
SciPost Phys. Codebases 24 (2024)

MatsubaraFunctions.jl: An equilibrium Green’s function
library in the Julia programming language

Dominik Kiese1⋆, Anxiang Ge2, Nepomuk Ritz2, Jan von Delft2 and Nils Wentzell1

1 Center for Computational Quantum Physics, Flatiron Institute,
162 5th Avenue, New York, NY 10010, USA

2 Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich
Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München,

80333 Munich, Germany

⋆ dkiese@flatironinstitute.org

Abstract

The Matsubara Green’s function formalism stands as a powerful technique for com-
puting the thermodynamic characteristics of interacting quantum many-particle sys-
tems at finite temperatures. In this manuscript, our focus centers on introducing
MatsubaraFunctions.jl, a Julia library that implements data structures for general-
ized n-point Green’s functions on Matsubara frequency grids. The package’s architecture
prioritizes user-friendliness without compromising the development of efficient solvers
for quantum field theories in equilibrium. Following a comprehensive introduction of
the fundamental types, we delve into a thorough examination of key facets of the inter-
face. This encompasses avenues for accessing Green’s functions, techniques for extrap-
olation and interpolation, as well as the incorporation of symmetries and a variety of
parallelization strategies. Examples of increasing complexity serve to demonstrate the
practical utility of the library, supplemented by discussions on strategies for sidestepping
impediments to optimal performance.

Copyright D. Kiese et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 11-10-2023
Accepted 20-12-2023
Published 11-01-2024

Check for
updates

doi:10.21468/SciPostPhysCodeb.24

This publication is part of a bundle: Please cite both the article and the release you used.

DOI
doi:10.21468/SciPostPhysCodeb.24
doi:10.21468/SciPostPhysCodeb.24-r0.1

Type
Article
Codebase release

Contents

1 Motivation 2

2 Equilibrium Green’s functions 3

1

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24
mailto:dkiese@flatironinstitute.org
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysCodeb.24&domain=pdf&date_stamp=2024-01-11
https://doi.org/10.21468/SciPostPhysCodeb.24
https://doi.org/10.21468/SciPostPhysCodeb.24
https://doi.org/10.21468/SciPostPhysCodeb.24-r0.1

SciPost Phys. Codebases 24 (2024)

3 Code structure 4
3.1 Basic types 4
3.2 Accessing and assigning Green’s function data 6
3.3 Extrapolation of Matsubara sums 7
3.4 Padé approximants 8
3.5 Automated symmetry reduction 8
3.6 Running in parallel 9
3.7 Performance note 10

4 Examples 10
4.1 Hartree-Fock calculation in the atomic limit 10
4.2 GW calculation in the atomic limit 12
4.3 Multiboson exchange solver for the single impurity Anderson model 15

4.3.1 Single boson exchange decomposition of the parquet equations 16
4.3.2 Implementation in MatsubaraFunctions.jl 18
4.3.3 Benchmark results 22

5 Future directions 26

A Extrapolation of Matsubara sums 27

B Implementation details for the MBE solver 28
B.1 SU(2) symmetry 28
B.2 Time translation invariance 28

References 29

1 Motivation

In condensed matter physics, strongly correlated electrons emerge as paradigmatic examples
of quantum many-body systems that defy a description in terms of simple band theory, due to
their strong interactions with each other and with the atomic lattice. Their study has led to
a cascade of discoveries, ranging from high-temperature superconductivity in copper oxides
(cuprates) [1, 2] to the Mott metal-insulator transition in various condensed matter systems
such as, e.g., transition metal oxides or transition metal chalcogenides [3–5] and the emer-
gence of quantum spin liquids in frustrated magnets [6,7], to name but a few.

The study of correlated electron systems is equally exciting and challenging, not only be-
cause the construction of accurate theoretical models requires the consideration of many dif-
ferent degrees of freedom, such as spin, charge, and orbital degrees of freedom, as well as
disorder and frustration, but also because of the scarcity of exactly solvable reference Hamil-
tonians. The single-band Hubbard model in more than one dimension, for example, has re-
mained at the forefront of computational condensed matter physics for decades, although it
in many respects can be regarded as the simplest incarnation of a realistic correlated electron
system [8,9]. It is therefore not surprising that a plethora of different numerical methods have
been developed to deal with these models [10].

However, no single algorithm is capable of accurately describing all aspects of these com-
plex systems: each algorithm has its strengths and weaknesses, and the choice of algo-
rithm usually depends on the specific problem under investigation. For example, some al-
gorithms, such as exact diagonalization (ED) [11–13] or the density matrix renormalization

2

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

group (DMRG) [14, 15] are better suited for studying ground-state properties, while others
(quantum Monte Carlo (QMC) simulations [16–19], functional renormalization group (fRG)
calculations [20–22], ...) perform better when one is interested in dynamic properties such as
transport or response functions.

Another popular method, dynamical mean-field theory (DMFT) has been immensely suc-
cessful; in particular it correctly predicts the Mott transition in the Hubbard model [23]. By
approximating the electron self-energy to be local, it however disregards non-local correlation
effects, leading to a violation of the Mermin-Wagner theorem [24, 25] as well as a failure to
predict the pseudo-gap in the Hubbard model [10]. Non-local (e.g. cluster [26–29] or dia-
grammatic [30]) extensions of DMFT improve on that front, but are computationally much
more expensive. Ultimately, the choice of algorithm is guided by the computational resources
available and the trade-off between accuracy and efficiency, as well as by physical insights into
which approximations may be justified more than others.

A common motif of many of these algorithms is that they rely on the computation of n-
particle Green’s functions, where usually n= 1,2. Roughly speaking, these functions describe
correlations within the physical system of interest, such as its response to an external perturba-
tion. In thermal equilibrium, Green’s functions are usually defined as imaginary-time-ordered
correlation functions, which allows the use of techniques and concepts from statistical me-
chanics, such as the partition function and free energy. In Fourier space, the corresponding
frequencies take on discrete and complex values. This Matsubara formalism is widely used
to study strongly correlated electron systems, where it provides a powerful tool for calculat-
ing thermodynamic quantities, such as the specific heat and magnetic susceptibility, as well as
dynamical properties, such as the electron self-energy and optical conductivity [31,32].

In this manuscript, we present MatsubaraFunctions.jl, a software package written
in Julia [33] that implements containers for Green’s functions in thermal equilibrium. More
specifically, it provides a convenient interface for quickly prototyping algorithms involving
multivariable Green’s functions of the form Gi1...in(ω1, ...,ωm), with lattice/orbital indices ik
(k = 1, ..., n) and Matsubara frequenciesωl (l = 1, ..., m). In an attempt to mitigate monilithic
code design and superfluous code reproduction, our goal is to promote a common interface
between algorithms where these types of functions make up the basic building blocks. We
implement this interface in Julia, since some more recently developed methods, such as the
pseudofermion [34–41] and pseudo-Majorana fRG [42–45], seem to have been implemented
in Julia as the preferred programming language. In the spirit of similar software efforts, such as
the TRIQS library for C++ [46], this package therefore aims to provide a common foundation
for these and related codes in Julia that is fast enough to facilitate large-scale computations
on high-performance computing architectures [47], while remaining flexible and easy to use.

2 Equilibrium Green’s functions

In this section, we give a brief introduction to equilibrium Green’s functions and their proper-
ties. In its most general form, an imaginary time, n-particle Green’s function G(n) is defined
as the correlator [48]

G(n)i1...i2n
(τ1, ...,τ2n) = 〈T̂ c†

i1
(τ1)ci2

(τ2)...c
†
i2n−1
(τ2n−1)ci2n

(τ2n)〉 , (1)

where T̂ is the imaginary-time-ordering operator and 〈Ô〉 = 1
Z Tr(e−βĤÔ) denotes the ther-

mal expectation value of an operator Ô with respect to the Hamiltonian Ĥ at temperature
T = 1/β . Note that natural units are used throughout, in particular we set kB ≡ 1. Here, c(†)

are fermionic or bosonic creation and annihilation operators and Z = Tr(e−βĤ) is the partition
function. The indices ik represent additional degrees of freedom such as lattice site, spin and

3

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

orbital index. In order for the right-hand side in Eq. (1) to be well defined, it is necessary
to restrict the τ arguments to an interval of length β , as can be seen, for example, from a
spectral (Lehmann) representation of the expectation value [48]. Furthermore, the cyclicity
of the trace implies that the field variables are anti-periodic in β for fermions, or periodic in
β for bosons, respectively. This allows us to define their Fourier series expansion

ci(τ) =
1
β

∑

νk

ci,k e−iνkτ , c̄i(τ) =
1
β

∑

νk

c̄i,k eiνkτ , (2)

ci,k =

∫ β

0

dτ ci(τ) e
iνkτ , c̄i,k =

∫ β

0

dτ c̄i(τ) e
−iνkτ , (3)

where νk =
π
β

¨

2k+ 1 ,

2k ,
with k ∈ Z are the fermionic or bosonic Matsubara frequencies.1

These definitions carry over to the n-particle Green’s function G(n), giving

G(n)i1...i2n
(τ1, ...,τ2n) =

1
β

∑

ν1

eiν1τ1 ... 1
β

∑

ν2n

e−iν2nτ2n G(n)i1...i2n
(ν1, ...,ν2n) , (4)

G(n)i1...i2n
(ν1, ...,ν2n) =

∫ β

0

dτ1 e−iν1τ1 ...

∫ β

0

dτ2n eiν2nτ2n G(n)i1...i2n
(τ1, ...,τ2n) . (5)

3 Code structure

MatsubaraFunctions.jl is an open-source project distributed via Github [49] and licensed
under the MIT license. Using Julia’s built-in package manager, the code can be easily installed
using

1 $ julia
2 julia>]
3 pkg> add https://github.com/dominikkiese/MatsubaraFunctions.jl

from the terminal. Here,] activates the package manager from the Julia REPL, where add
downloads the code and its dependencies. The following is an overview of the functionality
of the package, starting with a discussion of its basic types and how to use them. A full
documentation of the package is available from the github repository.

3.1 Basic types

The package evolves around three concrete Julia types: MatsubaraFrequency,
MatsubaraGrid and MatsubaraFunction. A Matsubara frequency can be either fermionic
or bosonic, that is, νk =

π
β (2k + 1) or νk =

2π
β k. For a given temperature T = 1/β and

Matsubara index k they can be constructed using

1 v = MatsubaraFrequency(T, k, Fermion)
2 w = MatsubaraFrequency(T, k, Boson)

Basic arithmetic operations on these objects include addition, subtraction and sign reversal,
each of which creates a new MatsubaraFrequency instance.

1This way, eiβνk = −1 for fermions and eiβνk = +1 for bosons such that anti-periodicity or periodicity, respec-
tively, of ci(τ) are ensured.

4

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

1 v1 = v + v # type(v1) = :Boson
2 v2 = w - v # type(v2) = :Fermion
3 v3 = -v # type(v3) = :Fermion

MatsubaraGrids are implemented as sorted collections of uniformly (and symmetrically)
spaced Matsubara frequencies. To construct them, users need only specify the temperature,
number of positive frequencies, and the particle type.

1 T = 1.0
2 N = 128
3 g1 = MatsubaraGrid(T, N, Fermion) # total no. frequencies is 2N
4 g2 = MatsubaraGrid(T, N, Boson) # total no. frequencies is 2N - 1

Note that the bosonic Matsubara frequency at zero is included in the positive frequency count.
Grid instances are iterable

1 for v in g1
2 println(value(v))
3 println(index(v))
4 end

and can be evaluated using either a MatsubaraFrequency or Float64 as input.

1 idx = rand(eachindex(g1))
2 @assert g1(g1[idx]) == idx
3 @assert g1(value(g1[idx])) == idx

Here, we first select a random linear index idx and then evaluate g1 using either the corre-
sponding Matsubara frequency g1[idx] or its value. In the former case, g1(g1[idx]) returns
the corresponding linear index of the frequency in the grid, whereas g1(value(g1[idx]))
finds the linear index of the closest mesh point.2 The package supports storage of grid instances
in H5 file format.

1 using HDF5
2 file = h5open("save_g1.h5", "w")
3 save_matsubara_grid!(file, "g1", g1)
4 g1p = load_matsubara_grid(file, "g1")
5 close(file)

Finally, a MatsubaraFunction is a collection of Matsubara grids with an associated tensor
structure Gi1...in for each point (ν1, ...,νm) in the Cartesian product of the grids. The indices
ik could, for example, represent lattice sites or orbitals. To construct a MatsubaraFunction
users need to provide a tuple of MatsubaraGrid objects, as well as the dimension of each ik.

1 T = 1.0
2 N = 128
3 g = MatsubaraGrid(T, N, Fermion)
4

5 # 1D grid, rank 1 tensor with index dimension 1 (scalar valued)
6 f1_complex = MatsubaraFunction(g, 1)
7 f1_real = MatsubaraFunction(g, 1, Float64)
8

9 # 1D grid, rank 1 tensor with index dimension 5 (vector valued)

2In both cases the argument must be in bounds, otherwise an exception is thrown.

5

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

10 f2_complex = MatsubaraFunction(g, 5)
11 f2_real = MatsubaraFunction(g, 5, Float64)
12

13 # 1D grid, rank 2 tensor with index dimension 5 (matrix valued)
14 f3_complex = MatsubaraFunction(g, (5, 5))
15 f3_real = MatsubaraFunction(g, (5, 5), Float64)
16

17 # 2D grid, rank 2 tensor with index dimension 5 (matrix valued)
18 f4_complex = MatsubaraFunction((g, g), (5, 5))
19 f4_real = MatsubaraFunction((g, g), (5, 5), Float64)

In addition, a floating point type can be passed to the constructor, which fixes the data type
for the underlying multidimensional array.3 Similar to the grids, MatsubaraFunctions can
be conveniently stored in H5 format.

1 using HDF5
2 file = h5open("save_f1_complex.h5", "w")
3 save_matsubara_function!(file, "f1_complex", f1_complex)
4 f1p = load_matsubara_function(file, "f1_complex")
5 close(file)

3.2 Accessing and assigning Green’s function data

The library provides two possible ways to access the data of a MatsubaraFunction, using
either the bracket ([]) or parenthesis (()) operator. While the notion of the former is that
of a Base.getindex, the latter evaluates the MatsubaraFunction for the given arguments
in such a way that its behavior is well-defined even for out-of-bounds access. The bracket
can be used with a set of MatsubaraFrequency instances and tensor indices ik, as well as
with Cartesian indices for the underlying data array. It returns the value of the data exactly
for the given input arguments, throwing an exception if they are not in bounds. In addition,
the bracket can be used to assign values to a MatsubaraFunction as shown in the following
example.

1 y = 0.5
2 T = 1.0
3 N = 128
4 g = MatsubaraGrid(T, N, Fermion)
5 f = MatsubaraFunction(g, 1)
6

7 for v in g
8 # if there is only one index of dimension 1, it does not need
9 # to be specified, i.e. f[v] can be used instead of f[v, 1]

10 # (also works for the '()' operator)
11 f[v] = 1.0 / (im * value(v) - y)
12 end
13

14 # access MatsubaraFunction data
15 v = g[rand(eachindex(g))]
16 println(f[v]) # fast data access, throws error if v is out of bounds

When f is evaluated using Matsubara frequencies within its grid, it returns the same result
as if a bracket was used. However, if the frequencies are replaced by Float64 values, a
multilinear interpolation within the Cartesian product of the grids is performed. If the fre-
quency / float arguments are out of bounds, MatsubaraFunctions falls back to extrapola-
tion. The extrapolation algorithm distinguishes between one-dimensional and multidimen-
sional frequency grids. In the 1D case, an algebraic decay is fitted to the high-frequency tail of

3By default, ComplexF64 is used.

6

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

the MatsubaraFunction, which is then evaluated for the given arguments. The functional
form of the asymptote is currently restricted to f (ν) = α0 +

α1
ν +

α2
ν2 (with α0,α1,α2 ∈ C),4

which is motivated by the linear or quadratic decay that physical Green’s functions typically
exhibit. For multidimensional grids, a constant extrapolation is performed from the boundary.
Different modes of evaluation are illustrated in an example below.

1 y = 0.5
2 T = 1.0
3 N = 128
4 g = MatsubaraGrid(T, N, Fermion)
5 f = MatsubaraFunction(g, 1)
6

7 for v in g
8 f[v] = 1.0 / (im * value(v) - y)
9 end

10

11 # access MatsubaraFunction data
12 v = g[rand(eachindex(g))]
13 println(f(v)) # fast data access, defined even if v is out of bounds
14 println(f(value(v))) # slow data access, uses interpolation
15

16 # polynomial extrapolation in 1D, constant term set to 0 (the default)
17 vp = MatsubaraFrequency(T, 256, Fermion)
18 println(f(vp; extrp = ComplexF64(0.0)))

3.3 Extrapolation of Matsubara sums

A common task when working with equilibrium Green’s functions is the calculation of Matsub-
ara sums 1

β

∑

ν f (ν), where we have omitted additional indices of f for brevity. However, typi-
cal Green’s functions decay rather slowly (algebraically) for large frequencies, which presents a
technical difficulty for the accurate numerical calculation of their Matsubara sums: they may
require some regulator function to control the convergence5 (difficult to implement) and a
large number of frequencies to sum over (expensive). In contrast, there exist analytical results
for simple functional forms of f even in cases where a straightforward numerical summation
fails. MatsubaraFunctions provides the sum_me function, which can be used to calculate
sums over complex-valued f (ν), if f (z) (with z ∈ C) decays to zero for large |z| and is repre-
sentable by a Laurent series in an elongated annulus about the imaginary axis (see App. A for
details). An example for its use is shown below. Note that this feature is experimental and its
API as well as the underlying algorithm might change in future versions.

1 y = 0.5
2 T = 1.0
3 N = 128
4 g = MatsubaraGrid(T, N, Fermion)
5 f = MatsubaraFunction(g, 1)
6

7 for v in g
8 f[v] = 1.0 / (im * value(v) - y)
9 end

10

11 # evaluate the series and compare to analytic result
12 rho(x, T) = 1.0 / (exp(x / T) + 1.0)
13 println(abs(sum_me(f) - (rho(+y, T) - 1.0)))

4Note that α0 has to be provided by the user.
5For example, a factor eiν0± might be necessary in cases where f decays linearly in ν.

7

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

3.4 Padé approximants

Although the Matsubara formalism provides a powerful tool for the calculation of thermody-
namic quantities, it lacks the ability to directly determine, for example, dynamic response func-
tions or transport properties associated with real-frequency Green’s functions, which facilitate
comparison with experiments. There have been recent advances in the use of real-frequency
quantum field theory [50–53], yet the calculation of dynamic real-frequency Green’s functions
remains a technically challenging endeavor. In many applications, therefore, one resorts to
calculations on the imaginary axis and then performs an analytic continuation in the complex
upper half-plane to determine observables on the real-frequency axis. The analytic continu-
ation problem is ill-conditioned, because there may be significantly different real-frequency
functions describing the same set of complex-frequency data within finite precision. Never-
theless, there has been remarkable progress in the development of numerical techniques such
as the maximum entropy method [54–56] or stochastic analytical continuation [57,58]. These
methods are particularly useful when dealing with stochastic noise induced by Monte Carlo
random sampling. A corresponding implementation in Julia is, for example, provided by the
ACFlow toolkit [59]. On the other hand, if the input data are known with a high degree of
accuracy (as in the fRG and related approaches), analytic continuation using Padé approxi-
mants is a valid alternative. Here, one first fits a rational function to the complex frequency
data which is then used as a proxy for the Green’s function in the upper half-plane. If the
function of interest has simple poles this procedure can already provide fairly accurate results,
see e.g. Ref. [60]. In MatsubaraFunctions we implement the fast algorithm described in the
appendix of Ref. [61], which computes an N -point Padé approximant for a given set of data
points {(x i , yi)|i = 1, ..., N}. A simple example of its use is shown below. Note that it might
be necessary to use higher precision floating-point arithmetic to cope with rounding errors in
the continued fraction representation used for calculating the Padé approximant.

1 # some dummy function
2 as = ntuple(x -> rand(BigFloat), 4)
3 f(x) = as[1] / (1.0 + as[2] * x / (1.0 + as[3] * x / (1.0 + as[4] * x)))
4

5 # generate sample and compute Pade approximant
6 xdata = Vector{BigFloat}(0.01 : 0.01 : 1.0)
7 ydata = f.(xdata)
8 PA = PadeApprox(xdata, ydata)
9

10 @assert length(coeffs(PA)) == 5
11 @assert PA.(xdata) ≈ ydata

3.5 Automated symmetry reduction

In many cases, the numerical effort of computing functions in the Matsubara domain can be
drastically reduced by the use of symmetries. For one-particle fermionic Green’s functions
Gi1 i2(ν), for example, complex conjugation implies that Gi1 i2(ν) = G∗i2 i1

(−ν), relating positive
and negative Matsubara frequencies. Our package provides an automated way to compute the
set of irreducible MatsubaraFunction components,6 given a list of one or more symmetries
as is illustrated in the following example

1 y = 0.5
2 T = 1.0
3 N = 128
4 g = MatsubaraGrid(T, N, Fermion)
5 f = MatsubaraFunction(g, 1)

6These are all elements of the underlying data array which cannot be mapped to each other by symmetries.

8

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

6

7 for v in g
8 f[v] = 1.0 / (im * value(v) - y)
9 end

10

11 # complex conjugation acting on Green's function
12 function conj(
13 w :: Tuple{MatsubaraFrequency},
14 x :: Tuple{Int64}
15) :: Tuple{Tuple{MatsubaraFrequency}, Tuple{Int64}, MatsubaraOperation}
16

17 return (-w[1],), (x[1],), MatsubaraOperation(sgn = false, con = true)
18 end
19

20 # compute the symmetry group
21 SG = MatsubaraSymmetryGroup([MatsubaraSymmetry{1, 1}(conj)], f)
22

23 # obtain another Green's function by symmetrization
24 function init(
25 w :: Tuple{MatsubaraFrequency},
26 x :: Tuple{Int64}
27) :: ComplexF64
28

29 return f[w, x...]
30 end
31

32 InitFunc = MatsubaraInitFunction{1, 1, ComplexF64}(init)
33 h = MatsubaraFunction(g, 1)
34 SG(h, InitFunc)
35 @assert h == f

Here, one first constructs an instance of type MatsubaraSymmetry by passing a function that
maps the input arguments of f to new arguments extended by a MatsubaraOperation. The
latter specifies whether the evaluation of f on the mapped arguments should be provided with
an additional sign or complex conjugation. Next, the irreducible array elements are computed
and an object of type MatsubaraSymmetryGroup7 is constructed from a vector of symmetries
provided by the user. Here, the length of the vector is one (we only considered complex con-
jugation), but the generalization to multiple symmetries is straightforward (see Ref. [62] for
more examples). A MatsubaraSymmetryGroup can be called with a MatsubaraFunction
and an initialization function.8 This call will evaluate the MatsubaraInitFunction for all
irreducible elements of the symmetry group of f, writing the result into the data array of h. Fi-
nally, all symmetry equivalent elements are determined without additional calls to the (costly)
initialization function. Symmetry groups can be stored in H5 format as shown below.

1 using HDF5
2 file = h5open("save_SG.h5", "w")
3 save_matsubara_symmetry_group!(file, "SG", SG)
4 SGp = load_matsubara_symmetry_group(file, "SG")
5 close(file)

3.6 Running in parallel

To simplify code parallelization when using MatsubaraFunctions.jl, the package has some
preliminary MPI support based on the MPI.jl wrapper and illustrated in an example below.

1 using MatsubaraFunctions
2 using MPI

7A MatsubaraSymmetryGroup contains all groups of symmetry equivalent elements and the operations
needed to map them to each other.

8A MatsubaraInitFunction takes a tuple of Matsubara frequencies and tensor indices and returns a floating
point type.

9

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

3

4 MPI.Init()
5 mpi_info()
6 mpi_println("I print on main.")
7 ismain = mpi_ismain() # ismain = true if rank is 0
8

9 y = 0.5
10 T = 1.0
11 N = 128
12 g = MatsubaraGrid(T, N, Fermion)
13 f = MatsubaraFunction(g, 1)
14

15 for v in g
16 f[v] = 1.0 / (im * value(v) - y)
17 end
18

19 # simple loop parallelization for UnitRange
20 for vidx in mpi_split(1 : length(g))
21 println("My rank is $(mpi_rank()): $(vidx)")
22 end
23

24 # simple (+) allreduce
25 mpi_allreduce!(f)

Calls of MatsubaraSymmetryGroup with an initialization function have an opt-in switch
(mode) to enable parallel evaluation of the MatsubaraInitFunction (by default
mode = :serial). If mode = :polyester, shared memory multithreading as provided
by the Polyester Julia package [63] is used.9 This mode is recommended for initialization
functions that are cheap to evaluate and are unlikely to benefit from Threads.@threads
due to the overhead from invoking the Julia scheduler. For more expensive functions,
users can choose between mode = :threads, which simply uses Threads.@threads, and
mode = :hybrid. The latter combines both MPI and native Julia threads and can therefore
be used to run calculations on multiple compute nodes.

3.7 Performance note

By default, types in MatsubaraFunctions.jl perform intrinsic consistency checks when
they are invoked. For example, when computing the linear index of a MatsubaraFrequency
in a MatsubaraGrid, we make sure that the particle types and temperatures match between
the two. While this ensures a robust modus operandi, it unfortunately impacts performance,
especially for larger projects. To deal with this issue, we have implemented a simple switch,
MatsubaraFunctions.sanity_checks(), which, when turned off10 disables @assert ex-
pressions. It is not recommended to touch this switch until an application has been thoroughly
tested, as it leads to wrong results on improper use. For the MBE solver discussed in Sec. 4.3.2,
we found runtime improvements of up to 10% when the consistency checks were disabled.

4 Examples

4.1 Hartree-Fock calculation in the atomic limit

As a first example of the use of MatsubaraFunctions.jl we consider the calculation of the
one-particle Green’s function G using the Hartree-Fock (HF) approximation in the atomic limit
of the Hubbard model, i.e., we consider the Hamiltonian

Ĥ = Un̂↑n̂↓ −µ(n̂↑ + n̂↓) , (6)

9Here, the batchsize argument can be used to control the number of threads involved.
10MatsubaraFunctions.sanity_checks() = false.

10

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

where U denotes the Hubbard interaction and n̂σ are the density operators for spin up and
down. In the following, we fix the chemical potential to µ= 0, i.e., we consider the system in
the strongly hole-doped regime.

The Hartree-Fock theory [64–66] is a widespread method in condensed matter physics
used to describe, e.g., electronic structures and properties of materials [67,68]. It is a mean-
field approximation as it treats the electrons in a solid as independent particles being subject
to an effective background field due to all the other particles.

In an interacting many-body system, the bare Green’s function G0 has to be dressed by
self-energy insertions, here denoted by Σ, in order to obtain G, which is summarized in the
Dyson equation

G = G0[1−Σ G0]
−1 = G0 +G0ΣG0 +G0ΣG0ΣG0 + . . . , (7)

where G0, G and Σ in general are matrix-valued. In HF theory one only considers the lowest
order term contributing to the self-energy, which is linear in the interaction potential. For the
spin-rotation invariant single-site system at hand, Σ = Σσ = Σ and the HF approximation for
the self-energy reads

Σ(ν)≈ U
β

∑

ν′

G(ν′)eiν′0+ = Un , (8)

where n is the density per spin. The Dyson equation then takes the simple form

G(ν)≈ [G−1
0 (ν)− Un]−1 . (9)

Below, we demonstrate how to set up and solve Eqs. (8) & (9) self-consistently for the density
n using Anderson acceleration [69, 70] as provided by the NLsolve Julia package [71] in
conjunction with MatsubaraFunctions.jl.

1 using MatsubaraFunctions
2 using NLsolve
3

4 const T = 0.3 # temperature
5 const U = 0.9 # interaction
6 const N = 1000 # no. frequencies
7

8 # initialize Green's function container
9 g = MatsubaraGrid(T, N, Fermion)

10 G = MatsubaraFunction(g, 1)
11

12 for v in g
13 G[v] = 1.0 / (im * value(v))
14 end
15

16 # set up fixed-point equation for NLsolve
17 function fixed_point!(F, n, G)
18

19 # calculate G
20 for v in grids(G, 1)
21 G[v] = 1.0 / (im * value(v) - U * n[1])
22 end
23

24 # calculate the residue
25 F[1] = density(G) - n[1]
26

27 return nothing
28 end
29

30 res = nlsolve((F, n) -> fixed_point!(F, n, G), [density(G)], method = :anderson)

11

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

−20 −15 −10 −5 0 5 10 15 20
ν/πT

−0.4

−0.2

0.0

0.2

0.4

T
×
G

(ν
)

(a)

Re[G0]
Im[G0]

Re[GHF]
Im[GHF]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
T/U

0.25

0.30

0.35

0.40

0.45

0.50

n

(b)

Figure 1: Exemplary Hartree-Fock results. (a) Comparison of the bare Green’s
function G0 with the HF result GHF for T/U = 1

3 . (b) Hartree-Fock density n as a
function of temperature.

Here, we first build the MatsubaraFunction container for G and initialize it to G0(ν) =
1
iν .

This container is then passed to the fixed-point equation using an anonymous function, which
mutates G on each call to incorporate the latest estimate of n.11 Fig. 1 shows exemplary results
for the full Green’s function and HF density. As can be seen from Fig. 1(b) the latter deviates
from its bare value n0 =

1
2 when the temperature is decreased and approaches n= 0 for T → 0,

as expected.

4.2 GW calculation in the atomic limit

In this section, we extend our Hartree-Fock code to include bubble corrections12 in the calcula-
tion of the self-energy. The resulting equations, commonly known as the GW approximation,
allow us to exemplify the use of more advanced library features, such as extrapolation of
the single-particle Green’s function and the implementation of symmetries. Therefore, they
present a good starting point for the more involved application discussed in Sec. 4.3.1.

The GW approximation is a widely used method in condensed matter physics and quan-
tum chemistry for calculating electronic properties of materials [72–74]. In addition to the
Hartree term ΣH = Un, which considers only the bare interaction, the mutual screening of
the Coulomb interaction between electrons is partially taken into account. For spin-rotation
invariant systems it is common practice to decouple these screened interactions η13 into a
density (or charge) component ηD and a magnetic (or spin) component ηM (see App. B), such
that

Σ(ν)≈ Un
2 −

1
β

∑

ν′

G(ν′)
�1

4η
D(ν− ν′) + 3

4η
M (ν− ν′)
�

, (10)

for the atomic limit Hamiltonian. The η are computed by summing a series of bubble diagrams
in the particle-hole channel, i.e.,

ηD/M (Ω) =
±U

1∓ U P(Ω)
, (11)

where the polarization bubble P is given by

P(Ω) = 1
β

∑

ν

G(Ω+ ν)G(ν) . (12)

A diagrammatic representation of these relations is shown in Fig. 2. Finally, the set of equations
is closed by computing G from the Dyson equation. Since the Green’s function transforms as

11Here, we make use of the density function, which calculates the Fourier transform f (τ → 0−) given a
complex-valued input function f (ν).

12That is, Feynman diagrams formed by a closed loop of two single-particle Green’s functions.
13Here, we denote the screened interactions by η instead of W to avoid conflicting notation with the code

examples in Sec. 4.3.2.

12

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

ν

= 1
4

3
4−−U

2Σ

= +U + U2 +

= −U + U2 −

ν ν
ν ν ν

ν′ ν′ ν′

ν − ν′ ν − ν′

Ω

Ω
ν

ν

Ω + ν

Ω + ν P(Ω)
U3

U3

+

+

. . .

. . .

Figure 2: Diagrammatic representation of spin-conserving GW equations in the
atomic limit. Wavy lines denote the screened interactions in the density (red) and
magnetic (blue) channel. They are obtained by dressing the respective bare interac-
tions with a series of bubble diagrams P(Ω), as illustrated in the second and third
line from the top.

G∗(ν) = G(−ν) under complex conjugation [48], we also have that

P(−Ω) = 1
β

∑

ν

G(−Ω+ ν)G(ν) = 1
β

∑

ν

G(−Ω− ν)G(−ν) = 1
β

∑

ν

G∗(Ω+ ν)G∗(ν)

= P∗(Ω) , (13)

and likewise Σ∗(ν) = Σ(−ν). Thus, the numerical effort for evaluating Eqs. (10) and (12)
can be reduced by a factor of two using a MatsubaraSymmetryGroup object. To structure
the GW code, we first write a solver class which takes care of the proper initialization of the
necessary MatsubaraFunction instances.

1 using MatsubaraFunctions
2 using HDF5
3

4 conj(w, x) = (-w[1],), (x[1],), MatsubaraOperation(sgn = false, con = true)
5

6 struct GWsolver
7 T :: Float64
8 U :: Float64
9 N :: Int64

10 G :: MatsubaraFunction{1, 1, 2, ComplexF64}
11 Sigma :: MatsubaraFunction{1, 1, 2, ComplexF64}
12 P :: MatsubaraFunction{1, 1, 2, ComplexF64}
13 η_D :: MatsubaraFunction{1, 1, 2, ComplexF64}
14 η_M :: MatsubaraFunction{1, 1, 2, ComplexF64}
15 SGf :: MatsubaraSymmetryGroup
16 SGb :: MatsubaraSymmetryGroup
17

18 function GWsolver(T, U, N)
19

20 # fermionic containers
21 gf = MatsubaraGrid(T, N, Fermion)
22 G = MatsubaraFunction(gf, 1)
23 Sigma = MatsubaraFunction(gf, 1)
24

25 # bosonic containers
26 gb = MatsubaraGrid(T, N, Boson)
27 P = MatsubaraFunction(gb, 1)
28 η_D = MatsubaraFunction(gb, 1)
29 η_M = MatsubaraFunction(gb, 1)
30

31 # symmetry groups
32 SGf = MatsubaraSymmetryGroup([MatsubaraSymmetry{1, 1}(conj)], G)
33 SGb = MatsubaraSymmetryGroup([MatsubaraSymmetry{1, 1}(conj)], P)

13

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

34

35 return new(T, U, N, G, Sigma, P, η_D, η_M, SGf, SGb)
36 end
37 end

As a second step, we implement the self-consistent equations, which we solve using Anderson
acceleration. Note that we have rewritten the GW equation for the self-energy as

Σ(ν)≈ Un− 1
β

∑

ν′

G(ν′)
�1

4η
D(ν− ν′) + 3

4η
M (ν− ν′) + U

2

�

, (14)

which is beneficial since the product of G with the constant contributions to ηD/M simply shifts
the real part of the self-energy by Un

2 such that Σ= ΣH +O(U2).

1 function fixed_point!(F, x, S)
2

3 # update Sigma
4 unflatten!(S.Sigma, x)
5

6 # calculate G
7 for v in grids(S.G, 1)
8 S.G[v] = 1.0 / (im * value(v) - S.Sigma[v])
9 end

10

11 sum_grid = MatsubaraGrid(S.T, 4 * S.N, Fermion)
12

13 # calculate P using symmetries
14 function calc_P(wtpl, xtpl)
15

16 P = 0.0
17

18 for v in sum_grid
19 P += S.G(v + wtpl[1]) * S.G(v)
20 end
21

22 return S.T * P
23 end
24

25 S.SGb(S.P, MatsubaraInitFunction{1, 1, ComplexF64}(calc_P))
26

27 # calculate η_D and η_M
28 for w in S.P.grids[1]
29 S.η_D[w] = +S.U / (1.0 - S.U * S.P[w])
30 S.η_M[w] = -S.U / (1.0 + S.U * S.P[w])
31 end
32

33 # calculate Sigma using symmetries
34 function calc_Sigma(wtpl, xtpl)
35

36 Sigma = S.U * density(S.G)
37

38 for v in sum_grid
39 Sigma -= S.T * S.G(v) * (
40 0.25 * S.η_D(wtpl[1] - v; extrp = ComplexF64(+S.U)) +
41 0.75 * S.η_M(wtpl[1] - v; extrp = ComplexF64(-S.U)) +
42 0.50 * S.U)
43 end
44

45 return Sigma
46 end
47

48 S.SGf(S.Sigma, MatsubaraInitFunction{1, 1, ComplexF64}(calc_Sigma))
49

50 # calculate the residue
51 flatten!(S.Sigma, F)
52 F .-= x
53

14

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

54 return nothing
55 end

−20 −15 −10 −5 0 5 10 15 20
ν/πT

−0.70

−0.35

0.00

0.35

0.70

Σ
(ν

)/
T

(a)

Re[ΣGW] - ΣH

Im[ΣGW]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
U/T

0.30

0.35

0.40

0.45

0.50

n

(b)

HF GW

Figure 3: Exemplary GW results. (a) The complex-valued self-energy ΣGW with its
real part offset by the Hartree shift ΣH = UnGW for T/U = 1

3 . (b) GW and Hartree-
Fock densities as a function of U/T .

Here, we make use of the flatten! and unflatten! functions which allow us to parse
MatsubaraFunction data into a one dimensional array.14 The fixed-point can now easily be
computed with, for example,

1 const T = 0.3 # temperature
2 const U = 0.9 # interaction
3 const N = 1000 # no. frequencies
4

5 S = GWsolver(T, U, N)
6 init = zeros(ComplexF64, length(S.Sigma))
7 res = nlsolve((F, x) -> fixed_point!(F, x, S), init, method = :anderson, m = 8, beta =

0.5, show_trace = true),→

In Fig. 3 we show exemplary results for the self-energy and density obtained in GW . In con-
trast to the Hartree-Fock calculations in the previous section, Σ is now a frequency-dependent
quantity, whose real part asymptotically approaches UnGW . As can be seen from Fig. 3(b),
these GW densities agree quantitatively with the HF result for weak interactions U/T ≲ 1

2 ,
but yield larger densities for higher values of U as expected when the local interaction is par-
tially screened.

4.3 Multiboson exchange solver for the single impurity Anderson model

Note: Readers who are not interested in the formal discussion presented below should feel
free to skip this section and proceed directly to Section 5 on future directions.

In the following, we extend upon the previous computations for the Hubbard atom by
coupling the single electronic level to a bath of non-interacting electrons. Specifically, we con-
sider the single-impurity Anderson model, a minimal model for localized magnetic impurities
in metals introduced by P.W. Anderson to explain the physics behind the Kondo effect [75]. It
is defined by the Hamiltonian

H =
∑

σ

εdd†
σdσ + Und,↑nd,↓ +

∑

k,σ

�

Vkd†
σck,σ + V ∗k c†

k,σdσ
�

+
∑

k,σ

εk,σc†
k,σck,σ , (15)

describing an impurity d level εd, hybridized with conduction electrons of the metal via
a matrix element Vk. The electrons in the localized d state, where nd,σ = d†

σdσ, in-
teract according to the interaction strength U , whereas the c electrons of the bath are

14We also export flatten which will allocate a new 1D array from the MatsubaraFunction.

15

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

non-interacting. Following [76], in a path-integral formulation for the partition function

Z =
∫ ∏

σD
�

d̄σ
�

D (dσ)D
�

c̄k,σ

�

D
�

ck,σ

�

e−S with the action S =
∫ β

0 L(τ)dτ, the Lagrangian
for the model is given by

L(τ) =
∑

σ

d̄σ(τ) (∂τ + εd) dσ(τ) +
∑

k,σ

c̄k,σ(τ) (∂τ + εk) ck,σ(τ)

+ Un↑(τ)n↓(τ) +
∑

k,σ

Vk

�

d̄σ(τ)ck,σ(τ) + c̄k,σ(τ)dσ(τ)
�

, (16)

where nσ(τ) = d̄σ(τ)dσ(τ). Integrating over the only quadratically occurring Grassmann
variables for the bath electrons, one formally obtains Z =

∫ ∏

σD
�

d̄σ
�

D (dσ)e−Sred with the
reduced action given by

Sred =

∫ β

0

dτ

∫ β

0

dτ′
∑

σ

d̄σ(τ)
�

−G(0)σ
�

τ−τ′
��−1

dσ
�

τ′
�

+ U

∫ β

0

dτn↑(τ)n↓(τ) . (17)

Switching to Matsubara frequencies as described in section 2, the non-interacting Green’s func-
tion for the localized d electrons reads

G(0)σ (νn) =
1

iνn − εd +∆(νn)
. (18)

Following [77] we choose an isotropic hybridization strength Vk ≡ V and a flat density of
states with bandwidth 2D for the bath electrons, leading to the hybridization function15

∆(νn) = i V 2

D arctan D
νn

. In the following, we set V = 2, measure energy in units of V/2= 1 and
set the half bandwidth to D = 10. In the context of this work, we focus on the particle-hole
symmetric model, setting εd = −U/2. Then, the Hartree term of the self-energy, ΣH = U/2 is
conveniently absorbed into the bare propagator,

G(0)σ (νn)→ GH
σ(νn) =

1
iνn − εd +∆(νn)−ΣH

=
1

iνn +∆(νn)
. (19)

Consequently, the Hartree propagator is used instead of the bare propagator throughout.

4.3.1 Single boson exchange decomposition of the parquet equations

Following [78], we now reiterate the single-boson exchange (SBE) decomposition of the four-
point vertex and, subsequently, of the parquet equations. The starting point for the SBE de-
composition, which was originally developed in [79–84], is the unambiguous classification of
vertex diagrams according to their U-reducibility in each channel. In order to introduce this
concept in the context of the parquet equations, we first have to discuss the similar concept of
two-particle reducibility, which provides the basis for the parquet decomposition of the vertex,

Γ = Λ2PI + γa + γp + γt . (20)

This decomposition states that all diagrams which contribute to the two-particle vertex Γ can be
classified as being part of one of four disjoint contributions: γr with r ∈ {a, p, t} collects those
diagrams which are two-particle reducible (2PR) in channel r, i.e., they can be disconnected
by cutting a pair of propagator lines, which can either be aligned in an antiparallel (a), parallel
(p) or transverse antiparallel (t) way. All remaining diagrams, which are not 2PR in either
of the three channels, contribute to Λ2PI, the fully two-particle irreducible (2PI) vertex. One
can equally well decompose Γ w.r.t. its two-particle reducibility in one of the three channels,

15Note that we use a different sign convention for the hybridization function compared to [77].

16

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)
SciPost Physics Submission

a : �1 �2 �! �1 �2

p : �1 �2 �! �1 �2

t :

�1

�2

�!

�1

�2

Figure 4: Illustration of U-reducibility in the three two-particle channels a, p and t. The Figure is
analogous to Fig. 4 of [79] and adapted from [77]. �1 and �2 can be any vertex diagram or the unit vertex.

antiparallel (a), parallel (p) or transverse antiparallel (t) way. All remaining diagrams, which
are not 2PR in either of the three channels, contribute to ⇤2PI, the fully two-particle irreducible
(2PI) vertex. One can equally well decompose � w.r.t. its two-particle reducibility in one of
the three channels, � = Ir + �r, which defines Ir = ⇤2PI +

P
r0 6=r �r0 , collecting all diagrams

that are 2PI in channel r. The Bethe-Salpeter equations (BSEs) then relate the reducible
diagrams to the irreducible ones,

�r = Ir �⇧r � � = � �⇧r � Ir. (21)

This short-hand notation introduces the ⇧r bubble, i.e., the propagator pair connecting the
two vertices, see [77] for their precise channel-dependent definition, as well as for the connec-
tor symbol �, which channel-dependently denotes summation over internal frequencies and
quantum numbers. The self-energy ⌃, which enters the propagator via the Dyson equation
G = G0 + G0⌃G, is provided by the Schwinger-Dyson equation (SDE),

⌃ = � (U + U �⇧p � �) · G = �
�
U + 1

2U �⇧a � �
�

· G , (22)

where U is the bare interaction and the symbol · denotes the contraction of two vertex
legs with a propagator. Together, equations (20), (21) and (22) are known as the parquet
equations [84, 85] and can be solved self-consistently, if the 2PI vertex ⇤2PI is provided [86–
89]. Unfortunately, ⇤2PI is the most complicated object, as its contributions contain nested
contractions over internal arguments. Often, the parquet approximation (PA) is therefore
employed, which truncates ⇤2PI beyond the bare interaction U . In the context of the SBE
decomposition relevant to this work, U -reducibility is an alternative criterion to the concept
of two-particle reducibility for the classification of vertex diagrams. A diagram that is 2PR
in channel r is also said to be U -reducible in channel r if it can be disconnected by removing
one bare vertex that is attached to a ⇧r bubble, as illustrated in Fig. 4. Furthermore, the
bare vertex U is defined to be U -reducible in all three channels. The U -reducible diagrams
in channel r are in the following denoted rr and are said to describe single-boson exchange
processes, as the linking bare interaction U , which would disconnect the diagram if cut,
mediates just a single bosonic transfer frequency. The diagrams which are 2PR in channel
r but not U -reducible in channel r are called multi-boson exchange diagrams and denoted
Mr. With these classifications, the two-particle reducible vertices can be written as �r =
rr �U +Mr, making sure to exclude U , which is contained in rr but not in �r. The parquet
decomposition (20) yields in this language,

� = 'U irr +
P

rrr � 2U, 'U irr = ⇤2PI � U +
P

rMr , (23)

18

Figure 4: Illustration of U-reducibility in the three two-particle channels a, p
and t . The Figure is analogous to Fig. 4 of [80] and adapted from [78]. Γ1 and Γ2
can be any vertex diagram or the unit vertex.

Γ = Ir +γr , which defines Ir = Λ2PI+
∑

r ′ ̸=r γr ′ , collecting all diagrams that are 2PI in channel
r. The Bethe-Salpeter equations (BSEs) then relate the reducible diagrams to the irreducible
ones,

γr = Ir ◦Πr ◦ Γ = Γ ◦Πr ◦ Ir . (21)

This short-hand notation introduces the Πr bubble, i.e., the propagator pair connecting the
two vertices, see [78] for their precise channel-dependent definition, as well as for the connec-
tor symbol ◦, which channel-dependently denotes summation over internal frequencies and
quantum numbers. The self-energy Σ, which enters the propagator via the Dyson equation
G = G0 + G0ΣG, is provided by the Schwinger-Dyson equation (SDE),

Σ= −
�

U + U ◦Πp ◦ Γ
�

· G = −
�

U + 1
2 U ◦Πa ◦ Γ
�

· G , (22)

where U is the bare interaction and the symbol · denotes the contraction of two vertex legs
with a propagator. Together, equations (20), (21) and (22) are known as the parquet equa-
tions [85, 86] and can be solved self-consistently, if the 2PI vertex Λ2PI is provided [87–90].
Unfortunately, Λ2PI is the most complicated object, as its contributions contain nested contrac-
tions over internal arguments. Often, the parquet approximation (PA) is therefore employed,
which truncates Λ2PI beyond the bare interaction U . In the context of the SBE decomposition
relevant to this work, U-reducibility is an alternative criterion to the concept of two-particle
reducibility for the classification of vertex diagrams. A diagram that is 2PR in channel r is
also said to be U-reducible in channel r if it can be disconnected by removing one bare vertex
that is attached to a Πr bubble, as illustrated in Fig. 4. Furthermore, the bare vertex U is
defined to be U-reducible in all three channels. The U-reducible diagrams in channel r are
in the following denoted ∇r and are said to describe single-boson exchange processes, as the
linking bare interaction U , which would disconnect the diagram if cut, mediates just a single
bosonic transfer frequency. The diagrams which are 2PR in channel r but not U-reducible in
channel r are called multi-boson exchange diagrams and denoted Mr . With these classifica-
tions, the two-particle reducible vertices can be written as γr =∇r − U +Mr , making sure to
exclude U , which is contained in ∇r but not in γr . The parquet decomposition (20) yields in
this language,

Γ = ϕU irr +
∑

r∇r − 2U , ϕU irr = Λ2PI − U +
∑

r Mr , (23)

where ϕU irr is the fully U-irreducible part of Γ . For a diagrammatic illustration of the
first equation, see Fig. 8 in [78]. The channel-dependent decomposition of the vertex
Γ = Ir + γr =∇r + Tr can also be split into U-reducible and U-irreducible parts in channel r,
defining the U-irreducible remainder Tr = Ir −U +Mr in channel r. Inserting all these defini-
tions into the BSEs (21) and separating U-reducible and U-irreducible contributions gives the
two sets of equations,

17

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

∇r − U = Ir ◦Πr ◦∇r + U ◦Πr ◦ Tr =∇r ◦Πr ◦ Ir + Tr ◦Πr ◦ U , (24)

Mr = (Ir − U) ◦Πr ◦ Tr = Tr ◦Πr ◦ (Ir − U) , (25)

for each channel r. From equation (24) one can derive (see [78] for details) that the single-
boson exchange terms can be written as ∇r = λ̄r • ηr • λr , where λ̄r ,λr denote the Hedin
vertices [72] and ηr the screened interaction in channel r. The former are related to the
U-irreducible vertex in channel r via λ̄r = 1r + Tr ◦ Πr ◦ 1r = 1r + 1r ◦ Πr ◦ Tr and can
be understood as U-irreducible, amputated parts of three-point functions, as they depend on
only two frequencies. In contrast to the GW approximation discussed in Sec. 4.2, the screened
interaction ηr is now defined in terms of a Dyson equation, ηr = U+U •Pr •ηr = U+ηr •Pr •U ,
with the polarization Pr = λr ◦ Πr ◦ 1r = 1r ◦ Πr ◦ λ̄r dressed by vertex corrections. In the
previous expressions, the connector • denotes an internal summation similar to ◦, the only
difference being that summation over frequencies is excluded. The corresponding unit vertex
is denoted 1r .

Lastly, one can rewrite the SDE in terms of the screened interaction and the Hedin vertex
in channel r which yields, for example, −Σ= (ηp •λp) ·G = (λ̄p •ηp) ·G if one chooses r = p.

In summary, the SBE-equations to be solved read

ηr = U + U • Pr •ηr = U +ηr • Pr • U , (26a)

Pr = λr ◦Πr ◦ 1r = 1r ◦Πr ◦ λ̄r , (26b)

λ̄r = 1r + Tr ◦Πr ◦ 1r , (26c)

λr = 1r + 1r ◦Πr ◦ Tr , (26d)

Tr = Γ − λ̄r •ηr •λr , (26e)

Γ = ϕU irr +
∑

r λ̄r •ηr •λr − 2U , (26f)

ϕU irr = Λ2PI − U +
∑

r Mr , (26g)

Mr = (Tr−Mr) ◦Πr ◦ Tr = Tr ◦Πr ◦ (Tr−Mr) , (26h)

−Σ= (ηp •λp) · G = (λ̄p •ηp) · G . (26i)

As before, they require only the fully two-particle irreducible vertex Λ2PI as an input. No-
tably, if one employs the so-called SBE approximation [80], which amounts to setting Λ2PI = U
as in the parquet approximation and neglecting multi-boson exchange contributions Mr = 0,
all objects involved depend on at most two frequencies. This scheme is therefore numerically
favorable compared to the PA if the SBE approximation can be justified [91] . In the context
of this paper, we do not employ the SBE approximation, but include multi-boson exchange
(MBE) contributions.

4.3.2 Implementation in MatsubaraFunctions.jl

In this section, we present the implementation of the PA in its MBE formulation using
MatsubaraFunctions.jl. In doing so, we build upon the code structure developed in
Sec. 4.2, i.e. we first define a solver class for which we later implement the self-consistent
equations, as well as an interface to solve for the fixed point using Anderson acceleration,
see Fig. 5. In order to keep the discussion concise, we refrain from showing all of the code
and, instead, focus on computational bottlenecks and point out tricks to circumvent them. For
completeness, however, we also make the entire code available via an open-source repository
on Github, see Ref. [62] and provide additional implementation details in App. B.

18

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

flattenx0 = (S)
Solver construction

Physical parameters
temperature , interaction ,

hybridization , bandwidth

Grid parameters

Solver parameters
size of memory kernel ,

relaxation parameter ,
error tolerance ,

max. no. iterations

T U
V D

NG(ν), NΣ(ν), NP(ν), Nλ(Ω,ν), NM(Ω,ν,ν)

mem
α

tol
maxiter

Initialization
G = GH0 , Σ = Σ2PBT, Pr = 0,

ηr = Ur, λr = 1, Mr = 0

Precomputation
SG[λp], SG[λt],

SG[MS
p], SG[MT

p], SG[Mt]

Root finding

unflatten!(S, x)

G(G0, Σ)

precompute
Tr(ηr, λr, Mr)

λr(G, Tr, SG[λr])

Mr(G, Tr, Mr, SG[Mr])

Pr(G, λr)

ηr(Pr, ηr)

Σ(G, ηr, λr)

flatten - xF = (S)

MBE loop

NLsolve

|F | < tol

Save to HDF5

solve!

solver object S

Figure 5: Structure of the MBE code. First, an instance S of type MBEsolver is
constructed by passing the SIAM parameters T , U , V and D and the sizes for the
Matsubara grids. The self-energy Σ is initialized using second order perturbation
theory (PT2), while all other MatsubaraFunctions are set to their bare values. In
an optional step, MatsubaraSymmetryGroups for λr and Mr (here denoted by SG)
can be precomputed. Next, the solve! function is used to find the fixed-point of
the MBE equations using Anderson acceleration. To interface with NLsolve, the
fields Σ, ηr , λr and Mr of S (which are sufficient to determine all other involved
quantities) are flattened into a single one-dimensional array. After convergence, S is
finally written to disk in H5 file format.

Extending the GWsolver from Sec. 4.2 to the MBEsolver needed here is a straightforward
endeavor, since we just have to add containers and symmetry groups for the Hedin and multi-
boson vertices. Furthermore, we extend the solver to include buffers which store the result
of evaluating Eqs. (26c), (26d) and (26h), such that repetitive allocations of the multidimen-
sional data arrays for λr and Mr are avoided. Note that, due to the symmetries of the SIAM
studied here, it suffices to include either λr or λ̄r , since λr = λ̄r . In addition, all containers
can be implemented as real-valued.16

1 function calc_T(
2 w :: MatsubaraFrequency,
3 v :: MatsubaraFrequency,
4 vp :: MatsubaraFrequency,
5 η_S :: MatsubaraFunction{1, 1, 2, Float64},
6 λ_S :: MatsubaraFunction{2, 1, 3, Float64},
7 η_D :: MatsubaraFunction{1, 1, 2, Float64},
8 λ_D :: MatsubaraFunction{2, 1, 3, Float64},
9 η_M :: MatsubaraFunction{1, 1, 2, Float64},

10 λ_M :: MatsubaraFunction{2, 1, 3, Float64},
11 M_S :: MatsubaraFunction{3, 1, 4, Float64},
12 M_T :: MatsubaraFunction{3, 1, 4, Float64},
13 M_D :: MatsubaraFunction{3, 1, 4, Float64},
14 M_M :: MatsubaraFunction{3, 1, 4, Float64},
15 U :: Float64,
16 :: Type{ch_D}
17) :: Float64
18

19 # bare contribution
20 T = -2.0 * U
21

22 # SBE contributions
23 w1 = w + v + vp
24 η1_idx = MatsubaraFunctions.grid_index_extrp(w1, grids(η_D, 1))
25 λ1_idx1 = MatsubaraFunctions.grid_index_extrp(w1, grids(λ_D, 1))
26 λ1_idx2 = MatsubaraFunctions.grid_index_extrp(vp, grids(λ_D, 2))

16The Green’s function G and the self-energy Σ are purely imaginary, such that G = −iG̃ and Σ = −iΣ̃. After
plugging this factorization into Eqs. (26a)-(26i), all factors of i are cancelled out such that the resulting equations
are entirely real.

19

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

27 λ1_idx3 = MatsubaraFunctions.grid_index_extrp(v, grids(λ_D, 2))
28

29 w2 = vp - v
30 v2 = w + v
31 η2_idx = MatsubaraFunctions.grid_index_extrp(w2, grids(η_D, 1))
32 λ2_idx1 = MatsubaraFunctions.grid_index_extrp(w2, grids(λ_D, 1))
33 λ2_idx2 = MatsubaraFunctions.grid_index_extrp(v2, grids(λ_D, 2))
34

35 T += +0.5 * λ_S[λ1_idx1, λ1_idx2, 1] * η_S[η1_idx, 1] * λ_S[λ1_idx1, λ1_idx3, 1]
36 T += -0.5 * λ_D[λ2_idx1, λ1_idx3, 1] * η_D[η2_idx, 1] * λ_D[λ2_idx1, λ2_idx2, 1]
37 T += -1.5 * λ_M[λ2_idx1, λ1_idx3, 1] * η_M[η2_idx, 1] * λ_M[λ2_idx1, λ2_idx2, 1]
38

39 # MBE contributions
40 w_idx = MatsubaraFunctions.grid_index_extrp(w, grids(M_S, 1))
41 v_idx = MatsubaraFunctions.grid_index_extrp(v, grids(M_S, 2))
42 vp_idx = MatsubaraFunctions.grid_index_extrp(vp, grids(M_S, 2))
43

44 w1_idx = MatsubaraFunctions.grid_index_extrp(w1, grids(M_S, 1))
45 w2_idx = MatsubaraFunctions.grid_index_extrp(w2, grids(M_S, 1))
46 v2_idx = MatsubaraFunctions.grid_index_extrp(v2, grids(M_S, 2))
47

48 T += M_D[w_idx, v_idx, vp_idx, 1]
49 T += +0.5 * M_S[w1_idx, v_idx, vp_idx, 1]
50 T += +1.5 * M_T[w1_idx, v_idx, vp_idx, 1]
51 T += -0.5 * M_D[w2_idx, v_idx, v2_idx, 1]
52 T += -1.5 * M_M[w2_idx, v_idx, v2_idx, 1]
53

54 return T
55 end

Profiling the MBE code reveals that most of the time is spent calculating the irreducible vertices
Tr , which are needed to compute both λr and Mr . In the former case, two legs of Tr are
closed with a propagator bubble, while in the latter case, Tr enters both to the left and to
the right of the respective (Bethe-Salpeter-like) equation. When optimizing the code, it is
therefore crucial to find an efficient way to evaluate Eq. (26e). In the example above, an
exemplary implementation of Tr in the density channel is shown. Here, we make use of the
grid_index_extrp function, which given a Matsubara frequency and a grid g finds the
linear index of the frequency in g or, if it is out of bounds, determines the bound of g that
is closest. This function is normally used internally to perform constant extrapolation for
MatsubaraFunction objects with grid dimension greater than one.17 Here, however, it can
be used to precompute multiple linear indices at once, allowing us to exclusively use the []
operator and thus avoid unnecessary boundary checks. Note that we could have used tailfits
for the screened interactions ηr but opt to utilize constant extrapolation instead.18

Furthermore, when Tr is inserted into the equations for the Hedin and multiboson vertices,
it is summed up along one fermionic axis. Therefore, some frequencies, e.g. w1 = w + v +
vp in line 23 of the code snippet above, will assume the same value for many different external
arguments. Hence, to circumvent repeated (but superfluous) grid_index_extrp calls, it is
beneficial to precompute Tr on a finite grid, which needs to be large enough to maintain the
desired accuracy. To this end, we add buffers for the irreducible vertices to our solver class,
such that we can compute e.g. the density T D and magnetic contributions T M inplace and in
parallel, as shown in the example below.

1 function calc_T_ph!(
2 T_D :: MatsubaraFunction{3, 1, 4, Float64},
3 T_M :: MatsubaraFunction{3, 1, 4, Float64},
4 η_S :: MatsubaraFunction{1, 1, 2, Float64},
5 λ_S :: MatsubaraFunction{2, 1, 3, Float64},

17Therefore it is not exported into the global namespace.
18Since ηr depends only on one frequency argument, it can be stored on a rather large grid, such that its asymp-

totic behavior is well-captured even without polynomial extrapolation.

20

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

6 η_D :: MatsubaraFunction{1, 1, 2, Float64},
7 λ_D :: MatsubaraFunction{2, 1, 3, Float64},
8 η_M :: MatsubaraFunction{1, 1, 2, Float64},
9 λ_M :: MatsubaraFunction{2, 1, 3, Float64},

10 M_S :: MatsubaraFunction{3, 1, 4, Float64},
11 M_T :: MatsubaraFunction{3, 1, 4, Float64},
12 M_D :: MatsubaraFunction{3, 1, 4, Float64},
13 M_M :: MatsubaraFunction{3, 1, 4, Float64},
14 U :: Float64
15) :: Nothing
16

17 Threads.@threads for vp in grids(T_D, 3)
18 λ1_idx2 = MatsubaraFunctions.grid_index_extrp(vp, grids(λ_D, 2))
19 vp_idx = MatsubaraFunctions.grid_index_extrp(vp, grids(M_S, 2))
20

21 for v in grids(T_D, 2)
22 w2 = vp - v
23 λ1_idx3 = MatsubaraFunctions.grid_index_extrp(v, grids(λ_D, 2))
24 η2_idx = MatsubaraFunctions.grid_index_extrp(w2, grids(η_D, 1))
25 λ2_idx1 = MatsubaraFunctions.grid_index_extrp(w2, grids(λ_D, 1))
26 v_idx = MatsubaraFunctions.grid_index_extrp(v, grids(M_S, 2))
27 w2_idx = MatsubaraFunctions.grid_index_extrp(w2, grids(M_S, 1))
28

29 for w in grids(T_D, 1)
30 w1 = w + v + vp
31 v2 = w + v
32 η1_idx = MatsubaraFunctions.grid_index_extrp(w1, grids(η_D, 1))
33 λ1_idx1 = MatsubaraFunctions.grid_index_extrp(w1, grids(λ_D, 1))
34 λ2_idx2 = MatsubaraFunctions.grid_index_extrp(v2, grids(λ_D, 2))
35 w_idx = MatsubaraFunctions.grid_index_extrp(w, grids(M_S, 1))
36 w1_idx = MatsubaraFunctions.grid_index_extrp(w1, grids(M_S, 1))
37 v2_idx = MatsubaraFunctions.grid_index_extrp(v2, grids(M_S, 2))
38

39 # compute SBE vertices
40 p1 = λ_S[λ1_idx1, λ1_idx2, 1] * η_S[η1_idx, 1] * λ_S[λ1_idx1, λ1_idx3, 1]
41 p2 = λ_D[λ2_idx1, λ1_idx3, 1] * η_D[η2_idx, 1] * λ_D[λ2_idx1, λ2_idx2, 1]
42 p3 = λ_M[λ2_idx1, λ1_idx3, 1] * η_M[η2_idx, 1] * λ_M[λ2_idx1, λ2_idx2, 1]
43

44 # compute MBE vertices
45 m1 = M_S[w1_idx, v_idx, vp_idx, 1]
46 m2 = M_T[w1_idx, v_idx, vp_idx, 1]
47 m3 = M_D[w2_idx, v_idx, v2_idx, 1]
48 m4 = M_M[w2_idx, v_idx, v2_idx, 1]
49

50 T_D[w, v, vp] = -2.0 * U + M_D[w_idx, v_idx, vp_idx, 1] + 0.5 * (p1 + m1 -
p2 - m3) + 1.5 * (m2 - p3 - m4),→

51 T_M[w, v, vp] = +2.0 * U + M_M[w_idx, v_idx, vp_idx, 1] - 0.5 * (p1 + m1 +
p2 + m3) + 0.5 * (m2 + p3 + m4),→

52 end
53 end
54 end
55

56 return nothing
57 end

Here, we also make use of the fact that many frequency arguments (and their respective linear
indices) are shared between different channels, which speeds up the calculation of T even
further. The implementation of, say, Eq. (26h) is now rather straightforward. M D, for example,
can be computed as shown below.

1 function calc_M!(
2 M :: MatsubaraFunction{3, 1, 4, Float64},
3 Pi :: MatsubaraFunction{2, 1, 3, Float64},
4 T :: MatsubaraFunction{3, 1, 4, Float64},
5 M_D :: MatsubaraFunction{3, 1, 4, Float64},
6 SG :: MatsubaraSymmetryGroup,
7 :: Type{ch_D}
8) :: Nothing
9

21

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

10 # model the diagram
11 function f(wtpl, xtpl)
12

13 w, v, vp = wtpl
14 val = 0.0
15 v1, v2 = grids(Pi, 2)(grids(T, 3)[1]), grids(Pi, 2)(grids(T, 3)[end])
16 Pi_slice = view(Pi, w, v1 : v2)
17 M_D_slice = view(M_D, w, v, :)
18 T_L_slice = view(T, w, v, :)
19 T_R_slice = view(T, w, vp, :)
20

21 vl = grids(T, 3)(grids(M_D, 3)[1])
22 vr = grids(T, 3)(grids(M_D, 3)[end])
23

24 for i in 1 : vl - 1
25 val -= (T_L_slice[i] - M_D_slice[1]) * Pi_slice[i] * T_R_slice[i]
26 end
27

28 for i in vl : vr
29 val -= (T_L_slice[i] - M_D_slice[i - vl + 1]) * Pi_slice[i] * T_R_slice[i]
30 end
31

32 for i in vr + 1 : length(T_L_slice)
33 val -= (T_L_slice[i] - M_D_slice[vr - vl + 1]) * Pi_slice[i] * T_R_slice[i]
34 end
35

36 return temperature(M) * val
37 end
38

39 # compute multiboson vertex
40 SG(M, MatsubaraInitFunction{3, 1, Float64}(f); mode = :hybrid)
41

42 return nothing
43 end

Here, we utilize the corresponding MatsubaraSymmetryGroup object with the hybrid MPI
+ Threads parallelization scheme. In addition, we make use of views for the bubble and
vertices to avoid repeated memory lookups in the Matsubara summation.

4.3.3 Benchmark results

In this section, we benchmark the presented implementation of the MBE parquet solver against
an independent implementation in C++. Our motivation for this comparison is twofold:
Firstly, we want to verify the overall correctness of both implementations and, secondly, we
want to test how robust the multiboson formalism is to implementation details. This regards,
for example, the treatment of correlation functions at the boundaries of their respective fre-
quency grids. While the Julia code relies on (polynomial or constant) extrapolation, the C++
code replaces correlators with their asymptotic value instead. Ideally, these details should be
irrelevant, except in the most difficult parameter regimes. Both codes used the physical pa-
rameters as stated after Eq. (18) and the frequency parameters according to Tab. 1. We begin
by examining the static properties of the model including the quasiparticle residue Z given by

Z−1 = 1−
dIm[Σ(ω)]

dω

�

�

�

�

ω→0
, (27)

as well as the susceptibilities in the density (D) and magnetic (M) channels. The latter can be
obtained from the screened interactions analogous to Ref. [92], that is

χD/M =
ηD/M − U D/M

(U D/M)2
. (28)

The corresponding results are summarized in Fig. 6. Both codes are in quantitative agreement
and predict a strong enhancement of magnetic fluctuations at low temperatures. However, as

22

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

Table 1: Frequency parameters for the benchmark results in Figs. 6-9. We show
the total number of frequencies used for the various Matsubara functions. Since
the boxes are symmetric around zero there is an even (odd) number of Matsubara
frequencies along fermionic (bosonic) directions.

total no. frequencies
G 4096
Σ 512
η 1023
λ 575 × 512
M 383 × 320 × 320

has been noted in Ref. [77], the characteristic signature for the formation of a local magnetic
moment at the impurity, a decrease of χD for temperatures T ≲ 2 (for the specific choice
of numerical parameters used here), is not captured by the parquet approximation. Instead,
χD increases monotonically over the entire range of temperatures considered and the system
remains in a metallic state with well-defined quasiparticles (i.e. 0< Z < 1).

Figure 7 shows a direct comparison of the MBE vertices and their evolution with decreasing
temperature within both codes. As can be seen from the middle column, showing the screened
interaction, Hedin and multiboson vertex in the magnetic channel, most of the long-lived
magnetic correlations are already captured by the screened interaction itself and thus by the
corresponding single-boson exchange diagrams. In contrast, low-energy scattering processes
mediated by multiple bosons seem to be less relevant, as indicated by a comparatively small
M M contribution. This picture is somewhat reversed in the other channels (left and right
column in Fig. 7). In the density channel, for example, the largest contribution originates
from short and also long-lived multiboson fluctuations, especially at low temperatures.

Figure 8 presents further results for M X as a function of its two fermionic frequencies ν and
ν′ (with fixed Ω = 0). Remarkably, the structure of these objects is dominated by cross-like
structures similar to those discussed in Ref. [92], which become more pronounced when T is
decreased. A comparison of the data obtained with both codes (shown in the second row of
Fig. 8), reveals that it is precisely these structures that seem difficult to capture in numerical
calculations, and where small differences in the implementation can have a significant effect.
However, the relative difference between the results from both codes is still small (≲ 0.01).

As a final benchmark of the codes, we have considered their respective serial and paral-
lel performance for a single evaluation of the parquet equations in SBE decomposition (see
Fig. 9). Surprisingly, the Julia code based on MatsubaraFunctions.jl outperforms the
C++ implementation by about a factor of four when run in production mode (i.e., with in-
ternal sanity checks disabled). We would like to note that this is most likely not due to a
fundamental performance advantage of Julia over C++, but simply the result of several op-
timizations (such as those presented in Sec. 4.3.2) that were more easy to implement using
MatsubaraFunctions.jl.

23

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

1 2 3 4

0.6

0.8

1.0

Z

1 2 3 4

0.04

0.06

0.08

χ
D

C++

Julia

1 2 3 4

T

0.0

0.5

1.0

χ
M

Figure 6: Results for the quasi-particle residue Z and the density/magnetic sus-
ceptibility χD/M . The comparison shows good agreement between the two codes.
Note that we approximated the derivative in Eq. (27) by a fourth order finite differ-
ences method.

0

10−2

10−1

100

101

102

η
X

(ν
)
−
U
X

D M S

−0.4

−0.2

0.0

λ
X

(0
,ν

)
−

1

−25 0 25

ν/πT

−5

0

M
X

(0
,π
T
,ν

)

T = 0.2 T = 0.5 T = 2.0

−25 0 25

ν/πT

−25 0 25

ν/πT

C++ Julia

Figure 7: Benchmark of vertex quantities between the Julia and C++ code. We
show frequency slices through various SBE ingredients (top to bottom: screened in-
teractions, Hedin vertices, multiboson vertices) at different temperatures and chan-
nels. The comparison shows good agreement between both codes.

24

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

−40

−20

0

20

40
M

D
(0
,ν
,ν
′)

ν
/
π
T

(a) T = 0.2 T = 0.5 T = 2.0

−25 0 25

ν′/πT

−40

−20

0

20

40

ab
s.

d
ev

.
ν
/π
T

−25 0 25

ν′/πT
−25 0 25

ν′/πT

−1.0

−0.5

0.0

0.5

1.0
×101

0

1

2

3
×10−2

−5

0

5

0

2

4

6

×10−3

−2

0

2

0

2

4

6

×10−3

−40

−20

0

20

40

M
M

(0
,ν
,ν
′)

ν
/π
T

(b)

−25 0 25

ν′/πT

−40

−20

0

20

40

ab
s.

d
ev

.
ν
/π
T

−25 0 25

ν′/πT
−25 0 25

ν′/πT

−2

0

2

0.00

0.25

0.50

0.75

1.00

×10−2

−1

0

1

0

1

2

3

×10−3

−2

−1

0

1

2

×10−1

0

2

4

6

×10−4

−40

−20

0

20

40

M
S

(0
,ν
,ν
′)

ν
/π
T

(c)

−25 0 25

ν′/πT

−40

−20

0

20

40

ab
s.

d
ev

.
ν
/π
T

−25 0 25

ν′/πT
−25 0 25

ν′/πT

−5

0

5

0.00

0.25

0.50

0.75

1.00
×10−2

−4

−2

0

2

4

0

1

2

3

4

×10−3

−1

0

1

0

1

2

3

4

×10−3

Figure 8: Slice through multi-boson contributions MD, M M and MS. The upper
panels show the data for different temperatures, the lower panels the absolute devi-
ation between the Julia and the C++ implementation, respectively. For lower tem-
peratures the features in the data require the computation and storage of a larger
number of frequency points. The agreement of the data persists to the lowest tem-
perature shown in this paper.

25

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

2 4 6 8 10 12

nthreads

0.0

0.2

0.4

0.6

0.8

1.0

ti
m

e
fo

r
p

ar
q

u
et

it
er

at
io

n

C++

Julia

Figure 9: Performance benchmark between the Julia and C++ code. We show
the time taken for a single evaluation of the parquet equations in SBE decomposition.
Note that the runtimes have been normalized to the serial result of the C++ code.

5 Future directions

We have presented a first version of the MatsubaraFunctions.jl library and its basic func-
tionality. Although the library already offers many features, most notably an automated inter-
face for implementing and exploiting symmetries when working with Green’s functions (in-
cluding several options for parallel evaluation), as well as high performance for larger projects
(see Sec. 4.3.1 and the discussions therein), several generalizations of the interface and fur-
ther optimizations are currently under development. In addition, we will add more support
for generic grid types other than just Matsubara frequency grids. These could include, for
example, momentum space grids and support for continuous variables (such as real frequen-
cies). Note, however, that calculations in momentum or real space are already feasible with
the current state of the package, if a suitable mapping from, say, wavevectors to indices is
provided. Accuracy improvements for fitting high-frequency tails and more advanced extrap-
olation schemes for Matsubara sums are also in the works.

In the future, it will be very valuable to extend the ecosystem surrounding
MatsubaraFunctions.jl. For example, many state-of-the-art diagrammatic solvers rely on
the efficient evaluation of similar diagrams such as vertex-bubble-vertex contractions, which
are a common feature of Bethe-Salpeter-type equations. These operations could be developed
independently of the main library, providing even more quality-of-life options for the user.
Moreover, such a toolkit would allow for the swift deployment of different types of solvers,
including fRG solvers for quantum spin systems and self-consistent impurity solvers such as the
MBE code presented in Sec. 4.3.2, to name but a few. With many new and exciting correlated
materials becoming available, fast and flexible solvers are of utmost importance to facilitate
scientific progress, and we strongly believe that a package like MatsubaraFunctions.jl
could be a useful tool for their rapid development.

Acknowledgments

We would like to thank Fabian Kugler, Jae-Mo Lihm, Seung-Sup Lee, Friedrich Krien, Marc Rit-
ter, Björn Sbierski and Benedikt Schneider for helpful discussions and collaboration on ongoing
projects.

Funding information This work was funded in part by the Deutsche Forschungsgemein-
schaft under Germany’s Excellence Strategy EXC-2111 (Project No. 390814868). It is part of

26

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

the Munich Quantum Valley, supported by the Bavarian state government with funds from the
Hightech Agenda Bayern Plus. N.R. acknowledges funding from a graduate scholarship from
the German Academic Scholarship Foundation (Studienstiftung des deutschen Volkes) and ad-
ditional support from the “Marianne-Plehn-Programm” of the state of Bavaria. The numerical
simulations were, in part, performed on the Linux clusters and the SuperMUC cluster (project
23769) at the Leibniz Supercomputing Center in Munich. The Flatiron Institute is a division
of the Simons Foundation.

A Extrapolation of Matsubara sums

Suppose we want to compute the fermionic Matsubara sum f (τ → 0+) = 1
β

∑

ν f (ν)e−iν0+ .
We assume that f (z) with z ∈ C has a Laurent series representation in an elongated annulus
about the imaginary axis which decays to zero for large |z|. If the poles and residues of f in the
complex plane are known, this problem can in principle be solved by rewriting the Matsubara
sum as a contour integral and applying Cauchy’s residue theorem after deforming the contour.
Unfortunately, these poles are usually unknown and we have to resort to numerical calculations
instead. There, however, we can only compute the sum over a finite (symmetric) grid of
Matsubara frequencies, which converges very slowly if at all.

To tackle this problem, let us assume that f is known on a grid with sufficiently large
maximum (minimum) frequency ±Ω, such that we can approximate

f (ν)≈
N
∑

n=1

αn

(iν)n
, (A.1)

for |ν| > Ω. Neglecting the factor e−iν0+ for brevity, this allows us to split up the expression
for f (τ→ 0+) as

1
β

∑

ν

f (ν) =
1
β

∑

ν<−Ω
f (ν) +

1
β

∑

−Ω≤ν≤Ω
f (ν) +

1
β

∑

ν>Ω

f (ν)

≈
1
β

∑

ν<−Ω

N
∑

n=1

αn

(iν)n
+

1
β

∑

−Ω≤ν≤Ω
f (ν) +

1
β

∑

ν>Ω

N
∑

n=1

αn

(iν)n
, (A.2)

where (A.1) was used to approximate the semi-infinite sums. In many cases, the dominant
asymptotic behavior of single-particle Green’s functions and one-dimensional slices through
higher-order vertex functions is already well captured by an algebraic decay (iν)−q with q = 1, 2.
Therefore, by truncating the asymptotic expansion at N = 2, we can rewrite the right-hand
side as

1
β

∑

ν

f (ν)≈
1
β

∑

−Ω≤ν≤Ω
f (ν) +

2
∑

n=1

�

1
β

∑

ν

αn

(iν)n
−

1
β

∑

−Ω≤ν≤Ω

αn

(iν)n

�

. (A.3)

The series in the bracket can be computed straightforwardly using Cauchy’s residue theorem
and we find

1
β

∑

ν

f (ν)e−iν0+ ≈
1
β

∑

−Ω≤ν≤Ω

�

f (ν)−
α2

(iν)2

�

−
α1

2
− β
α2

4
. (A.4)

Thus, if the coefficients αn are known (for example by fitting the high-frequency tails), this
formula can provide a quick and dirty approximation to the infinite Matsubara sum.

27

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

B Implementation details for the MBE solver

In this section we provide additional information on the implementation of the MBE equations,
which were introduced on a general basis in Sec. 4.3.1 of the main text. As for any application
involving many-body Green’s functions, it is crucial to choose an appropriate parametrization
of the self-consistent equations that reflects the symmetries of the field theory under consider-
ation. Here, we deal with the implementation of SU(2) symmetry (spin rotation invariance)
as well as time translation invariance (energy conservation) for the MBE equations of the im-
purity model defined in Sec. 4.3.

B.1 SU(2) symmetry

Consider an SU(2) transformation U = eiεσ, where ε ∈ R3 andσ is the vector of Pauli matrices.
Under U , the fermionic creation and annihilation operators transform into

cs→ Uss′ cs′ , c†
s → c†

s′(U
†)s′s , (B.1)

where we have omitted all indices except the spin s = {↑,↓}. For SU(2) symmetric actions it
can be shown that single-particle Green’s functions G(1)ss′ are diagonal and also invariant under

spin flips, i.e. G(1)ss′ = G(1)δss′ [48]. Two-particle correlators G(2)s1′ s1s2′ s2
, on the other hand, can

be decomposed into two components G(2)|= and G(2)|×, which preserve the total spin between
incoming and outgoing particles

G(2)s1′ s1s2′ s2
= G(2)|=δs1′ s1

δs2′ s2
+ G(2)|×δs1′ s2

δs2′ s1
. (B.2)

Furthermore, the Bethe-Salpeter-like equations (24) can be diagonalized by introducing a sin-
glet (S) and a triplet (T) component

G(2)|Sp = G(2)|=p − G(2)|×p ,

G(2)|Tp = G(2)|=p + G(2)|×p ,
(B.3)

in the p channel, and a density (D) and magnetic (M) contribution

G(2)|Dt = 2G(2)|=t + G(2)|×t ,

G(2)|Mt = G(2)|×t ,
(B.4)

in the t channel. Moreover, this change of basis has the advantage that physical response
functions can be obtained directly from the screened interaction in the respective channel. The
spin susceptibility χM , for example, is simply given by −U2χM = ηM + U for a local Hubbard
U . For this reason, the {S, T, D, M} basis is sometimes called the physical spin basis, whereas
the decomposition into parallel (=) and crossed terms (×) is known as the diagrammatic spin
basis [48]. In the implementation of the MBE solver, the former is used.

B.2 Time translation invariance

The interacting part of the impurity action from Sec. 4.3 is static, i.e. the bare interaction U
is τ-independent. Consequently, one and two-particle Green’s functions are invariant under
translations in imaginary time, which implies conservation of the total Matsubara frequency
between incoming and outgoing legs [48] and, thus,

G(1)(ν,ν′) = G(1)(ν)× βδν|ν′ ,

G(2)(ν1′ ,ν1,ν2′ ,ν2) = G(2)(ν1′ ,ν1,ν2′)× βδν1′+ν2′ |ν1+ν2
. (B.5)

28

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24

SciPost Phys. Codebases 24 (2024)

p

Ω − ν′ ν

Ω − νν′

t

Ω + ν

Ω + ν′

ν

ν′

a

Ω + ν Ω + ν′

ν′ ν
mixed

ν1 ν1′

ν2′ ν2 = ν1′ + ν2′ − ν1

fermionic

Figure 10: Mixed frequency conventions. In mixed notation, each 2PR channel is
described in terms of one bosonic argument Ω and two fermionic frequencies ν,ν′ as
opposed to the purely fermionic notation shown on the left.

Note that we have suppressed additional indices, such as spin, for brevity. For two-particle
quantities, it is convenient to adopt a mixed frequency convention for the 2PR channels, where,
instead of three fermionic arguments, one bosonic transfer frequency Ω and two fermionic
frequencies ν,ν′ are used. The convention used for the MBE solver is shown in Fig. 10.

References

[1] J. G. Bednorz and K. A. Müller, Possible high Tc superconductivity in the Ba-La-Cu-O system,
Z. Phys. B - Condens. Matter 64, 189 (1986), doi:10.1007/BF01303701.

[2] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida and J. Zaanen, From quantum
matter to high-temperature superconductivity in copper oxides, Nature 518, 179 (2015),
doi:10.1038/nature14165.

[3] N. Mott, Metal-insulator transitions, CRC Press, Boca Raton, USA, ISBN 9780429094880
(2004), doi:10.1201/b12795.

[4] J. Hubbard, Electron correlations in narrow energy bands, Proc. R. Soc. Lond. A: Math.
Phys. Sci. 276, 238 (1963), doi:10.1098/rspa.1963.0204.

[5] M. Imada, A. Fujimori and Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys. 70,
1039 (1998), doi:10.1103/RevModPhys.70.1039.

[6] L. Savary and L. Balents, Quantum spin liquids: A review, Rep. Prog. Phys. 80, 016502
(2016), doi:10.1088/0034-4885/80/1/016502.

[7] J. Knolle and R. Moessner, A field guide to spin liquids, Annu. Rev. Condens. Matter Phys.
10, 451 (2019), doi:10.1146/annurev-conmatphys-031218-013401.

[8] M. Qin, T. Schäfer, S. Andergassen, P. Corboz and E. Gull, The Hubbard model:
A computational perspective, Annu. Rev. Condens. Matter Phys. 13, 275 (2022),
doi:10.1146/annurev-conmatphys-090921-033948.

[9] D. J. Scalapino, A common thread: The pairing interaction for unconventional supercon-
ductors, Rev. Mod. Phys. 84, 1383 (2012), doi:10.1103/RevModPhys.84.1383.

[10] T. Schäfer et al., Tracking the footprints of spin fluctuations: A multimethod, multimes-
senger study of the two-dimensional Hubbard model, Phys. Rev. X 11, 011058 (2021),
doi:10.1103/PhysRevX.11.011058.

[11] H. Q. Lin, Exact diagonalization of quantum-spin models, Phys. Rev. B 42, 6561 (1990),
doi:10.1103/PhysRevB.42.6561.

29

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24
https://doi.org/10.1007/BF01303701
https://doi.org/10.1038/nature14165
https://doi.org/10.1201/b12795
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1146/annurev-conmatphys-031218-013401
https://doi.org/10.1146/annurev-conmatphys-090921-033948
https://doi.org/10.1103/RevModPhys.84.1383
https://doi.org/10.1103/PhysRevX.11.011058
https://doi.org/10.1103/PhysRevB.42.6561

SciPost Phys. Codebases 24 (2024)

[12] H. Q. Lin, J. E. Gubernatis, H. Gould and J. Tobochnik, Exact diagonalization methods for
quantum systems, Comput. Phys. 7, 400 (1993), doi:10.1063/1.4823192.

[13] A. Weiße and H. Fehske, Computational many-particle physics, Springer, Berlin, Heidel-
berg, Germany, ISBN 9783540746850 (2008), doi:10.1007/978-3-540-74686-7.

[14] S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev.
Lett. 69, 2863 (1992), doi:10.1103/PhysRevLett.69.2863.

[15] U. Schollwöck, The density-matrix renormalization group, Rev. Mod. Phys. 77, 259
(2005), doi:10.1103/RevModPhys.77.259.

[16] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equa-
tion of state calculations by fast computing machines, J. Chem. Phys. 21, 1087 (1953),
doi:10.1063/1.1699114.

[17] D. Ceperley and B. Alder, Quantum Monte Carlo, Science 231, 555 (1986),
doi:10.1126/science.231.4738.555.

[18] W. M. C. Foulkes, L. Mitas, R. J. Needs and G. Rajagopal, Quantum Monte Carlo simula-
tions of solids, Rev. Mod. Phys. 73, 33 (2001), doi:10.1103/RevModPhys.73.33.

[19] F. Becca and S. Sorella, Quantum Monte Carlo approaches for correlated sys-
tems, Cambridge University Press, Cambridge, UK, ISBN 9781107129931 (2017),
doi:10.1017/9781316417041.

[20] C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301, 90
(1993), doi:10.1016/0370-2693(93)90726-X.

[21] P. Kopietz, L. Bartosch and F. Schütz, Introduction to the functional renormalization group,
Springer, Berlin, Heidelberg, Germany, ISBN 9783642050930 (2010), doi:10.1007/978-
3-642-05094-7.

[22] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden and K. Schönhammer, Functional
renormalization group approach to correlated fermion systems, Rev. Mod. Phys. 84, 299
(2012), doi:10.1103/RevModPhys.84.299.

[23] A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Dynamical mean-field theory of
strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys.
68, 13 (1996), doi:10.1103/RevModPhys.68.13.

[24] N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in
one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17, 1307 (1966),
doi:10.1103/PhysRevLett.17.1307.

[25] P. C. Hohenberg, Existence of long-range order in one and two dimensions, Phys. Rev. 158,
383 (1967), doi:10.1103/PhysRev.158.383.

[26] T. Maier, M. Jarrell, T. Pruschke and M. H. Hettler, Quantum cluster theories, Rev. Mod.
Phys. 77, 1027 (2005), doi:10.1103/RevModPhys.77.1027.

[27] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet and C. A. Marianetti,
Electronic structure calculations with dynamical mean-field theory, Rev. Mod. Phys. 78,
865 (2006), doi:10.1103/RevModPhys.78.865.

30

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24
https://doi.org/10.1063/1.4823192
https://doi.org/10.1007/978-3-540-74686-7
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1063/1.1699114
https://doi.org/10.1126/science.231.4738.555
https://doi.org/10.1103/RevModPhys.73.33
https://doi.org/10.1017/9781316417041
https://doi.org/10.1016/0370-2693(93)90726-X
https://doi.org/10.1007/978-3-642-05094-7
https://doi.org/10.1007/978-3-642-05094-7
https://doi.org/10.1103/RevModPhys.84.299
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevLett.17.1307
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.78.865

SciPost Phys. Codebases 24 (2024)

[28] A.-M. S. Tremblay, B. Kyung and D. Sénéchal, Pseudogap and high-temperature supercon-
ductivity from weak to strong coupling. Towards a quantitative theory (review article), Low.
Temp. Phys. 32, 424 (2006), doi:10.1063/1.2199446.

[29] A. I. Lichtenstein and M. I. Katsnelson, Antiferromagnetism and d-wave superconductiv-
ity in cuprates: A cluster dynamical mean-field theory, Phys. Rev. B 62, R9283 (2000),
doi:10.1103/PhysRevB.62.R9283.

[30] G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanin, A. E. Antipov, M. I. Katsnel-
son, A. I. Lichtenstein, A. N. Rubtsov and K. Held, Diagrammatic routes to nonlocal
correlations beyond dynamical mean field theory, Rev. Mod. Phys. 90, 025003 (2018),
doi:10.1103/RevModPhys.90.025003.

[31] T. Matsubara, A new approach to quantum-statistical mechanics, Prog. Theor. Phys. 14,
351 (1955), doi:10.1143/PTP.14.351.

[32] R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple
applications to magnetic and conduction problems, J. Phys. Soc. Jpn. 12, 570 (1957),
doi:10.1143/JPSJ.12.570.

[33] J. Bezanson, A. Edelman, S. Karpinski and V. B. Shah, Julia: A fresh approach to numerical
computing, SIAM Rev. 59, 65 (2017), doi:10.1137/141000671.

[34] J. Reuther and P. Wölfle, J1 − J2 frustrated two-dimensional Heisenberg model: Random
phase approximation and functional renormalization group, Phys. Rev. B 81, 144410
(2010), doi:10.1103/PhysRevB.81.144410.

[35] J. Reuther and R. Thomale, Functional renormalization group for the anisotropic triangu-
lar antiferromagnet, Phys. Rev. B 83, 024402 (2011), doi:10.1103/PhysRevB.83.024402.

[36] J. Reuther, D. A. Abanin and R. Thomale, Magnetic order and paramagnetic phases
in the quantum J1 − J2 − J3 honeycomb model, Phys. Rev. B 84, 014417 (2011),
doi:10.1103/PhysRevB.84.014417.

[37] J. Reuther, R. Thomale and S. Trebst, Finite-temperature phase diagram of the Heisenberg-
Kitaev model, Phys. Rev. B 84, 100406 (2011), doi:10.1103/PhysRevB.84.100406.

[38] J. Thoenniss, M. K. Ritter, F. B. Kugler, J. von Delft and M. Punk, Multiloop pseudofermion
functional renormalization for quantum spin systems: Application to the spin-1

2 Kagomé
Heisenberg model, (arXiv preprint) doi:10.48550/arXiv.2011.01268.

[39] D. Kiese, T. Müller, Y. Iqbal, R. Thomale and S. Trebst, Multiloop functional renormal-
ization group approach to quantum spin systems, Phys. Rev. Res. 4, 023185 (2022),
doi:10.1103/PhysRevResearch.4.023185.

[40] M. K. Ritter, D. Kiese, T. Müller, F. B. Kugler, R. Thomale, S. Trebst and J. von Delft,
Benchmark calculations of multiloop pseudofermion fRG, Eur. Phys. J. B 95, 102 (2022),
doi:10.1140/epjb/s10051-022-00349-2.

[41] D. Kiese et al., Pinch-points to half-moons and up in the stars: The Kagomé skymap, Phys.
Rev. Res. 5, L012025 (2023), doi:10.1103/PhysRevResearch.5.L012025.

[42] N. Niggemann, B. Sbierski and J. Reuther, Frustrated quantum spins at finite temperature:
Pseudo-Majorana functional renormalization group approach, Phys. Rev. B 103, 104431
(2021), doi:10.1103/PhysRevB.103.104431.

31

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24
https://doi.org/10.1063/1.2199446
https://doi.org/10.1103/PhysRevB.62.R9283
https://doi.org/10.1103/RevModPhys.90.025003
https://doi.org/10.1143/PTP.14.351
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1137/141000671
https://doi.org/10.1103/PhysRevB.81.144410
https://doi.org/10.1103/PhysRevB.83.024402
https://doi.org/10.1103/PhysRevB.84.014417
https://doi.org/10.1103/PhysRevB.84.100406
https://doi.org/10.48550/arXiv.2011.01268
https://doi.org/10.1103/PhysRevResearch.4.023185
https://doi.org/10.1140/epjb/s10051-022-00349-2
https://doi.org/10.1103/PhysRevResearch.5.L012025
https://doi.org/10.1103/PhysRevB.103.104431

SciPost Phys. Codebases 24 (2024)

[43] N. Niggemann, J. Reuther and B. Sbierski, Quantitative functional renormalization
for three-dimensional quantum Heisenberg models, SciPost Phys. 12, 156 (2022),
doi:10.21468/SciPostPhys.12.5.156.

[44] B. Sbierski, M. Bintz, S. Chatterjee, M. Schuler, N. Y. Yao and L. Pollet, Magnetism in the
two-dimensional dipolar XY model, (arXiv preprint) doi:10.48550/arXiv.2305.03673.

[45] N. Niggemann, Y. Iqbal and J. Reuther, Quantum effects on unconventional pinch point sin-
gularities, Phys. Rev. Lett. 130, 196601 (2023), doi:10.1103/PhysRevLett.130.196601.

[46] O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, I. Krivenko, L. Messio and P. Seth, TRIQS:
A toolbox for research on interacting quantum systems, Comput. Phys. Commun. 196, 398
(2015), doi:10.1016/j.cpc.2015.04.023.

[47] D. Rohe, Hierarchical parallelisation of functional renormalisation group calculations –
hp-fRG, Comput. Phys. Commun. 207, 160 (2016), doi:10.1016/j.cpc.2016.05.024.

[48] G. Rohringer, New routes towards a theoretical treatment of nonlocal electronic
correlations, PhD thesis, Technische Universität Wien, Wien, Germany (2013),
doi:10.34726/hss.2013.21498.

[49] MatsubaraFunctions.jl, GitHub (2023), https://github.com/dominikkiese/
MatsubaraFunctions.jl.

[50] S. G. Jakobs, M. Pletyukhov and H. Schoeller, Nonequilibrium functional renormalization
group with frequency-dependent vertex function: A study of the single-impurity Anderson
model, Phys. Rev. B 81, 195109 (2010), doi:10.1103/PhysRevB.81.195109.

[51] D. H. Schimmel, B. Bruognolo and J. von Delft, Spin fluctuations in the
0.7 anomaly in quantum point contacts, Phys. Rev. Lett. 119, 196401 (2017),
doi:10.1103/PhysRevLett.119.196401.

[52] L. Weidinger and J. von Delft, Keldysh functional renormalization group treat-
ment of finite-ranged interactions in quantum point contacts, (arXiv preprint)
doi:10.48550/arXiv.1912.02700.

[53] A. Ge, N. Ritz, E. Walter, S. Aguirre, J. von Delft and F. B. Kugler, Real-frequency
quantum field theory applied to the single-impurity Anderson model, (arXiv preprint)
doi:10.48550/arXiv.2307.10791.

[54] M. Jarrell and J. E. Gubernatis, Bayesian inference and the analytic continua-
tion of imaginary-time quantum Monte Carlo data, Phys. Rep. 269, 133 (1996),
doi:10.1016/0370-1573(95)00074-7.

[55] D. Bergeron and A.-M. S. Tremblay, Algorithms for optimized maximum entropy
and diagnostic tools for analytic continuation, Phys. Rev. E 94, 023303 (2016),
doi:10.1103/PhysRevE.94.023303.

[56] O. Goulko, A. S. Mishchenko, L. Pollet, N. Prokof’ev and B. Svistunov, Numerical an-
alytic continuation: Answers to well-posed questions, Phys. Rev. B 95, 014102 (2017),
doi:10.1103/PhysRevB.95.014102.

[57] K. S. D. Beach, Identifying the maximum entropy method as a special limit of stochastic
analytic continuation, (arXiv preprint) doi:10.48550/arXiv.cond-mat/0403055.

32

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24
https://doi.org/10.21468/SciPostPhys.12.5.156
https://doi.org/10.48550/arXiv.2305.03673
https://doi.org/10.1103/PhysRevLett.130.196601
https://doi.org/10.1016/j.cpc.2015.04.023
https://doi.org/10.1016/j.cpc.2016.05.024
https://doi.org/10.34726/hss.2013.21498
https://github.com/dominikkiese/MatsubaraFunctions.jl
https://github.com/dominikkiese/MatsubaraFunctions.jl
https://doi.org/10.1103/PhysRevB.81.195109
https://doi.org/10.1103/PhysRevLett.119.196401
https://doi.org/10.48550/arXiv.1912.02700
https://doi.org/10.48550/arXiv.2307.10791
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1103/PhysRevE.94.023303
https://doi.org/10.1103/PhysRevB.95.014102
https://doi.org/10.48550/arXiv.cond-mat/0403055

SciPost Phys. Codebases 24 (2024)

[58] A. W. Sandvik, Constrained sampling method for analytic continuation, Phys. Rev. E 94,
063308 (2016), doi:10.1103/PhysRevE.94.063308.

[59] L. Huang, Acflow: An open source toolkit for analytical continuation of
quantum Monte Carlo data, Comput. Phys. Commun. 292, 108863 (2023),
doi:10.1016/j.cpc.2023.108863.

[60] C. Karrasch, R. Hedden, R. Peters, T. Pruschke, K. Schönhammer and V. Meden, A
finite-frequency functional renormalization group approach to the single impurity An-
derson model, J. Phys.: Condens. Matter 20, 345205 (2008), doi:10.1088/0953-
8984/20/34/345205.

[61] H. J. Vidberg and J. W. Serene, Solving the Eliashberg equations by means of N-point Padé
approximants, J. Low Temp. Phys 29, 179 (1977), doi:10.1007/BF00655090.

[62] MBEsolver.jl, GitHub (2023), https://github.com/dominikkiese/MBEsolver.jl.

[63] Polyester.jl, GitHub (2023), https://github.com/JuliaSIMD/Polyester.jl.

[64] D. R. Hartree, The wave mechanics of an atom with a non-Coulomb central field.
Part I. Theory and methods, Math. Proc. Camb. Philos. Soc. 24, 89 (1928),
doi:10.1017/S0305004100011919.

[65] V. Fock, Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems,
Z. Phys. 61, 126 (1930), doi:10.1007/BF01340294.

[66] J. C. Slater, A simplification of the Hartree-Fock method, Phys. Rev. 81, 385 (1951),
doi:10.1103/PhysRev.81.385.

[67] E. J. Baerends, D. E. Ellis and P. Ros, Self-consistent molecular Hartree-Fock-Slater calcu-
lations I. The computational procedure, Chem. Phys. 2, 41 (1973), doi:10.1016/0301-
0104(73)80059-X.

[68] F. Neese, F. Wennmohs, A. Hansen and U. Becker, Efficient, approximate and parallel
Hartree-Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree-
Fock exchange, Chem. Phys. 356, 98 (2009), doi:10.1016/j.chemphys.2008.10.036.

[69] D. G. Anderson, Iterative procedures for nonlinear integral equations, J. ACM 12, 547
(1965), doi:10.1145/321296.321305.

[70] H. F. Walker and P. Ni, Anderson acceleration for fixed-point iterations, SIAM J. Numer.
Anal. 49, 1715 (2011), doi:10.1137/10078356X.

[71] NLsolve.jl, GitHub (2023), https://github.com/JuliaNLSolvers/NLsolve.jl.

[72] L. Hedin, New method for calculating the one-particle Green’s function with application to
the electron-gas problem, Phys. Rev. 139, A796 (1965), doi:10.1103/PhysRev.139.A796.

[73] F. Aryasetiawan and O. Gunnarsson, The GW method, Rep. Prog. Phys. 61, 237 (1998),
doi:10.1088/0034-4885/61/3/002.

[74] G. Onida, L. Reining and A. Rubio, Electronic excitations: Density-functional ver-
sus many-body Green’s-function approaches, Rev. Mod. Phys. 74, 601 (2002),
doi:10.1103/RevModPhys.74.601.

[75] P. W. Anderson, Localized magnetic states in metals, Phys. Rev. 124, 41 (1961),
doi:10.1103/physrev.124.41.

33

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24
https://doi.org/10.1103/PhysRevE.94.063308
https://doi.org/10.1016/j.cpc.2023.108863
https://doi.org/10.1088/0953-8984/20/34/345205
https://doi.org/10.1088/0953-8984/20/34/345205
https://doi.org/10.1007/BF00655090
https://github.com/dominikkiese/MBEsolver.jl
https://github.com/JuliaSIMD/Polyester.jl
https://doi.org/10.1017/S0305004100011919
https://doi.org/10.1007/BF01340294
https://doi.org/10.1103/PhysRev.81.385
https://doi.org/10.1016/0301-0104(73)80059-X
https://doi.org/10.1016/0301-0104(73)80059-X
https://doi.org/10.1016/j.chemphys.2008.10.036
https://doi.org/10.1145/321296.321305
https://doi.org/10.1137/10078356X
https://github.com/JuliaNLSolvers/NLsolve.jl
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1088/0034-4885/61/3/002
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/physrev.124.41

SciPost Phys. Codebases 24 (2024)

[76] A. C. Hewson, Renormalized perturbation calculations for the single-impurity An-
derson model, J. Phys.: Condens. Matter 13, 10011 (2001), doi:10.1088/0953-
8984/13/44/314.

[77] P. Chalupa, T. Schäfer, M. Reitner, D. Springer, S. Andergassen and A. Toschi,
Fingerprints of the local moment formation and its Kondo screening in the general-
ized susceptibilities of many-electron problems, Phys. Rev. Lett. 126, 056403 (2021),
doi:10.1103/PhysRevLett.126.056403.

[78] M. Gievers, E. Walter, A. Ge, J. von Delft and F. B. Kugler, Multiloop flow equations for
single-boson exchange fRG, Eur. Phys. J. B 95, 108 (2022), doi:10.1140/epjb/s10051-
022-00353-6.

[79] F. Krien, Efficient evaluation of the polarization function in dynamical mean-field theory,
Phys. Rev. B 99, 235106 (2019), doi:10.1103/PhysRevB.99.235106.

[80] F. Krien, A. Valli and M. Capone, Single-boson exchange decomposition of the vertex func-
tion, Phys. Rev. B 100, 155149 (2019), doi:10.1103/PhysRevB.100.155149.

[81] F. Krien and A. Valli, Parquetlike equations for the Hedin three-leg vertex, Phys. Rev. B 100,
245147 (2019), doi:10.1103/PhysRevB.100.245147.

[82] F. Krien, A. I. Lichtenstein and G. Rohringer, Fluctuation diagnostic of the nodal/antinodal
dichotomy in the Hubbard model at weak coupling: A parquet dual fermion approach, Phys.
Rev. B 102, 235133 (2020), doi:10.1103/PhysRevB.102.235133.

[83] F. Krien, A. Valli, P. Chalupa, M. Capone, A. I. Lichtenstein and A. Toschi, Boson-
exchange parquet solver for dual fermions, Phys. Rev. B 102, 195131 (2020),
doi:10.1103/PhysRevB.102.195131.

[84] F. Krien, A. Kauch and K. Held, Tiling with triangles: Parquet and GWγ methods unified,
Phys. Rev. Res. 3, 013149 (2021), doi:10.1103/PhysRevResearch.3.013149.

[85] C. De Dominicis and P. C. Martin, Stationary entropy principle and renormalization in
normal and superfluid systems. I. Algebraic formulation, J. Math. Phys. 5, 14 (1964),
doi:10.1063/1.1704062.

[86] C. De Dominicis and P. C. Martin, Stationary entropy principle and renormalization in
normal and superfluid systems. II. Diagrammatic formulation, J. Math. Phys. 5, 31 (1964),
doi:10.1063/1.1704064.

[87] N. E. Bickers, D. J. Scalapino and S. R. White, Conserving approximations for strongly
correlated electron systems: Bethe-Salpeter equation and dynamics for the two-dimensional
Hubbard model, Phys. Rev. Lett. 62, 961 (1989), doi:10.1103/PhysRevLett.62.961.

[88] N. E. Bickers and S. R. White, Conserving approximations for strongly fluctuating elec-
tron systems. II. Numerical results and parquet extension, Phys. Rev. B 43, 8044 (1991),
doi:10.1103/PhysRevB.43.8044.

[89] N. E. Bickers, Parquet equations for numerical self-consistent-field theory, Int. J. Mod. Phys.
B 05, 253 (1991), doi:10.1142/S021797929100016X.

[90] N. E. Bickers, Self-consistent many-body theory for condensed matter systems, in Theoretical
methods for strongly correlated electrons, Springer, New York, USA, ISBN 9780387217178
(2004), doi:10.1007/0-387-21717-7_6.

34

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24
https://doi.org/10.1088/0953-8984/13/44/314
https://doi.org/10.1088/0953-8984/13/44/314
https://doi.org/10.1103/PhysRevLett.126.056403
https://doi.org/10.1140/epjb/s10051-022-00353-6
https://doi.org/10.1140/epjb/s10051-022-00353-6
https://doi.org/10.1103/PhysRevB.99.235106
https://doi.org/10.1103/PhysRevB.100.155149
https://doi.org/10.1103/PhysRevB.100.245147
https://doi.org/10.1103/PhysRevB.102.235133
https://doi.org/10.1103/PhysRevB.102.195131
https://doi.org/10.1103/PhysRevResearch.3.013149
https://doi.org/10.1063/1.1704062
https://doi.org/10.1063/1.1704064
https://doi.org/10.1103/PhysRevLett.62.961
https://doi.org/10.1103/PhysRevB.43.8044
https://doi.org/10.1142/S021797929100016X
https://doi.org/10.1007/0-387-21717-7_6

SciPost Phys. Codebases 24 (2024)

[91] P. M. Bonetti, A. Toschi, C. Hille, S. Andergassen and D. Vilardi, Single-boson exchange rep-
resentation of the functional renormalization group for strongly interacting many-electron
systems, Phys. Rev. Res. 4, 013034 (2022), doi:10.1103/PhysRevResearch.4.013034.

[92] N. Wentzell, G. Li, A. Tagliavini, C. Taranto, G. Rohringer, K. Held, A. Toschi
and S. Andergassen, High-frequency asymptotics of the vertex function: Diagrammatic
parametrization and algorithmic implementation, Phys. Rev. B 102, 085106 (2020),
doi:10.1103/physrevb.102.085106.

35

https://scipost.org
https://scipost.org/SciPostPhysCodeb.24
https://doi.org/10.1103/PhysRevResearch.4.013034
https://doi.org/10.1103/physrevb.102.085106

	Motivation
	Equilibrium Green's functions
	Code structure
	Basic types
	Accessing and assigning Green's function data
	Extrapolation of Matsubara sums
	Padé approximants
	Automated symmetry reduction
	Running in parallel
	Performance note

	Examples
	Hartree-Fock calculation in the atomic limit
	GW calculation in the atomic limit
	Multiboson exchange solver for the single impurity Anderson model
	Single boson exchange decomposition of the parquet equations
	Implementation in MatsubaraFunctions.jl
	Benchmark results

	Future directions
	Extrapolation of Matsubara sums
	Implementation details for the MBE solver
	SU(2) symmetry
	Time translation invariance

	References

