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Abstract

Pyqcm is a Python/C++ library that implements a few quantum cluster methods with an
exact diagonalization impurity solver. Quantum cluster methods are used in the study of
strongly correlated electrons to provide an approximate solution to Hubbard-like mod-
els. The methods covered by this library are Cluster Perturbation Theory (CPT), the Vari-
ational Cluster Approach (VCA) and Cellular (or Cluster) Dynamical Mean Field Theory
(CDMFT). The impurity solver (the technique used to compute the cluster’s interacting
Green function) is exact diagonalization from sparse matrices, using the Lanczos algo-
rithm and variants thereof. The core library is written in C++ for performance, but the
interface is in Python, for ease of use and inter-operability with the numerical Python
ecosystem. The library is distributed under the GPL license.
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1 Introduction

Our understanding of the solid state has long been based on simple paradigms: metals can
be understood in terms of quasi-independent electrons, undergoing occasional collisions; at
the other extreme, magnets are understood in terms of the spins of localized electrons. But
between these paradigms lies a spectrum of materials that defy comprehension in terms of
these simple pictures, even though they may show characteristics of both. High-temperature
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superconductors are the prototype of such strongly correlated quantum materials. Such materi-
als can display a variety of fascinating properties, from superconductivity to exotic magnetism,
charge ordering, transitions between insulating and conducting behavior, spontaneous viola-
tion of time-reversal symmetry, etc.

Strongly correlated behavior is very often described theoretically using the Hubbard model,
including variations thereof involving more than one band, extended interactions, and so on.
Hubbard-like models are notoriously difficult to deal with. In the last 35 years or so, many
computational methods were devised or significantly improved in order to treat such models.
Most notorious is dynamical mean field theory (DMFT) [1, 2], which led to new insights into
the Mott metal-insulator transition. A key approximation within DMFT is that the system’s
self-energy Σ is momentum-independent, and depends only on frequency. To improve on this,
quantum cluster methods (QCM) have been proposed, in which the momentum dependence of
the self-energy is not completely neglected, but restricted to a few points (or patches) in the
Brillouin zone (for a review, see, e.g., [3, 4]). In the spatial domain, this amounts to includ-
ing non-local components in the self-energy within a small cluster of atomic sites or orbitals.
Such quantum cluster methods include cluster perturbation theory (CPT) [5, 6], the cellular
dynamical mean-field theory (CDMFT) [7], the dynamical cluster approximation (DCA) [8,9]
and the variational cluster approach (VCA) [10].

Here we presents pyqcm, an open-source library for CPT, CDMFT and VCA based on an
exact-diagonalization (ED) solver. This library has been developed over 20 years, but has
only been given a Python interface in the last 4 years. This gave it more flexibility and ease
of use, which justifies its public release. The first sections of this paper constitute a review
of the different quantum cluster methods covered in the library; it is in great part adapted
from unpublished lecture notes [11]. Other reviews by one of us [12–14] cover some topics
presented here in the same fashion. In the last section we will describe the overall architecture
of the library and provide simple examples of its use, many more examples being available in
the library’s distribution.

Let us start by writing the Hamiltonian of the one-band Hubbard model, mostly to set the
notation:

H =
∑
r,r′,σ

trr′ c
†
rσcr′σ + U
∑

i

nr↑nr↓ −µ
∑

r

nr . (1)

Here r denotes a site of a Bravais lattice γ, cr′σ is the annihilation operator of an electron
of spin σ in a Wannier state centered at lattice site r, trr′ is the hopping amplitude between
Wannier states located at sites r and r′, U is the on-site Coulomb repulsion and µ is the chem-
ical potential, which we find convenient to include in the Hamiltonian. We may assume, for
counting purposes, that the lattice γ is periodic, with a large (i.e., billions) but finite number
of sites N . Multi-band Hubbard models are a simple extension of this, that we will introduce
later as needed.

2 Clusters and super-lattices

Cluster methods are based on a tiling of the original lattice γ with identical clusters of L sites
each. Mathematically, this corresponds to introducing a super-lattice Γ , whose sites, labeled
by vectors with tildes (r̃, r̃′, etc), form a subset of the lattice γ. Every site r̃ of the super-lattice
may be expressed as an integer linear combination of D basis vectors e1, . . . ,eD belonging to γ.
Associated with each site of Γ is a cluster of L sites, whose shape is not uniquely determined by
the super-lattice structure. The sites within the clusters will be labeled by their vector position
(in capitals): R, R′, etc. Each position r of the original lattice γ can thus be uniquely expressed
as a combination of a super-lattice vector r̃ and of a position R within the cluster: r = r̃+ R
(see Fig. 1(a)).
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Figure 1: (a) A 10-site cluster and the corresponding super-lattice vectors. (b) The
associated reduced Brillouin BZΓ (thick black square); a wave-vector k has a unique
decomposition k = k̃+ K, where K is one of the L elements of the reciprocal super-
lattice that belongs to the original Brillouin zone BZγ (red dashed square). Adapted
from [12].

The number of sites in the cluster is simply the ratio of the unit cell volumes of the two
lattices. In D = 3, this is

L =
VΓ
Vγ
= |(e1 ∧ e2) · e3| (2)

(the above formulae can be adapted to D = 2 by setting e3 = (0, 0,1)).
The Brillouin zone of the original lattice, denoted BZγ, contains L points belonging to the

reciprocal super-lattice Γ ∗. Correspondingly, the Brillouin zone of the super-lattice, BZΓ , is L
times smaller than the original Brillouin zone. Any wave-vector k of the original Brillouin zone
can be uniquely expressed as

k= K+ k̃ , (3)

where K belongs both to the reciprocal super-lattice and to BZγ, and k̃ belongs to BZΓ (see
Fig. 1(b)).

2.1 Partial Fourier transforms

The passage between momentum space and real space, by discrete Fourier transforms, can be
done either directly (r↔ k), or independently for cluster and super-lattice sites (r̃↔ k̃ and
R↔ Q). This can be encoded into unitary matrices Uγ, UΓ and Uc defined as follows:

Uγk,r =
1p
N

e−ik·r , UΓ
k̃,r̃
=

√√ L
N

e−ik̃·r̃ , U c
K,R =

1p
L

e−iK·R . (4)

The discrete Fourier transforms on a generic one-index quantity f are then

f (k) =
∑

r

Uγk,r fr , f (k̃) =
∑

r̃

UΓ
k̃,r̃

fr̃ , fK =
∑

R

U c
K,R fR , (5)

or, in reverse,

fr =
∑

k

Uγ∗k,r f (k) , fr̃ =
∑

k̃

UΓ∗
k̃,r̃

f (k̃) , fR =
∑

K

U c∗
K,R fK . (6)

Quasi continuous indices, like k and k̃, are most of the time indicated between parentheses.
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These discrete Fourier transforms close by virtue of the following identities

1
N

∑
k

eik·r = δr ,
1
N

∑
r

e−ik·r =∆γ(k) , (7)

L
N

∑

k̃

eik̃·r̃ = δr̃ ,
L
N

∑
r̃

e−ik̃·r̃ =∆Γ (k̃) , (8)

1
L

∑
K

eiK·R = δR ,
1
L

∑
R

e−iK·R =∆γ(K) , (9)

where δr is the usual Kronecker delta, used for all labels (since they are all discrete):

δα =

�
1 , if α= 0 ,

0 , otherwise,
δαβ ≡ δα−β , (10)

and the ∆’s are the so-called Laue functions:

∆γ(k) =
∑
Q∈γ∗

δk+Q , (11)

∆Γ (k̃) =
∑
P∈Γ ∗

δk̃+P . (12)

Laue functions are used instead of Kronecker deltas in momentum space because of the possi-
bility of Umklapp processes. Note especially that even though

δk = δk̃δK (k= k̃+K) , (13)

the same does not hold for the Laue functions:

∆γ(k) ̸=∆Γ (k̃)∆γ(K) . (14)

Instead we have the following relations:

∆Γ (k̃) =
∑

K

∆γ(k̃+K) , (15)

∆γ(k) =∆γ(k̃+K) = δk̃∆γ(K) , (16)

which reflect the arbitrariness in the choice of Brillouin zone of the super-lattice (we use the
term Brillouin zone in a rather liberal manner, as a complete and irreducible set of wave-vectors,
and not as the Wigner-Seitz cell of the reciprocal lattice.)

A one-index quantity like the destruction operator cr = cr̃+R can be represented in a variety
of ways, through partial Fourier transforms:

cR(k̃) =
∑

r̃

UΓ
k̃r̃

cr̃+R , (17)

cr̃,K =
∑

R

U c
KR cr̃+R , (18)

cK(k̃) =
∑
r̃,R

UΓ
k̃r̃

U c
KR cr̃+R , (19)

c(k) =
∑

r

Uγkr cr . (20)

The last two representations are not identical, since the phases in the two cases differ by k̃ ·R.
In other words, they are obtained respectively by applying the unitary matrices S ≡ UΓ ⊗ Uc
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and Uγ on the r basis, and these two operations are different, as the matrices Λ ≡ UγS−1 and
D≡ S−1Uγ are not trivial:

Λkk′ = δk̃k̃′
1
L

∑
R

e−iR·(k̃+K−K′) , (21)

Drr′ = δRR′
L
N

∑

k̃

eik̃·(r̃−r̃′−R) , (22)

and one could write
c(k̃+K) =
∑
K′
ΛKK′(k̃)cK′(k̃) . (23)

A two-index quantity like the hopping matrix trr′ may thus have a number of different
representations. Due to translation invariance on the lattice, this matrix is diagonal when
expressed in momentum space: t(k,k′) = ϵ(k)δk,k′ , ϵ(k) being the dispersion relation:

trr′ =
1
N

∑
k

eik·(r−r′)ϵ(k) . (24)

However, we will very often use the mixed representation

tRR′(k̃) =
∑

r̃

eik̃·r̃ trr′ ,

�
r= R ,

r′ = r̃+R′ .
(25)

For instance, if we tile the one-dimensional lattice with clusters of length L = 2, the nearest-
neighbor hopping matrix, corresponding to the dispersion relation ϵ(k)=−2t cos(k), has the
following mixed representation:

t(k̃) = −t

�
0 1+ e−2ik̃

1+ e2ik̃ 0

�
. (26)

Finally, let us point out that the space E of one-electron states is larger than the space of
lattice sites γ, as it includes also spin and band degrees of freedom, which forms a set B whose
elements are indexed by σ. We could therefore write E = γ⊗ B. The transformation matrices
defined above (Uγ, UΓ and Uc) should, as necessary, be understood as tensor products (Uγ⊗1,
UΓ ⊗ 1 and Uc ⊗ 1) acting trivially in B. This should be clear from the context.

3 Cluster perturbation theory

The simplest quantum cluster method is Cluster Perturbation Theory (CPT) [5,6]. CPT can be
viewed as a cluster extension of strong-coupling perturbation theory [15], although limited to
lowest order [16]. Its kinematic features are found in more sophisticated approaches like VCA
or CDMFT, covered in sections 5 and 6.

3.1 Green functions

The one-particle Green function Quantum cluster methods are approximation strategies
based on the one-particle Green function. Let us review basic concepts about this object. At
zero-temperature, the Green function Gµν(z) is a function of complex frequency z defined as

Gµν(z) = 〈Ω|cµ
1

z −H + E0
c†
ν|Ω〉+ 〈Ω|c†

ν

1
z +H − E0

cµ|Ω〉 , (27)
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where |Ω〉 is the ground state (with energy E0) associated with the Hamiltonian H, which
includes the chemical potential. The indices µ,ν stand for one-particle states, for instance a
compound of site, spin and possibly orbital indices. Gµν(z) contains dynamical information
about one-particle excitations, such as the spectral weight measured in ARPES. We will gen-
erally use a boldface matrix notation (G) for quantities carrying two one-body indices (Gµν).
A finite-temperature expression for the Green function (27) is obtained simply by replacing
the ground state expectation value by a thermal average. Practical computations at finite
temperature are mostly done using Monte Carlo methods, which rely on the path integral for-
malism and are performed as a function of imaginary time, not directly as a function of real
frequencies. Since pyqcm is based on exact diagonalizations, we will confine ourselves to the
zero-temperature formalism.

Green function in the time domain The expression (27) may be unfamiliar to those used
to a definition of the Green function in the time domain. Let us just mention the connection.
We define the spectral function in the time domain and its Fourier transform as

Aµν(t) = 〈{cµ(t), c†
ν(0)}〉 , Aµν(ω) =

∫ ∞

−∞
d t eiωtAµν(t) , (28)

where {·, ·} is the anticommutator. The time dependence is defined in the Heisenberg picture,
i.e., cµ(t) = eiH t cµ(0)e−iH t . It can be shown that the Green function is related to Aµν(z) by

Gµν(z) =

∫ ∞

−∞

dω
2π

Aµν(ω)

z −ω . (29)

The retarded Green function GR
µν(t) is defined, in the time domain, as

GR
µν(t) = −iΘ(t)〈{cµ(t), c†

ν(0)}〉= −iΘ(t)Aµν(t) , (30)

where Θ(t) is the Heaviside step function. Since the Fourier transform of the latter is

F(Θ)(ω) =
∫ ∞

0

d t eiωt = i
1

ω+ i0+
, (31)

a simple convolution shows that

GR
µν(ω) =

∫ ∞

−∞

dω′

2π

Aµν(ω′)
ω−ω′ + i0+

= Gµν(ω+ i0+) . (32)

In fact, this connection can be established easily from the spectral representation, introduced
next.

Spectral representation Let {|r〉} be a complete set of eigenstates of H with one particle
more than the ground state, where r is positive integer label. Likewise, let us use negative
integer labels to denote eigenstates of H with one particle less than the ground state. Then,
by inserting completeness relations,

Gµν(z) =
∑
r>0

〈Ω|cµ|r〉
1

z − Er + E0
〈r|c†

ν|Ω〉+
∑
r<0

〈Ω|c†
ν|r〉

1
z + Er − E0

〈r|cµ|Ω〉 . (33)

By setting

Qµr =

¨
〈Ω|cµ|r〉 (r > 0) ,
〈r|cµ|Ω〉 (r < 0) ,

and ωr =

¨
Er − E0 (r > 0) ,
E0 − Er (r < 0) ,

(34)
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we write

Gµν(z) =
∑

r

QµrQ
∗
νr

z −ωr
. (35)

This shows how the Green function is a sum over poles located at ωr ∈ R, with residues that
are products of overlaps of the ground state with energy eigenstates with one more (ωr > 0)
or one less (ωr < 0) particle. The sum of residues is normalized to the unit matrix, as can be
seen from the anticommutation relations:

∑
r

QµrQ
∗
νr =
∑
r>0

〈Ω|cµ|r〉〈r|c†
ν|Ω〉+
∑
r<0

〈Ω|c†
ν|r〉〈r|cµ|Ω〉

= 〈Ω| �cµc†
ν + c†

νcµ
� |Ω〉= δµν .

(36)

Thus, in the high-frequency limit, G(z→∞) = 1/z (1 stands for the unit matrix).
The same procedure applied to the spectral function (28) leads to

Aµν(ω) = 2π
∑

r

QµrQ
∗
νr δ(ω−ωr) , (37)

and this demonstrates the connection (29) between Aµν(ω) and Gµν(z). The property (36)
amounts to saying that Aµµ(ω) is a probability density:

Aµµ(ω) = 2π
∑

r

|Qµr |2 δ(ω−ωr) ,

∫ ∞

−∞

dω
2π

Aµµ(ω) = 1 . (38)

The identity

− 1
π

Im
1

ω+ i0+
= δ(ω) , (39)

implies that
Aµµ(ω) = −2 ImGµµ(ω+ i0+) . (40)

From the definition of Qµr , one sees that Aµµ(ω) is the probability density for an electron
added or removed from the ground state in the one-particle state µ to have an energy ω. The
density of states ρ(ω) is simply the trace

ρ(ω) =
1
N

∑
µ

Aµµ(ω) = −
2
N

Im tr G(ω+ i0+) . (41)

Self-energy In the absence of interactions (H1 = 0) the Hamiltonian reduces to

H0 =
∑
µ,ν

tµνc†
µcν . (42)

Since the matrix t is Hermitian, there exists a basis {|ℓ〉} of one-body states that makes it
diagonal: H0 =

∑
ℓ εℓc

†
ℓ
c
ℓ
. The ground state is then the filled Fermi sea:

|Ω〉=
∏
ϵℓ<0

c†
ℓ
|0〉 , (43)

and one-particle excited states are c†
ℓ
|Ω〉 (ϵℓ > 0) with Eℓ − E0 = ϵℓ and cℓ|Ω〉 (ϵℓ < 0) with

Eℓ − E0 = −ϵℓ. The spectral representation is in that case extremely simple and the matrix
G= G0 is diagonal:

G0,ℓℓ′(z) =
δℓℓ′

z − ϵℓ
. (44)
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In any other basis of one-body states, in which t is not diagonal, the expression is simply

G0(z) =
1

z − t
. (45)

In the presence of interactions, the Green function takes the following general form:

G(z) =
1

z − t−Σ(z) , (46)

where all the information related to H1 is buried within the self-energy Σ(z). The relation
(46), called Dyson’s equation, may be regarded as a definition of the self-energy. It can be
shown that the self-energy has a spectral representation similar to that of the Green function:

Σµν(z) = Σ
∞
µν +
∑

r

SµrS
∗
νr

z −σr
, (47)

where the σr are poles located on the real axis (they are zeros of the Green function). By
contrast with the Green function, the self-energy may have a frequency-independent pieceΣ∞µν ,
which has the same effect as a hopping term; in fact, within the Hartree-Fock approximation,
this is the only piece of the self-energy that survives.

Averages of one-body operators Many physical observables are one-body operators, of the
form

Ŝ =
∑
µ,ν

sµνc†
µcν . (48)

The ground state expectation value of such operators can be computed from the Green function
Gµν(z). Let us explain how.

From the spectral representation (35) of the Green function, we see that 〈c†
µcν〉 is given

by the integral of the Green function along a contour C< surrounding the negative real axis
counterclockwise:

〈c†
µcν〉=
∫

C<

dz
2πi

Gνµ(z) . (49)

Therefore the expectation value we are looking for is

s̄ =
1
N
〈Ŝ〉= 1

N

∑
µ,ν

sµν〈c†
µcν〉=

1
N

∫

C<

dz
2πi

tr [sG(z)] (50)

(we divide by N to find an intensive quantity). The trace includes a sum over lattice sites, spin
and band indices.

The contour C< can be taken as the imaginary axis (from −iR to iR), plus the left semi-
circle of radius R. Since G(z)→ 1/z as z→∞, the semi-circular part will contribute, but this
contribution may be canceled by subtracting from G(z) a term like 1/(z − p), with p > 0: the
added term does not contribute to the integral, since its only pole lies outside the contour, yet
it cancels the dominant z−1 behavior as z →∞, leaving a contribution that vanishes on the
semi-circle as R→∞. We are left with

s̄ =
1
N

∫ ∞

−∞

dω
2π

§
tr [sG(iω)]− tr s

iω− p

ª
. (51)

If the operator Ŝ is Hermitian, then so is the matrix s. By virtue of the property G(z)† = G(z∗),
easily seen from (35), we have tr [sG(−iω)] = tr [sG(iω)]∗; this implies that s̄ is real. Note that
s can be expressed as a function of reduced wave-vector k̃ and cluster indices (it is diagonal in
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k̃ for a translation-invariant operator). The matrix s(k̃) is then 2L×2L (for a one-band model)
and the above reduces to

s̄ =
1
N

∫ ∞

−∞

dω
2π

∑

k̃

�
tr
�
s(k̃)G(iω)
�− tr s(k̃)

iω− p

�
, (52)

where the matrices involved are 2L × 2L.

3.2 Cluster Perturbation Theory

Cluster Perturbation Theory (CPT) proceeds as follows. First a cluster tiling is chosen (see,
e.g., Fig. 1). Then the lattice Hamiltonian H is written as H = Hc + V , where Hc is the clus-
ter Hamiltonian, obtained by severing the hopping terms between different clusters, whereas
V contains precisely those terms. V is treated as a perturbation. It can be shown, by the
techniques of strong-coupling perturbation theory [6,16], that the lowest-order result for the
Green function is

G−1(ω) = G−1
c (ω)−V , (53)

where V is the matrix of inter-cluster hopping terms and Gc(ω) the exact Green function of the
cluster only. This formula deserves a more thorough description: G, Gc and V are matrices in
the space E of one-electron states. This space is the tensor product γ⊗B of the lattice γ by the
space B of band and spin states. For the remainder of this section we will ignore B, i.e., band
and spin indices. In terms of compound cluster/cluster-site indices (r̃,R), Gc is diagonal in r̃
and identical for all clusters, whereas V is essentially off-diagonal in r̃. Because of translation
invariance on the super-lattice, the above formula is simpler in terms of reduced wave-vectors,
following a partial Fourier transform r̃→ k̃:

G−1(k̃,ω) = Gc
−1(ω)−V(k̃) . (54)

The matrices appearing in the above formula are now of order L (the number of sites in the
cluster), i.e., they are matrices in cluster sites R only. Gc is independent of k̃, whereas V is
frequency independent.

The basic CPT relation (54) may also be expressed in terms of the self-energy Σc of the
cluster Hamiltonian as

G−1(k̃,ω) = G0
−1(k̃,ω)−Σc(ω) , (55)

where G0(k̃,ω) is the Green function associated with the non-interacting part of the lattice
Hamiltonian. This follows simply from the relations

Gc
−1 =ω− tc −Σc , (56)

G0
−1 =ω− tc −V , (57)

where tc is the restriction to the cluster of the hopping matrix (chemical potential included).
It is in the form (55) that CPT was first proposed [5].

3.3 Periodization

A supplemental ingredient to CPT is the periodization prescription, that provides a fully k-
dependent Green function out of the mixed representation GRR′(k̃,ω). The cluster decomposi-
tion breaks the original lattice translation symmetry of the model. The Green function (54) is
therefore not fully translation invariant and is not diagonal when expressed in terms of wave-
vectors: G → G(k,k′). However, due to the residual super-lattice translation invariance, k′
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and k must map to the same wave-vector of the super-lattice Brillouin zone (or reduced Bril-
louin zone) and differ by an element of the reciprocal super-lattice. The periodization scheme
proposed in Ref. [6] applies to the Green function itself:

Gper.(k,ω) =
1
L

∑
R,R′

e−ik·(R−R′)GRR′(k̃,ω) . (58)

Since the reduced zone the wave-vector k̃ is picked from is immaterial, on may replace k̃ by
k in the above formula (i.e. replacing k̃ by k̃+ K yields the same result). This periodization
formula may be heuristically justified as follows. In the (K, k̃) basis, the matrix G has the
following form:

GKK′(k̃,ω) =
1
L

∑
R,R′

e−i(K·R−K′·R′)GRR′(k̃,ω) . (59)

This form can be further converted to the full wave-vector basis (k = K + k̃) by use of the
unitary matrix Λ of Eq (23):

G(k̃+K, k̃+K′) =
�
Λ(k̃)GΛ†(k̃)
�

KK′ =
1
L2

∑

R,R′,K1,K′1

e−i(k̃+K−K1)·Rei(k̃+K′−K′1)·R′GK1K′1

=
1
L

∑
R,R′

e−i(k̃+K)·Rei(k̃+K′)·R′GRR′(k̃,ω) . (60)

The periodization prescription (58), or G-scheme, amounts to picking the diagonal piece of the
Green function (k = k′) and discarding the rest. This makes sense in as much as the density
of states N(ω) is the trace of the imaginary part of the Green function:

N(ω) = − 2
N

Im trG(ω) = − 2
N

Im
∑

r

Grr(ω) = −
2
N

Im
∑

k

G(k,ω) , (61)

and the spectral function A(k,ω), as a partial trace, involves only the diagonal part. Indeed,
it is a simple matter to show from the anticommutation relations that the frequency integral
of the Green function is the unit matrix:

−2 Im

∫
dω
2π

G(ω) = 1 . (62)

This being representation independent, it follows that the frequency integral of the imaginary
part of the off-diagonal components of the Green function vanishes.

As Fig. 2 shows, periodizing the Green function (58) reproduces the expected feature of
the spectral function of the one-dimensional Hubbard model. In particular, the Mott gap that
opens at arbitrary small U (as known from the exact solution)

Another possible prescription for periodization is to apply the above procedure to the self-
energy Σc instead. This is appealing since Σc is an irreducible quantity, as opposed to G. This
amounts to throwing out the off-diagonal components of Σc before applying Dyson’s equation
to get G, as opposed to discarding the off-diagonal part at the last step, once the matrix in-
version towards G has taken place. However, this periodization scheme leaves spectral weight
within the Mott gap for arbitrary large value of U , which is clearly unphysical.

Yet another possibility is the cumulant periodization (or M-scheme), in which the first
lattice cumulant of the Green function is periodized [17]. In practice, this proceeds as follows:
The matrix of one-body terms is split into diagonal and off-diagonal parts:

t(k̃) = tdiag(k̃) + toff(k̃) . (63)
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Figure 2: CPT spectral function of the one-dimensional, half-filled Hubbard model
with U = 4, t = 1, with Green function periodization (left) and cumulant periodiza-
tion (right), from a 14-site cluster. Lorentzian broadening is set to η= 0.15.

We then proceed exactly like in the G-scheme, but without the off-diagonal piece of t. In other
words, we periodize the quantity

Gdiag(k̃,ω) =
�
ω− tdiag(k̃)−Σ(ω)�−1

, (64)

as in Eq. (58) and obtain Gdiag
per. (k,ω). We then express toff(k̃) in the full Fourier representation

(toff(k)) and finally construct the periodized Green function

Gper.(k,ω) =
�
Gdiag

per. (k,ω)−1 − toff(k)
�−1

(M scheme) . (65)

As it appears from Fig. 2, the G and M schemes give very similar results. The G-scheme has
the merit of simplicity, and the interpretation of the spectral function obtained in that scheme
as a partial trace of the CPT Green function is compelling.

3.4 General features of CPT

CPT has the following characteristics:

1. Although it is derived using strong-coupling perturbation theory, it is exact in the U → 0
limit, as the self-energy disappears in that case.

2. It is also exact in the strong-coupling limit trr′/U → 0.

3. It provides an approximate lattice Green function for arbitrary wave-vectors. Hence its
usefulness in comparing with ARPES data. Even though CPT does not have the self-
consistency present in (C)-DMFT, at fixed computing resources it allows for the best mo-
mentum resolution. This is particularly important for the ARPES pseudogap in electron-
doped cuprates that has quite a detailed momentum space structure, and for d-wave
superconducting correlations where the zero temperature pair correlation length may
extend beyond near-neighbor sites.

4. Although formulated as a lowest-order result of strong-coupling perturbation theory, it
is not controlled by including higher-order terms in that perturbation expansion – this
would be extremely difficult – but rather by increasing the cluster size.

5. It cannot describe broken-symmetry states. This is accomplished by VCA (Sect. 5) and
CDMFT (Sect. 6).
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4 Exact diagonalizations

Before going on to describe more sophisticated quantum cluster approaches, let us describe
in some detail the method used by our library to compute the Green function of the cluster:
The exact diagonalization method, based on the Lanczos algorithm and its variants. Note that
the quantum cluster methods described here are not tied to a specific method for computing
Gc . For instance, Quantum Monte Carlo (QMC) or any other approximate method of solution
for the cluster Green function could be used. The exact diagonalization (ED) method has the
advantage of being free from the fermion sign problem of QMC; moreover, the resulting Green
function can be computed at arbitrary complex or real frequencies. On the other hand, it can
only be applied to relatively small systems.

The basic idea behind exact diagonalization is one of brute force, but its practical imple-
mentation may require a lot of care depending on the desired level of optimization. Basically,
an exact representation of the Hamiltonian action on arbitrary state vectors must be coded
– this may or may not involve an explicit construction of the Hamiltonian matrix. Then the
ground state is found in an quasi-exact way by an iterative method such as the Lanczos al-
gorithm. The Green function is thereafter calculated by similar means to be described below.
The main difficulty with execution is the large memory needed by the method, which grows
exponentially with the number of degrees of freedom. As for coding, the main difficulty is to
optimize the method, in particular by taking point group symmetries into account.

In this section, H stands for the cluster (or impurity) Hamiltonian, and G(ω) for the as-
sociated Green function, i.e., we omit the label c used to distinguish cluster quantities from
lattice ones.

4.1 Coding of the basis states

The first step in the exact diagonalization procedure is to define a coding scheme for the
quantum basis states. A basis state may be specified by the occupation number niσ (= 0 or
1) of electrons in the orbital labeled i (i = 1, . . . , L) of spin σ = (↑,↓) and has the following
expression in terms of creation operators:

(c†
1↑)

n1↑ · · · (c†
L↑)

nL↑(c†
1↓)

n1↓ · · · (c†
L↓)

nL↓ |0〉 , (66)

where the order in which the creation operators are applied is a matter of convention, but
important. If the number of orbitals is smaller than or equal to 64, the string of occupation
numbers niσ forms the binary representation of a 64-bit unsigned integer b, which can be split
into spin up and spin down parts:

b = b↑ + 2L b↓ . (67)

There are 22L such states, but not all are relevant, since the Hubbard Hamiltonian is gen-
erally block-diagonal : The number of electrons of a given spin (N↑ and N↓) is often conserved
and then commutes with the Hamiltonian H. Let us assume this situation holds for the mo-
ment. Then the exact diagonalization is to be performed in a sector (i.e. a subspace) of the
total Hilbert space with fixed values of N↑ and N↓. This space has the tensor product structure

V = VN↑ ⊗ VN↓ , (68)

and has dimension d = d(N↑)d(N↓), where

d(Nσ) =
L!

Nσ!(L − Nσ)!
, (69)

is the dimension of each factor, i.e., the number of ways to distribute Nσ electrons among L
sites.
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Note that the ground state |Ω〉 of the Hamiltonian belongs to the sector N↑ = N↓ if the
total number of electrons is even and the system is non-magnetic. For a half-filled, zero spin
system (N↑ = N↓ = L/2), this translates into d = (L!/(L/2)!2)2, which behaves like 4L/L for
large L: The size of the eigen-problem grows exponentially with system size. By contrast, the
non-interacting problem can be solved only by concentrating on one-electron states. For this
reason, exact diagonalization of the Hubbard Hamiltonian is restricted to systems of the order
of 16 sites or less. Even though exact diagonalizations have been realized for the ground state
of larger systems (e.g. L = 22), this operation can take weeks of computing time, whereas our
goal here is to compute the Green function, not the ground state, and this is in repeated fash-
ion as prescribed by embedding methods (VCA or CDMFT), in circumstances where particle
number or spin is not conserved while exploring parameter space. Hence we cannot afford ED
times that exceed a few minutes or hours.

In practice, a generic state vector is represented by an d-component array of double pre-
cision numbers. In order to apply or construct the Hamiltonian acting on such vectors, we
need a way to translate the label of a basis state (an integer i from 0 to d −1), into the binary
representation (66). The way to do this depends on the level of complexity of the Hilbert
space structure. In the simple case (68), one needs, for each spin, to build a two-way look-
up table that tabulates the correspondence between consecutive integer labels and the binary
representation of the spin up (resp. spin down) part of the basis state. Thus, given a binary
representation (b↑, b↓) of a basis state |b〉 = |b↑〉|b↓〉, one immediately finds integer labels
I↑(b↑) and I↓(b↓) and the label of the full basis state may be taken as

i = I↑(b↑) + dN↑ I↓(b↓) . (70)

On the other hand, given a label i, the corresponding labels of each spin part are

i↑ = mod (i, dN↑) , i↓ = i/dN↑ , (71)

where integer division (i.e. without fractional remainder) is used in the above expression. The
binary representation b is recovered by inverse tables B as

b↑ = B↑(i↑) , b↓ = B↓(i↓) . (72)

The next step is to construct the Hamiltonian matrix. The particular structure of the Hub-
bard model Hamiltonian brings a considerable simplification in the simple case studied here.
Indeed, the Hamiltonian has the form

H = K↑ ⊗ 1+ 1⊗ K↓ + Vint. , (73)

where K↑ only acts on up electrons and K↓ on down electrons, and where the Coulomb re-
pulsion term Vint. is diagonal in the occupation number basis. Thus, storing the Hamiltonian
in memory is not a problem : the diagonal Vint. is stored (an array of size d), and the kinetic
energy Kσ (a matrix with ∼ Zd↑ elements, Z being the lattice coordination number) is stored
in sparse form. Constructing this matrix, formally expressed as

K =
∑
a,b

tabc†
acb , (74)

needs some care with the signs. Basically, two basis states |bσ〉 and |b′σ〉 are connected with
this matrix if their binary representations differ at two positions a and b. The matrix element
is then (−1)Mab tab, where Mab is the number of occupied sites between a and b, i.e., assuming
a < b,

Mab =
b−1∑

c=a+1

nc . (75)
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For instance, the two states (10010110) and (10011100) with L = 8 are connected with the
matrix element −t46, where the sites are numbered from 0 to L − 1.

Computing the Hubbard interaction matrix elements is straightforward: a bit-wise AND is
applied to the up and down parts of a binary state (b↑& b↓ in C or C++) and the number of set
bits of the result is the number of doubly occupied sites in that basis state.

If particle number and/or total spin projection is not conserved, then the decomposition
(73) no longer applies. This occurs when studying superconductivity or including the spin-
orbit coupling. We must deal with a much larger basis, and the correspondence between the
index I of a many-body state and its binary representation b = B(I), while stored in memory,
is less easily reversible; it is then more practical to binary-search the array B for the value of
the index I , given a binary state expression b.

4.2 The Lanczos algorithm for the ground state

Next, one must apply the exact diagonalization method per se, using the Lanczos algorithm.
Generally, the Lanczos method [18] is used when one needs the extreme eigenvalues of a ma-
trix too large to be fully diagonalized (e.g. with the Householder algorithm). The method is
iterative and involves only the multiply-add operation from the matrix. This means in partic-
ular that the matrix does not necessarily have to be constructed explicitly, since only its action
on a vector is needed. In some extreme cases where it is practical to do so, the matrix ele-
ments can be calculated ‘on the fly’, and this allows to save the memory associated with storing
the matrix itself. On the other hand, storing the matrix in compressed sparse-row (CSR) for-
mat speeds up the multiply-add operation when it fits into memory. The optimal choice then
depends on available resources and on the problem at hand.

The basic idea behind the Lanczos method is to build a projectionH of the full Hamiltonian
matrix H onto the so-called Krylov subspace. Starting with a (random) state |φ0〉, the Krylov
subspace is spanned by the iterated application of H:

K = span
�|φ0〉, H|φ0〉, H2|φ0〉, · · · , HM |φ0〉

	
. (76)

The generating vectors above are not mutually orthogonal, but a sequence of mutually orthog-
onal vectors can be built from the following recursion relation

|φn+1〉= H|φn〉 − an|φn〉 − b2
n|φn−1〉 , (77)

where

an =
〈φn|H|φn〉
〈φn|φn〉

, b2
n =

〈φn|φn〉
〈φn−1|φn−1〉

, b0 = 0 , (78)

and we set the initial conditions b0 = 0, |φ−1〉= 0. At any given step, only three state vectors
are kept in memory (φn+1,φn andφn−1). In the basis of normalized states |n〉= |φn〉/

p〈φn|φn〉,
the projected Hamiltonian has the tri-diagonal form

H(M) =




a0 b1 0 0 · · · 0

b1 a1 b2 0 · · · 0

0 b2 a2 b3 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · aM




. (79)

Such a matrix is readily diagonalized by fast methods dedicated to tri-diagonal matrices and
has eigen-pairs (λ(M)i ,ψ(M)i ) such that H(M)ψ(M)i = λ(M)i ψ

(M)
i . If the eigenvalues λi are sorted

in ascending order, then a practical convergence criterion for the procedure is bMψ
(M−1)
M ,M < δ,
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where δ is a small tolerance, like 10−14 [18] (the largest and smallest eigenvalues converge
fastest in the Lanczos method). This may require a number M of iterations between a few tens
and ∼ 200, depending on system size. In certain circumstances, for instance when the gap
between the ground state and the first excited state is small, the number of required iterations
may increase to several hundreds.

The ground state energy E0 and the ground state |Ω〉 are very well approximated by the low-
est eigenvalue and the corresponding eigenvector of H(M). This provides us with the ground
state |Ω〉 in the reduced basis {|φn〉}. But we need the ground state in the original basis, and
this requires retracing the Lanczos iterations a second time – for the |φn〉 are not stored in
memory – and constructing the ground state progressively at each iteration from the known
coefficients 〈Ω|φn〉.

The Lanczos procedure is simple and efficient. Convergence is fast if the lowest eigenvalue
E0 is well separated from the next one (E1). If the ground state is degenerate (E1 = E0), the
procedure will converge to a vector of the ground state subspace, a different one each time the
initial state |φ0〉 is changed. Then another method, like the Davidson method [19], should be
used; we will not describe it here, but it is available in the pyqcm library.

Note that the sequence of Lanczos vectors |φn〉 is in principle orthogonal, as this is guar-
anteed by the three-way recursion relation (77). However, numerical errors will introduce
‘orthogonality leaks’, and after a few tens of iterations the Lanczos basis will become over-
complete in the Krylov subspace. This will translate in multiple copies of the ground state
eigenvalue in the tri-diagonal matrix (79), which should not be taken as a true degeneracy.
However, as long as one is only interested in the ground state and not in the multiplicity of
the lowest eigenvalues, this is not a problem.

4.3 The Lanczos algorithm for the Green function

Once the ground state is known, the cluster Green function Gc(z) may be computed. The
zero-temperature Green function Gµν(z) has the following expression, as a function of the
complex-valued frequency z:

Gµν(z) = G(e)µν(z) + G(h)µν (z) , (80)

G(e)µν(z) = 〈Ω|cµ
1

z −H + E0
c†
ν|Ω〉 , (81)

G(h)µν (z) = 〈Ω|c†
ν

1
z +H − E0

cµ|Ω〉 . (82)

Here the indices µ,ν are composite indices for site and spin. In the basic Hubbard model
(1), spin is conserved and we need only to consider the creation and annihilation of up-spin
electrons.

Let us first describe the simple Lanczos method for computing the Green function, which
provides a continued-fraction representation of its frequency dependence. Consider first the
function G(e)µν(z). One needs to know the action of (z − H + E0)−1 on the state |φµ〉 = c†

µ|Ω〉,
and then calculate

G(e)µµ = 〈φµ|
1

z −H + E0
|φµ〉 . (83)

As with any generic function of H, this one can be expanded in powers of H:

1
z −H

=
1
z
+

1
z2

H +
1
z3

H2 + · · · , (84)

and the action of this operator can be evaluated exactly at order HM in a Krylov subspace
(76). Thus we again resort to the Lanczos algorithm: A Lanczos sequence is calculated from
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the initial, normalized state |φ0〉 = |φµ〉/b0 where b2
0 = 〈φµ|φµ〉. This sequence generates a

tri-diagonal representation of H, albeit in a different Hilbert space sector : that with N↑ + 1
up-spin electrons and N↓ down-spin electrons. Once the preset maximum number of Lanczos
steps has been reached (or a small enough value of bn), the tri-diagonal representation (79)
may then be used to calculate (83). This amounts to the matrix element b2

0[(z−H + E0)−1]00
(the first element of the inverse of a tri-diagonal matrix), which has a simple continued fraction
form [20]:

G(e)µµ(z) =
b2

0

z − a0 −
b2

1

z − a1 −
b2

2

z − a2 − · · ·

, (85)

Thus, evaluating the Green function, once the arrays {an} and {bn} have been found, reduces
to the calculation of a truncated continued fraction, which can be done recursively in M steps,
starting from the bottom floor of the fraction.

Consider next the case µ ̸= ν. The continued fraction representation applies only to the
case where the same state |φ〉 appears on the two sides of (83). If µ ̸= ν, this is no longer the
case, but we may use the following trick : we define the combination

G(e)+µν (z) = 〈Ω|(cµ + cν)
1

z −H + E0
(cµ + cν)

†|Ω〉 . (86)

If the Hamiltonian is real, we can use the symmetry G(e)µν(z) = G(e)νµ(z) and this leads to

G(e)µν(z) =
1
2
(G(e)+µν (z)− G(e)µµ(z)− G(e)νν (z)) , (87)

where G(e)+µν can be calculated in the same way as G(e)µµ, i.e., with a simple continued fraction.
For a complex-valued Hamiltonian one additional step is needed: we also compute

G(e)+i
µν (z) = 〈Ω|(cµ + icν)

1
z −H + E0

(cµ + icν)
†|Ω〉 . (88)

It is then a simple matter to show that

G(e)µν(z) =
1
2

�
G(e)+µν (z) + iG(e)+i

µν (z)− (1+ i)(G(e)µµ(z) + G(e)νν (z))
�

, (89)

and we must use the property that G∗νµ(z
∗) = Gµν(z), valid for G(e,h) separately. Note that

the continued fraction coefficients are all real, even for a complex Hamiltonian, so that
G(e)+µν (z)

∗ = G(e)+µν (z
∗) and G(e)+i

µν (z)
∗ = G(e)+i

µν (z
∗). We proceed likewise for G(h)+µν (z) and

G(h)+i
µν (z).

Thus, the cluster Green function is encoded in L(L + 1) or L2 continued fractions for the
real and complex cases respectively. Their coefficients are stored in memory, so that G(z) can
be computed on demand for any complex frequency z.

Note that a minimal way to take advantage of cluster symmetries is to restrict the calcula-
tion of the Green function to an irreducible set of pairs (µ,ν) of orbitals that can generate all
other pairs by symmetry operations of the cluster. Thus, if a symmetry operation g takes the
orbital µ into the orbital g(µ), we have

Gµν(z) = Gg(µ)g(ν)(z) . (90)

Taking this into account is an easy and important time saver, but not as efficient as using a
basis of symmetry eigenstates, as described in Sect. 4.5 below.
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4.4 The band Lanczos algorithm for the Green function

An alternate way of computing the cluster Green function is to apply the band Lanczos proce-
dure [21]. This is a generalization of the Lanczos procedure in which the Krylov subspace is
spanned not by one, but by many states. Let us assume that up and down spins are decou-
pled, so that the Green function is L × L block diagonal. The L states |φµ〉 = c†

µ|Ω〉 are first
constructed, and then one builds the projectionH of H on the Krylov subspace spanned by

¦
|φ1〉, . . . , |φL〉, H|φ1〉, . . . , H|φL〉, . . . , HM |φ1〉, . . . , HM |φL〉

©
. (91)

A Lanczos basis {|n〉} is constructed by successive application of H and orthonormalization
with respect to the previous 2L basis vectors. In principle, each new basis vector |n〉 is already
automatically orthogonal to basis vectors |1〉 through |n−2L−1〉, although ‘orthogonality leaks’
arise eventually and may be problematic. A practical rule of thumb to avoid these problems is
to control the number M of iterations by the convergence of the lowest eigenvalue ofH (e.g.
to one part in 1010). Independently of this, one must be careful about potential redundant
basis vectors in the Krylov subspace, which must be properly ‘deflated’ [21]. The number of
states R in the Krylov subspace at convergence is typically between 100 and 500, depending on
system size. The R×R matrixH , which is tri-diagonal in the ordinary Lanczos method, now is
a banded matrix made of 2L diagonals around the central diagonal. It is then a simple matter
to obtain a Lehmann representation of the Green function in the Krylov subspace by computing
the projections Qµr of |φµ〉 on the eigenstates ofH (the inner products of the |φµ〉’s with the
Lanczos vectors are calculated at the same time as the latter are constructed). The Green
function can then be expressed in a Lehmann representation (35). The two contributions G(e)µν
and G(h)µν to the Green function are computed separately, and the corresponding matrices Q
and Λ are simply concatenated to form the complete Q- and Λ-matrices, which are then stored
and allow again for a quick calculation of the Green function as a function of the complex
frequency z, following Eq. (35). The matrix 2L × R matrix Q has the property that

QQ† = 12L×2L . (92)

This holds even if the Lehmann representation is obtained from a subspace and not the full
space, and is simply a consequence of the anticommutation relations {cµ, c†

ν}= δµν.
The band Lanczos method requires more memory than the usual Lanczos method, since

2L + 1 vectors must simultaneously be kept in memory, compared to 3 for the simple Lanczos
method. On the other hand, it is faster since all pairs (µ,ν) are covered in a single procedure,
compared to L(L + 1)/2 procedures in the simple Lanczos method. Thus, we gain a factor L2

in speed at the cost of a factor L in memory. Another advantage is that it provides a Lehmann
representation of the Green function.

4.5 Cluster symmetries

It is possible to optimize the exact diagonalization procedure by taking advantage of the sym-
metries of the cluster Hamiltonian, in particular coming from cluster geometry. If the Hamilto-
nian is invariant under a discrete group G of symmetry operations and |G| denotes the number
of such elements (the order of the group), the dimension of the largest Hilbert space needed
can be reduced by a factor of almost |G|, and the number of state vectors needed in the band
Lanczos method reduced by the same factor. The corresponding speed gain is appreciable. The
price to pay is a higher complexity in coding the basis states, which almost forces one to store
the Hamiltonian matrix in memory, if it were not already, since computing matrix elements
‘on the fly’ becomes more time consuming. Note that we are using open boundary conditions,
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and therefore there is no translation symmetry within the cluster; thus we are concerned with
point groups, not space groups.

Let us start with a simple example: a cluster invariant with respect to a single mirror sym-
metry, or a single rotation by π. One may think of a one-dimensional cluster, for instance, with
a left-right mirror symmetry. The corresponding symmetry group is C2, with two elements: the
identity e and the inversion ι. The group C2 contains two irreducible representations, noted A
and B, corresponding respectively to states that are even and odd with respect to ι. Because
the Hamiltonian is invariant under inversion: H = ι−1Hι, eigenvectors of H will be either even
or odd, i.e. belong either to the A or to the B representation. Likewise, the Hamiltonian will
have no matrix elements between states belonging to different representations.

In order to take advantage of this fact, one needs to construct a basis containing only
states of a given representation. The occupation number basis states |b〉 (or binary states, as
we will call them) introduced above are no longer adequate. In the case of the simple group
C2, one should rather consider the even and odd combinations |b〉 ± ι|b〉 (and some of these
combinations may vanish). Yet we still need a scheme to label the different basis states and
have a quick access to their occupation number representation, which allows us to compute
matrix elements. Let us briefly describe how this can be done (a more detailed discussion can
be found, e.g., in Ref. [22]). Under the action of the group G, each binary state generates an
‘orbit’ of binary states, whose length is the order |G| of the group, or a divisor thereof. To such
an orbit correspond at most dα states in the irreducible representation labeled α, given by the
corresponding projection operator:

|ψ〉= dα
|G|
∑
g∈G
χ(α)∗g g|b〉 , (93)

where dα is the dimension of the irreducible representation α and χ(α)g the group character
associated with the group element g (or rather its conjugacy class) and representation α.

We will restrict the discussion to the case of Abelian groups, of which all irreducible rep-
resentations are one-dimensional (dα = 1; the case dα > 1 turns out to be quite a bit more
complex). Then the state |ψ〉 is either zero or unique for a given orbit. We can then select
a representative binary state for each orbit (e.g. the one associated with the smallest binary
representation) and use it as a label for the state |ψ〉. We still need an index function B(i)
which provides the representative binary state for each consecutive label i. The reverse cor-
respondence i = I(b) is trickier, since symmetrized states are no longer factorized as products
of up and down spin parts. It is better then to binary-search the array B for the value of the
index i that provides a given binary state b.

Once the basis has been constructed, one needs to construct a matrix representation of the
Hamiltonian in that representation. Given two states |ψ1〉 and |ψ2〉, represented by the binary
states |b1〉 and |b2〉, it is a simple matter to show that the matrix element is

〈ψ2|H|ψ1〉=
dα
|G|
∑
g∈G
χ(α)∗g φg(b)〈g b2|H|b1〉 , (94)

where the phase φg(b) is defined by the relation

g|b〉= φg(b)|g b〉 . (95)

In the above relation, |g b〉 is the binary state obtained by applying the symmetry operation g to
the occupation numbers forming b, whereas the phase φg(b) is the product of signs collected
from all the permutations of creation operators needed to go from b to g b. Formula (94) is
used as follows to construct the Hamiltonian matrix: First, the Hamiltonian can be written
as H =
∑

r Hr , where Hr is a hopping term between specific sites, or a diagonal term like
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Table 1: Number of matrix elements of a given value in the nearest-neighbor hopping
operator on the half-filled 3× 4= 12 site cluster, for each irreducible representation
of C2v . The dimension of each subspace is indicated on the second row.

A1 A2 B1 B2

dim. 213, 840 213,248 213, 440 213,248

value

−2 96 736 704 0

−p2 12, 640 6,208 7, 584 5,072

−1 2, 983,264 2,936, 144 2, 884,832 2,911, 920

1 952, 000 997,168 1,050, 432 1, 021,392p
2 5, 088 2,304 3, 232 2,992

2 32 0 0 0

the interaction. One then loops over all b1’s. For each b1, and each term Hr , one constructs
the single binary state Hr |b1〉. One then finds the representative b2 of that binary state, by
applying on it all possible symmetry operations until g is found such that |g b2〉 = Hr |b1〉.
During this operation, the phase φg(b) must also be collected. Then the matrix element (94)
is added to the list of stored matrix elements. Since each term Hr individually is not invariant
under the group, there will be more matrix elements generated than there should be, i.e.,
there will be cancellations between different matrix elements associated with the same pair
(b1, b2) and produced by the different Hr ’s. For this reason, it is useful to first store all matrix
elements associated with a given b1 in an intermediate location in order for the cancellations
to take effect, and then to store the cleaned up ‘column’ labeled by b1 to its definitive storage
location. Needless to say, one should only store the row and column indices of each element
of a given value.

Table 1 gives the values and number of matrix elements found for the nearest-neighbor
hopping terms on the half-filled 12-site (3× 4) cluster, in each of the four irreducible repre-
sentations of the group C2v .

4.6 Green functions using cluster symmetries

Most of the time, the ground state lies in the trivial (symmetric) representation. However,
taking advantage of symmetries in the calculation of the Green function requires all the ir-
reducible representations to be included in the calculation. Consider for instance the simple
example of a C2 symmetry, with a ground state |Ω〉 in the A (even) representation. Construct-
ing the Green function involves applying on |Ω〉 the destruction operator ca (or the creation
operator c†

a) associated to site a. The excited state thus produced does not belong to a well-
defined representation. Instead, one should destroy (or create) and electron in an odd or even
state, by using the linear combinations ca ± cιa, where ιa is the site obtained by applying the
symmetry operation to a. Thus, in computing the Green function (80), one should express
each creation/destruction operator in terms of symmetrized combinations, e.g.,

ca =
1
2
(ca + cιa) +

1
2
(ca − cιa) . (96)

More generally, one would use symmetrized combinations of operators

c(α)ρ =
∑

a

M (α)ρa ca , (97)
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such that c(α)ρ transforms under representation α, and ρ labels the different possibilities. For
instance, for a linear cluster of length 4 and an inversion symmetry that maps the sites (1234)
into (4321), these operators are

c(A)1 = c1 + c4 , c(B)1 = c1 − c4 ,

c(A)2 = c2 + c3 , c(B)2 = c2 − c3 .
(98)

Then, for each representation, one may use the band Lanczos procedure and obtain a Lehmann
representation Q(α)ρr for the associated Green function G(α)ρσ(z). If the ground state is in repre-

sentation α and the operators c(β)ρ of representation β are used, the Hilbert space sector to
work with will be the tensor product representation α ⊗ β , which poses no problem at all
when all irreducible representations are one-dimensional, but would bring additional com-
plexity if the ground state were in a multidimensional representation. Finally, one may bring
together the different pieces, by building a L× L matrix Mρa that is the vertical concatenation
of the various rectangular matrices M (α)ρa , and returning to the usual Q-matrix representation

Qar = (M
−1)aρQρr . (99)

Using cluster symmetries for the Green function saves a factor |G| in memory because of the
reduction of the Hilbert space dimension, and an additional factor of |G| since the number of
input vectors in the band Lanczos procedure is also divided by |G|. Typically then, most of the
memory will be used to store the Hamiltonian matrix.

5 The variational cluster approximation

5.1 The self-energy functional approach

That CPT is incapable of describing broken symmetries is its major drawback. Treating spon-
taneously broken symmetries requires some sort of self-consistent procedure, or a variational
principle. Ordinary mean-field theory does precisely that, but is limited by its discarding of
fluctuations and its uncontrolled character.

A heuristic way of treating broken symmetry states within CPT would be to add to the
cluster Hamiltonian Hc a Weiss field that pushes the system towards some predetermined
form of order. For instance, the following term, added to the Hamiltonian, would induce Néel
antiferromagnetism:

HM = M M̂ , M̂ =
∑

R

eiQ·R(nR↑ − nR↓) , (100)

where Q = (π,π) is the antiferromagnetic wave-vector. What is needed is a procedure to set
the value of the Weiss parameter M . Adopting a mean-field-like procedure (i.e. factorizing
the interaction in the correct channel and applying a self-consistency condition) would bring
us exactly back to ordinary mean-field theory: the interaction having disappeared, the cluster
decomposition would be suddenly useless and CPT would provide the same result regardless
of cluster size.

The solution to that conundrum is most elegantly provided by the self-energy functional
approach (SFA), proposed by Potthoff [23,24]. This approach also has the merit of presenting
various cluster schemes from a unified point of view. It can also be seen as a special case of the
more general inversion method [25], reviewed in Ref. [26] in the context of Density Functional
Theory and DMFT.

21

https://scipost.org
https://scipost.org/SciPostPhysCodeb.23


Select SciPost Phys. Codebases 23 (2023)

Φ[G] = + + + · · ·

Figure 3: Diagrammatic definition of the Luttinger-Ward functional, as a sum over
two-particle irreducible graphs.

To start with, let us introduce a functional Ωt[G] of the Green function:

Ωt[G] = Φ[G]− Tr((G−1
0t −G−1)G) + Tr ln(−G) . (101)

This means that, given any Green function Gi j(ω) one can cook up – yet with the usual analytic
properties of Green functions as a function of frequency – this expression yields a number. In
the above expression, products and powers of Green functions – e.g. in series expansions like
that of the logarithm – are to be understood in a functional matrix sense. This means that
position i and time τ, or equivalently, position and frequency, are merged into a single index.
Accordingly, the symbol Tr denotes a functional trace, i.e., it involves not only a sum over site
indices, but also over frequencies. The latter can be taken as a sum over Matsubara frequencies
at finite temperature, or as an integral over the imaginary frequency axis at zero temperature.

The Luttinger Ward functional Φ[G] entering this expression is usually defined as the sum
of two-particle irreducible (2PI) diagrams: diagrams that cannot by split into disjoint parts by
cutting two fermion lines (Fig. 3). These are sometimes called skeleton diagrams, although
‘two-particle irreducible’ is more accurate. A diagram-free definition of Φ[G] is also given in
Ref. [27]. For our purposes, what is important is that (1) The functional derivative of Φ[G] is
the self-energy

δΦ[G]
δG

= Σ (102)

(as defined diagrammatically), and (2) it is a universal functional of G in the following sense:
whatever the form of the one-body Hamiltonian, it depends only on the interaction and, func-
tionally, it has the same dependence on G. This is manifest from its diagrammatic definition,
since only the interaction (dotted lines) and the Green function given as argument, enter the
expression. The dependence of the functional Ωt[G] on the one-body part of the Hamilto-
nian is denoted by the subscript t and it comes only through G−1

0t = ω − t appearing on the
right-hand side of Eq. (101).

The functionalΩt[G] has the important property that it is stationary when G takes the value
prescribed by Dyson’s equation. Indeed, given the last two equations, the Euler equation takes
the form

δΩt[G]
δG

= Σ−G−1
0t +G−1 = 0 . (103)

This is a dynamic variational principle since it involves the frequency appearing in the Green
function, in other words excited states are involved in the variation. At this stationary point,
and only there, Ωt[G] is equal to the physical (thermodynamic) grand potential. Contrary to
Ritz’s variational principle, this last equation does not tell us whether Ωt[G] is a minimum, a
maximum, or a saddle point there.

There are various ways to use the variational principle described above. The most common
one is to approximate Φ[G] by a finite set of diagrams. This is how one obtains the Hartree-
Fock, the FLEX approximation [28] or other so-called thermodynamically consistent theories.
This is what Potthoff calls a type II approximation strategy. [29] A type I approximation sim-
plifies the Euler equation itself. In a type III approximation, one uses the exact form of Φ[G]
but only on a limited domain of trial Green functions.
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Following Potthoff, we adopt the type III approximation on a functional of the self-energy
instead of on a functional of the Green function. Suppose we can locally invert Eq. (102) for
the self-energy to write G as a functional of Σ. We can use this result to write,

Ωt[Σ] = F[Σ]− Tr ln(−G−1
0t +Σ) , (104)

where we defined
F[Σ] = Φ[G]− Tr(ΣG) , (105)

and where it is implicit that G= G[Σ] is now a functional ofΣ. F[Σ], along with the expression
(102) for the derivative of the Luttinger-Ward functional, defines the Legendre transform of
the Luttinger-Ward functional. It is easy to verify that

δF[Σ]
δΣ

=
δΦ[G]
δG

δG[Σ]
δΣ

−ΣδG[Σ]
δΣ

−G= −G . (106)

Hence, Ωt[Σ] is stationary with respect to Σ when Dyson’s equation is satisfied

δΩt[Σ]
δΣ

= −G+ (G−1
0t −Σ)−1 = 0 . (107)

Note that the assumption that Eq. (102) can be locally inverted to yield a single-valued
functional F[Σ]may not be valid, as shown in Ref. [30]. Failure of the local invertibility might
result in multiple solutions, but precise consequences of this in VCA (or more generally in
DMFT) are not clear.

To perform a type III approximation on F[Σ], we take advantage that it is universal, i.e.,
that it depends only on the interaction part of the Hamiltonian and not on the one-body part.
We then consider another Hamiltonian, denoted H ′ and called the reference system, that de-
scribes the same degrees of freedom as H and shares the same interaction (i.e. two-body) part.
Thus H and H ′ differ only by one-body terms. We have in mind for H ′ the cluster Hamiltonian,
or rather the sum of all (mutually decoupled) cluster Hamiltonians. At the physical self-energy
Σ of the cluster, Eq. (104) allows us to write

Ωt′[Σ] = Ω
′ = F[Σ]− Tr ln(−G′) , (108)

where Ω′ is the cluster Hamiltonian’s grand potential and G′ its physical Green function, ob-
tained through the exact solution. From this we can extract F[Σ] and it follows that

Ωt[Σ] = Ω
′ + Tr ln(−G′)− Tr ln(−G−1

0t +Σ) = Ω
′ + Tr ln(−G′)− Tr ln(−G) , (109)

where G now stands for the CPT Green function (53). This expression can be further simplified
as

Ωt[Σ] = Ω
′ − Tr ln(1−VG′) . (110)

Let us finally make the trace more explicit: It is a sum over frequencies and a sum over lattice
sites (and spin and band indices), which can be expressed instead as a sum over reduced wave-
vectors (as the CPT Green function is diagonal in that index), plus a small trace (denoted tr)
on residual indices (cluster site, spin, and band):

Ωt[Σ] = Ω
′ +
∫

dω
2πi

L
N

∑

k̃

tr ln
�
1−V(k̃)G′(iω)

�
(111)

= Ω′ +
∫

dω
2πi

L
N

∑

k̃

lndet
�
1−V(k̃)G′(iω)

�
, (112)
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where the matrix identity tr lnA= lndet A was used in the second equation.
The type III approximation comes from the fact that the self-energy Σ is restricted to the

exact self-energy of the cluster problem H ′, so that variational parameters appear in the defini-
tion of the one-body part of H ′. To come back to the question of the Weiss field M introduced
at the beginning of this section, we would set its value by solving the cluster Hamiltonian –
i.e., computing Ω′ and G′ – for many different values of M and evaluate the functional (111)
for each of them, selecting the value that makes Expression (111) stationary. This is the idea
behind the variational cluster approximation (VCA), described in more detail below.

In practice, we look for values of the cluster one-body parameters t′ such that δΩt/δt′ = 0.
It is useful for what follows to write the latter equation formally, although we do not use it
in actual calculations. Given that Ω′ is the actual grand potential evaluated for the cluster,
∂Ω′/∂ t′ is canceled by the explicit t′ dependence of Tr ln(−G−1

0t′ +Σ) and we are left with

0=
δΩt[Σ]
δΣ

δΣ
δt′
= −Tr

��
1

G−1
0t′ −Σ

− 1

G−1
0t −Σ

�
δΣ
δt′

�
, (113)

or, more explicitly,

∑
ω

∑
µν

��
1

G−1
0t′ −Σ(ω)

�

µν

− L
N

∑

k̃

�
1

G−1
0t (k̃)−Σ(ω)

�

µν

�
δΣ′νµ(ω)

δt′
= 0 , (114)

where Greek indices are used for compound indices gathering cluster site, spin and possible
band indices.

5.2 Variational cluster approximation

The Variational Cluster Approximation [23, 31] (VCA), sometimes called Variational Cluster
Perturbation Theory (VCPT), can be viewed as an extension of Cluster Perturbation Theory in
which some parameters of the cluster Hamiltonian are set according to Potthoff’s variational
principle through a search for saddle points of the functional (111). The cluster Hamiltonian
Hc is typically augmented by Weiss fields, such as the Néel field (100) that allow for broken
symmetries that would otherwise be impossible within a finite cluster. The hopping terms
and chemical potential within Hc may also be treated like additional variational parameters.
In contrast with Mean-Field theory, these Weiss fields are not mean fields, in the sense that
they do not coincide with the corresponding order parameters. The interaction part of H (or
Hc) is not factorized in any way and short-range correlations are treated exactly. In fact, the
Hamiltonian H is not altered in any way; the Weiss fields are introduced to let the variational
principle act on a space of self-energies that includes the possibility of specific long-range
orders, without imposing those orders.

Steps towards a VCA calculation are as follows:

1. Choose the Weiss fields to add, aided by intuition about the possible broken symmetries
to expect.

2. Set up a procedure to calculate the functional (111).

3. Set up a procedure to optimize the functional, i.e., to find its saddle points, in the space
of variational parameters.

4. Calculate the properties of the model at the saddle point.
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5.3 Practical calculation of the Potthoff functional

Let x denote the (finite) set of variational parameters to be used. The Potthoff functional
becomes the function

Ωt(x) = Ω
′ −
∫

dω
2πi

L
N

∑

k̃

lndet
�
1−V(k̃)G′(k̃,ω)

�
. (115)

Once the cluster Green function is known by the methods described in Sect. 4, calculating the
functional (115) requires an integral over frequencies and wave-vectors of an expression that
requires a few linear-algebraic operations to evaluate. Two different methods have been used
to compute these sums, described in what follows. The second method, entirely numerical, is
much faster than the first one, which is partly analytic.

The integral over frequencies in (111) may be done analytically, with the result [32]

Ω(x) = Ω′(x)−
∑
ω′r<0

ω′r +
L
N

∑

k̃

∑

ωr (k̃)<0

ωr(k̃) , (116)

where the ω′r are the poles of the Green function G′ in the Lehmann representation (35)
and the ωr(k̃) are the poles of the VCA Green function (G−1

0 (k̃) − Σ)−1. The latter are the
eigenvalues of the R × R matrix L(k̃) = Λ + Q†V(k̃)Q. R is the number of columns of the
Lehmann representation matrix Q, basically the total number of iterations performed in the
band Lanczos procedure.

In practice, the first sum in (116) is readily calculated. The second sum demands an in-
tegration over wave-vectors. For each wave-vector k̃, one must calculate L(k̃) and find its
eigenvalues, a process of order R3. Other linear-algebraic manipulations leading to the di-
agonalization of L(k̃) are typically less time-consuming than the diagonalization itself. The
computation time therefore goes like NkR3, where Nk is the number of points in a mesh cov-
ering the reduced Brillouin zone (in fact half of the reduced Brillouin zone, since inversion
symmetry is assumed).

In practice, it is therefore more efficient to compute frequency and momentum sums nu-
merically. This is the approach followed in pyqcm, with the help of the external library cuba for
multidimensional integrals, more specifically with a deterministic method (Cuhre). This ap-
proach avoids the diagonalization of medium-size matrices and the integration method being
adaptive, only the frequencies close to the real axis require a high resolution momentum grid
in some regions of the Brillouin zone.

5.4 Example: Antiferromagnetism

The Weiss field appropriate to Néel antiferromagnetism is defined in (100). Fig. 4 shows the
Potthoff functional as a function of Néel Weiss field M for various values of U , at half-filling,
calculated on a 2 × 2 cluster. We note three solutions per curve: two equivalent minima lo-
cated symmetrically about M = 0, and a maximum at M = 0 corresponding to the normal
state solution. The normal and AF solutions both correspond to half-filling, and the AF solu-
tion has a lower energy density E = Ω + µn. We therefore conclude, on this basis, that the
system has AF long-range order. Note that, as U is increased, the profile of the curve is shal-
lower and the minimum closer to zero. Indeed, for large U , the half-filled Hubbard model is
well approximated by the Heisenberg model with exchange J = 4t2/U , and the curve should
(and will) scale towards a fixed shape when Ω/J is plotted against M/J (both dimensionless
quantities). Fig. 5 shows how the optimal Weiss field and the Néel order parameter vary as
a function of U . The Weiss field vanishes both as U → 0, where the order disappears, and as
U →∞. In both limits the energy difference between normal and broken symmetry state (or
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Figure 4: Potthoff functional as a function of Néel Weiss field M for various values
of U , at half-filling, calculated on a 2 × 2 cluster. The positions of the minima are
indicated.
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order parameter (×0.2)

Weiss field

condensation energy

Figure 5: Optimal Néel Weiss field M and corresponding order parameter, as a func-
tion of U , at half-filling, calculated on a 2 × 2 cluster. Also shown is the ordering
energy, i.e., the difference between the energy density of the normal state and that
of the Néel state (in fact the difference between the grand potentials of the two so-
lutions, since they both sit at half-filling).

‘condensation energy’) goes to zero (Fig. 5), and so should the critical (Néel) temperature.
The order parameter M̄ = 〈M̂〉/N increases monotonically with U and saturates.

Fig. 6 shows the Potthoff functional as a function of Néel Weiss field M for various cluster
sizes, at half-filling and U = 8. There is a clear and monotonous size dependence of the posi-
tion of the minimum. In particular, the optimal Weiss field decreases as cluster size increases.
This should not worry us, quite on the contrary. The Weiss field is needed only because sponta-
neously broken symmetries cannot arise on a finite cluster. The bigger the cluster, the easier it
is to break the symmetry and the optimal Weiss field should tends towards zero as the cluster
size goes to infinity. Finite-size scaling is generally very difficult, because cluster sizes are small
and clusters vary in shape as well as size. Moreover, open boundary conditions are used rather
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Figure 6: Potthoff functional as a function of Néel Weiss field M for various cluster
sizes, at half-filling and U = 8. The clusters used (from top to bottom) are: 2 × 2,
2×3, 2×4, B10 – see Fig. 1 –, and 3×4. The positions of the minima are indicated.

than periodic ones, which adds edge effects to size effects. One needs to define a scaling pa-
rameter q, ranging between 0 and 1, that somehow defines the “quality” of the cluster (q = 1
being the thermodynamic limit). Fig. 7 shows the optimal Néel Weiss field as a function of
two possibilities for the scaling factor q, for the half-filled Hubbard model at U = 16. The first
possibility (blue dots) is q = 1− 1/L, which does not take into account the shape of the clus-
ter. The second possibility (red dots) corresponds to q defined as the number of links on the
cluster, divided by twice the number of sites. This also goes to 1 in the thermodynamic limit
(for the square lattice), but this time takes into account the boundary of the cluster. Indeed,
1−q corresponds to the fraction of links of the lattice that are “inter-cluster” and thus treated
“perturbatively” in the CPT sense. In that case, the scaling is good, as the optimal Weiss fields
extrapolates very close to zero in the q → 1 limit. At the same time, the AF order parameter
also decreases, but extrapolates to a finite value, as shown on the same figure.

5.5 Superconductivity

Superconductivity requires the use of pairing fields as Weiss fields, i.e., of operators creating
Cooper pairs at specific locations. Generally, pairing fields have the form

∆̂=
∑
rr′
∆rr′ cr↑cr′↓ +H.c. (117)

Different types of superconductivity correspond to different pairing functions ∆rr′ . For in-
stance, ordinary (local) s-wave pairing (à la BCS) corresponds to ∆rr′ = δrr′ . On a square
lattice, what is usually known as dx2−y2 pairing corresponds to

∆rr′ =

�
1 , if r− r′ = ±ex ,

−1 , if r− r′ = ±ey ,
(118)

whereas dx y pairing corresponds to

∆rr′ =

�
1 , if r− r′ = ±(ex + ey) ,

−1 , if r− r′ = ±(ex − ey)
(119)

(ex ,y are lattice vectors on the square lattice). The above two pairing are spin singlets.
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Figure 7: Top: Optimal Néel Weiss field for the half-filled Hubbard model at U = 16,
as a function of scaling parameter. Blue points: the scaling parameter is 1 − 1/L,
and the scaling is poor. Red points: the scaling parameters is the number of cluster
links divided by 2L – this takes open boundary conditions into account. We see how
the Weiss field goes to zero in the thermodynamic limit. Bottom: Same, for the Néel
order parameter, which tends to a finite value in the thermodynamic limit. Against
the second scaling parameter works better.

Pairing fields, once introduced in the cluster Hamiltonian Hc as Weiss fields, do not con-
serve particle number (but conserve spin). This increases the computational burden, since now
the Hilbert space must be increased to include all sectors of a given total spin. In practice, one
uses the Nambu formalism, which in this case amounts to a particle-hole transformation for
spin-down operators. Indeed, if we introduce the operators

cr = cr↑ , and dr = c†
r↓ , (120)

then the pairing fields look like simple hopping terms between c and d electrons, and the whole
cluster Hamiltonian can be kept in the standard form (1), albeit with hybridization between c
and d orbitals.

Fig. 8 illustrates the dependence of the Potthoff functional on various superconducting
pairing fields (generically denoted ∆). In that case, only dx2−y2 pairing leads to a nontrivial
solution. Others are piece-wise monotonously increasing or decreasing function, with a single
zero-derivative point at ∆= 0.

5.6 Thermodynamic consistency

One of the main difficulties associated with VCA (or CPT) is the limited control over electron
density. In the absence of pairing fields, electron number is conserved and clusters have a
well-defined number of electrons. This makes a continuously varying electron density a bit
hard to represent. Of course, one may simply vary the chemical potential µ and look at the
corresponding variation of the electron density, given by the functional trace of the Green
function TrG (see Eq. 52). This provides a continuously varying estimate of the density as a
function of µ. An alternate way of estimating the density is to use the relation

n= −∂Ω
∂ µ

, (121)

where the grand potential Ω is approximated by the Potthoff functional at the solution found,
and µ is varied as an external parameter. The problem is that the two estimates do not coincide
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Figure 8: Profile of the Potthoff functional as a function of Weiss field for various
superconducting pairing fields. The extended s-wave is defined as the same as in
(118), but without the sign change between x and y directions.
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Figure 9: Comparisons of the estimates of the electron density n as a function of
chemical potential µ, with different methods of calculation, for the normal solution,
at U = 8, on a 2 × 2 cluster. The subscript ‘cons.’ means that the corresponding
quantities were computing in a thermodynamically consistent way, by using µ′ as a
variational parameter.
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Figure 10: Order parameters for dx2−y2 pairing and Néel antiferromagnetism for a
model of the high-Tc cuprates with U = 8, diagonal hopping t1 = −0.3 and third
neighbor hopping t2 = 0.2. Calculations are performed on a 3 × 4 cluster. Three
solutions are displayed: (1) a pure dx2−y2 , obtained with two variational parameters
(µ′ and ∆x2−y2); (2) a pure Néel solution obtained by varying µ′ and the Néel Weiss
field M ; a homogeneous coexistence solution obtained by varying µ′, M and ∆x2−y2

(data from Ref. [33]).

(see Fig. 9). In other words, the approach is not thermodynamically consistent. The recipe to
make it consistent is simple: the chemical potential µ′ of the cluster should not be assumed to
be the same as that of the lattice system (µ), but should be treated as a variational parameter.
If this is done, then the two methods for computing n given precisely the same result (see
Fig. 9), and this can easily be proven in general. Results on a Hubbard model for the cuprates
with thermodynamic consistency are shown on Fig. 10; see also Ref. [32].

5.7 Searching for stationary points

Let x i be the n different variational parameters used in VCA, making up the array x. Once
the function Ω(x) may be efficiently calculated, it remains to find a stationary point of that
function. This point is not necessarily a minimum in all directions. Indeed, experience has
shown that ω is a maximum as a function of the cluster chemical potential µ′, while it is
generally a minimum as a function of symmetry-breaking Weiss fields like M or ∆.

The Newton-Raphson algorithm allows one to find stationary points with a small number
of function evaluations. One starts with a trial point x0 and an initial step h. Let ei denote the
unit vector in the direction of axis i of the variational space. The functionω is then calculated
at as many points as necessary to fit a quadratic form in the neighborhood of x0. This requires
(n + 1)(n + 2)/2 evaluations, at points like x0, x0 ± hei , and a few of x0 + h(ei + e j). The
stationary point x1 of that quadratic form is then used as a new starting point, the step h is
reduced to a fraction of the difference |x1 − x0|, and the process is iterated until convergence
on |xi − xi−1| is achieved. A variant of this method, the quasi-Newton algorithm, may also be
used, in which the full Hessian matrix of second derivatives is not calculated. It requires in
general more iterations, but fewer function evaluations at each step.

The advantage of the Newton-Raphson method lies in its economy of function evaluations,
which are very expensive here: each requires the solution of the cluster Hamiltonian. Its
disadvantage is a lack of robustness. One has to be relatively close to the solution in order
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Figure 11: Potthoff functional as a function of the Weiss field for various pairing
operators on the triangular lattice, with the 7-site hexagonal cluster shown. Lattice
parameters are U = 8, t = 1 and µ = 2.5. The curves associated with the d- and
d+ id-wave states have a discontinuity caused by a sector change of the ground state.

to converge towards it. But one typically runs parametric studies in which an external (i.e.
non variational) parameter of the model is varied, such as the chemical potential µ or the
interaction strength U . In this context, the solution associated with the current value of the
external parameter may be used as the starting point for the next value, and in this fashion,
by proximity, one may conduct rather robust calculations.

One may also use standard minimum-search methods, such as those provided by scipy.

optimize. These methods find minima (or maxima), not saddle points. We must therefore take
the extrinsic step of identifying parameters (like µ′ above) that are expected to drive maxima
of ω, and a complementary set of parameters (like M and ∆ above) that drive minima of ω.
One then, iteratively, finds maxima and minima with the two sets of parameters in succession,
and stops when convergence on |xi−xi−1| has been achieved. This method is suitable to find a
first solution when the Newton-Raphson method fails to deliver one. It may however converge
to minima that are in fact singularities of ω, i.e., points where the derivatives are not defined.
Such points may occur as the result of energy-level crossings in clusters and are an artifact of
the finite-cluster size.

5.8 Some issues with VCA

The VCA has the merit of providing a simple embedding of the cluster in the lattice, through a
variational principle that sets the “optimal” values of cluster operators (Weiss fields). It does
so without introducing extra degrees of freedom (unlike CDMFT, Sect. 6), which in practice
allows for the use of clusters as big as those used in CPT. Overall, this is a net and major
improvement over CPT. Its application to the two-dimensional Hubbard model clearly reveals
the correct pairing symmetry (dx2−y2) and the existence of a superconducting dome away from
half-filling (Fig. 10).

However, it also shares with CPT the same issues coming from the small cluster sizes,
when an ED solver is used, namely the discreteness of the energy levels of the cluster and the
existence of disconnected Hilbert space sectors associated, e.g., with different particle numbers
or spin.

Let us illustrate these difficulties with two examples. On Fig. 11 we show the Potthoff
functional Ω as a function of Weiss field for several pairing operators defined on a seven-
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Figure 12: Potthoff functional as a function of the cluster chemical potential µ′, here
used as a Weiss field, in the one-dimensional Hubbard model, with a cluster of 8
sites, U = 4, t = 1, and the values of µ shown. The various sections correspond to
different values of the number of electrons on the cluster, as indicated by the blue
labels on top. Saddle points are indicated as black dots.

site cluster tiling the triangular lattice. The one-band Hubbard model is used, with U = 8,
t = 1, and a fixed value µ= 2.5 of the chemical potential positioning the system in the lightly
hole-doped region of the model. The various pairing operators of the model correspond to
different order parameter symmetries, and thus could not mix with each other (assuming the
phase is pure). As we can see, the extended s-wave (singlet) and f -wave (triplet) curves have
smooth minima (indicated by dots) at nonzero values of the Weiss field, which means that
these superconducting states have a lower energy than the normal state, the f -wave even
more so than the s-wave. This, of course, is within the very restricted variational space in
which a single Weiss field is varied, for that precise 7-site cluster. On the other hand, the
curves associated to the d-wave and complex d + id combination (there are two degenerate
d-wave states on the triangular lattice, making up the E2 representation of C6v [34]) display an
annoying discontinuity that preempts what might otherwise have been an even lower energy
minimum. This discontinuity happens because of a sudden change in the cluster’s ground state
as a function of the Weiss field, going from a state with total spin 0 (and thus an even number
of electrons) to a state of total spin 1

2 (with an odd number of electrons). In this situation
electron number is not conserved, but its parity (even or odd) is. Obviously this only happens
because of the finite cluster size; similar behavior is found on a 12-site cluster (although in that
case the transition is from a spin 1

2 state to a spin 0 state). It seems that increasing the d-wave
Weiss field, at fixed µ, is prone to change the total spin of the ground state, in a way that the
extended s-wave Weiss field doesn’t. Thus, in this system, the optimal superconducting state,
which we surmise to be the d + id state, cannot be correctly identified as such with a single
Weiss field. Is there a way out of this? Indeed, a problem with this cluster geometry is the
asymmetry between the center site and the boundary sites. This could be fixed by adding, as
a Weiss field, the occupation c†

0,σc0,σ of the center site (labeled 0 here).
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Figure 13: Examples of clusters with baths for use in CDMFT. Bath sites are square,
cluster sites blue circles. Bath energies ϵi , hybridizations θi are indicated. System (a)
is appropriate for studying the one-dimensional Hubbard model and CDMFT results
are shown on Fig. 14. System (b) is appropriate for the two-dimensional Hubbard
model (in-bath pairing operators ∆i are shown) and CDMFT results are shown on
Fig. 16.

In our second example, illustrated on Fig. 12, we compute the Potthoff functional as a
function of the cluster’s chemical potential µ′, for several fixed values of the lattice chemical
potential µ, in the one-dimensional Hubbard model with a cluster of 8 sites, at U = 4, t = 1.
Since particle number is conserved on the cluster, the ground state goes through different
particle numbers at well-defined values of µ′ (the corresponding cluster electron numbers are
shown in blue at the top of the plot). Several saddle points exist (black dots on the figure)
for each value of µ. The question is then: which solution is the best one? One might be
tempted to choose the one with the lowest value of Ω, since at a saddle point the value of the
Potthoff functional is expected to be an approximation to the system’s grand potential. But as
much as this prescription makes sense when applied to Weiss field that break symmetries (see,
e.g., Fig. 6), it makes no sense here. The saddle points are all local maxima, and it is more
reasonable in this case to choose the saddle point with the highest value of Ω. This clearly is
the correct choice at the particle-hole symmetric point (µ = 2) and remains so, by continuity,
for nearby values of µ. Note however that µ= 2.6 raises an issue, since for that value of µ the
highest value of Ω lies in the N = 9 sector, before falling back to the N = 8 sector as µ is raised
further. Note that Potthoff’s variational principle does not provide an answer to the question
“which saddle point to choose” and one must make a choice based on common sense. This
example illustrate that this choice is not necessarily an obvious one.

6 The cellular dynamical mean field theory

The Cellular dynamical mean-field theory (CDMFT) – also called Cluster dynamical mean-field
theory – is a cluster extension of Dynamical mean-field theory (DMFT). Since there is no real
pedagogical gain in describing first DMFT, we will proceed directly to CDMFT, in the context
of a an exact diagonalization solver.

The basic idea behind CDMFT is to approximate the effect on the cluster of the remaining
degrees of freedom of the lattice by a bath of uncorrelated orbitals that exchange electrons
with the cluster, and whose parameters are set in a self-consistent way. Explicitly, the cluster
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Hamiltonian Hc takes the form

Hc = −
∑
µ,ν

tµνc†
µcν + U
∑

R

nR↑nR↓ +
∑
µ,α

θµα(c
†
µaα +H.c.) +
∑
α

ϵαa†
αaα , (122)

where aα annihilates an electron on a bath orbital labeled α. The label α includes both an
‘bath site’ index and a spin index for that ‘site’. The bath is characterized by the energy of each
orbital (ϵα) and by the bath-cluster hybridization matrix θµα (the index µ includes cluster site,
spin and band indices). This representation of the environment through an Anderson impurity
model was introduced in Ref. [35] in the context of DMFT (i.e., a single-site cluster). Note
that ‘bath site’ is a misnomer, as bath orbitals have no position assigned to them. Because of
the analogy with the Anderson impurity model (AIM), the cluster-bath system is often referred
to as the impurity (even though no disorder is involved) and the method used to compute the
cluster Green function is called the impurity solver.

The effect of the bath on the electron Green function is encapsulated in the so-called hy-
bridization function

Γµν(ω) =
∑
α

θµαθ
∗
να

ω− ϵα
, (123)

which enters the electron Green function as

Gc
−1 =ω− t− Γ(ω)−Σc(ω) . (124)

By definition, the only effect of adding the electron-electron interaction is to add the self-energy
Σc , as above.

Note that while the CPT relation (55) is still valid, the relation (54) must be modified in
the presence of a bath in order to compensate for the hybridization function:

G−1(k̃,ω) = Gc
−1(ω) + Γ(ω)−V(k̃) . (125)

6.1 Bath degrees of freedom and SFA

The CDMFT Hamiltonian (122) defines a valid reference system for Potthoff’s self-energy func-
tional approach, since it shares the same interaction part as the lattice Hamiltonian H and since
each cluster of the super-lattice has its own identical, independent copy. From the SFA point
of view, the bath parameters {ϵα,θµα} can in principle be chosen in such a way as to make
the Potthoff functional stationary. A subtlety arises: the bath system must be considered part
of the original Hamiltonian H, albeit without hybridization to the cluster sites, in order for
both Hamiltonians to describe the same degrees of freedom; but within H we are free to give
the bath trivial parameters (ϵα = 0). Performing VCA-like calculations with bath degrees of
freedom is possible, but difficult and in practice restricted to simple systems [36–39].

When evaluating the Potthoff functional in the presence of a bath, one must add a contri-
bution from the bath to Tr ln(−Gc), which takes the form

Ωbath =
∑
ϵα<0

ϵα , (126)

and which comes from the zeros of the cluster Green function induced by the poles of the
hybridization function. Note that the zeros coming from the self-energy cancel out in Eq. (116)
between the contribution of Tr ln(−Gc) and that of Tr ln(−G), but not those coming from Γ(ω),
as they only occur in Gc .
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Figure 14: Electron density as a function of chemical potential, for the one-
dimensional Hubbard model, at U = 4. The red curve is the exact result from the
Lieb-Wu solution using the Bethe Ansatz. The CDMFT results are obtained from the
4-site cluster of Fig. 13(a). The blue dots are obtained when allowing only pure states
(well defined electron number on the impurity system, as labeled). The shaded areas
show intervals in µ where such pure solutions cannot be found. The turquoise line
is obtained by allowing mixed states for the impurity, with a temperature T = 0.01
(in units of the hopping t).
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Figure 15: The CDMFT algorithm with an exact diagonalization solver.
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6.2 The CDMFT self-consistent procedure

In practice, CDMFT does not look for a strict solution of the Euler equation (114). It tries
instead to set each of the terms between brackets to zero separately. Since the Euler equation
(114) can be seen as a scalar product, CDMFT requires that the modulus of one of the vectors
vanish to make the scalar product vanish. From a heuristic point of view, it is as if each
component of the Green function in the cluster were equal to the corresponding component
deduced from the lattice Green function. Clearly, the left-hand side of Eq. (114) cannot vanish
separately for each frequency, since the number of degrees of freedom in the bath is insufficient.
Instead, one adopts the following self-consistent scheme (see Fig. 15):

1. Start with a guess value of the bath parameters (θµα,ϵα), that define the hybridization
function (123).

2. Solve for the cluster Green function G(ω) with the impurity solver (here ED).

3. Calculate the super-lattice-averaged Green function

Ḡ(ω) =
L
N

∑

k̃

1

G−1
0 (k̃)−Σc(ω)

, (127)

and the combination
GG−1

0 (ω) = Ḡ−1 +Σc(ω) . (128)

4. Minimize the following distance function:

d =
∑

iωn,ν,ν′
Wn

���G(ω)−1 − Ḡ(ω)−1
�
νν′
��2

=
∑

iωn,ν,ν′
Wn

���iωn +µ− tc − Γ(iωn)−GG−1
0

�
νν′
��2 , (129)

over the set of bath parameters. Changing the bath parameters at this step does not
require a new solution of the Hamiltonian Hc , but merely a recalculation of the hy-
bridization function Γ (123). The weights Wn are chosen arbitrarily but with common
sense.

5. Go back to step (2) with the new bath parameters obtained from this minimization, until
they are converged.

In practice, the distance function (129) can take various forms, for instance by choosing
frequency-dependent weights Wn in order to emphasize low-frequency properties [17,40,41]
or by using a sharp frequency cutoff [42]. These weights Wn can be considered as rough ap-
proximations for the missing factor δΣ′νµ(ω)/δtc in the Euler equation (114). The frequencies
are summed over on a discrete, regular grid along the imaginary axis, defined by some ficti-
tious inverse temperature β , typically of the order of 50 (in units of t−1). Even when the total
number of cluster plus bath sites in CDMFT equals the number of sites in a VCA calculation,
CDMFT is much faster than the VCA since the minimization of a grand potential functional
requires many exact diagonalizations of the cluster Hamiltonian Hc .

6.3 Examples

Let us start with a one-dimensional example. Fig. 14 shows the electron density n as a function
of the chemical potential µ for the one-dimensional Hubbard model, as computed from CDMFT
with the system illustrated in Fig. 13(a). The red curve is the exact result from the Lieb-Wu
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Figure 16: Néel (AF) and d-wave (dSC) order parameters obtained from CDMFT
applied to the (4+8)-cluster of Fig. 13(b), for the two-dimensional Hubbard model
with U = 8 and diagonal hopping t ′ = −0.3. The data is shown as a function of
the calculated lattice density n. The order parameters are calculated using the same
operators as in the corresponding VCA calculation illustrated on Fig. 8, even though
these operators played no role in the solution: they are merely used as a probe. In
this calculation, we set β = 20 and a sharp cutoff ωc = 3 was used. The dSC and
AF solutions were both allowed simultaneously (9 bath parameters) and there are
regions of coexistence of the two orders.

solution [43]. The blue dots are the CDMFT solutions obtained by imposing a pure state for
the impurity, i.e., with a definite number of electrons on the cluster-bath system, from N = 8
down to N = 1. Note that even though N is fixed on the impurity, it is flexible on the cluster per
se because of the presence of the bath orbitals. In fact, states with an odd number of electrons
are not pure, since the ground state is degenerate between two states with Sz = ±1

2 , and these
two states (and the corresponding Green functions) are computed separately. Note that there
are intervals of µ (shaded in yellow) where CDMFT finds no consistent ground state. By that
we mean that the CDMFT procedure done within a specific value of N may converge to a set of
bath parameters, but the lowest-energy state in that Hilbert space sector is not the true ground
state, which would reside in a sector with a different value of N . On the other hand, if we
allow mixed states between different sectors, with a small temperature T (here T = 0.01t),
then a solution is found (turquoise curve) for all values of µ that interpolates well between
the solutions found with a fixed value of N on the impurity.

Next, consider the two-dimensional cluster illustrated in Fig. 13(c). This 4-site, 8-bath
site cluster is the main cluster used in CDMFT simulations of high-Tc cuprates using the two-
dimensional Hubbard model. It is useful in that case to view the orbitals numbered 5 to 8 as
a first bath set, and the orbitals numbered 9 to 12 as a second bath. Each site of the cluster is
connected to one orbital of each set. In studying the normal state, and taking into account the
symmetries of the cluster, we would need 4 bath parameters: one bath-cluster hopping and one
bath energy for each set. In order to treat a possible antiferromagnetic phase, one must modify
the bath energies and hopping in a spin-dependent way. The gray and white squares on the
figure then distinguish orbitals of a given bath according to their shift in site energy (of opposite
signs for opposite spins). The corresponding bath-cluster hybridization may also be different,
which makes a total of 8 parameters. Finally, in order to study d-wave superconductivity, we
introduce pairing within each bath (red dotted lines on the figure), vertical and horizontal
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pairing being of opposite signs. This introduces an additional parameter, for a total of 9.
At this point, an important remark is in order: Formula (123) for the hybridization function
only applies if the bath orbitals are not hybridized between themselves. The d-wave pairing
just described certainly breaks that condition. This is not a problem, however, if we perform
a change of variables within bath degrees of freedom (a Bogoliubov transformation) prior
to solving the problem numerically, such as to make the bath Hamiltonian diagonal. Then
the poles of the hybridization function no longer correspond to the bath energies as defined
originally in the model, but rather to the eigenvalues of the bath Hamiltonian.

Results of a CDMFT calculation on this system are shown in Fig. 16. Comparing with the
VCA result of Fig. 10, we notice first the similarities: the existence of a dSC phase away from
half-filling for both electron and hole doping and the possibility of homogeneous coexistence
between antiferromagnetism and d-wave superconductivity. But differences are obvious: the
VCA diagram is more asymmetric than the CDMFT one in terms of electron vs hole doping.
Both calculations agree on the critical doping for antiferromagnetism on the hole-doped side
(∼ 10%), but not on the electron-doped side. The VCA result does not show homogeneous
coexistence between AF and dSC on the hole-doped side – although it appears on smaller
clusters. In fact, the presence of homogeneous coexistence on the hole-doped side in CDMFT
depends on the bath configuration; it appears in the simple bath configuration of Fig. 13(c),
but not in a more general bath configuration [44].

7 CPT vs VCA vs CDMFT

What are the respective merits of the approaches described so far: CPT, VCA and CDMFT?
CPT may be used when no broken symmetry or phase transition is expected, and when

one wants to maximize the number of cluster sites and minimize computing time, since no
variational parameter needs to be optimized. It is also the backbone of the other methods
(VCA and CDMFT).

VCA is typically used in the presence of a broken symmetry, or simply to improve the nor-
mal solution. Since it typically uses no bath degrees of freedom, it maximizes the cluster size
at fixed resources and thus allows to take into account a larger set of spatial fluctuations or
more interacting orbitals within the cluster. On the other hand, VCA is limited by the choice
of Weiss fields used and tends to be more time consuming than other methods at fixed re-
sources. In particular, computing time and convergence issues grow rapidly with the number
of independent Weiss fields considered simultaneously. In some cases it is plagued by discon-
tinuities in the Potthoff functional; this problem is caused by the finite cluster size but makes
VCA inapplicable in those cases (see Sect. 5.8).

CDMFT is also typically used in the presence of broken symmetry, and has the advantage of
a simpler, self-consistent path to the solution, which allows many more variational parameters
to be used (bath parameters, in that case). The clusters are smaller, but the variational space
is larger, thus the method is less restricted than VCA. Spatial fluctuations are less well repre-
sented than in VCA, but one might argue that temporal fluctuations are better represented.
Overall, if the system is simple enough that correlations are basically local and that short-
range fluctuations, as represented on a 4-site plaquette, dominate the physics, then CDMFT
is the preferred method. If the geometry of the system or the number of interacting bands
does not make CDMFT practical, then VCA is preferred. VCA is also useful in assessing a min-
imal cluster-size dependence of the results, or the robustness of the results when compared to
CDMFT. Note also that the CDMFT impurity problem may be treated with VCA in principle: the
ideal CDMFT solution would in fact be obtained by applying Potthoff’s variational principle,
as mentioned in Sect. 6.1 above. The actual gain in speed brought by CDMFT comes from the
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quasi-self-consistent, iterative procedure used, which is simpler than optimizing the Pothoff
functional.

In all cases, these methods are also limited by the impurity solver used, in our case exact
diagonalization (ED). The only problem with ED, but a major one, is its limitation to small
systems. This leads to occasional discontinuities of the impurity ground state – and therefore
discontibuities in the Green function, the Potthoff functional (VCA), the hybridization function
(CDMFT), etc. – as a function of chemical potential or Weiss field. Other solvers, in particular
quantum Monte Carlo solvers, also have their problems, most notably the fermion sign problem
and long computing times.

8 Extended interactions

The methods described above (CPT, VCA, CDMFT) only apply to systems with on-site in-
teractions, since the Hamiltonians H and Hc must differ by one-body terms only, i.e., they
must have the same interaction part. If extended interactions are present, they are partially
truncated when the lattice is tiled into clusters and one must apply further approximations.
Specifically, the Hartree (or mean-field) decomposition can be applied on the extended in-
teractions that straddle different clusters, while interactions (local or extended) within each
cluster are treated exactly. This is called the dynamical Hartree approximation (DHA) and has
been used in Ref [45] to study charge order in the extended, one-band Hubbard model and
in Refs [46–48] in order to assess the effect of extended interactions on strongly-correlated
or charge order. (the qualifier dynamical is used to reflect the presence of short-range corre-
lations within the method and its association with methods based on the self-energy, such as
VCA or CDMFT). We will explain this approach in this section.

Let us write Hamiltonian with extended interactions as

H = H0(t) +Hext , Hext =
1
2

∑
i, j

Vi jnin j , (130)

where i, j are compound indices for lattice site and orbital label, niσ is the number of electrons
of spin σ on site/orbital i, ni = ni↑+ ni↓ and H0 is the rest of the Hamiltonian, that could also
contain on-site interactions or any interaction that does not straddle clusters. In the dynamical
Hartree approximation, Hext in (130) is replaced by

HDHA
ext =

1
2

∑
i, j

V c
i jnin j +

1
2

∑
i, j

V ic
i j (n̄in j + ni n̄ j − n̄i n̄ j) , (131)

where V c
i j denotes the extended interaction between orbitals belonging to the same cluster,

whereas V ic
i j those interactions between orbitals of different clusters. Here n̄i is a mean-field,

presumably the average of ni , but not necessarily, as we will see below.
Let us express the index i as a cluster index c and a site-within-cluster index α. Then

Eq. (131) can be expressed as

1
2

∑
c,α,β

Ṽ c
αβnc,αnc,β +

1
2

∑
c,α,β

Ṽ ic
αβ(n̄αnc,β + nc,αn̄β − n̄αn̄β) , (132)

where we have assumed that the mean fields n̄i are the same on all clusters, i.e., they have
minimally the periodicity of the super-lattice, hence n̄i = n̄α. We have consequently replaced
the large, N × N and block-diagonal matrix V c

i j by a small, Nc × Nc matrix Ṽ c
αβ

, and we have

likewise “folded” the large N × N matrix V ic
i j into the Nc × Nc matrix Ṽ ic

αβ
.
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To clarify this last point, consider the simple example of a one-dimensional lattice with
nearest-neighbor interaction v, tiled with 3-site clusters. Then

Hext = v
N∑

i=0

nini+1 , (133)

leads to the following 3× 3 interaction matrices:

Ṽ c = v




0 1 0

1 0 1

0 1 0


 , Ṽ ic = v




0 0 1

0 0 0

1 0 0


 . (134)

In practice, the symmetric matrix Ṽ ic
αβ

is diagonalized and the mean-field inter-cluster interac-
tion is expressed in terms of eigen-operators mµ:

V̂ ic =
∑
µ

Dµ

�
m̄µmµ −

1
2

m̄2
µ

�
. (135)

For instance, in the above simple one-dimensional problem, these eigen-operators mµ and
their corresponding eigenvalues Dµ are

D1 = −v , m1 = (n1 − n3)/
p

2 ,

D2 = 0 , m2 = n2 , (136)

D3 = v , m3 = (n1 + n3)/
p

2

(n1,2,3 are the electron number operators on each of the three sites of the cluster). The mean
fields n̄i are determined either by applying (i) self-consistency or (ii) a variational method. In
the case of ordinary mean-field theory, in which the mean-field Hamiltonian is entirely free
of interactions, these two approaches are identical. In the present case, where the mean-field
Hamiltonian also contains interactions treated exactly within a cluster, self-consistency does
not necessarily yield the same solution as energy minimization. In the first case, the assignation
n̄i ← 〈ni〉 would be used to iteratively improve on the value of n̄i until convergence. In the
second case, one could treat n̄i like any other Weiss field in the VCA approach, except that n̄i
is not defined only on the cluster, but on the whole lattice. We will see in Sect. 9.9 how this is
done in practice in the pyqcm library.

9 The PyQCM library

9.1 Access and general architecture

The pyqcm library is available on bitbucket.org. It contains a core written in C++, that compiles
into a shared object library qcm.so. That is in turn included in a Python module called pyqcm,
which contains submodules dedicated to CDMFT and VCA. The user does not have to interact
with the shared object library qcm.so directly. Instructions for installations can be found in
the repository, but it can be as simple as cloning the git repository and typing “pip install .”
within the main source directory, or simply typing “pip install pyqcm”.

Dependencies The library uses Lapack (or equivalent) for basic linear algebra. It uses the
cuba library for multidimensional integrals. It optionally uses the eigen template library for
representing the sparse Hamiltonian. pyqcm has its own efficient Lanczos, band Lanczos and
Davidson-Liu methods coded in. The PRIMME library is used as an option to replace the built-
in Lanczos method by its own eigensolver.
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Documentation The library’s documentation can be produced by going to the distribution’s
docs/ folder and issuing the command ./makedoc. It is produced by Sphinx and is also available
online on readthedocs. In the remainder of this section we provide a general introduction to
the library, with examples, but without going into all the details of each functionality, which
would take excessive time and space. We refer the reader to the complete documentation for
that. This final version of this paper was produced using pyqcm version 2.2.

9.2 Defining models I: Geometry

In pyqcm , one defines a lattice model (in dimension 0 to 3), and one or more cluster models, the
latter defining the impurity, i.e., the part of the model that is solved by exact diagonalization.
The lattice model defines how the clusters are arranged to tile the infinite lattice, and contains
lattice operators that are then restricted to the clusters and contribute to the cluster Hamilto-
nian. Let us illustrate this by two examples, one extremely rudimentary, and the second one a
bit more sophisticated.

Consider the Hubbard Hamiltonian in dimension 1, which we decide to tile with identical
clusters of size 4, a illustrated below (inter-cluster hopping terms are represented by dashed
lines).

(137)

To define a basic nearest-neighbor hopping and a Hubbard U , the following simple code is
required:

1 import pyqcm
2 CM = pyqcm.cluster_model(4)
3 clus = pyqcm.cluster(CM, ((0,0,0), (1,0,0), (2,0,0), (3,0,0)))
4 model = pyqcm.lattice_model(’1D_4’, clus, ((4,0,0),))
5 model.interaction_operator(’U’)
6 model.hopping_operator(’t’, (1,0,0), -1)

Line 2 initiates a cluster model containing 4 physical sites and no bath site, here stored in
the object CM. Objects of type cluster_model have no notion of geometry or position. Line 3
defines a physical (geometric) cluster named clus with positions (i, 0, 0) (i = 0, . . . , 3), based
on the abstract cluster model CM. There could be more than one cluster based on the same
model in the repeated unit, hence the distinction between the two objects. All positions are
integer-component three-vectors, even for models in dimension< 3. Line 4 defines an object of
type lattice_model named model with a super-lattice vector (4,0,0) and based on the unique
cluster clus defined the line before. The lattice model is given then name ’1D_4’ that is used
to refer to it in output files. Line 5 defines a local interaction operator named U and line
6 a nearest-neighbor hopping operator name t, with hopping vector (1, 0,0) and amplitude
multiplier −1, so that the lattice Hamiltonian reads

H = −t
∑
i,σ

�
c†

i,σci+1,σ +H.c.
�
+ U
∑

i

ni↑ni↓ −µ
∑
i,σ

niσ . (138)

These operators belong to the lattice_model object defined on line 4. Note that the chemical
potential µ is added to the model automatically. Note also that the library only allows one
lattice_model object to be defined at a time (even though its parameters may vary at will); it
is possible to redefine (or reset) the lattice model and all cluster objects by calling the function
pyqcm.reset_model().
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e2

Figure 17

We next consider the Hubbard model on the honeycomb lattice, with the clusters illustrated
on Fig. 17, and defined with the code below.

1 import pyqcm
2 import numpy as np
3 CM = pyqcm.cluster_model(4)
4 clus1 = pyqcm.cluster(CM, ((-1,-1,0), (0,1,0), (1,0,0), (0,0,0)), (1,0,0))
5 clus2 = pyqcm.cluster(CM, ((1,1,0), (0,-1,0), (-1,0,0), (0,0,0)), (-1,0,0))
6 model = pyqcm.lattice_model(’graphene_4_2C’, (clus1, clus2), ((4,2,0), (2,-2,0)),

((1,-1,0), (2,1,0)))
7 sq3 = np.sqrt(3.0)/2
8 model.set_basis(((1,0,0),(-0.5,sq3,0)))
9 model.interaction_operator(’U’)

10 model.hopping_operator(’t’, (-1,0,0), 1, orbitals=(1,2))
11 model.hopping_operator(’t’, (0,-1,0), 1, orbitals=(1,2))
12 model.hopping_operator(’t’, (1,1,0), 1, orbitals=(1,2))

In this case, the repeated unit contains two four-site clusters, the second being the inverted
image of the first (note how the sites of each cluster are labeled on lines 4 and 5). The two
clusters are defined with the same cluster model object CM, meaning that they will lead to
different impurity problems based on the same Hilbert space and operators, possibly with
different values of the terms in the Hamiltonian. Note that the call to the constructor pyqcm.

cluster() contains a third, optional argument which is the base position of the cluster (here
(1,0,0) and (-1,0,0)), added to the positions listed in the second argument. If the two clusters
are expected to have the same Hamiltonian, one may avoid solving the second one by defining
it in terms of the first, i.e., by issuing the function

1 clus2 = pyqcm.cluster(clus1, ((1,1,0), (0,-1,0), (-1,0,0), (0,0,0)), (-1,0,0))

instead, where the first argument is a cluster object instead of a cluster_model object. Each
cluster inserted in the lattice model is given an index (from 0 to the number of clusters −1)
in the order in which they are given to the function pyqcm.lattice_model(); this may be used
later to query cluster specific information. Line 6 defines the lattice model, not only with the
super-lattice vectors (4, 2,0) and (2,−2, 0), but also with lattice vectors (1,−1, 0) and (2, 1,0);
the latter imply that the model contains two orbitals, associated with sub-lattices A and B. In
pyqcm, each site-orbital pair lives on a distinct site of the lattice (like in graphene); if a model
contains several orbitals on a given atom, then the pyqcm lattice is artificially given additional
sites within the unit cell to incorporate these orbitals (this is in no way restrictive). The working
basis is defined on line 7; this allows plotting routine to respect to geometry of the problem,
but otherwise has no impact. Since we are dealing with a two-band model, the function calls
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on lines 10 to 12 that define the hopping terms must specify the initial and final orbitals of
each hopping term, as well as the hopping direction.

9.3 Defining models II: Operators

In general, the lattice Hamiltonian is viewed as a sum of terms:

H =
∑

a

haHa . (139)

The various operators Ha are defined by different functions depending on their types, as de-
tailed below.

One-body operators Operators of the type

H =
∑
µν

tµνc†
µcν , (140)

where µ,ν are composite indices comprising site, orbital and spin, can be defined with the
hopping_operator() function. Each term in the above expression will be of the following form:

∑
ss′

∑
i, j

c†
isτ
(a)
i j σ

(b)
ss′ c js′ , (141)

where i and j run from 1 to 2 and correspond to the two sites of a pair, and s, s′ are spin indices
(also from 1 to 2). The matrices τ(a) (a = 0,1, 2,3) and σ(b) (b = 0,1, 2,3) are Pauli matrices
(including the identity matrix). The above form guarantees that the expression is Hermitian,
and the different possibilities for a and b correspond to different situations:

• a = 1 and b = 0: A simple, spin-independent hopping term,

• a = 2 and b = 0: A purely imaginary hopping term,

• a = 0 and b = 3: A local Zeeman term in the z direction,

• a = 0 and b = 1: A local Zeeman term in the x direction,

• a = 1 and b = 1: A spin-flip hopping term, arising from a spin-orbit coupling,

• etc.

For instance, in the case of the graphene lattice above, an antiferromagnetic operator called M

with opposite spins on the A and B sub-lattices could be defined as follows:

1 model.hopping_operator(’M’, (0,0,0), 1, orbitals=(1,1), tau=0, sigma=3)
2 model.hopping_operator(’M’, (0,0,0),-1, orbitals=(2,2), tau=0, sigma=3)

Note that different calls of the hopping_operator() function with the same operator name will
just accumulate matrix elements for that operator.

Interaction operators A Hubbard interaction of the form

H =
∑

i

Uini↑ni↓ , (142)

or an extended density-density interaction of the form

H =
∑

i j

Vi jnin j (ni = ni↑ + ni↓) , (143)
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can be defined with the interaction() function. In the case of an extended interaction, the
link argument, defining the relative position of the sites, must be provided. In multi-band
models, the orbitals argument must also be specified, otherwise all possibilities are covered.

It is also possible to add a Hund coupling term:

H =
∑
i, j

Ji jHi j , (144)

where

Hi j = −ni↑n j↑ − ni↓n j↓ + c†
i↑c j↑c

†
j↓ci↓ + c†

j↑ci↑c
†
i↓c j↓ + c†

i↑c j↑c
†
i↓c j↓ + c†

j↑ci↑c
†
j↓ci↓ . (145)

This can also be written as

Hi j = −ni↑n j↑ − ni↓n j↓ +
�
c†

i↑c j↑ +H.c.
��

c†
i↓c j↓ +H.c.
�

, (146)

or as

Hi j = −c†
i↑c

†
j↑c j↑ci↑ − c†

i↓c
†
j↓c j↓ci ↓+ c†

i↑c
†
i↓c j↓c j↑ + c†

j↑c
†
j↓ci↓ci↑ − c†

j↑c
†
i↓ci↑c j↓ − c†

i↑c
†
j↓c j↑ci↓ . (147)

In pyqcm, this is done by adding the argument type=’Hund’ to the function interaction().
Likewise, one may add a Heisenberg coupling

H =
∑
i, j

Ji jSi · S j , (148)

with the type=’Heisenberg’ option. Note however that pyqcm is designed for electron models,
not spin models, meaning that the charge degree of freedom is always present. Therefore, this
is not the most efficient tool to study pure quantum spin models.

Anomalous operators When studying superconductivity, pairing operators must be defined:

H =
∑

i, j,s,s′

�
∆i j,bcis(iσbσ2)ss′ c js′ +H.c.

�
, (149)

where the index b can take the values 0 to 3. The case b = 0 corresponds to singlet su-
perconductivity (in which case ∆i j,0 = ∆ ji,0) and the cases b = 1, 2,3 corresponds to triplet
superconductivity (in which case ∆i j,b = −∆ ji,b). In pyqcm, this is done via the function
anomalous_operator(). For instance, in the case of the graphene lattice, an extended s-wave
pairing (with equal amplitude on each bond) would be defined as

1 model.anomalous_operator(’xS’, (-1,0,0), 1, orbitals=(1,2), type = ’singlet’)
2 model.anomalous_operator(’xS’, (0,-1,0), 1, orbitals=(1,2), type = ’singlet’)
3 model.anomalous_operator(’xS’, (1,1,0), 1, orbitals=(1,2), type = ’singlet’)

Other possible values of type would be z, x and y, for the possible directions of the d-vector
describing triplet superconductivity.

density waves Density wave operators are defined with a spatial modulation characterized
by a wave vector Q. They can be based on sites or on bonds. If the operator is a site density
wave, its expression is

x
∑

r

Ar cos(Q · r+φ) , (150)

where Ar = nr or Sz
r or S x

r . If it is a bond density wave, its expression is
∑

r

�
xc†

r cr+eei(Q·r+φ) +H.c
�

, (151)
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Figure 18

where e is the bond vector. If it is a pair density wave, its expression is
∑

r

�
xcrcr+eei(Q·r+φ) +H.c

�
, (152)

where e is the link vector and r a site of the lattice. In pyqcm the different types of density
waves are defined with the function density_wave() and different values of the argument type
specify the type of density wave: N for a charge density wave, Z and X for spin density waves
in the direction z and x , singlet for a singlet pair density wave and x, y and z for pair density
wave with triplet pairing and d-vector in the directions x , y or z.

The wave-vector Q is given in argument to the function density_wave(), in multiples of
π; for instance, Néel antiferromagnetism on a square lattice is specified as Q = (1, 1,0). The
function call in that specific example would be

1 model.density_wave(’M’, ’Z’, (1,1,0))

(the first argument is the name given to the operator). Density wave operators must be com-
mensurate with the repeated unit (super unit cell), but they can span several clusters if the
latter is made of several clusters. Different local operators are then created on the clusters
making up the repeated unit.1

Note that if a model requires the definition of several clusters, then a different object of
type cluster_model must be defined for each cluster containing different operators, except for
density-waves. For instance, when modelling the three-band Hubbard model applied to the
high-Tc cuprates, one could define a cluster for, say, four copper atoms, another one for four
oxygen atoms, and a third one, equivalent to the second, for another set of four oxygen atoms.
Despite the fact that all three cluster have four sites and could be associated with similar
bath configurations in CDMFT, two different cluster models must be defined: one for the first
(copper) cluster, and one for the other two (oxygen) clusters. This is because the operators
pertaining to the copper and oxygen clusters are different, whereas the two oxygen clusters
have the same set of operators.

1For internal reasons, these operators are given different names, so that different clusters based on the same
cluster_model object are associated with the correct Hilbert space operator; these names are obtained by ap-
pending the string @n to the name of the lattice operator, where n is the cluster index (starting at 1). For instance, if
the model is based on two clusters, the local implementation of the lattice density wave named M will be called M@1
and M@2. These names are mostly for internal use and are not needed when specifying values (we can still use M_1,
M_2, etc.), but the occasionally creep up in functions like susceptibilty() and susceptibilty_poles().
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9.4 Cluster specific operators

The various operators defined on the lattice are used to define their restriction on the clusters
making up the repeated unit. Thus there is no need to separately define operators on clusters,
unless these operators have no equivalent on the lattice. This is the case of bath operators as
used in CDMFT. Let us consider, for instance, a set of 6 bath sites added to the 4-site cluster
of Fig. 17. Even though bath sites have no position, it is convenient in this case to represent
them as in Fig. 18, by red squares. In pyqcm the degrees of freedom are numbered as follows:
First the spin up operators ci↑ with i = 1, . . . Ns, Ns + 1, . . . , Ns + Nb where Ns is the number of
physical sites and Nb the number of bath sites. Then the spin down operators ci↓, in the same
order. The sites are thus labelled as illustrated in Fig. 18: physical sites first, followed by bath
sites.

The various operators involving bath operators are then defined explicitly, by enumerating
their matrix elements. For instance, the energy level ϵ1 associated with the first bath site
(labelled 5) on Fig. 18 would be defined as follows in an object CM of type cluster_model:

1 CM.new_operator(’e1’, ’one-body’, ((5,5,1.0), (5+10,5+10,1.0)))

in which a list of two matrix elements is provided, each of the form (i, j, v) with the indices
(i, j) of the degrees of freedom and the numerical value v. The hybridization operator noted
θ1 in the figure would be defined as

1 CM.new_operator(’theta1’, ’one-body’, ((2,5,1.0), (2+10,5+10,1.0)))

Note that the spin down part of the operator is represented by a matrix elements with spin
down labels (obtained by adding Ns + Nb = 10 to the spin up labels).

9.5 Model instances and exact diagonalization

The values ha of the model parameters (see Eq. (139)) define an instance of the lattice model,
and an unlimited number of such instances can be defined, either successively or concurrently
(although they are usually defined in succession).

Even though operators are defined on the clusters from their definition on the lattice, the
values of these operators (i.e. the values of the coefficients ha) do not have to be the same
on the lattice as on the clusters. Indeed, this is important in VCA, where the reference system
(the cluster) has a non-interacting Hamiltonian that differs from the lattice Hamiltonian. For
instance, the Néel antiferromagnetism operator M defined above for the model of Fig. 17 would,
in the context of VCA, be zero on the lattice, but would serve as a Weiss field on the clusters.
In pyqcm, the symbol associated with an operator (here M) is used to label the operator Ha, as
well as its coefficient ha. The value of the operator on cluster 1 would be labelled M_1, that on
cluster 2 would be labelled M_2, etc. Since bath operators are only defined on clusters, their
value is also labelled using an underscore followed by the cluster index, for instance eb1_1 and
theta1_1 for the bath operators defined above (for this reasons, underscores cannot be used
in operator names).

The values of the various operators must first be declared prior to building the first model
instance, typically by the function lattice_model.set_parameters(), which takes a long string
as argument, for instance like this:

1 model.set_parameters("""
2 U = 6
3 t = 1
4 mu = 3
5 M = 0
6 M_1 = 0.1
7 """)
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Only the operators whose values have been declared like this will be effectively constructed
in the Hilbert space of each cluster. Others will be ignored, even though they have been
introduced earlier when defining the model.

By default, the values of the parameters on the clusters are inherited from that of the lattice
Hamiltonian. Only when their value is explicitly specified (like M_1 above) are they different. It
also possible to link the values of some parameters to others in order to obey some constraints;
for instance the chemical potential could be set to µ = U/2 by replace the line mu =3 above
by mu = 0.5*U (only multiplications are allowed). This inheritance of values will be preserved
even if the value of U is changed later. Once a parameter is declared dependent on another, it
cannot regain its independence.

It is also important, before creating the first instance of the model, to specify in which
Hilbert space sector of each cluster to look for the ground state. For instance, if the model
conserves the number of particles and the z-component of the spin, the string R0:N4:S0 means
that the ground state of the cluster must be searched for in the Hilbert space sector with N = 4
electrons and S = 0 spin projection. R0 means that the ground state presumably belongs to the
trivial representation (labeled 0) of the point group (see the section on symmetries below).
The spin projection is expressed by an integer S = 2Sz . Thus, S1 means Sz =

1
2 and S-2 means

Sz = −1. In the model illustrated in Fig. 17, one would need a statement like

1 model.set_target_sectors([’R0:N4:S0’, ’R0:N4:S0’])

before defining the first instance of the model.
Hilbert space sectors are a crucial element of the use of the library and may be the source of

physical errors. Performance issues dictate that not all Hilbert space sectors should be checked
for the true ground state for every calculation. Some judgement must be applied as to which
sector or subset of sectors contains the true ground state. For a given cluster, a subset of sectors
may be provided instead of a single one, by separating the sector keywords by slashes (/). For
instance, the string indicating that the ground state should be searched in the sectors of the
trivial representation, with N=3 electrons and spin projection −1/2 or 1/2 is R0:N3:S-1/R0:

N3:S1.
If spin is not conserved because of the presence of spin-flip terms, then the spin label must

be omitted. For instance, the string R0:N4 denotes the sector containing 4 electrons, in the
trivial point group representation. An error message will be issued if the user specifies a spin
sector in such cases, or inversely if the spin sector is not specified when spin is conserved.

The same is true in cases where particle number is not conserved, i.e., when pairing opera-
tors are nonzero: the number label must be omitted. For instance, the string R0:S0 denotes the
sector with zero spin, in the trivial point-group representation and an undetermined number
of electrons.

When the target Hilbert space sector (or subset of sectors) specified by lattice_model.

set_target_sectors() does not contain the true ground state, then the Green function com-
puted thereafter will be wrong, because excited states obtained from the pseudo ground state
by applying creation or annihilation operators may have a lower energy.

Once the active parameters have been declared and the target Hilbert space sectors speci-
fied for the lattice_model object model, one may call

1 I = pyqcm.model_instance(model)

to defined an object I of type model_instance that contains an instance of the model. By itself
this does nothing, as the pyqcm library is “lazy” and will only work when specifically asked to,
for instance by requesting the ground state properties of clusters of any quantity that involves
the Green function. Internally (in the qcm.so library), model instances are labeled by integers
to differentiate them. This is hidden in the Python interface as model_instance objects are
created and one does not need to worry about it.
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9.6 Green functions and CPT features

Once a model instance object I has been defined, the cluster’s Green function can be accessed
by the function I.cluster_Green_function(z, clus) where clus, is the cluster index (starts
at 0, not 1) within the repeated unit and z is a complex frequency. This function will return
the Green function matrix for that frequency and cluster. In the absence of spin-flip or pairing
terms, this matrix will be L × L (L being the number of sites in the cluster). If the model is
spin-dependent or if the ground state sector does not have zero spin projection, then the Green
function will not be the same for up and down spins (G↑ ̸= G↓) and this function will return
the spin up component; the spin down component can be obtained by adding the optional
argument spin_down=True.

If spin is not conserved, then the returned Green function is 2L × 2L and contains both
spin-diagonal and spin-off-diagonal components. If particle number is not conserved, but spin
is, then a restricted Nambu formalism is used and the Green function is also a 2L×2L matrix,
this time containing both normal and anomalous components in terms of the Nambu spinor

Ψ =
�
c1,↑, . . . , cL,↑, c†

1,↓, . . . , c†
L,↓
�

. (153)

If neither spin nor particle number is conserved, then the Green function is a 4L × 4L matrix
in terms of the full, 4L-component Nambu spinor

Ψ =
�
c1,↑, . . . , cL,↓, c†

1,↑, . . . , c†
L,↓
�

. (154)

The CPT Green function (55) is provided by the function I.CPT_Green_function(z, k),
where z is a complex-valued frequency and k a wave-vector, specified by three components, in
multiples of 2π. For instance, I.CPT_Green_function(1+0.05j, (0.5,0,0)) would return the
CPT Green function at z = ω+ iη = 1+ 0.1i and wave-vector k = (π, 0, 0). The CPT Green
function has the same dimension as the cluster Green function if there is a single cluster in the
repeated unit. Otherwise, its dimension is the sum of dimensions of the Green functions of the
different clusters within the repeated unit and the indices pertaining to the different clusters
appear in succession (i.e. the spin or Nambu indices, if any, of the first cluster, appear first,
followed by those of the second cluster, and so on).

The periodized Green function (58) is provided by the function
I.periodized_Green_function(z, k), and returns a lower-dimensional matrix. If spin and
particle number are conserved, its dimension is Nb × Nb, where Nb is the number of bands
(or orbitals, as this is computed in the orbital basis). Again, if spin and/or particle number
is not conserved, this is multiplied by 2 or 4. If one prefers the band basis, then the function
I.band_Green_function() can be used instead, but its relevance in the presence of interactions
is not clear.

The CPT Green function can be used to compute lattice averages of operators (see
Eq. (52)). This is accomplished by the function I.averages() and the results are automatically
appended to the file averages.tsv. This file also contains data on the ground state properties,
like the wave-function average and variance of each operator on each cluster of the repeated
unit.

The library contains various functions producing plots of spectral properties based on ei-
ther the cluster Green functions or the CPT Green function. For instance, the function I.

spectral_function() draws the spectral weight A(k,ω) along a certain wave-vector path in
a specified frequency domain. It can also draw the self-energy. The function I.mdc() draws
a color plot of the spectral function in a plane of the Brillouin zone at a give frequency. The
function I.plot_DoS() plots the local density of states (by integrating the CPT Green func-
tion over momentum) on a given frequency grid. The function I.plot_dispersion() plots the
non-interacting dispersion relation, etc.
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9.7 CDMFT

The submodule pyqcm.cdmft manages CDMFT computations. Its main component is the class
constructor CDMFT(), which has a rather long list of parameters, most of them having default
values. The first and only non-optional argument is the list of bath parameters used in the
CDMFT procedure (these are generally called variational parameters in pyqcm). Let us give
below a complete example of CDMFT usage, including the model definition, appropriate for
the one-dimensional Hubbard model with a 4-site cluster and 4-site bath, as illustrated on
Fig. 13(a):

1 import pyqcm
2 CM = pyqcm.cluster_model(4, n_bath=4)
3 CM.new_operator(’eb1’,’one-body’,[(5,5,1.0),(6,6,1.0),(13,13,1.0),(14,14,1.0)])
4 CM.new_operator(’eb2’,’one-body’,[(7,7,1.0),(8,8,1.0),(15,15,1.0),(16,16,1.0)])
5 CM.new_operator(’tb1’,’one-body’,[(1,5,-1.0),(4,6,-1.0),(9,13,-1.0),(12,14,-1.0)

])
6 CM.new_operator(’tb2’,’one-body’,[(1,7,-1.0),(4,8,-1.0),(9,15,-1.0),(12,16,-1.0)

])
7 clus = pyqcm.cluster(CM, ((0,0,0), (1,0,0), (2,0,0), (3,0,0)))
8 model = pyqcm.lattice_model(’1D_4_4b’, clus, ((4,0,0),))
9 model.interaction_operator(’U’)

10 model.hopping_operator(’t’, (1,0,0), -1)
11

12 model.set_target_sectors([’R0:N8:S0’])
13 model.set_parameters("""
14 t=1
15 U=4
16 mu=2
17 eb1_1 = 1
18 eb2_1 =-1
19 tb1_1 = 1
20 tb2_1 = 1
21 """)
22

23 import pyqcm.cdmft as cdmft
24 solution = cdmft.CDMFT(model, varia = (’eb1_1’, ’eb2_1’, ’tb1_1’, ’tb2_1’))

Lines 3–6 define the four bath operators (two bath energy levels eb1 and ebd2 and
two hybridizations operators tb1 and tb2). Line 7 defines the cluster with positions
(i, 0, 0) (i = 0, 1,2, 3), added in Line 8 to the repeated unit with super-lattice vector (4,0, 0).
Lattice operators are defined on lines 9 and 10. Line 12 defines the expected ground state
sector near or at half-filling (8 electrons, as we suspect the bath will be half-filled as well).
Lines 13-21 set the initial values of the parameters, including bath parameters (note the suffix
_1). Line 24 runs the CDMFT procedure per se. Progress appears on the screen. Each CDMFT
iteration is recorded in a line appended to the file cdmft_iter.tsv and the converged solution
is appended to the file cdmft.tsv (this file name is the default of an optional argument). By
default, the distance function weights Wn of Eq. (129) are uniformly distributed amongst Mat-
subara frequencies associated with a fictitious temperature T = 1/β = 1/50, up to a maximum
ωn = 2, but these parameters are represented by the arguments beta and wc of the function
cdmft() (see complete documentation for more details).

9.8 VCA

In the example below we reproduce the model used to generate Fig. 8, as well as the compu-
tation of the Potthoff functional for the dx2−y2 symmetry. The cluster is a 2× 2 plaquette.
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1 import pyqcm
2 import numpy as np
3 CM = pyqcm.cluster_model(4)
4 clus = pyqcm.cluster(CM, ((0,0,0), (1,0,0), (0,1,0), (1,1,0)))
5 model = pyqcm.lattice_model(’2x2’, clus, ((2,0,0), (0,2,0)))
6 model.interaction_operator(’U’)
7 model.hopping_operator(’t’, (1,0,0), -1)
8 model.hopping_operator(’t’, (0,1,0), -1)
9 model.anomalous_operator(’S’, ( 0,0,0), 1)

10 model.anomalous_operator(’D’, (1,0,0), 1)
11 model.anomalous_operator(’D’, (0,1,0),-1)
12 model.anomalous_operator(’xS’, (1,0,0), 1)
13 model.anomalous_operator(’xS’, (0,1,0), 1)
14 model.anomalous_operator(’Dxy’, ( 1,1,0), 1)
15 model.anomalous_operator(’Dxy’, (-1,1,0),-1)
16

17 model.set_target_sectors([’R0:S0’])
18 model.set_parameters("""
19 t=1
20 U=8
21 mu=1.2
22 D_1 = 0.1
23 """)
24

25 for d in np.arange(1e-9,0.31,0.01):
26 model.set_parameter(’D_1’, d)
27 I = pyqcm.model_instance(model)
28 I.Potthoff_functional(file=’sef_D.tsv’)

Lines 7 and 8 define the hopping term (in the x and y directions) whereas Lines 10 and 11
define the dx2−y2 pairing operator D. The other pairing operators associated with s-wave (S),
extended s-wave (xS) and dx y pairing (Dxy) are also defined, but not used, since only D_1 is
declared nonzero in the parameter declaration section. The function Potthoff_functional()

is used to compute the Potthoff functional (115) and the result printed in the file given as
argument.

Now this code snippet does not perform the VCA itself, which is an optimization procedure.
This is done with the function vca() of the same submodule. For instance, the following call

1 import pyqcm.vca as vca
2 solution = vca.VCA(model, varia=’D_1’, steps=0.01, accur=2e-4, max=10, accur_grad

=1e-8, method=’altNR’)

would perform an optimization of the Potthoff functional with the lattice model model, as
a function of the Weiss field D_1, looking for a saddle point using a variant of the Newton-
Raphson method (altNR), with an initial value of D_1=0.1 (as per the parameters declaration
statement) and an initial step of 0.01. The method is set to fail if the absolute value of the
Weiss field D_1 exceeds max=10, and converges if at some point the value of D_1 stops changing
by accur or the estimated absolute value of the gradient falls below accur_grad.

Of course, the VCA can be performed with an arbitrary number of Weiss fields concurrently.
The Weiss field optimization may be done using a variety of methods, including methods that
look for strict minima, or pre-defined combinations of minima and maxima (see full documen-
tation).
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Figure 19: Left panel: CDW order parameter for the 1D extended Hubbard model
at half-filling, as a function of the extended interaction V with U = 4. The curved
labeled VCA is obtained by treating the CDW Weiss field ∆′ and the two Hartree
fields m0 and m1 as variational parameters. The curved labeled ‘no Weiss field’ is
obtained with∆′ = 0. The curve labeled ‘no VCA’ is obtained simply by imposing the
self-consistent condition on the Hartree mean fields m0,1, using CPT to compute the
average values. On the right panel, the Hartree mean field m1 is shown, as a function
of V .

9.9 Extended interactions and Hartree approximation

In the presence of extended interactions, as explained in Sect. 8, one must carry out further
approximations, in particular the Hartree approximation applied to the inter-cluster part of
the interaction. In pyqcm, this is accomplished as follows.

One must first define the appropriate eigen-operators mµ of Eq. (135). This can be done
with the help of an additional module cdw.py, included in the distribution but not part of the
pyqcm module per se. In that module, one just needs to specify the super-lattice vectors and
the extended interaction, and the different mµ’s are then printed on the screen. Remains then
to define them properly in the lattice model.

Let us consider, for instance, the one-dimensional, one-band Hubbard model with a cluster
of length 4 and a nearest-neighbor interaction V , the latter defined by

1 model.interaction_operator(’V’, link=(1,0,0))

The two eigen-operators we need to keep are

m0 = (n1 + n4)/
p

2 , m1 = (n1 − n4)/
p

2 , (155)

with eigenvalues ±V respectively. The first one takes care of the Hartree shift to the chemical
potential and the second one kicks in when a period-2 charge density wave appears. These
two operators may be defined as follows:

1 e = np.sqrt(0.5)
2 model.explicit_operator(’V0m’, [((0,0,0), (0,0,0), e), ((3,0,0), (0,0,0), e)],

tau=0, type=’one-body’)
3 model.explicit_operator(’V1m’, [((0,0,0), (0,0,0), e), ((3,0,0), (0,0,0),-e)],

tau=0, type=’one-body’)

Then, the relation between these operators and the extended interaction V must be encoded
in objects of type hartree:

1 MF0 = pyqcm.hartree(model, ’V0m’, ’V’, 1, accur=0.01, lattice=True)
2 MF1 = pyqcm.hartree(model, ’V1m’, ’V’, -1, accur=0.001, lattice=True)
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These couplings provide the names of the operators involved, the eigenvalues Dµ of Eq. (135)
(here 1 and −1), the desired accuracy in the values of these parameters and the type of av-
erage value used for 〈mµ〉 (lattice or cluster average). Then, when performing the VCA or
CDMFT, one may just add this list of couplings (the hartree argument of VCA() or CDMFT),
or even perform a self-consistent Hartree procedure with only CPT, with the function model.

Hartree_procedure(). In particular, the simple Hartree procedure is performed with the fol-
lowing function call:

1 def F(): return pyqcm.model_instance(model)
2 model.Hartree_procedure(task=F, couplings=(MF0,MF1), maxiter=256)

The VCA procedure could be obtained by the following calls:

1 def F():
2 V = model.parameters()[’V’]
3 model.set_parameter(’mu’, 2 + 2*V)
4 solution = VCA(model, varia=(’cdw_1’,’V0m’, ’V1m’), steps=0.001, hartree=(MF0,

MF1), hartree_self_consistent=False)
5 return solution.I
6 model.controlled_loop(task=F, varia=(’cdw_1’,’V0m’, ’V1m’), loop_param=’V’,

loop_range=(3, 2, -0.02))

Note that the CDW order parameter is defined as

1 model.density_wave(’cdw’, ’N’, ( 1, 0, 0))

Fig. 19(a) shows the CDW order parameter as a function of V for the one-dimensional
extended Hubbard model, and Fig. 19(b) shows the corresponding values of the Hartree
mean field m1. There is little difference between including or not the CDW Weiss field ∆′

in the procedure. However, performing the self-consistent procedure without the VCA with
Hartree_procedure() yields slightly different results near the CDW transition, in particular a
different value for the critical value Vc of V for the onset of charge order.

9.10 Global options

The pyqcm library contains a certains number of parameters with global effects, all listed in the
documentation. These are set by the function set_global_parameter(<name>, <value>) and
can be either boolean, integer, floating point values or chars. A few important examples are
given in Table 2.

9.11 Performance

The pyqcm library has limited parallelization capabilities, within openMP and MPI, as explained
in this subsection. Different processes can be parallelized:

1. The matrix-vector product used in the various Lanczos methods

2. The construction of the Green function in the different symmetry sectors

3. The solution of the different clusters, if more than one

4. The frequency-momentum integrals

5. The simultaneous computation of the Potthoff functional at different points, in VCA

The pyqcm library is compiled against openMP. The number of threads is controlled, as
usual, with the environment variable OMP_NUM_THREADS. Parallelism in openMP is used in many
ways:
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Table 2: A few of the global options of the pyqcm library.

name default meaning

continued_fraction False Uses a continued-fraction representation of the impurity
Green function instead of a Lehmann representation.

print_Hamiltonian False Prints the many-body Hamiltonian matrix on the screen, if the
dimension of the Hilbert space is small enough (see also pa-
rameter max_dim_print).

parallel_sectors False Distributes the different Hilbert space sectors (including those
from point group symmetries) across different threads.

Davidson_states 1 Number of low-energy states to target for the ground state cal-
culation. If 1, the Lanczos method is used to find the ground
state. If > 1, the Davidson method is used.

max_iter_lanczos 600 Maximum number of iterations in the Lanczos method for the
ground state.

accur_SEF 5e-8 Accuracy of the Potthoff functional computation.

temperature 0 Temperature used when targeting more than one low-energy
state. This has to be low, since the Davidson method can
only obtain a small number of low-energy states. Overall, the
pyqcm solver remains an ED solver, not a finite temperature
one.

Hamiltonian_format ’S’ Format used to store or express the impurity Hamiltonian.
’S’ means a compressed sparse-row (CSR) format. ’O’
means that individual operators Ha in the Hamiltonian are

stored and applied in succession. ’F’ means “factorized”, and
is possible when the Hamiltonian takes the form (73). ’N’
means “None”, in which case the action of the Hamiltonian is
computed on the fly. ’E’ means the the eigen library sparse
matrix format is used, and is the generally the best option
when available.

Ground_state_method ’L’ Algorithm used to compute the ground state. ’L’ means the
Lanczos method, coded in pyqcm. ’P’ means the default
method of the PRIMME library (compilation with this library
is optional).

periodization ’G’ Periodization scheme for the Green function. ’G’ stands for
the Green function scheme (58). ’M’ stands for the cumulant
periodization, ’S’ for a periodization of the self-energy, etc.

1. When constructing the Green function, different symmetry sectors (or the sectors
with one more and one less electrons) are treated in parallel if the global option
parallel_sectors is set.

2. When more than one cluster need to be solved, they are solved in parallel.

3. The matrix-vector product benefits from openMP if done with the eigen library (if the
global parameter Hamiltonian_format is set to E).

Table 3 shows the computing (wall) time for the one-band Hubbard model on a chain of 14
sites for different number of threads (OMP_NUM_THREADS) on a M2 max processor, using both the
in-house sparse matrix format for the Hamiltonian and the more efficient format from the eigen

library. When computing the Green function, the global option parallel_sectors was set to
true, which distributes the different band Lanczos procedures of Sect. 4.6 among the different
threads. Be aware, however, that this increases the memory requirements considerably. If
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Table 3: Wall time (in seconds) for the ED processes on a linear chain of 14 sites
at half-filling. The dimension of the Hilbert space is 5 889 312 in the Sz = 0,
N = 14 and left-right symmetric sector. The second column (threads) is the value
of OMP_NUM_THREADS, i.e., the number of openMP threads. Computations are done on
a M2 max processor under MacOS. Column 3 (Lanczos) is the time to compute the
ground state using the Lanczos method; Column 4 (PRIMME) is the time to compute
the ground state using the PRIMME library; Column 5 (G.F.) is the time needed to com-
pute the ground state (Lanczos) and the Green function representation.

Hamiltonian_format threads Lanczos PRIMME G.F.

S 1 42.8 – 257

S 8 41.6 – 114

E 1 38.6 37.7 238

E 2 30.9 33.2 126

E 4 27.6 31.7 88

E 8 26.8 31.5 86

memory is not a problem, the rule of thumb is then to set OMP_NUM_THREADS to twice the order
of the symmetry group, e.g., 4 in the example studied in the table.

In the VCA procedure, several instances of the model need to be solved simultaneously,
depending on the number of variational parameters and the optimization method used. In
particular, the Newton-Raphson optimization method for the Potthoff functional requires
NI = (n+1)(n+2)/2 instances of the model to be solved per iteration, n being the number of
VCA variational parameters. The quasi-newton method (SYMR1 or BFGS) requires NI = 2n+ 1
instances (it scales better as n increases). These NI instances can be distributed over different
computing nodes with MPI with almost perfect scaling (it is limited by the longest instance
to be solved). MPI is used here at the Python level only (mpi4py) and issuing the command
mpirun -np <n_nodes> python <file.py> suffices to exploit it.
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