω)y
(x −ω)2 + y2

≥ 0 , (18)

where proves −G(z) ∈N . In numerical analysis, we can determine the values of Green’s func-
tion at a finite number of Matsubara frequencies, represented as−G(Yα) = Cα (α= 1, 2, . . . , M).
The problem is to find Nevanlinna functions f ∈ N which satisfy f (Yα) = Cα. This prob-
lem can be modified into another tractable problem by transforming the range of Nevanlinna
function by Möbius transformation. Therefore, our problem is to find a composite function
θ = hi ◦ f : C+ → D which satisfy hi ◦ f (Yα) = hi(Cα) = λα. We call these modified Nevan-
linna functions contractive functions. As discussed below, interpolation problems of contrac-
tive functions can be solved efficiently by the Schur algorithm [52,53].
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2.2.3 Pick criterion

There is a necessary and sufficient condition for the existence of Nevanlinna interpolants,
namely, the generalized Pick criterion [44]. It is formulated in terms of the Pick matrix [54],

�

1−λαλ∗β
1− hi (Yα)hi

�

Yβ
�∗

�

α,β

, α,β = 1, 2, . . . , M , (19)

and states that if the Pick matrix is positive definite, an infinite number of solutions to the
interpolation problem exists. If it is positive semidefinite but not positive definite, there is a
unique solution. If the Pick matrix contains negative eigenvalues in addition to the positive
ones, no solution to the interpolation problem exists [54,55]. In many numerical calculations,
this condition is satisfied when considering a subset of the values to be interpolated, but it
fails when all values are taken into account. In particular, if data points are added from low
to high frequencies, high Matsubara frequency values tend to break this condition. Our imple-
mentation determines the optimal number of low Matsubara frequencies, Nopt, for the analytic
continuation in an automated fashion. The process involves setting an initial value of Ncut to
1 and constructing a Pick matrix from input data at the lowest Ncut Matsubara frequencies
(α = 1, · · · , Ncut), which is then factorized using Cholesky Factorization. If the factorization
is successful, Ncut is incremented by one and the procedure is repeated until a factorization
failure occurs.1 The optimal cutoff, Nopt, is then determined as the maximum value of Ncut for
which factorization is successful. In the subsequent analytic continuation, we utilize only the
data up to Nopt. We refer to this procedure as “Pick Selection”.

2.2.4 Schur algorithm

The numerical analytic continuation can be viewed as a problem of constructing an analytic
function subject to M point constraint conditions. That is, we aim to construct a contractive
function that satisfies

θ (Yα) = λα (α= 1,2, . . . , M) . (20)

The Schur Algorithm iteratively interpolates and constructs θ (z). In the following, we begin
by constructing a contractive function with a single constraint. This process will subsequently
be generalized to accommodate M constraint conditions.

First, let us consider a Schur function ϕ ∈ S with one constraint condition ϕ(0) = γ1 ∈D.
We construct the function

ϕ̃(w) =
1
w
ϕ(w)− γ1

1− γ∗1ϕ(w)
(21)

=
1
w

g−1
γ1
(ϕ(w)) . (22)

From g−1
γ1
(ϕ(0)) = 0 and the Schwartz’s lemma, ϕ̃(w) belongs to S. Conversely for any Schur

function ϕ̃(w),

ϕ(w) =
wϕ̃(w) + γ1

1+ γ∗1wϕ̃(w)
(23)

= gγ1
(wϕ̃(w)) , (24)

1Rigorously speaking, the success of Cholesky factorization does not guarantee that the given matrix is positive
definite due to rounding error. The numerical rigorous criterion can be found in Ref. [56].
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will be regular in D, |ϕ(w)|< 1, andϕ(0) = γ1. Therefore, Eq. (23) provides a general form of
Schur functions subject to a single constraint condition ϕ(0) = γ1, where ϕ̃(w) is an arbitrary
Schur function.

Combining Eq. (23) and Möbius transformation hY1
(z), a general form of contractive func-

tions θ (z) = ϕ ◦ hY1
(z) that satisfy θ (Y1) = γ1 an be given as

θ (z) =

z−Y1
z−Y ∗1
θ̃ (z) + γ1

γ∗1
z−Y1
z−Y ∗1
θ̃ (z) + 1

, (25)

where θ̃ (z) is an arbitrary contractive function.
The procedure can be further extended to problems with M constraint conditions:

θ1(Yα) = λ
(1)
α (α= 1, 2, . . . , M) . (26)

By utilizing Eq. (25), we can recast the M constraint problem for θ1 as an (M − 1) constraint
problem for θ2:

θ1(z) =

z−Y1
z−Y ∗1
θ2(z) +λ

(1)
1

(λ(1)1 )∗
z−Y1
z−Y ∗1
θ2(z) + 1

, (27)

with

θ2(Yα) =
Yα − Y ∗1
Yα − Y1

λ
(1)
1 −λ

(1)
α

(λ(1)1 )∗λ
(1)
α − 1

≡ λ(2)α (α= 2, 3, · · · , M) . (28)

In a similar manner, this algorithm can be continued iteratively until θ1, θ2, · · · , θM , θM+1
are determined, leaving θM+1 as an arbitrary contractive function. The continued contractive
function, which is parameterized by θM+1, can be expressed as

θ (z) [θM+1(z)] =
a(z)θM+1(z) + b(z)
c(z)θM+1(z) + d(z)

, (29)

where a(z), b(z), c(z), and d(z) are determined by

�

a(z) b(z)
c(z) d(z)

�

=
M
∏

α=1

� z−Yα
z−Y ∗α

φα

φ∗α
z−Yα
z−Y ∗α

1

�

=

� z−Y1
z−Y ∗1

φ1

φ∗1
z−Y1
z−Y ∗1

1

�� z−Y2
z−Y ∗2

φ2

φ∗2
z−Y2
z−Y ∗2

1

�

· · ·

� z−YM
z−Y ∗M

φM

φ∗M
z−YM
z−Y ∗M

1

�

. (30)

Here, φα (α = 1,2, · · · , M) is defined by φα ≡ θα(Yα) = λ(α)α . The retarded Green’s function
GR(ω+ iη) is given by −h−1

i (θ (ω+ iη))
To determine φα, we prepare the recursive algorithm. First, φ1 = θ (Y1) and construct

�

a2 b2
c2 d2

�

=

� Y2−Y1
Y2−Y1∗

φ1

φ∗1
Y2−Y1
Y2−Y ∗1

1

�

, (31)

and determine φ2

φ2 =
−d2θ (Y2) + b2

c2θ (Y2)− a2
. (32)
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Generally, the values of φ1, · · · ,φβ−1 are used to determine φβ as follows:

�

aβ bβ
cβ dβ

�

=
β−1
∏

α=1

 Yβ−Yα
Yβ−Y ∗α

φα

φ∗α
Yβ−Yα
Yβ−Y ∗α

1

!

, (33)

φβ =
−dβθ (Yβ) + bβ
cβθ (Yβ)− aβ

. (34)

Note that these algorithms require at least quadruple floating-point precision to achieve accu-
rate continued fraction expressions, as numerical instability may arise. This is demonstrated
in Section 3.3.

2.2.5 Smoothing

There is an infinite number of “valid” continuations consistent with causal input data since any
Schur function θM+1 will yield a valid spectral function. To select the “most physical” of all
possible spectral functions, additional constraints for θM+1 or for the final spectral function can
be imposed. As discussed in the following section, artificial oscillations around exact values
manifest for θM+1(z) = 0. To eliminate these oscillations and get the best continued result, we
adjust θM+1(z) in order to get the smoothest possible spectral function [44]. We assume that
θM+1(z) exists in Hardy space H2(C+) in which a function F(z) satisfies [57]

sup
y>0

∫ ∞

−∞
|F(x + i y)|2 d x <∞ . (35)

This space is generated by the orthogonal basis { f k(z)}∞0 whose basis functions are given by

f k(z) =
1

p
π(z + i)

�

z − i
z + i

�k

. (36)

We expand θM+1(z) into the basis with a cutoff parameter Hcut,

θM+1(z) =
Hcut
∑

k=0

ak f k(z) + bk

�

f k(z)
�∗

, (37)

and minimize the cost function

F[θM+1] =

�

�

�

�

1−
∫ ∞

−∞
ρ(ω) dω

�

�

�

�

2

+λ

∫ ∞

−∞
(ρ′′(ω))2 dω . (38)

Typically, a value of λ = 10−4 tends to yield stable solutions. In Nevanlinna.jl, we use
automatic differentiation to optimize coefficients ak, bk. The implementation is based on
Zygote.jl [58] and Optim.jl [59]. The automatic differentiation is extraordinarily efficient
and accurate up to machine precision, unlike the numerical finite difference method employed
in Ref. [44].

In practical calculations, a large Hcut can lead to numerical instabilities. As such, our
methodology adopts a step-by-step approach. Once a solution (ak, bk) converges for a given
Hcut, we initiate the optimization of the cost function for Hcut + 1, using the previously con-
verged values (a0, · · · , aHcut

, 0, b0, · · · , bHcut
, 0) as the initial values. The code commences

with an initial cutoff value of Hmin, and the optimization procedure is repeated by increment-
ing Hcut until optimization fails. At that point, continued values are computed based on the
last converged solution. It is crucial to carefully consider the value assigned to Hmin, as in
certain circumstances, utilizing Hmin = 0 can fail at the first optimization step. Hence, the
optimal value of Hmin that leads to convergence should be adopted in such cases.
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2.3 Hamburger moment problem

The prior knowledge of the moments of the spectral function can be incorporated into the
Nevanlinna analytic continuation procedure [46,60]. The n-th moment is defined as

hn ≡
∫

dω ωnρ(ω) . (39)

These moments are related to the asymptotic expansion of the Green’s function:

G(z) =

∫ ∞

−∞
dω
ρ(ω)
z −ω

(40)

=
1
z

∫ ∞

−∞
dω

ρ(ω)

1−
�

ω
z

� (41)

=
1
z

∫ ∞

−∞
dω
∞
∑

n=0

�ω

z

�n
ρ(ω) (42)

=
h0

z
+

h1

z2
+

h2

z3
+ · · · (|z| →∞) . (43)

The correct high-frequency behavior is usually enforced by Matsubara points at large Matsub-
ara frequencies, especially on non-uniform grids with Matsubara points at very high frequen-
cies. However, a cutoff of Matsubara frequencies in the input data, or via the Pick selection
criterion, eliminates this information, leading to spectral functions that may have incorrect mo-
ments. Imposing constraints on the moments during the interpolation can therefore improve
the accuracy of the continued fraction in the Nevanlinna analytic continuation process. The
enforcement of moments and the combination of the moment with the interpolation problem
is known as the Hamburger Moment Problem [44,46,61].

Let us consider a sequence of moments, b = (h0, h1, h2, . . . , h2N−2). The vector b is referred
to as the Hankel vector and can be pre-calculated using the equations of motion [62,63]. Our
objective is to determine a non-decreasing measure σ(ω) that satisfies the following equation:

hn =

∫ ∞

−∞
ωndσ(ω) , (44)

for n= 0,1, 2, . . . , 2N−2. The spectral function is expressed as ρ(ω) = dσ(ω)
dω (≥ 0). According

to the Hamburger-Nevanlinna theorem [61], there is a one-to-one correspondence between the
class of solutions σ(ω) and a subset of Nevanlinna functions:

f (z) =

∫ ∞

−∞

dσ(ω)
ω− z

. (45)

This Nevanlinna function has the following asymptotic form:

f (z) = −
h0

z
−

h1

z2
−

h2

z3
− · · · −

h2N−2

z2N−1
− o

�

1
z2N−1

�

, (46)

where the domain of f (z) is ε < arg z < π− ε for some 0< ε < π
2 .

The continuation of f (z) is only possible if the Hankel matrix HNN [b], which is defined as
follows:

Hkl[b] =
�

hi+ j

�i=k−1, j=l−1
i, j=0 , k+ l = 2N , (47)
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is considered “proper”. The characteristic degrees of the Hankel matrix are defined as
n1 = rank HNN [b] and n2 = 2N −n1. A Hankel matrix A is considered proper when its leading
submatrix, B =

�

Ai, j

�i=n1−1, j=n1−1
i, j=0 , of order n1×n1 is non-singular, and thus n1 = rank B [64].

Note that a non-singular Hankel matrix is proper.
We introduce a polynomial space defined by the kernel of the Hankel matrix, as given by

the following equation:

Al =
�

1, z, z2, . . . , z l−1
�

ker(Hkl[b]) , k+ l = 2N . (48)

In constructing a solution, we utilize two distinct types of polynomials. Let us denote the first
type as p(z) and q(z). When n1 = n2 = N , the dimension of An1+1 is 2 and p(z) and q(z) serve
as a basis for this space. However, when n1 < n2, An1+1 has a dimension of 1 and p(z) serves
as its basis. Meanwhile, the set p(z), zp(z), . . . , zn2−n1 p(z), q(z) forms an orthogonal basis for
An2+1.

The polynomials p(z) and q(z) are not uniquely defined, but a special pair of canonical
polynomials is often utilized for convenience. The expression for n1-th order polynomial is
given by

αdet













h0 h1 · · · hn1

h1 h2 · · · hn1+1
...

...
...

hn1−1 hn1
· · · h2n1−1

1 z · · · zn1













, (49)

where α is a normalization coefficient that ensures that the polynomial is monic. In the case
where n1 = N , h2n1−1 is an arbitrary real number [60]. We choose p(z) to be an n1-th order
orthogonal polynomial and q(z) to be an (n1 − 1)-th order polynomial. The polynomials can
be expressed as:

p(z) =
n1
∑

n=0

pnzn , (50)

q(z) =
n2
∑

n=0

qnzn . (51)

Additionally, we define the symmetrizers of p(z) and q(z) as follows:

S(p(z)) =











p1 · · · pn1−1 pn1
... .· .· 0

pn1−1 .· .·
...

pn1
0 · · · 0











, (52)

S(q(z)) =











q1 · · · qn2−1 qn2
... . .· 0

qn2−1 .· .·
...

qn2
0 · · · 0











. (53)

Finally, we introduce another two sets of polynomials, which are the conjugate polynomials of
p(z) and q(z):

γ(z) =
�

1, z, z2, . . . , zn1−1
�

S(p(z))
�

h0, h1, . . . , hn1−1

�⊤
, (54)

δ(z) =
�

1, z, z2, . . . , zn2−1
�

S(q(z))
�

h0, h1, . . . , hn2−1

�⊤
. (55)
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The solutions to the problem are provided for both the case of a positive definite Hankel
matrix (HNN > 0) and the case of a semi-positive definite Hankel matrix (HNN ≥ 0), as follows
(see Theorem 3.6 in Ref. [60]):

f (z) =

∫ ∞

−∞

dσ(ω)
ω− z

(56)

=



















−
γ(z) +ϕ(z)δ(z)
p(z) +ϕ(z)q(z)

(HNN > 0) ,

−
γ(z)
p(z)

(HNN ≥ 0 and proper) .

(57)

Here, ϕ(z) represents any Nevanlinna function such that ϕ(z)/z approaches zero as |z| ap-
proaches infinity.

These frameworks can be combined with the Schur algorithm by incorporating Nevanlinna
analytic continuation. Given the data for f (z) to be interpolated,

f (Yα) = λα (α= 1, 2, . . . , M) , (58)

we modify data by polynomials p(z), q(z), γ(z), δ(z), as follows:

ϕ(Yα) = λ̃α = −
γ(Yα) +λαp(Yα)
δ(Yα) +λαq(Yα)

(α= 1,2, 3, . . . , M) . (59)

Since ϕ(z) is a Nevanlinna function, the Schur algorithm interpolates the data in Eq. (59) and
gives ϕ(z) and f (z).

3 Usage

3.1 Installation

Firstly, users need to install Julia (v1.6 or newer) and make sure to add the location of the
Julia executable (julia) to their PATH environment variable.

Installing the library is straightforward, thanks to Julia’s package manager. To start, open
Julia using the REPL (read-eval-print loop), which is an interactive command-line interface,
and press the ] key to activate the package mode. Then enter the following:

pkg > add Nevanlinna

Upon successful installation, you’ll be able to use our library in a Julia session as follows:
julia > using Nevanlinna

Alternatively, the libraries can be installed in a shell as follows:
$ julia -e 'import Pkg; Pkg.add("Nevanlinna")'

This command tells Julia to import the package management system and add (i.e., install) the
Nevanlinna.jl package. This installation will be performed in the currently active environ-
ment in your Julia session.

If you intend to run the sample code provided later in this paper, it will also be necessary
to install SparseIR.jl [65] for the sparse sampling method [66] based on the intermediate
representation [67]. You can do this by adding it in the same way as Nevanlinna.jl. In the
Julia package mode, simply type the following command:

pkg > add SparseIR

Alternatively, you can install the package directly from the shell by entering the following
command:

$ julia -e 'import Pkg; Pkg.add("SparseIR")'
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3.2 Interface

3.2.1 REPL or Jupyter notebook

The Nevanlinna.jl package can be utilized within either a REPL or Jupyter note-
book. First, arrays containing data for the Matsubara Green’s function G(iωn) and
the Matsubara frequency iωn are needed. The constructor NevanlinnaSolver and
HamburgerNevanlinnaSolver can be used for the bare Nevanlinna analytic continuation and
the Hamburger moment problem combined with Nevanlinna analytic continuation, respec-
tively: For the bare Nevanlinna analytic continuation,

julia > sol = NevanlinnaSolver(wn, gw, N_real , w_max , eta ,
sum_rule , H_max , iter_tol , lambda)

For the Hamburger moment problem,
julia > sol = HamburgerNevanlinnaSolver(moments , wn, gw, N_real ,

w_max , eta , sum_rule , H_max , iter_tol , lambda)

In the above code, wn and gw are the arrays of iωn and G(iωn), while moments contains the
data of moments of ρ(ω). N_real represents the number of mesh points in the real axis and
w_max represents the energy cutoff of the real axis. eta and sum_rule describe the broaden
parameter η and

∫

dωρ(ω) respectively. H_max, iter_tol, and lambda define the upper cut-
off of H in Hardy optimization, the upper bound of iteration, the regularization parameter in
Eq. (38) which are hyperparameters used in calculations. The other parameters are summa-
rized in Table 1. The constructor HamburgerNevanlinnaSolver requires an additional input
array, moments. Within the constructors, the optimal values for Nopt and Hmin are calculated
automatically. The Hardy optimization can then be performed by executing the solve! func-
tion, as shown below:

julia > solve!(sol)

3.2.2 CLI (command line interface)

For the convenience of the user, the Nevanlinna.jl package also offers a command-line in-
terface. Upon installation of Nevanlinna.jl via Julia, an executable file named nevanlinna
is automatically created in the ~/.julia/bin directory. Assuming the path to the executable
is already included in your system’s PATH, the following commands can be executed:

$ nevanlinna bare inputpath parampath outputpath
$ nevanlinna hamburger inputpath momentpath parampath

outputpath

The first argument determines the calculation mode, which should be either bare (for bare
Nevanlinna analytic continuation) or hamburger (for the Hamburger moment problem).

The second argument, inputpath, denotes the path to the data file that contains the Mat-
subara frequency iωn and the Matsubara Green’s function G(iωn). This file should contain
ωn, ℜ(G(iωn)), and ℑ(G(iωn)) data within the first, second, and third columns, respectively.

The third argument, parampath, is the path to the input parameter file in TOML format.
A template TOML file is provided in the associated GitHub repository. For the Hamburger
moment problem mode, an additional third argument, momentpath, specifies the path to the
moment data file, which should have the moment data in the first column.

The final argument, outputpath, is the path to the output data file, where the frequency
ω on the real axis and the resulting analytic continuation data ρ(ω) are stored in the first and
second columns, respectively.
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Table 1: Arguments of constructors of NevanlinnaSolver and
HamburgerNevanlinnaSolver. The first argument, moments, is needed only
for HamburgerNevanlinnaSolver.

Variable Type Description

moments Vector{Complex{T}} Array of hn
Only for HamburgerNevanlinnaSolver

wn Vector{Complex{T}} Array of iωn
gw Vector{Complex{T}} Array of G(iωn)
N_real Int64 The number of mesh in the real axis
w_max Float64 Energy cutoff of the real axis
eta Float64 Broaden parameter η
sum_rule Float64

∫

dωρ(ω)
H_max Int64 Upper cutoff of H
iter_tol Int64 Upper bound of iteration
lambda Float64 Regularization parameter λ
verbose Bool Verbose option

(Default: false)
pick_check Bool Causality check option

(Default: true)
optimization Bool Hardy optimization option

(Default: true)
ini_iter_tol Int64 Upper bound of iteration for Hmin

(Default: 500)
mesh Symbol Mesh on the real axis option

(Default: :linear)

3.3 Examples

To illustrate the capabilities of our code, we present a numerical analytic continuation for
several models, which include a δ-function, a Gaussian, a Lorentizian, a two-peak, a Kondo
resonance, and a Hubbard gap model. Jupyter notebooks, which can be used to execute these
examples, are provided in the notebooks directory of our repository. The three of these models
were previously analyzed in Ref. [44]. The exact spectral functions for these models are given
by the following equations:

ρδ-function(ω) = 0.3 δ(ω− 1) + 0.5 δ(ω+ 3) + 0.2 δ(ω− 4.5) ,

ρGaussian(ω) = g(ω, 0, 1) ,

ρLorentzian(ω) = l(ω, 0, 1) ,

ρtwo peak(ω) = 0.8 g(ω,−1,1.0) + 0.2 g(ω, 3, 0.7) ,

ρKondo resonance(ω) = 0.45 g(ω,−2.5, 0.7) + 0.1 g(ω, 0, 0.1) + 0.45 g(ω, 2.5, 0.7) ,

ρHubbard gap(ω) = 0.5 g(ω,−1.9,0.5) + 0.5 g(ω, 1.9, 0.5) , (60)

where

g(ω,µ,σ) =
1
p

2πσ
exp

�

−
(x −µ)2

2σ2

�

,

l(ω,µ,γ) =
1
π

γ

(ω− γ)2 + γ2
. (61)
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Figure 1: Results of (a) δ-function, (b) Gaussian, (c) Lorentzian, (d) two-peak,
(e) Kondo-resonance, (f) Hubbard-gap models with and without optimization in
Nevanlinna.jl. These results were obtained for β = 100 and η = 0.001 The ex-
act spectral functions consist of δ-function, Gaussian peaks, or Lorentzian peaks
[Eq. (60)].

We prepare double precision input data G(iωn) on a sparse sampling grid of Matsubara
frequencies, i.e., the intermediate-representation [67] grid for β = 100 [66], generated by
using SparseIR.jl [65]. The code can be found in Fig. 6. After the analytic continuation is
performed, the output data can be accessed through sol.reals. We evaluate the continued
results onω+0.001i and show them in Fig. 1. Except for the δ-function model, the continued
result shows artificial oscillations around the exact spectral function in the absence of Hardy
optimization. However, by the Hardy optimization implemented in our code, these oscillations
are effectively removed and the continued spectral function is in good agreement with the exact
function in all cases.

To demonstrate the significance of utilizing multiple precision arithmetic in the Schur al-
gorithm, we compare the results obtained with 64-bit arithmetic and 128-bit arithmetic. The
optimized result is shown in Fig. 2. The result obtained with 64-bit arithmetic is incorrect,
as the small peak is not properly restored and there is finite spectral weight in the high-ω re-
gion. This indicates that the rounding error in the Schur algorithm can significantly affect the
continued result. Hence, employing multiple precision arithmetic is essential to ensure that
rounding errors remain negligible throughout the computations.

The case in which the spectral function displays a large gap around the origin is known to be
challenging. The kernel of analytic continuation implies that information about the spectral
function may be lost in the Matsubara Green’s function [67]. Consequently, the Matsubara
Green’s function in such cases exhibits a lower tolerance for noise. Computations at high
temperatures yield a qualitatively correct solution. Figure 3 shows the results for this case. The
positions and weights of the peaks are reconstructed; however, some small oscillations remain.
Implementing a more robust algorithm for Hardy optimization will enhance the performance
of our code.
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Figure 2: Results of the two-peak model obtained by 64-bit and 128-bit arithmetic.
The spectral function is the same as Fig. 1(d).
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Figure 3: Results of the large Hubbard gap model for β = 10 and η = 0.01. The
spectral function is 0.5 ∗ g(ω,−3.0,0.7) + 0.5 ∗ g(ω, 3.0, 0.7).

In computations at low temperatures, the Matsubara frequencies are close to each other in
the complexω-plane, making it difficult to access high-frequency behavior that may have been
truncated by Pick selection. Including information about the moments can improve the results
in these situations. Figure 4(a) illustrates the influence of the use of moment information on
the outcomes. The incorporation of additional information leads to a reduction of artificial
oscillations. This augmentation stabilizes the numerical computation during Hardy optimiza-
tion. The Hardy optimization still works efficiently even in the case of the Hamburger moment
problem (Fig. 4(b)). The inclusion of moments is beneficial in low-temperature calculations
or situations where input data is limited.

4 Conclusion

In this paper, we introduced the Julia library Nevanlinna.jl. We provided an overview of
the analytic structure of the Green’s function, Schur algorithm, Pick criterion, Hardy optimiza-
tion, and Hamburger moment problem. The Matsubara and retarded Green’s function on the
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Figure 4: (a) Results of the two-peak model for β = 1000 and η = 0.0001. We
imposed constraints on the first 0, 3, and 7 moments, respectively. (b) Results with
smoothing and constraints on the first seven moments. The spectral function is the
same as Fig. 1(d).

upper half-plane are classified into the Nevanlinna function. The Schur algorithm effectively
interpolates and constructs a Nevanlinna function, ensuring causality automatically. The Pick
criterion serves as the mathematical base for the existence of Nevanlinna interpolants. We im-
plemented the Hardy optimization using efficient automatic differentiation. The Hamburger
moment problem enables analytic continuation with constraints on the moments of a spectral
function. We demonstrated the usage of our code with various examples such as δ-function,
Gaussian, Lorentzian, a two-peak, a Kondo resonance, and Hubbard gap models.

The installation of our code is extraordinarily easy using the Julia package manager. Fur-
thermore, multiple precision arithmetic is already implemented. Thus, there is no obstacle,
such as compiling the code or installing an external library manually, and users can readily try
our code.

Finally, we discuss some remaining technical issues and further extensions to be addressed.
In some cases, like the large Hubbard gap structure, our Hardy optimization algorithm may
fail to find the optimal solution θM+1(z). However, the Pick criterion guarantees the exis-
tence of the true undetermined function θM+1(z). Therefore, further investigation into the
optimization algorithm will improve the range of applications of Nevanlinna analytic continu-
ation. Although our code currently employs Cholesky decomposition to verify the semi-positive
definiteness of Pick or Hankel matrices, it is well-known that robust criteria and efficient al-
gorithms exist to confirm the positive definiteness of given matrices [56]. Implementing this
algorithm into our code is a direction for future work. The extension for the matrix-valued
Green’s function is also an interesting topic. While this topic is resolved for spectral functions
like the δ-function [45], broadened cases have not been investigated yet. In addition, fur-
ther expansion of Nevanlinna analytic continuation to self-energy [68] or anomalous Green’s
function [69] is crucial for wide-range applications of many-body physics.
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A Structure of code

A.1 Processing flow

The function calc_opt_N_imag calculates the optimal cutoff number opt_N_imag, aiming to
preserve causality, as described in Sec.2.2.3. Then, with the calculated opt_N_imag, calc_phis
calculateφα as described in Sec. 2.2.4. Following this, calc_abcd evaluates the functions a(z),
b(z), c(z), and d(z) at z =ω+iη using the Schur algorithm. Finally, optimal H_min is evaluated
by calc_H_min, and the Hardy optimization is executed. The flowchart of our procedure is
shown in Fig. 5, and a summary of the functions used in the procedure is provided in Table 2.

A.2 Data struct

We have defined two struct types for input and output data. The struct ImagDomainData is
used to store input data. In Table 3, the member variables of ImagDoaminData are summarized.
freq and val store iωn and hi(−G(iωn)), respectively, while N_imag represents the dimenson
of freq and val. Similarly, the RealDomainData struct is used to store output data. The
member variables of the RealDomainData struct are summarized in Table 4. The variables
freq and val storeω+ iη and −GR(ω+ iη), respectively, N_real represents the dimensons of
both freq and val, omega_max represents the energy cutoff of the real axis, eta is the broaden
parameter, and sum_rule corresponds to the value of

∫

dωρ(ω).

A.3 Solver struct

We have defined solver structs for the Nevanlinna analytic continuation and the Hamburger
moment problem combined with Nevanlinna analytic continuation. The member variables of
these structs are summarized in Table 5 and Table 6, respectively. The constructor executes
the process from calc_opt_N_imag to calc_H_min in the flowchart in Fig. 5. The function
solve! executes the Hardy optimization step and RealDomainData in the NevanlinnaSolver
contains output data.

Table 2: Functions in processing flow.

Variable Described section

calc_opt_N_imag Sec. 2.2.3
calc_phis Sec. 2.2.4
calc_abcd Sec. 2.2.4
calc_H_min Sec. 2.2.5
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Figure 5: Flowchart of Nevanlinna.jl.

B Example code

In this section, we present an example code using Nevanlinna.jl for the two-peak model.
The corresponding results are illustrated in Fig. 1(d). Users can apply our code to different
spectral functions by modifying the definition of rho(omega).

Table 3: Members of ImagDomainData.

Variable Type Description

N_imag Int64 Dimension of freq and val
freq Vector{Complex{T}} iωn
val Vector{Complex{T}} hi(−G(iωn))

Table 4: Members of RealDomainData.
Variable Type Description

N_real Int64 Dimension of freq and val
w_max Float64 Energy cutoff of the real axis
eta Float64 Broaden parameter η
sum_rule Float64

∫

dωρ(ω)
freq Vector{Complex{T}} ω+ iη
val Vector{Complex{T}} −GR(ω+ iη)
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Table 5: Members of NevanlinnaSolver.

Variable Type Description

imags ImagDomainData{T} Imaginary domain data
reals RealDomainData{T} Real domain data
phis Vector{Complex{T}} φi
abcd Array{Complex{T},3} a(z), b(z), c(z), and d(z)
H_max Int64 Upper cutoff of H
H_min Int64 Lower cutoff of H
H Int64 Current value of H
ab_coeff Vector{Complex{T}} Current solution for ak, bk
hardy_matrix Array{Complex{T},2} Hardy matrix for H
iter_tol Int64 Upper bound of iteration
lambda Float64 Regularization parameter
ini_iter_tol Int64 upper bound of iteration for Hmin
verbose Bool Verbose option

Table 6: Members of HamburgerNevanlinnaSolver.
Variable Type Description

moments Vector{Complex{T}} hn
N_moments_ Int64 Dimension of moments
N Int64 (N_moments_+1)/2
n1 Int64 rank HNN [b]
n1 Int64 2N − n1
isPSD Bool Whether is HNN [b] positive semi-definite or not
isProper Bool Whether is HNN [b] proper or not
isProper Bool Whether is HNN [b] singular or not
isDegenerate Bool Whether is HNN [b] degenerate or not
p Vector{Complex{T}} pi
q Vector{Complex{T}} qi
gamma Vector{Complex{T}} γi
delta Vector{Complex{T}} δi
hankel Array{Complex{T},2} Hankel matrix HNN [b]
mat_real_omega Array{Complex{T},2} Matrix of ωn

val Vector{Complex{T}} f (z)
nev_st NevanlinnaSolver{T} NevanlinnaSolver for φ(z)
verbose Bool Verbose option
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1 #load package
2 using Nevanlinna
3 using LinearAlgebra
4 using SparseIR
5

6 #set work data Type
7 T = BigFloat
8 setprecision (128)
9

10 #define spectral function
11 gaussian(x, mu, sigma) = exp ( -0.5*((x-mu)/sigma)^2)/(sqrt (2*π)*

sigma)
12 rho(omega) = 0.8* gaussian(omega , -1.0, 1.0) + 0.2* gaussian(omega ,

3, 0.7)
13

14 function generate_input_data(rho::Function , beta:: Float64)
15 lambda = 1e+4
16 wmax = lambda/beta
17 basis = FiniteTempBasisSet(beta , wmax , 1e-15)
18

19 rhol = [overlap(basis.basis_f.v[l], rho) for l in 1: length(
basis.basis_f)]

20 gl = - basis.basis_f.s .* rhol
21 gw = evaluate(basis.smpl_wn_f , gl)
22

23 hnw = length(basis.smpl_wn_f.sampling_points)÷2
24

25 input_smpl = Array{Complex{T}}(undef , hnw)
26 input_gw = Array{Complex{T}}(undef , hnw)
27 for i in 1:hnw
28 input_smpl[i]= SparseIR.valueim(basis.smpl_wn_f.

sampling_points[hnw+i], beta)
29 input_gw[i] = gw[hnw+i]
30 end
31 return input_smpl , input_gw
32 end
33

34 beta = 100. #inverse temperature
35 input_smpl , input_gw = generate_input_data(rho , beta)
36

37 N_real = 1000 #dimension of the array of output
38 omega_max = 10.0 #energy cutoff of the real axis
39 eta = 0.001 #broaden parameter
40 sum_rule = 1.0 #sum rule
41 H_max = 50 #cutoff of Hardy basis
42 lambda = 1e-4 #regularization parameter
43 iter_tol = 1000 #upper bound of iteration
44

45 #construct solver struct
46 sol = NevanlinnaSolver(input_smpl , input_gw , N_real , omega_max ,

eta , sum_rule , H_max , iter_tol , lambda , verbose=true)
47

48 #execute optimize
49 solve!(sol)

Figure 6: Example code for the two-peak model. This code is available at
https://github.com/SpM-lab/Nevanlinna.jl/notebooks/two_peak.ipynb.
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