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Abstract

The k · p method, combined with group theory, is an efficient approach to obtain the
low energy effective Hamiltonians of crystalline materials. Although the Hamiltonian
coefficients are written as matrix elements of the generalized momentum operator
π = p + pSOC (including spin-orbit coupling corrections), their numerical values must
be determined from outside sources, such as experiments or ab initio methods. Here,
we develop a code to explicitly calculate the Kane (linear in crystal momentum) and
Luttinger (quadratic in crystal momentum) parameters of k · p effective Hamiltonians
directly from ab initio wavefunctions provided by Quantum ESPRESSO. Additionally,
the code analyzes the symmetry transformations of the wavefunctions to optimize the
final Hamiltonian. This is an optional step in the code, where it numerically finds the
unitary transformation U that rotates the basis towards an optimal symmetry-adapted
representation informed by the user. Throughout the paper, we present the methodology
in detail and illustrate the capabilities of the code applying it to a selection of relevant
materials. Particularly, we show a “hands-on” example of how to run the code for
graphene (with and without spin-orbit coupling). The code is open source and available
at https://gitlab.com/dft2kp/dft2kp.
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1 Introduction

The band structure of crystalline materials defines most of its electronic properties, and its
accurate description is essential to the development of novel devices. For this reason, the ab
initio density functional theory (DFT) [1, 2] provides one of the most successful tools for the
development of electronics, spintronics, optoelectronics, etc. The DFT methods have been
implemented in a series of codes (e.g., Quantum ESPRESSO [3, 4], VASP [5], Wien2K [6],
Gaussian [7], DFTB+ [8], Siesta [9,10], ...), which differ by the choice of basis functions (e.g.,
localized orbitals or plane-waves), pseudo-potential approximations, and other functionalities.
Nevertheless, all DFT implementations provide methods to obtain the equilibrium (relaxed)
crystalline structure, phonon dispersion, and electronic band structures. Complementary, few
bands effective models are essential to further study transport, optical, and magnetic properties
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of crystalline materials. These can be developed either via the tight-binding (TB) [11–13] or
k · p method [14,15], which complement each other.

On the one hand, the TB method has an “atomistic” nature, since it is built upon localized
basis sets (e.g., maximally-localized Wannier functions [16], or atomic orbitals), which makes
this method optimal for numerical modeling of transport, optical and other properties of
complex nanomaterials [17–20].

On the other hand, the k · p method uses basis sets of extended waves, which are exact
solutions of the Hamiltonian at a quasi-momentum of interest, typically at a high symmetry
point of the Brillouin zone. While this characteristic may limit the k ·p description to a narrow
region of the energy-momentum space, the k ·p Hamiltonians are easier to handle analytically
and, especially, are very suitable to study mesoscopic systems using the envelope function
approximation [21–26]. For example, the k.p framework has been successfully applied to
study nanostructures (quantum wells, wires, and dots) [27–29], topological insulators [30–
32], spin-lasers [33,34], polytypism [35–37], as well as a large variety of two-dimensional van
der Waals materials [38–41]. Moreover, recent developments in the field of transition metal
dichalcogenides (TMDCs) have combined DFT and k · p methodologies to explore the valley
Zeeman physics in TMDC monolayers and their van der Waals heterostructures [42–45].

Both the TB and k ·p Hamiltonians are defined in terms of arbitrary coefficients. In the TB
case, these are local site energies and hopping amplitudes described by Slater-Koster matrix
elements [11]. For the k · p Hamiltonians, these are the Kane [46, 47] and Luttinger [48]
parameters, which are matrix elements of the momentum and spin-orbit coupling operators. In
both methods (TB or k ·p ), the values of these arbitrary coefficients must be determined from
outside sources, which strongly depend on the size and analytical properties of the particular
model Hamiltonian. For instance, early studies within the k · p framework have shown that
for parabolic single band descriptions, or weakly coupled models, it is possible to write the
quadratic coefficients in terms of effective masses, which can be experimentally determined
by cyclotron resonance experiments [46, 49–52]. Moreover, energy splittings, such as band
gaps, can be directly determined from optical experiments [53–57]. For III-V semiconductors
with zinc-blend structure and nitride-based wurtzite compounds, a useful database for k · p
parameters inspired by experimentally available datasets can be found in Ref. [58]. Conversely,
for k · p Hamiltonians that do not allow analytical solutions, but still have a low number of
bands (∼ 10), it is possible to perform numerical fitting techniques to DFT calculations [39,
41,59–65]. For larger k ·p Hamiltonians (> 30 bands), fitting procedures may also be applied
[66,67] or directly extracted from first principles calculations, since the only matrix elements
involved are linear in momentum [68–70]. Interestingly, these large band k ·p models can even
be used to supplement and speed up first principles calculations, as demonstrated in Refs. [68–
70]. In TB models, fitting procedures can also be applied to obtain the unknown parameters
[71–75]. Conversely, fully automated procedures, integrated within ab initio codes, such
as the wannier90 code [76, 77], use localized Wannier functions computed from the DFT
wave functions to calculate TB parameters. Moreover, explicit calculations of the Slater-Koster
matrix elements are implemented in the paoflow [78] and DFTB+ [8] codes.

While it is possible to extract k · p models from a Taylor expansion on top of a TB model
(e.g., via the code tbmodels [79]), there are no versatile implementations to calculate the
k · p Kane (linear in k) and Luttinger (quadratic in k) parameters directly from the DFT
wavefunctions.1 To calculate the k · p matrix elements from the DFT wavefunctions, one
needs to account for how the wavefunctions are represented in the DFT code [69, 80]. For
instance, Quantum ESPRESSO and VASP implement pseudopotential approximations within
the Projector Augmented Wave (PAW) method [81–84]. Fortunately, Quantum ESPRESSO
already provides a routine to calculate matrix elements of the velocity operator (which

1While our paper was in review, a new code VASP2kp [132], similar to ours, was released.
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is sufficient to obtain k · p models, as we see in Section B). Indeed, recently, Jocić and
collaborators [85] have successfully calculated k · p models directly from QE’s wavefunctions
(see disclaimer at our Conclusions).

In this paper, we present an open-source code that automatically calculates the numerical
values for the k · p Kane and Luttinger parameters using the wavefunctions provided by
Quantum ESPRESSO (QE). For this purpose, first, we develop a patch to instruct QE to
calculate and store the matrix elements of the generalized momentum π = p + pSOC, which
includes the spin-orbit corrections. Together with the eigenenergies E0

n at k0, the matrix
elements of π for a selected set of N bands define the effective k · p Hamiltonian HN×N (k) for
k near k0. Our python package reads these matrix elements and QE’s wavefunctions |n〉 to
automatically build HN×N (k) using Löwdin’s partitioning [86] for the folding down of all QE
bands into the selected N bands subspace. Additionally, the user has the option to improve the
appearance (or form) of the effective Hamiltonian via a symmetry optimization process aided
by the qsymm package [87], which builds the symbolic Hamiltonian via group theory and the
method of invariants. To illustrate the capabilities of our code, we show here a step-by-step
“hands-on” tutorial on how to run the code for graphene, and later we present results for
selected materials [zincblende, wurtzite, rock-salt, transition metal dichalcogenides (TMDC),
and others]. In all cases, the modeled band structure matches remarkably well the DFT data
at low energies near the expansion point k0. Our code is open source and available at the
gitlab repository [88].

This paper is organized as follows. In Section 2 we present our methodology starting with a
brief review of the k · p method, Löwdin partitioning, the method of invariants, the symmetry
optimization process, and the calculation of matrix elements using the DFT data. Next, in
Section 3, we show the code in detail using graphene as a practical example. Later, in Section
4, we illustrate the results of the code for zincblend (GaAs, CdTe, HgTe), wurtzite (GaP, GaN,
InP), rock-salt (SnTe, PbSe), a TMDC (MoS2), and other materials (Bi2Se3, GaBiCl2). We finish
the paper with an overview of the results in Section 5, and the conclusions.

2 Methods

Our goal is to obtain the numerical values for the coefficients of k · p effective Hamiltonians
[14, 15]. Namely, these are the Kane [46, 47] and Luttinger [48] parameters. To present our
approach to this calculation, let us start by briefly describing its fundamental steps. First, we
review the k · p method to show that these coefficients depend only upon matrix elements of
the type Pm,n = 〈m|π |n〉, where π = p + pSOC is the generalized momentum operator with
the spin-orbit corrections, and {|n〉} is the set of numerical wavefunctions obtained from the
ab initio DFT simulations (e.g., via Quantum ESPRESSO [3,4]). However, the numerical DFT
basis given by {|n〉} does not match, a priori, the optimal symmetry-adapted basis set that yields
the desired form for the effective k · p Hamiltonian. Therefore, to properly identify the Kane
and Luttinger parameters, we perform a symmetry optimization, which rotates the arbitrary
numerical basis into the optimal symmetry-adapted form. This symmetry optimization is
performed via group theory [89, 90] by enforcing that the numerical DFT basis transforms
under the same representation of an optimal symmetry-adapted basis, which is informed by
the user.

In summary, the algorithm steps are:

1. Read the QE/DFT data: Energies E0
n and eigenstates |n〉 at the selected k0 point.

2. Calculate or read the matrix elements of Pm,n = 〈m|π |n〉 for all bands (m, n).
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3. Select the bands of interest (set A). The code will identify the irreducible representations
of the bands using the IrRep python package [91], and present it as a report to the
user. Additionally, the code calculates the model folded down into the selected set A via
Löwdin partitioning.

4. Build the optimal effective model from symmetry constraints using the Qsymm python
package [87] under an optimal symmetry-adapted basis informed by the user. This
optimal basis must be in a set of representations equivalent to the ones identified in
Step 3.

5. Calculate the representation matrices for the symmetry operators in the original QE basis
|n〉. The code verifies if the representations of the numerical QE basis are equivalent to
the representations of the optimal symmetry-adapted basis from step 4.

6. Calculates the transformation matrix U that rotates the original QE basis into the optimal
symmetry-adapted basis set in step 4. Applies the transformation U and calculates the
optimal symmetry-adapted numerical effective Hamiltonian.

7. Convert values from Rydberg atomic units into meV and nm units, and present a report
with values for the k · p parameters.

In the next sections, we describe the relevant details of the steps above, but not following
the algorithmic order above. More specifically, in Section 2.1, we briefly review the k · p
formalism to show that Pm,n = 〈m|π |n〉 plays a central role in our approach. Incidentally,
we introduce the folding down via Löwdin partitioning [86]. Next, we define what is the
optimal symmetry-adapted form of the Hamiltonian via the method of invariants [15, 92] in
Section 2.2. In Section 2.3, we present the symmetry optimization approach to calculate the
transformation matrix U that yields our final Hoptimal = U · HDFT · U†. At last, in Section 2.4
we discuss how Pm,n = 〈m|π |n〉 is calculated.

Throughout the paper we use atomic Rydberg units (a.u.), thus the reduced Planck
constant, bare electron mass and charge are ħh = 2m0 = e2/2 = 1, the permittivity of vacuum
is 4πϵ0 = 1, the speed of light is c = 2/α≈ 274, and α≈ 1/137 is the fine structure constant.

2.1 The k · p model

In this section, we briefly review the k · p method [14, 15, 46–48] and the folding down via
Löwdin partitioning [15,86,92] to establish our notation.

We are interested in the effective Hamiltonian near a high-symmetry point k0 of the
Brillouin zone. Therefore, we write the quasi-momentum as κ = k0 + k, such that k is
the deviation from k0. The Bloch theorem allow us to decompose the wavefunction as
ψκ(r ) = eik·rφk0,k(r ), with φk0,k(r ) = eik0·r uk0+k(r ), where uk0+k(r ) ≡ uκ(r ) is the
periodic part of the Bloch function, while φk0,k(r ) carries the phase given by k0 and obeys
the Schrödinger equation [H0 +H ′(k)]φk0,k(r ) = [E − k2]φk0,k(r ), with

H0 = p2 + V (r ) + 2k0 ·π+HSR , (1)

H ′(k) = 2k ·π , (2)

π= p +
α2

8
σ ×∇V (r ) , (3)

where H0 is the Hamiltonian at k = 0, V (r ) is the periodic potential, H ′(k) carries the
k-dependent contributions that will be considered as a perturbation hereafter, π is the
generalized momentum that includes the spin-orbit contributions (SOC), andσ = (σx ,σy ,σz)
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are the Pauli matrices for the electron spin. For simplicity, we consider only leading order
corrections of the fine structure terms. Namely, at k = 0, the HSR carries the scalar relativistic
terms, composed by the Darwin, HD = α2

8 ∇
2V (r ), and the mass-velocity corrections,

HMV = −α2p4/4. In the ab initio DFT data, these are implied in the numerical eigenvalues E0
n

of H0. For finite k ̸= 0, we keep only the SOC contribution in π, and neglect the higher order
mass-velocity corrections (see Appendix A).

The DFT data, as shown in the next section, provide us with a set {|n〉} of eigenstates of
H0, i.e. H0 |n〉 = E0

n |n〉. From this crude DFT basis, we define an all bands model HDFT
all (k),

with matrix elements
〈m|HDFT

all |n〉= E0
nδm,n + 2k · Pm,n , (4)

where Pm,n = 〈m|π |n〉. We refer to this as the crude model because it is calculated from
the original numerical DFT wavefunctions, which do not have an optimal symmetry-adapted
form (more detail in Section 2.3). Nevertheless, it already shows that E0

n and Pm,n are central
quantities, and both can be extracted from DFT simulations, as shown in Section 2.4.

Next, we want to fold down HDFT
all into a subspace of N bands near the Fermi energy to

obtain our reduced, but still crude, effective model HDFT
N×N . This is done via Löwdin partitioning

[15,86,92]. First, the user must inform the set of N bands of interest, which we refer to as set
A. Complementary, the remaining remote bands compose the set B. Considering the diagonal
basis H0 |n〉= E0

n |n〉, and the perturbation H ′(k), the Löwdin partitioning leads to the effective
Hamiltonian HDFT

N×N defined by the expansion

[HDFT
N×N ]m,n(k) =
�

E0
n + k2
�

δm,n +H ′m,n(k) +
1
2

∑

r∈B

H ′m,r(k)H
′
r,n(k)

�

1
E0

m − E0
r
+

1
E0

n − E0
r

�

+ · · · ,

(5)
with H ′m,n(k) = 〈m|H

′(k) |n〉 = 2k · Pm,n. Here, the indices m, n ∈ A run over the bands we
want to model (set A), while r ∈ B run over the remote bands. The expansion above is shown
up to second order in H ′, but higher order terms can be found in Ref. [15]. Alternatively, the
recent python package pymablock [93] implements an efficient numerical method to compute
the Löwdin partitioning to arbitrary order.

2.2 The optimal symmetry-adapted form of H

The selection rules from group theory allow us to identify which matrix elements of an effective
Hamiltonian are finite [89]. More interestingly, the method of invariants [15,92] can be used
to directly obtain the most general form of Hoptimal

N×N (k) allowed by symmetry. To define this
form, consider a Taylor series expansion

Hoptimal
N×N (k) =
∑

i, j,l

hi, j,l ki
x k j

y kl
z , (6)

where hi, j,l are constant matrices that multiply the powers of k = (kx , ky , kz) as indicated by
its indices i, j, l = {0,1, 2, . . . }. To find the symmetry allowed hi, j,l , we recall that the space
group G of the crystal is defined by symmetry operations that keep the crystalline structure
invariant. Particularly, at a high symmetry point κ = k0, one must consider the little group
Gk0
∈ G of symmetry operations that maintain k0 invariant (the star of k0). Hence, Hoptimal

N×N (k)
must commute with the symmetry operations of Gk0

. Namely,

Hoptimal
N×N (Dk(S)k) = Dψ(S)Hoptimal

N×N (k)Dψ(S−1) , (7)

where Dψ(S) are the representation matrices for each symmetry operator S ∈ Gk0
in the

subspace defined by the wavefunctions of set A, and Dk(S) are the representation matrices
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acting on the vector k = (kx , ky , kz). The set of equations defined by this relation for all
S ∈ Gk0

leads to a linear system of equations that constrain the symmetry allowed form of

Hoptimal
N×N (k), i.e., it defines which of constant matrices hi, j,l are allowed up to a multiplicative

factor. Ultimately, these multiplicative factors are the Kane and Luttinger parameters that we
want to calculate numerically.

The python package Qsymm [87] implements an efficient algorithm to find the form
of Hoptimal

N×N (k) solving the equation above and returns the symmetry allowed hi, j,l . Qsymm
refers to these as the Hamiltonian family. To perform the calculation, the user must inform
the representation matrices Dψ(S) for the generators of Gk0

. Notice that the choice of
representation is arbitrary, and different choices lead to effective Hamiltonians with different
forms. This ambiguity is the reason the next step, symmetry optimization, is necessary.

2.3 Symmetry optimization

In the previous section, the matrix representations for generators S ∈ Gk0
are implicitly written

in an optimal symmetry-adapted basis, which we will now label with an O index, as in {|nO〉},
to distinguish from the crude DFT numerical basis, which we now label with an C index, as
in {|nC〉}. The matrix representations of S written in these two bases are equivalent up to a
unitary transformation U , i.e. DO(S) = U · DC(S) · U†. Indeed, this same matrix U transforms
the crude DFT numerical Hamiltonian into the desired optimal symmetry-adapted form, i.e.
Hoptimal

N×N = U ·HDFT
N×N · U

†. Therefore, our goal here is to find this transformation matrix U .
For each symmetry operator Si ∈ Gk0

, let us define C i ≡ DC(Si) and Oi ≡ DO(Si) as the
representation matrices under the original numerical DFT basis (C), and under the desired
optimal symmetry-adapted representation (O), respectively. For irreducible representations,
this U is unique (modulo a phase factor) and an efficient method to obtain it was recently
developed [94] and used in Ref. [85] to transform the effective model into the desired form.
The procedure described in Ref. [94] is exact but relies on a critical step where one has to find
for which indices (a, b) the weight matrix ra,b is finite. For transformations between irreps,
any of the finite ra,b lead to equivalent unitary transformations. However, for transformations
between reducible representations, one needs to identify, within the set of finite ra,b, the ones
that yield nonequivalent transformation matrices that combine to form the final transformation
matrices U . This can be a complicated numerical task. Here, instead, we propose an alternative
method that applies more easily to reducible representations and allows us to obtain the
transformation matrix U with a systematic approach. Next, we describe the method, and
later in Sec. 3.3 we illustrate its capabilities using the spinful graphene example.

The set of unitary transformations Oi = U · C i · U† for each Si ∈ Gk0
compose a system of

equations for U . These can be written in terms of its matrix elements in a linearized form that
reads as

∑

j

Um, jC i
j,n −O

i
m, jU j,n = 0 . (8)

Defining a vector V = {U1,1, U1,2, · · · , U2,1, · · · , UN ,N}T , where N is the order of the
representations (number of bands in set A), allow us to cast the equation above as Qi · V = 0,
with Qi = 1N ⊗ (C i)T −Oi ⊗ 1N of size N2 × N2, and 1N as the N × N identity matrix. Since
the same similarity transformation U must apply for all Si , we stack each Qi into a rectangular
matrix Q = [Q1,Q2, · · · ,Qq]T of size (qN2)×N2. The full set of equations now read as Q·V = 0,

such that the solution V =
∑NQ

j=1 c j v j is a linear combination of the nullspace {v j} of Q, with
coefficients c j and nullity NQ. The matrix U can be recovered from the elements of V , which
follow from its definition above. If u j is the matrix reconstructed form of v j , we can write

U =
∑NQ

j=1 c ju j .
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Additionally, it is interesting to consider anti-unitary symmetries. These can be either
the time-reversal symmetry (TRS) itself, or combinations of TRS and space group operations
(magnetic symmetries) [89, 90]. For instance, in spinful graphene neither TRS nor spatial
inversion are symmetries of the K point, but their composition is an important symmetry that
enforces a constraint on the allowed SOC terms (see Sec. 3.3). Following a notation similar
to the one above, let us refer to these magnetic symmetries as C̄ i = DC(S̄i)K ≡ C̃ iK and
Ōi = DO(S̄i)K ≡ ÕiK, where K is the complex conjugation, and (C̃ i , Õi) are the unitary
parts of (C̄ i , Ōi). Now the basis transformation for these symmetries read as Õi = U∗ · C̃ i ·U†,
where we choose to apply K to the left (this choice is for compatibility with the python package
IrRep [91]). To add this equation to the Q matrix above, we consider U and U∗ as independent
variables. Then, as above, it follows the linearized form

∑

j

U∗m, j C̃
i
j,n − Õ

i
m, jU j,n = 0 . (9)

In all cases, the expression for the transformation matrix is U =
∑NQ

j=1 c ju j , where the
coefficients c j are so far undefined. To find these coefficients c j , we numerically minimize the
residues R({c j}) =

∑

i ||Oi − U · C i · U†||2, and R̃({c j}) =
∑

i ||Õi − U∗ · C̃ i · U†||2. The global
minima of these residues, R({c j}) = R̃({c j}) ≡ 0, yields a solution U({c j}), such that small
perturbations to the coefficients c j → c j + δc j lead to quadratic deviations from the minima,
e.g., R∝ |δc j|2. This procedure opens a question of whether the solution U({c j}) at the global
minima is unique.

Since U represents a transformation between two basis sets (e.g., |nO〉 = U |nC〉), it
expected to be unique. However, the problem here is formulated such that we explicitly have
the eigenstates |nC〉 that compose the crude DFT basis set C, while for the optimal symmetry-
adapted basis set O we know only how we expect the eigenstates |nO〉 to transform under the
symmetry operations of the group. Therefore, instead of solving for U directly from the linear
basis transformation |nO〉= U |nC〉, we rely on the quadratic equations for the transformation
between the symmetry operators (e.g., DO(S) = U · DC(S) · U†), or their linearized forms in
Eq. (8) and Eq. (9). First, consider that O and C refer to distinct, but equivalent irreps. As
emphasized in [94], it follows from Schur’s lemma that the transformation U is unique modulo
a phase. Indeed, for the unitary constraints, Oi = U ·C i ·U†, the solution U is invariant under
U → eiθU for any real θ , while for the anti-unitary constraint, Õi = U∗ · C̃ i ·U†, U is invariant
only for θ = 0 or π. Next, without loss of generality, let us consider that O and C refer
to reducible representations already cast in block-diagonal forms. In this case, the solution
U = U1 ⊕ U2 ⊕ · · · also takes a block-diagonal form, where each block U j corresponds to a
transformation within a single irrep subspace. It follows that each U j is unique modulo the
phases above. The overall global phase of U does not affect the calculation of our matrix
elements. However, the arbitrary relative phases between the blocks U j might lead to ill-
defined phases of matrix elements between eigenstates of different irreps if the anti-unitary
symmetries are not informed. In contrast, if anti-unitary symmetries are used, the undefined
phase factor in the matrix elements is just a sign.

2.4 Matrix elements via DFT

As shown above, our approach to obtain a k · p model directly from the DFT data relies on
two quantities: (i) the band energies E0

n at the k · p expansion point k0; and (ii) the matrix
elements Pm,n = 〈m|π |n〉 also calculated at k0 for all bands {|n〉}. The band energies E0

n are
a straightforward output of any DFT code. Therefore, here we discuss only the calculation of
Pm,n = 〈m|π |n〉.

We focus on the Quantum ESPRESSO (QE) [3, 4] implementation of ab initio DFT [1, 2].
There, the Hamiltonian is split into the core and intercore regions via the Projector Augmented
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Wave (PAW) method [81–83], which is backward compatible with ultrasoft (USPPs) [82, 95]
and norm-conserving pseudo-potentials (NCPP) [96–98]. In these approaches, the atomic
core region is replaced by pseudopotentials, which are constructed from single-atom DFT
simulations with the Dirac equation in the scalar relativistic or full relativistic approaches.
Thus, for molecules or crystals, QE solves a pseudo-Schrödinger equation, with the atomic
potentials replaced by the pseudopotentials. Here we shall not go through the details of
the PAW and pseudopotential methods. For the interested reader, we suggest Refs. [81–83].
Instead, for now, it is sufficient to conceptually understand that QE provides numerical
solutions for the Schrödinger equation with the fine structure corrections, which can be
expressed by the Hamiltonian

H ≈ p2 + V (r ) +HSR+
α2

4
(σ ×∇V ) · p , (10)

where HSR = HD + HMV contain the Darwin and mass-velocity contributions, as presented
above, and the last term is the spin-orbit coupling.

2.4.1 Matrix elements of the velocity

Fortunately, the QE code already provides tools to calculate the matrix elements of the velocity
operator 1

2 v = i
2[H, r ], which reads as

v
2
=

1
2
∂ H
∂ p
= π+

1
2
∂ HMV

∂ p
≈ π , (11)

where we neglect the mass velocity corrections (see Appendix A). Thus, we find that
Pm,n = 〈m|π |n〉 ≈ 〈m|

1
2 v |n〉. The calculation of Pm,n is already partially included in the post-

processing tool bands.x (file PP/src/bands.f90), within the write_p_avg subroutine
(file PP/src/write_p_avg.f90). This calculation includes the necessary PAW, USPPs, or
NCPPs corrections, which are critical for materials where the wavefunction strongly oscillates
near the atomic cores [99]. However, the write_p_avg subroutine only calculates |Pm,n|2

for m in the valence bands (below the Fermi level) and n in the conduction bands (above the
Fermi level). To overcome this limitation, we have built a patch that modifies bands.f90
and write_p_avg.f90 to calculate Pm,n for all bands. This leads to a modified bands.x
with options to follow with its original behavior or to calculate Pm,n according to our needs.
This is controlled by a new flag lpall = False/True added to the input file of bands.x
in addition to the lp = True. Its default value (lpall = False) runs bands.x with its
original code, while the option lpall = True instructs bands.x to store all Pm,n into the
file indicated by the input parameter filp.

In general, it is preferable to patch QE to use the full Pm,n, since the calculation is faster and
more precise. Nevertheless, if the user prefers not to apply our patch to modify QE, our code
can calculate an approximate Pm,n using only the plane-wave components outputted by the QE
code. In this case, we consider that the pseudo-wavefunction is a reasonable approximation
for the all-electron wavefunction, thus neglecting PAW corrections, which are necessary to
account for SOC. Therefore, under this approximation, Pm,n ≈ 〈m| p |n〉. The relevance of
these PAW/SOC corrections to Pm,n are presented in the example shown in Sec. 4.2.1. Within
this approximation, the wavefunction ψn,k(r ) for the band n at quasi-momentum k, and Pm,n
read as

ψn,k(r )≈
1
p
Ω

∑

G

cn(G)e
i(k+G)·r , (12)

Pm,n ≈
∑

G

(k +G)c†
m(G)cn(G) , (13)
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where cn(G) are the plane-wave expansion coefficients (spinors in the spinful case), Ω is the
normalization volume, and G are the lattice vectors in reciprocal space. To implement this
calculation, and the one shown next, we use the IrRep python package [91], since it already
has efficient routines to read and manipulate the QE data.

2.4.2 Matrix elements of the symmetry operators

To calculate the matrix elements of the symmetry operators, it is sufficient to considerψn,k(r )
from Eq. (12). In this case, it is safe to neglect PAW corrections, since they must transform
identically to the plane-wave parts under the symmetry operations of the crystal space group.
For a generic symmetry operation S ∈ Gk0

, its matrix elements read as

Dψm,n(S) =
∑

G,G′
c†

m(G
′)cn(G)

∫

e−i(k+G′)·r e−iS−1(k+G′)·r d3r
Ω

. (14)

Using the plane-wave orthogonality, one gets

Dψm,n(S) =
∑

G

c†
m

�

− k + S−1 · (k +G)
�

cn(G) , (15)

where S−1 is the inverse of S, and S−1 ·(k+G) is its action on the (k+G) vector. For instance, if
S = I is the spatial inversion symmetry, S−1 · (k+G)=−k−G, and Dψm,n(S)=

∑

G c†
m(−2k−G)cn(G).

3 Hands-on example: Graphene

In this section, we present a detailed example and results for spinless graphene, and a shorter
discussion on spinful graphene in Sec. 3.3 to illustrate the case of transformations between
reducible representations. Graphene [100,101] is nowadays one of the most studied materials
due to the discovery of its Dirac-like effective low energy model, which reads as H = ħhvFσ ·k.
Here, the σ Pauli matrices act on the orbital pseudo-spin subspace, k = (kx , ky) is the quasi-
momentum, and vF is the Fermi velocity, which is the unknown coefficient that we want to
calculate in this example. For this purpose, we follow a pedagogical route in this first example.
First, we present the symmetry characteristics of the graphene lattice and its wavefunctions
at the K point. Then, we show the results for the representation matrices and Hamiltonian in
the crude and optimal symmetry-adapted basis to illustrate how the symmetry optimization
of Section 2.3 is used to build the optimal symmetry-adapted Hamiltonians and identify the
numerical values for its coefficients. Later, in Section 3.2 we show a step-by-step tutorial on
how to run the code. This example was chosen for its simplicity, which allows for a clear
discussion of each step. Later, in Section 4 we present a summary of examples for other
materials of current interest.

Before discussing the details, we summarize the results for the band structure of graphene
in Fig. 1, which compares the DFT data with our two main models. The black lines are
calculated from the all bands model from Eq. (4), which uses the matrix elements Pm,n in
the original crude DFT basis without further processing. In contrast, the red lines are the band
structure calculated with the folded-down Hamiltonian for a set A composed by the two bands
near the Fermi energy that defines the Dirac cone, and considers the symmetry optimization
process to properly identify the k ·p parameters. This optimal symmetry-adapted Hamiltonian
is shown in Eq. (21) below, and the numerical value for its parameters is shown at Step 7 in
Section 3.2.
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Figure 1: Graphene lattices emphasizing the Dirac cone eigenstates at the K point,
where (a) |A〉 = |(X + iY )Z〉 and (b) |B〉 = |(X − iY )Z〉. Both eigenstates are
composed by pz orbitals centered at the colored sites (A and B lattices) with the
Bloch phase factors indicated within the circles, where τ = exp(i2π/3). (c) The
first Brillouin zone, marking the path Γ − K − M used to plot the bands in (d). (d)
Band structure for graphene calculated via QE/DFT (blue circles), all bands model
[Eq. (4)] (black lines), and optimal symmetry-adapted model [Eq. (21)] for the two
bands forming the Dirac cone (red). Here, the QE/DFT simulation was performed
with 300 bands.

3.1 Overview of the theory and symmetry optimization

The crystal structure of graphene is a hexagonal monolayer of carbon atoms, as shown in Figs.
1(a) and 1(b), which is invariant under the P6/mmm space group (#191). However, since
its Dirac cone is composed of pz orbitals only, it is sufficient to consider the C6V factor group
to describe the lattice. Particularly, at the K point [see Fig. 1(c)], the star of K corresponds to
the little group C3V , which is generated by a 3-fold rotation C3(z) and a mirror My . The Dirac
bands of graphene are characterized by the irrep E of C3V (or irrep K6 from P6/mmm [102]),
which is composed by basis functions (xz, yz).

To build the optimal symmetry-adapted effective model via the method of invariants, we
need to specify a basis and calculate the matrix representation of the symmetry operations
mentioned above. Since the wavefunctions of the Dirac cone transform as the irrep E of C3V ,
a naive choice would be Aunconv ={|X Z〉 ,|Y Z〉}, which corresponds to a set A in Section 2.1.
This choice of basis refers to a possible C representation in Section 2.3, and it yields

Dunconv(C3(z)) =

�

cosθ − sinθ
sinθ cosθ

�

, (16)

Dunconv(My) =

�

1 0
0 −1

�

, (17)

Hunconv ≈
�

c0 − c1kx c1ky
c1ky c0 + c1kx

�

, (18)

where θ = 2π/3. Here Hunconv is obtained via Qsymm up to linear order in k, for brevity. While
the eigenenergies of Hunconv represent correctly the Dirac cone as E± = c0+ |c1|

q

k2
x + k2

y , the
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Hamiltonian Hunconv takes an undesirable unconventional form.
A more convenient choice is Aconv = {|(X + iY )Z〉 ,|(X − iY )Z〉}, which is illustrated in Figs.

1(a) and 1(b). This choice of basis leads to

Dconv(C3(z)) =

�

eiθ 0
0 e−iθ

�

, (19)

Dconv(My) =

�

0 1
1 0

�

, (20)

Hconv ≈
�

c0 c1k−
c1k+ c0

�

+

�

c2k2 c3k2
+

c3k2
− c2k2

�

, (21)

where k± = kx ± iky . Now, up to linear order in k, we see that Hconv ≈ c0 + c1σ · k, where
σ act on the subspace set by Aconv, and we identify c1 = ħhvF . Additionally, the k-quadratic
terms that lead to trigonal warping corrections. Notice that both choices, Aunconv and Aconv,
are equivalent representations, but the conventional one leads to the familiar form of the
graphene Hamiltonian. These two basis sets are related by an unitary transformation U , such
that Aconv = U · Aunconv and Hconv = UHunconvU†, with

Uunconv→conv =
1
p

2

�

1 i
1 −i

�

. (22)

Next, let us analyze the set AQE of numerical wavefunctions from QE. Do they correspond
to AQE = Aconv or AQE = Aunconv? The answer is neither. Since it is a raw numerical calculation,
typically diagonalized via the Davidson algorithm [103], a degenerate or nearly degenerate
set of eigenstates might be in any linear combination of its representative basis. Therefore,
the symmetry optimization step is essential to find the matrix transformation U that yields
Aconv = U · AQE. To visualize this, let us check the matrix representations of the symmetry
operators above, and the effective Hamiltonian calculated from the crude QE data. For the
symmetry operators, we find

DQE(C3(z))≈
�

−0.5 −0.35+ 0.79i
0.35+ 0.79i −0.5

�

, (23)

DQE(My)≈
�

+0.5 0.35− 0.79i
0.35+ 0.79i −0.5

�

. (24)

While this cumbersome numerical representation does not resemble neither Aconv nor Aunconv,
our symmetry optimization process correctly finds a transformation matrix U that returns
Aconv = U · AQE, where

U ≈
�

0.7i −0.28+ 0.65i
−0.6+ 0.37i 0.7− 0.1i

�

. (25)

Finally, for the Hamiltonian, up to linear order in k and in the original QE basis, we find

HQE ≈
�

−0.37 −0.25+ 0.57i
−0.25− 0.57i 0.37

�

kx +

�

0.62 0.15− 0.34i
0.15+ 0.34i 0.62

�

ky , (26)

which takes a cumbersome form in this raw numerical basis. However, applying the
transformation U , the symmetry adapted model becomes

Hoptimal
N×N = UHDFT

N×N U† ≈ 0.72σ · k . (27)

Here we identify ħhvF = 0.72 in Rydberg units, yielding vF = 0.83 × 106 m/s. The resulting
band structure calculated from Hoptimal, including the k-quadratic terms, is shown as red lines
in Fig. 1(d) and it matches well the QE/DFT data near K.
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3.2 Running the code

The example presented here is available in the Examples/graphene-nosoc.ipynb
notebook in the code repository, and shown in Algorithm 1. Here we show only the minimal
procedure to read the DFT data, build an effective model from the symmetry constraints, and
calculate the numerical values for the model parameters. Complementary, the full code in
Examples/graphene-nosoc.ipynb shows how to plot the data presented in our figures.

For now, we assume that the DFT simulation was successful. The suggested steps
to run QE and prepare the data for our code is to run the calculation=‘scf’ and
calculation=‘bands’ with pw.x. Then, run bands.x to extract the bands from QE’s
output and store it in gnuplot format to plot the figures. Here, for graphene, we assume
that the bands calculation was run for a path Γ −K−M with 30 points between each section,
such that K is the 31st point in the list.

Next, we describe each step shown in Algorithm 1.

Step 1. After running QE, the first step is to read the DFT data from the QE’s output folder.
The command dft2kp.irrep(...) uses the python package IrRep [91] to read the data
for the selected k point to be used in the k ·p expansion, as indicated by the parameters kpt and
kname. The data is read from the folder indicated by the parameter dftdir, while outdir
and prefix refer to values used in the input file of QE’s pw.x calculation. Additionally, the
command dft2kp.irrep(...) also accepts extra parameters from the package IrRep (see
code documentation).

Step 2. In step 2, the code will either read or calculate the matrix elements Pm,n to build
the effective models. If the user runs QE modified by our patch, the QE tool bands.x will
generate a file kp.dat that already contains the values for Pm,n. In this case, the user must
inform the name of this file via the parameter qekp. Otherwise, if qekp is omitted, our code
calculates an approximate value for Pm,n ≈ 〈m| p |n〉 from the pseudo-wavefunction of QE, as
in Eq. (13), which neglects all SOC corrections.

Step 3. Next, the user must choose which set of bands will be considered to build the model.
This is the set A in Section 2.1. In this example, we select bands 3 and 4, which correspond to
the Dirac cone of graphene. The code analyzes the list of bands and identifies their irreducible
representations (irreps) using the IrRep package [91]. Here, the set A must contain only
complete sets of irreps, otherwise the Löwdin perturbation theory would fail with divergences
[see Eq. (5)], since the remote bands of set B would have at least one band degenerated with a
band from set A. If this condition fails, the code stops with an error message. Otherwise, if set
A is valid, the code outputs a report indicating the space group of the crystal (e.g., P6/mmm),
the selected set of bands (e.g., [3,4]), their irrep (e.g., K6 [102]), and degeneracy (2). The
report reads as

Space group 191: P6/mmm
Verifying set A: [3 4]
Band indices: [3, 4] Irreps: (K6) Degeneracy: 2

Additionally, in this step, the code also calculates the crude effective model for the bands
in set A via Löwdin partitioning [86]. It stores the folded Hamiltonian in a Python
dictionary (kp.Hdict) representing the matrices hi, j,l in the crude DFT basis that define

HDFT(k) =
∑

i, j,l hi, j,kki
x k j

y kl
z . For instance, kp.Hdict[‘xx’] refers to the matrix h2,0,0 that

defines the term h2,0,0k2
x .

13

https://scipost.org
https://scipost.org/SciPostPhysCodeb.25


SciPost Phys. Codebases 25 (2024)

Step 4. In step 4 we build the optimal symmetry-adapted model using Qsymm [87], which
solves Eq. (7) for the method of invariants. In Algorithm 1, we build the representations for
the symmetry operations C3(z), My , Mz , and T I. Above we have discussed only the first two
for simplicity. Here we also include the mirror Mz , and the anti-unitary symmetry T I, which
is composed of the product of time-reversal and spatial inversion symmetries. The mirror Mz
has a trivial representation Dψ(Mz) = −1, since the orbitals that compose the Dirac bands
in graphene are all of Z-like (odd in z). The T I representation follows from Aconv presented
above by recalling that spinles time-reversal is simply the complex conjugation and the spatial
inversion takes (X , Y, Z)→ (−X ,−Y,−Z). In this particular example, the T I symmetry does
not play an important role, but it is essential for a spinful graphene example, as it constrains
the SOC terms at finite k (see Sec. 3.3). The command dft2kp.qsymm(...) calls Qsymm
to build the effective model from the list of symmetries, indicated by symm, up to order
k2, as indicated by total_power. We recommend always using dim=3 [three dimensions
for k = (kx , ky , kz)] because QE always work with the 3D space groups. Additionally, the
command dft2kp.qsymm(...) accepts other parameters that are given to the Qsymm
package (see code documentation). By default, this command outputs the optimal symmetry-
adapted Hamiltonian, which matches the one in Eq. (21).

Step 5. Next, we start the symmetry optimization process. The first call
kp.get_symm_matrices() calculates, via Eq. (15), the matrix representation for all
symmetry operators identified in the QE data by the IrRep package. However, neither
QE nor IrRep account for the anti-unitary symmetries. Therefore, we call here the
optional routine kp.add_antiunitary_symm(...), which manually adds the anti-unitary
symmetry to the list of QE symmetries and matches it with the corresponding symmetry
of Qsymm informed on its first parameter. In this example, we add the T I symmetry
built with Qsymm above. This operator needs to be complemented with a possible
non-symmorphic translation vector, which is zero in this case, as shown by the second
parameter of kp.add_antiunitary_symm(...). Both calls, kp.get_symm_matrices()
and kp.add_antiunitary_symm(...), calculate the matrix representations in the crude
QE basis.

Step 6. To calculate the transformation matrix U , we compare the ideal matrix
representations informed via Qsymm (object qs) and the crude QE matrix representations
(object kp). The call dft2kp.basis_transform(...) performs this comparison and
returns an error if the symmetries in both objects do not match. More importantly, it
calculates the transformation matrix U solving Eq. (8) and Eq. (9). The matrix U is stored
in the object optimal.U. If the calculation of U is successful, the code applies U to rotate
the hi, j,l terms in kp.Hdict from the crude DFT basis into the optimal symmetry-adapted
basis. This allows for direct identification of the coefficients cn from Eq. (21), which are
stored in optimal.coeffs. Additionally, the code builds the numerical optimal symmetry-
adapted model and provides a callable object optimal.Heff(kx, ky, kz) that returns the
numerical Hamiltonian Hoptimal

N×N for a given value of k = (kx , ky , kz).

Step 7. At last, the code prints a report with the numerical values for the coefficients cn,
which are summarized in Table 1. As mentioned above, here we identify ħhvF = 0.72 a.u.,
yielding vF = 0.83× 106 m/s after converting the units.
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Algorithm 1 Minimal example for spinless graphene.

1 import numpy as np
2 import pydft2kp as dft2kp
3

4 # import s0, sx, sy, sz: Pauli matrices
5 from pydft2kp.constants import s0, sx, sy, sz
6

7 # step 1: read DFT data
8 kp = dft2kp.irrep(dftdir=’graphene-nosoc’,
9 outdir=’outdir’,

10 prefix=’graphene’,
11 kpt=31,
12 kname=’K’)
13

14 # step 2: read or calculate matrix elements of p
15 kp.get_p_matrices(qekp=’kp.dat’)
16

17 # step 3: define the set alpha
18 # applies fold down via Löwdin
19 setA = [3, 4]
20 kp.define_set_A(setA)
21

22 # step 4: builds optimal model with qsymm
23 phi = 2*np.pi/3
24 U = np.diag([np.exp(1j*phi), np.exp(-1j*phi)])
25 C3 = dft2kp.rotation(1/3, [0,0,1], U=U)
26 My = dft2kp.mirror([0,1,0], U=sx)
27 Mz = dft2kp.mirror([0,0,1], U=-s0)
28 TI = dft2kp.PointGroupElement(R=-np.eye(3),
29 conjugate=True,
30 U=sx)
31 symms = [C3, My, Mz, TI]
32 qs = dft2kp.qsymm(symms, total_power=2, dim=3);
33

34 # step 5: calculate the representation matrices
35 kp.get_symm_matrices()
36 # (optional): adds anti-unitary symmetry
37 kp.add_antiunitary_symm(TI, np.array([0,0,0]))
38

39 # step 6: calculates and applies
40 # the transformation U
41 optimal = dft2kp.basis_transform(qs, kp)
42

43 # step 7: print results
44 optimal.print_report(sigdigits=3)

Table 1: Graphene parameters for the Hamiltonian of Eq. (21).

Coefficient Values in a.u. Values in (eV, nm)

c0 ∼ 0 ∼ 0 eV

c1 0.72 0.52 eV nm

c2 ∼ 0 ∼ 0 eV nm2

c3 0.82 0.031 eV nm2
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Figure 2: The absolute value of the representation matrices of the symmetry
operations for the spinful graphene example, as labeled on top of each column.
The top line of matrices are defined under the ideal basis informed by the user,
i.e. {|(X + iY )Z ,↑〉, |(X − iY )Z ,↓〉, |(X − iY )Z ,↑〉, |(X + iY )Z ,↓〉}, as discussed in the
text. The central line shows the calculated representation matrices under the crude
DFT basis from QE, which does not split into the ideal block-diagonal form due to
the small SOC gap between the bands. Applying our transformation U to the crude
representation from the central line, we obtain the optimal symmetry-adapted basis
that lead to the proper block-diagonal form of the representation matrices shown in
the bottom line.

3.3 Spinful graphene

To complement the example above, we consider now the spinful graphene (full code available
at Examples/graphene.ipynb [88]). In this case, due to the small spin-orbit coupling of
graphene, the numerical DFT basis functions from QE mix two nearly degenerate irreps into an
unintended reducible representation. Nevertheless, our symmetry optimization procedure can
properly block diagonalize the symmetry operators according to the intended representation.

To see this, let us first establish the ideal basis in proper ordering that leads to the block-
diagonal form of the symmetry operators C3(z), My , Mz , and T I (considering the group
generators only). Thus, considering the spin, the basis functions now read as {|(X + iY )Z ,↑〉,
|(X − iY )Z ,↓〉, |(X − iY )Z ,↑〉, |(X + iY )Z ,↓〉}. Under the P6/mmm double space group [102,
104], this set of basis functions transform as the sum of two bidimensional irreps,2 namely
K̄7 ⊕ K̄9. Under this basis, the symmetry operators listed above take a block-diagonal form,
which are illustrated in the top row of Fig. 2. Algebraically, these read

Dideal(C3) =







−τ∗ 0 0 0
0 −τ 0 0
0 0 −1 0
0 0 0 1






, (28)

2Equivalently, if one considers only in-plane symmetry operations the K point of spinful graphene transform as
double group C3v , and the basis functions are characterized by the representations K̄4 ⊕ (K̄5 ⊕ K̄6) of this group.
Here K̄4 is bidimensional (spinor irrep), while K̄5 ⊕ K̄6 are one-dimensinal irreps that combine to form Kramers
partners.
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Dideal(My) =







0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0






, (29)

Dideal(Mz) =







i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i






, (30)

Dideal(T I) =







0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0






K . (31)

In contrast to the block diagonal form of the Dideal(· · · )matrices above, the representation
matrix for the C3(z) calculated with the crude DFT basis from QE takes the form

DQE(C3)≈







−0.9− 0.1i −0.0− 0.0i +0.1+ 0.1i −0.3− 0.3i
+0.0− 0.0i −0.9+ 0.1i −0.3+ 0.3i −0.1+ 0.1i
−0.2− 0.1i +0.0− 0.4i +0.4+ 0.5i +0.3+ 0.6i
+0.0+ 0.4i +0.2− 0.1i −0.3+ 0.6i +0.4− 0.5i






. (32)

Similarly, the crude DFT representation for My , Mz and T I also show non-block-diagonal
forms in the central line of Fig. 2.

The algorithm described in Sec. 2.3 builds a system of equations to find the transformation
matrix U that yields Dideal(S) = U DQE(S)U† for all symmetry S of the group (i.e.,
S = {C3(z), My , Mz ,T I} in this example). The Python code to implement this procedure is
nearly identical to Algorithm 1, requiring only (i) the expansion of setA, in Step 3, to account
for the 4 bands that compose the spinful Dirac cone (i.e., setA = [6, 7, 8, 9] in this
Example); and (ii) the replacement of the symmetry matrices from Step 4 for the ones listed
above. From these, in Step 6 we find the transformation matrix

U ≈







+0.1− 0.0i −0.1+ 0.2i −0.6− 0.6i −0.4− 0.2i
+0.1− 0.2i −0.0− 0.1i +0.4+ 0.2i −0.9− 0.0i
+0.2+ 0.2i −0.9+ 0.1i −0.1+ 0.2i +0.0+ 0.1i
−0.6− 0.7i −0.3+ 0.0i −0.1+ 0.1i +0.1− 0.2i






, (33)

which precisely yields the transformation U DQE(S)U† = Doptimal(S) ≡ Dideal(S), as illustrated
in the bottom row of Fig. 2.

The model resulting from the considerations above read as

Hsfg =







c0 0 −c2k− 0
0 c0 0 −c2k+
−c2k+ 0 c1 0

0 −c2k− 0 c1






+







c4k2 0 −c5k2
+ 0

0 c4k2 0 −c5k2
−

−c5k2
− 0 c6k2 0

0 −c5k2
+ 0 c6k2






, (34)

where k2 = k2
x + k2

y , k± = kx ± iky , and we omit kz-dependent for 2D materials. Notice that
if we do not consider the composed magnetic anti-unitary symmetry T I, the c2 and c5 terms
above split into real and imaginary parts. Particularly for c2, the real part refers to matrix
elements of p, while the imaginary part would carry contributions from psoc. Nevertheless,
considering T I, these coefficients are expected to be real and the psoc contributions to the
imaginary part vanish by symmetry.
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Table 2: Spinful graphene parameters for the Hamiltonian of Eq. (34).

Coefficient Values in a.u. Values in (eV, nm)

c0 −1.39× 10−5 −0.000189 eV

c1 −1.40× 10−5 −0.000190 eV

c2 0.72 0.518 eV nm

c4 0.049 0.0018 eV nm2

c5 −0.82 -0.031 eV nm2

c6 0.049 0.0018 eV nm2

The numerical values found for the parameters of Hsfg in Eq. (34) are shown in Table 2. The
Fermi velocity matches the one from spinless graphene above, and we find that the intrinsic
spin-orbit coupling is λI = c1 − c0 ≈ 1 µeV, which is much smaller than its established value
of λI ≈ 24 µeV obtained via all-electron full-potential DFT implementations [105,106]. This
discrepancy is due to limitations of the pseudo-potentials used here with QE [107], which
do not include d orbitals. Nevertheless, this example serves to show that, whenever two
irreps are nearly degenerate, the DFT wavefunctions might always be mixed into reducible
representations and the symmetry optimization procedure implemented here efficiently rotates
the DFT basis back into ideal form that yields block-diagonal reducible representations.

4 Examples

In this section, we briefly show the results for a series of selected materials without presenting
a step-by-step tutorial as above. More details for each case below can be seen in the code
repository. Here we consider examples of zincblende crystals (GaAs, HgTe, CdTe), wurtzite
crystals (GaN, GaP, InP), rock-salt crystals (SnTe, PbSe), a transition metal dichalcogenide
monolayer (MoS2), 3D and 2D topological insulators (Bi2Se3, GaBiCl2). Additional examples
can be found in the code repository. In all cases, the resulting models agree well with the DFT
bands near the k ·p expansion point and low energies, as expected. The DFT parameters used
in the simulations are presented in Appendix B.

4.1 Zincblende crystals

We consider well-known zincblende crystals: GaAs, CdTe and HgTe. These crystals are
characterized by lattices that transform as the space group F4̄3m, but their low energy
bandstructure concentrates near the Γ point, which can be described by the point group Td
after factorizing the invariant subgroup of Bloch translations. The basis functions and effective
Kane model for these materials are well described in the literature [14, 15, 90]. Here, let us
simply summarize this characterization to establish a notation.

In all cases considered in this section, the first conduction band and the top valence bands
transform either as S or P = (X , Y, Z) orbitals, and in terms of the crystallographic coordinates
we define x ∥ [100], y ∥ [010], and z ∥ [001]. In the single group Td , neglecting spin,
the S-like orbitals transform accordingly to the trivial A1 irrep of Td , while the P-like orbitals
transform as the T2 irrep. Including spin, the double group representation for the S-like orbitals
become A1 ⊗ D1/2 = Γ̄6, where D1/2 is the spinor representation, and it yields the spin 1/2
basis functions |S ↑〉 and |S ↓〉. For the P-like bands one gets T2 ⊗ D1/2 = Γ̄8 ⊕ Γ̄7, where
Γ̄8 represents the basis functions of total angular momentum 3/2, and Γ̄7 has total angular
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Figure 3: (a) Zincblende lattice, and (b) its first Brillouin zone (FCC). The band
structure for (c) GaAs, (d) HgTe, and (e) CdTe are shown over a large energy scale
on the main panels, while at the bottom of each panel, we show a zoom over the
relevant low energy range. In all cases, the DFT data consider 1000 bands.

momentum 1/2. These basis functions are listed in Table 3. For GaAs and CdTe the conduction
band is represented by Γ̄6 (S-type, and spin 1/2), the first valence band is composed of P-type
orbitals with total angular momentum 3/2, which are described by the Γ̄8 irrep, and the split-
off band contains P-type orbitals with total angular momentum 1/2, which defines the irrep
Γ̄7. In contrast, for HgTe the Γ̄6 and Γ̄8 are inverted due to fine structure corrections.

The basis from Table 3 diagonalizes the spinful effective Hamiltonian at k = 0, and leads
to the well known extended Kane Hamiltonian [15]. The expression for the 8×8 Hamiltonian
HZB is shown in Appendix C in terms of the coefficients c j following the output of the qsymm
code, so that it matches Examples in our repository. There, the notation for the powers of
k follows from Ref. [15], such that it can be directly compared to the extended Kane model
shown in their Appendix C. The values for the coefficients c j are also shown in Appendix C.

The band structures calculated from HZB are shown in Fig. 3, which also shows the crystal
lattice and the first Brillouin zone in Figs. 3(a-b). In all cases, Figs. 3(c–e), the blue dots
represent the DFT results. The black lines are the crude model from Eq. 4, which includes
all DFT bands and approaches a full zone description, but with a cost of a large N × N model
with typical N ≫ 100. More importantly, the red lines represent effective 8× 8 Kane model
from HZB, which matches well the DFT data at low energies and near Γ , as shown in the
zoomed insets below each panel for GaAs [Fig. 3(c)], HgTe [Fig. 3(c)], and CdTe [Fig. 3(c)].
Particularly, for HgTe it is clear the band inversion between the Γ̄6 and Γ̄8 irreps.
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Table 3: Basis functions for zincblende crystals. The first column indicates the double
group irreps for the Td point group at Γ , which are induced from the single group
irreps in parenthesis. The second column lists the basis functions on the basis of
total angular momentum, and the third column shows their expressions in terms of
the symmetry orbitals (S, X, Y, Z) and spin (↑, ↓), which follows the definitions from
Ref. [15].

IRREP Td

�

�J , m j

�

|orb, spin〉

Γ̄6(A1)

�

�

1
2 ,+1

2

�

|S,↑〉
�

�

1
2 ,−1

2

�

|S,↓〉

Γ̄8(T2)

�

�

3
2 ,+3

2

�

− 1p
2
|X + iY,↑〉

�

�

3
2 ,−3

2

�

+ 1p
2
|X − iY,↓〉

�

�

3
2 ,−1

2

�

+ 1p
6

�

2 |Z ,↓〉+ |X − iY,↑〉
�

�

�

3
2 ,+1

2

�

+ 1p
6

�

2 |Z ,↑〉 − |X + iY,↓〉
�

Γ̄7(T2)

�

�

1
2 ,−1

2

�

+ 1p
3

�

|Z ,↓〉 − |X − iY,↑〉
�

�

�

1
2 ,+1

2

�

− 1p
3

�

|Z ,↑〉+ |X + iY,↓〉
�

4.2 Wurtzite crystals

The wurtzite crystals form a lattice that is characterized by the space group P63mc, and the low
energy band structure appears near the Γ point only. Near Γ , one can factorize the translations
and the resulting factor group is the C6V point group, which is generated by the C6 rotation
around the z-axis, and the mirror Mx . Here, in terms of the crystallographic coordinates,
x ∥ [100], y ∥ [010], and z ∥ [001]. The unit cell and first Brillouin zone for these materials
are shown in Figs. 4(a) and 4(b).

To illustrate the results for wurtzite materials, we consider the cases of GaN, GaP, and
InP. Their band structures are shown in Figs. 4(c–e). In all cases, the top valence bands are
characterized by the irreps (A1+E1)⊗D1/2 = Γ̄7⊕2Γ̄9. Here, A1 is the trivial irrep of C6V (single
group), which represents S-like and Z-like orbitals, and E1 is the vector representation of C6V
that contains (X, Y)-like orbitals. These are composed with the pure spinor representation D1/2
to define the C6V double group irreps Γ̄7 and Γ̄9. Additionally, we consider two conduction
bands, which are characterized by the irreps (A1 + B1) ⊗ D1/2 = Γ̄8 ⊕ Γ̄9. The orbital basis
function for the B1 irrep is odd under both C6 and Mx , its representation on group character
tables is cumbersome, so one defines it as

�

�X (X 2 − 3Y 2)
�

≡ |V 〉 [14]. Ultimately, we consider
the double group representations ordered as shown in Table 4.

There the top indexes {c, v} refer to conduction and valence bands. Notice that the Γ9 irrep
appears in three pairs of basis functions, which allows for the s–pz mixing [108–110] Here,
however, we always work on the diagonal basis (HWZ is diagonal at k = 0), which is indicated
by the primes in the orbitals above. For a recent and detailed discussion on this choice of
representation and the s–pz mixing, please refer to Ref. [111].

Using the basis functions from Table 4 to calculate the effective 10 × 10 model using
qsymm, we obtain the Hamiltonian HWZ shown in Appendix C. Here we always consider two
conduction bands, which leads to this 10×10 generic model HWZ. However, one can also opt
to work with traditional 8 × 8 models with a single conduction band. Notice, however, that
for GaP the first conduction band transforms as Γ̄8, while for GaN and InP the first conduction
band is Γ̄9. Therefore, one must be careful when selecting the appropriate 8 × 8 model for
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Figure 4: (a) Lattice and (b) Brillouin zone for wurtzite crystals. Band structures
for (c) GaN, (d) GaP, and (e) InP show the large energy range on top, and a zoom
shows the top of the valence bands at the bottom of each panel. In all cases, the DFT
calculation considers 1000 bands.

wurtzite materials. For the valence bands, one always gets Γ̄7 ⊕ 2Γ̄9, however, the internal
ordering of these valence bands may change between materials and it can be highly sensible
to the choice of density functional [28, 60, 112, 113]. The numerical coefficients c j found for
GaN, GaP, InP are shown in Appendix C, and the resulting band structures are shown in Figs.
4(c–e). In all cases, we see that the crude model with 1000 bands (black lines) approaches
a full zone description, but here we are more interested in the reduced 10× 10 models (red
lines), which present satisfactory agreement with the DFT data at low energies.

4.2.1 Effects of the SOC corrections on Pm,n

As introduced in Sec. 2.4.2, the matrix elements Pm,n can be calculated with or without
the PAW corrections, pSOC, that carry the SOC contributions. For most of the materials we
have studied here, these corrections are marginal and the results from both cases are nearly
identical. Nevertheless, we emphasize that using our patched bands.x within QE is faster
than using the Python code to calculate Pm,n via Eq. (13).

To illustrate the effects of the PAW/SOC corrections on the matrix elements Pm,n, Fig. 5
compares the models for GaN and GaP with and without these corrections. For the conduction
bands, we notice that the pSOC corrections significantly improve the GaN effective mass, but
barely affect GaP. For the valence bands, both GaN and GaP show moderate effects of pSOC.
Indeed, this shows that a precise calculation of Pm,n is critical to improve the precision of the
models.3

3In this first version of the code we rely on the code bands.x from Quantum Expresso to calculate the matrix
elements Pm,n with PAW/SOC corrections. However, as shown in Eq. (11), this approach includes contribution
from the mass-velocity term of the fine structure, which we assume to be negligible. For future improvements of
the code, it would interesting to improve this calculation to verify if these mass-velocity contributions are indeed
always negligible.
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Table 4: Basis functions for wurtzite crystals. The first column shows the double
group irreps of C6V , which are induced from the single group irrep between
parenthesis. The second column shows the basis representation in terms of
the spherical harmonics Y m

l and spin (↑, ↓), while the third column shows the
representation in terms of the orbitals (S, X, Y, Z, V), where V = X (X 2 − 3Y 2) [14].

IRREP C6V

�

�Y m
l , spin
�

|orb, spin〉

Γ̄ c
9 (A1)

�

�Y 0
0 ,↑
� �

�S′,↑
�

�

�Y 0
0 ,↓
� �

�S′,↓
�

Γ̄ c
8 (B1)

�

�Y 3
3 − Y−3

3 ,↑
�

|V,↑〉
�

�Y 3
3 − Y−3

3 ,↓
�

|V,↓〉

Γ̄ v
9 (A1)

�

�Y 0
1 ,↑
� �

�Z ′,↑
�

�

�Y 0
1 ,↓
� �

�Z ′,↓
�

Γ̄ v
9 (E1)

�

�Y 1
1 ,↑
� �

�X ′ + iY ′,↑
�

�

�Y−1
1 ,↓
� �

�X ′ − iY ′,↓
�

Γ̄ v
7 (E1)

�

�Y−1
1 ,↑
� �

�X ′ − iY ′,↑
�

�

�Y 1
1 ,↓
� �

�X ′ + iY ′,↓
�

4.3 Rock-salt crystals

The crystal lattice for rock-salt crystals is shown in Fig. 6(a), which is an FCC lattice with
two atoms in the base, and it is described by the space group Fm3̄m. The low energy band
structure concentrates at the L point of the Brillouin zone shown in Fig. 6(b), which transforms
as the D3D point group after factorizing the Bloch translations. The basis functions for the first

Figure 5: Comparison between the DFT data and the effective models calculated
with the full matrix element Pm,n including PAW/SOC corrections (red lines) and the
simplified Pm,n without PAW/SOC corrections (green lines) for (a) GaN and (b) GaP.
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Figure 6: (a) The rock salt lattice and (b) its Brillouin zone (FCC). Band structures
for (c) PbSe and (d) SnTe. The bottom of each panel zooms into the low energy
range near the Fermi level. Both DFT calculations were performed considering 500
bands.

valence and conduction bands transform as A1g⊗D1/2 = L̄+6 and A2u⊗D1/2 = L̄−6 , where A1g is
the trivial irrep for S-like orbitals, and A2u represent Z-like orbitals [114]. Therefore, the basis
functions for the L̄+6 bands are {|S,↑〉 , |S,↓〉}, and for L̄−6 one gets {|Z ,↑〉 , |Z ,↓〉}. Here, the x ,
y , and z coordinates are taken along the [1̄1̄2], [11̄0], and [111] crystallographic directions.

Here we consider two examples of rock-salt crystals: PbSe and SnTe. Their effective 4× 4
Hamiltonian HRS under the L̄±6 basis, and its numerical parameters are shown in Appendix
C, and the comparison between DFT and model band structures are shown in Figs. 6(c)–
(d). PbSe is a narrow gap semiconductor, where the conduction band transforms as the L̄+6
irrep, and the valence band as L̄−6 . In contrast, SnTe shows inverted bands, with L̄+6 below
L̄−6 , yielding a topological insulator phase [115, 116]. In both cases, the low-energy model
captures the main features of the bands, including the anisotropy.
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4.4 Other examples

To finish the set of illustrative examples, we show here the case for: (i) the monolayer MoS2,
which is one of the most studied transition metal dichalcogenides (TMDC) [117–119]; (ii) the
bulk bismuth selenide (Bi2Se3), which is one of the first discovered 3D topological insulators
[120, 121]; and (iii) a monolayer of GaBiCl2, which is a large gap 2D topological insulator
[122]. The symmetry characteristics and basis functions for the low-energy bands of these
materials mentioned above are summarized in Table 5.

For MoS2, the first valence and conduction bands are given by the single group irreps
A′ and E′1 of the C3h group [39, 123], which can be represented as S-like and (X + iY )-like
orbitals. For GaBiCl2, the valence bands are characterized by single group E irrep, and it splits
into E⊗D1/2 = Γ̄4⊕ Γ̄5⊕ Γ̄6 in the spinful case, while the conduction band is given by the irrep
A1⊗D1/2 = Γ̄6. For Bi2Se3, a detailed derivation of the effective model can be seen in Ref. [124],
which shows that the first valence and conduction bands are given by A1g ⊗ D1/2 = Γ+6 , and
A2u ⊗ D1/2 = Γ−6 .

The effective Hamiltonians and their numerical coefficients for these materials can be
found in the Examples folder of the code repository. Here we show only the comparison
between the DFT and model band structures in Fig. 7. The MoS2 case, as shown in Fig. 7(a),
is challenging for a k · p method, since its band structure presents valleys in between high

Table 5: Summary of space group, irreps and basis functions for the low energy
bands of MoS2, GaBiCl2, and Bi2Se3. The first column lists the materials, the second
indicates the lattice space group, and the little group at the relevant k point. The
third and fourth columns lists the irreps and basis functions for the low energy bands
in each case. The table shows the double group irreps and the corresponding single
group irreps between parenthesis.

Material Group info IRREP Basis

MoS2

Space group K̄11(E′1) |X + iY,↑〉

P6̄m2 K̄10(E′1) |X + iY,↓〉

Little group K̄8(A′) |S,↑〉

K: C3h K̄9(A′) |S,↓〉

GaBiCl2

Space group
Γ̄4(E) |X + iY,↑〉

Γ̄5(E) |X − iY,↓〉

P3m1
Γ̄6(E)

|X − iY,↑〉

Little group
|X + iY,↓〉

Γ̄6(A1)
|Z ↑〉

Γ : C3V |Z ↓〉

Bi2Se3

Space group
Γ̄+6 (A1g)

|S,↑〉

R3̄m |S,↓〉

Little group
Γ̄−6 (A2u)

|Z ,↑〉

Γ : D3d |Z ,↓〉
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Figure 7: Band structures for: (a) MoS2, (b) GaBiCl2, and (c) Bi2Se3 showing only
the relevant low energy range. The DFT calculations were performed for 1000, 500,
and 500 bands, respectively. (d) Rhombohedral lattice of Bi2Se3 and 2D hexagonal
lattice of (e) MoS2 and (f) GaBiCl2, where we have omitted the vacuum region (15
Å) perpendicular to the plane formed by vectors A1 and A2. (g) 2D Brillouin zone
common to MoS2 and GaBiCl2, and (h) 3D BZ of Bi2Se3.

symmetry points. Consequently, the 4 bands model (red lines) captures only the nearly
parabolic dispersion at the K point.

However, the crude all-bands model (black lines, see Eq. (4)) approaches a full zone
description and captures the valley along the Γ–K direction. For GaBiCl2, Fig. 7(c), the 6
bands model describes satisfactorily the low energy conduction and valence bands. For Bi2Se3
in Fig. 7(b) the 4 bands model captures well the low-energy band structure near Γ , including
the hybridization between the inverted bands.

5 Discussions

Above, we have presented illustrative results of the capabilities of our code to calculate the k ·p
Kane and Luttinger parameters for a series of relevant materials. In all cases we see a patent
agreement between the DFT (QE) data and the low-energy models near the relevant k0 point.
However, it is important to notice that here we use only PBE functionals [125], consequently it
often underestimates the gap (e.g. 0.5 eV instead of 1.5 eV for GaAs). Therefore, our models
are limited by the quality of the DFT bands and the resulting numerical parameters might not
match Kane and Luttinger’s parameters for well-known materials, for which these parameters
are typically chosen to match the experimental data, and not the DFT simulations.

For instance, let us consider the zincblende crystals’ Kane parameter EP = 2m0P2/ħh2,
band gap Eg and effective mass for the conduction band m∗. For GaAs, the experimental
values are EP ∼ 24 eV, P ∼ 0.96 eVnm, Eg ∼ 1.5 eV, and m∗ = 0.065m0 [58]. As
mentioned above, the DFT results with PBE functionals underestimate the gap, and we get
Eg ∼ 0.5 eV. Moreover, the Kane parameter can be written as P = −

p
6c5/2, where the

coefficient c5 = −0.635 eVnm is shown in Appendix C. This value yields P ∼ 0.7 eVnm and
EP ∼ 16 eV. The effective mass for the conduction band can be estimated from its spinless
expression [47], m0/m

∗ = 1 + 2m0P2/Egħh2, which gives us m∗ = 0.031m0. While these
numbers do not match well with the experimental values, we notice that if we fix the GaAs
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gap (scissors-cut approximation), but keep our value for P, we find m∗ = 0.058m0, which is
already much closer to the experimental value for the effective mass.

The number estimates shown above clearly indicate that the quality of our models is
limited to the DFT simulations only. Particularly, the gap issue can be fixed if one replaces
the PBE functionals with hybrid functionals, GW calculations, or other methods that improve
the material gap accuracy. These are beyond the scope of this paper, but it is a possible path
for future improvements of our code.

In all examples presented here, we always consider the crude all bands model from Eq. (4),
and the optimal symmetry-adapted (few bands) model from Eq. (5). This raises two interesting
questions: (i) how many bands are necessary for convergence? And (ii) for a large number of
bands, should we get a full zone description? We discuss these questions below.

5.1 Convergence

The convergence threshold (how many bands are necessary) strongly depends on the material.
In some cases ∼ 300 bands are sufficient, but in others, it often needs ∼ 1000 bands. We do
not have a general rule to establish which materials will show a slow or fast convergence.
Nevertheless, we believe it is instructive to discuss the outcomes of our convergence analysis.

Notice that the Löwdin partitioning from Eq. (5) has two distinct contributions. The first
two terms in Eq. (5) are the zeroth and first-order perturbation terms. These terms do not
change as we increase the number of DFT bands (provided that there are enough bands to
converge the DFT calculation itself). The zeroth order term is essentially given by the DFT
eigenstates, and the first order terms are given by the matrix elements 〈m|H ′(k) |n〉= 2k ·Pm,n
between eigenstates of set A, which is the low energy sector of interest. In contrast, the third
term defines the second-order corrections, which are quadratic in k (assuming a diagonal basis
at k = 0). In this case, the second-order contributions depend explicitly on the sum over the
remote set of bands B. These are the terms that strongly depend on the number of remote
bands.

To check for convergence, we plot the values of the Hamiltonian coefficients c j associated
with second-order corrections as a function of the number of remote bands. In the Examples
folder in the code repository, one finds these plots for all cases presented in this paper. Here,
in the top panels of Fig. 8, we select a few illustrative cases. In the bottom panels of Fig. 8
we combine the discrete derivatives of c j into a single dimensionless metric for convergence
C(N), which read as

C(N) =

∑

j |c j(N + 1)− c j(N)|
∑

j |c j(N)|
, (35)

where c j(N) refers to the coefficient calculated using N remote bands. With increasing N , the
coefficients are expected to converge, consequently C(N) → 0. The data for C(N) is shown
in blue dots on the bottom panels of Fig. 8, which is significantly noisy due to the discrete
jumps on the evolution of c j with increasing N . Therefore, we also plot a moving average
C(N) (orange lines) to clearly show the convergence. For spinless graphene in Fig. 8(a), there
are only two second order c j terms (neglecting terms with kz , since it is a 2D material), and
we see that it reaches convergence with less than 300 remote bands.

In contrast, for MoS2, the convergence requires at least∼ 500 remote bands. Interestingly,
it has been recently shown that TMDC materials indeed require a large number of bands
to converge the orbital angular momenta [42–45]. This fact may be associated with the
large number of unoccupied bands with plane-wave character that appear due to the spatial
extension of the vacuum region. The GaN and GaP cases in Figs. 8(c)–(d) are interesting cases,
they belong to the same class of materials, but GaP reaches convergence with ∼ 200 remote
bands, while GaN is not yet fully converged for ∼ 1000 remote bands. Unlike monolayer
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Metric C (N)
Moving average

Figure 8: Convergence of the second-order coefficients c j as a function of the number
of remote bands for (a) spinless graphene, (b) MoS2, (c) GaN, and (d) GaP. On top
(a1–d1), each panel shows the coefficients c j for different material. On panels (c1)
and (d1) we omit the legends because there are 30 distinct coefficients, ranging from
c22 to c51, which makes their individual identification cumbersome, and it is sufficient
to visualize that all lines become nearly flat for a large number of remote bands.
On the bottom (a2–d2), for each material, the evolution of the coefficients c j are
combined into convergence metric set by Eq. (35) (blue dots). Due to the noise
induced by the discrete derivative in this metric, we plot the moving average of the
data as a guide for the eyes.

materials, the GaN compound is not described by any vacuum region, and therefore we
speculate that such poor convergence may be related to details of the pseudopotential [99]
and the electronegativity of Nitrogen.

5.2 Full zone kp

In Section 2.1 we have presented the k · p method in its traditional form, which considers a
perturbative expansion of the Bloch Hamiltonian at a reference momentum k0, and a small
set of bands near the Fermi energy. Usually, one expects the resulting effective model to be
valid only near k0 and only for a small energy range that encloses the bands of interest. In
contrast, within the full zone k · p approach [66,126–130] one considers a large set of bands,
such that the resulting low energy model agrees well with DFT or experimental bands over
the full Brillouin zone, instead of only the vicinity of k0. However, to achieve this precision,
one needs to apply fitting procedures to ensure that the bands match selected energy levels at
various k points over the Brillouin zone.

Here, in our code, we can easily select an arbitrary number of bands to build effective
models. All examples presented above show sets of bands colored in red and black, such that
the red ones consider models built from a small set of bands A (from 4 to 10 bands), while the
black ones consider the full set of bands from the DFT data (typically 500 or 1000 bands). This
leads to an interesting question: should our all bands model match the full zone k · p models?

To answer this question, let us focus first on the graphene results from Fig. 1. There, we
have seen that the QE/DFT and the model agree remarkably well at low energies near the K
point, as expected. Particularly, the red line for the optimal symmetry-adapted model describes
precisely the low energy regime and Dirac cone and the trigonal warping from the quadratic
terms in Eq. (21). In contrast, when we consider the all-bands model (black lines), we see
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that the model approaches a full zone agreement with 300 bands. What if we consider more
bands? Our numerical tests have shown that increasing the number of bands does improve
the overall description, approaching the full zone agreement. However, this is a very slow
convergence and we never really reach a true full zone agreement. This characteristic is seen
in all other examples shown here.

For GaAs, Gawarecki and collaborators [130] show an excellent full zone agreement
between model and DFT bands considering 30 bands. In contrast, our results presented in
Fig. 3(a) for 8 (red) and 1000 (black) bands remain valid only in the vicinity of Γ . The
key difference is the fitting procedure. The full zone models fit the bands over the full
Brillouin zone, while in our approach we consider only the direct ab initio matrix elements
of π= p + pSOC without further manipulation.

If one needs a full zone model, we suggest using our results as the initial guess for the
parameters used on a band-fitting algorithm. Moreover, since the fitted parameters must not
deviate significantly from our ab initio results, our calculated values provide an important
benchmark for the fitting results. Alternatively, it might be possible to develop multi-valley
k ·p models [68,70,131] and extract its parameters directly from DFT matrix elements without
numerical fitting procedures, but this is beyond the scope of this work.

6 Conclusions

We have implemented a numerical framework to calculate the k · p Kane and Luttinger
parameters and optimal symmetry-adapted effective Hamiltonians directly from ab initio
wavefunctions. The code is mostly written in Python but also contains a patch to modify the
Quantum ESPRESSO code, such that its bands.x post processing tool is used to calculate
the matrix elements Pm,n = 〈m|π |n〉, which is the central quantity in our methodology.
Consequently, this first version works only with Quantum ESPRESSO. Equivalent calculations
can be done in other DFT codes (e.g. VASP [5], Wien2k [6]), but it requires further
developments. The code is open source and it is available at Ref. [88].

Here, we have illustrated the capabilities of our code applying it to a series of relevant and
well-known materials. The resulting effective models yield band structures that match well
the DFT data in the low energy sector near the k point used for the wavefunction expansion.
Therefore, our code provides an ab initio approach for the k · p numerical parameters, which
can be contrasted with fitting methods [60, 76–78, 130], in which the numerical coefficients
are obtained by numerically minimizing the residue difference between the DFT and model
band structures over a selected range of the Brillouin zone. These fitting procedures work well
in general but require careful verification if the fitted parameters are reasonable. In contrast,
our ab initio approach is automatic and fully reliable. Nevertheless, fitting procedures can
improve the agreement between DFT and the model band structures significantly. In this case,
we suggest that our code can be used (i) to generate the initial values for the fitting parameters,
and (ii) to verify if the fitted parameters show reasonable values. One should expect that fitted
parameters must not deviate much from our ab initio values.

Here we do not perform a thorough comparison of our numerical parameters with
experimental data. Typically, to obtain precise agreement with experimental data, one needs
to fix the gap issue by using either hybrid functionals or GW calculations, which are beyond
the scope of this first version of the code. Instead, here we use only PBE functionals [125] for
simplicity, which is reliable enough to validate our approach. Consequently, our numerical
parameters are limited by the precision of the DFT simulation, and we would not expect
remarkable agreement with experimental data for most materials at this stage. Nevertheless,
for novel materials, for which there is no experimental data available, our code can be used
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to generate reliable numerical parameters that can be improved later, either in comparison
with future experiments or by extending our method to work with hybrid functionals or GW
calculations.

As a final disclaimer, we would like to state that after developing the first version of the
code, we have found that Ref. [85] recently proposes an equivalent approach to build k · p
models from DFT, but the authors do not provide an open-source code. In any case, despite
the similarities, the development of our code was done independently from their proposal. In
practice, the only significant difference between the proposals is the approach to calculate the
transformation matrix U (see Section 2.3). While the authors of Ref. [85] follow the method
from [94], here we propose a different method that is more efficient for transformations
involving reducible representations, which is necessary when dealing with nearly degenerate
bands of different irreps (e.g., spinful graphene). Additionally, after the initial submission of
our paper, a new code VASP2kp [132] was released with functionalities similar to ours, but
designed for VASP [5] instead of QE.
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A Mass-velocity corrections are negligible

Consider the full Hamiltonian with all fine structure corrections as

H = p2 + V (r ) +HMV +HD +HSOC , (A.1)

HMV = −
α2p4

4
, (A.2)

HD =
α2

8
∇2V (r ) , (A.3)

HSOC =
α2

4
[σ ×∇V (r )] · p . (A.4)

Applying the Bloch theorem ψκ(r ) = eik·rφk0,k(r ) for κ = k0 + k, the k · p Hamiltonian
becomes Hkp = H0+k2+H ′, where H0 = p2+V (r )+2k0 ·π+HSR, and HSR contain the k = 0
contributions from HMV +HD, as presented in the main text. The perturbation for finite k ̸= 0
is H ′ = 2k · π + H ′MV, where H ′MV contains the finite k contributions from the mass velocity
term, and it reads as

H ′MV = −
α2

4

�

4(k · p)p2 + 4(k · p)2 + 4(k)2(k · p) + 2k2p2 + k4
�

. (A.5)
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Table 6: Criteria used for the convergence of the total energy: cut-off energy for
the expansion in plane waves and the number of k-points taken for sampling the
Brillouin zone using the Monkhorst-Pack technique.

Material cut-off energy BZ sample

Graphene 80 Ry 12x12x1

GaAs 100 Ry 8x8x8

HgTe 50 Ry 8x8x8

CdTe 60 Ry 8x8x8

GaN 100 Ry 8x8x8

GaP 150 Ry 8x8x8

InP 100 Ry 7x7x7

PbSe 100 Ry 7x7x7

SnTe 100 Ry 8x8x8

MoS2 100 Ry 8x8x1

Bi2Se3 60 Ry 7x7x7

GaBiCl2 100 Ry 8x8x1

These corrections are negligible for small k, i.e. |H ′MV| ≪ |2k ·π|. Notice that the SOC term
in 2k ·π has two contributions, one is of order ∼ |kp| and the other is ∼ |kα2|. In contrast,
the contributions to H ′MV are ∼ |α2kp3|, ∼ |α2k2p2|, ∼ |α2k3p|, and ∼ |α2k4|. Therefore, all
terms in H ′MV are of higher order than those in 2k ·π, and we can safely assume H ′ ≈ 2k ·π.

B DFT parameters

The first principles calculations are performed using the density functional theory (DFT) [1,
2] within the generalized gradient approximation (GGA) for the exchange and correlation
functional, employing the Perdew-Burke-Ernzerhof (PBE) parametrization [125]. We employ
the non-colinear spin-DFT formalism self-consistently with fully relativistic j-dependent ONCV
(Optimized Norm-Conserving Vanderbilt) pseudopotential [98]. The Quantum ESPRESSO
(QE) package [3,4] was used, with a plane waves base configured with a given cut-off energy
and the Brillouin zone sampled with several k-points (Monkhorst-Pack grid) so that the total
energy converged within the meV scale (see Table 6). The ONCV pseudopotentials compatible
with the Quantum ESPRESSO package are available in the repository [107]. The vacuum
space in two-dimensional materials was set to 15 Å. Atomic structures were optimized with a
criterion that requires the force on each atom to be less than 0.01 eV/Å. Additional parameters
used in our simulations including QE input and output files can be found in the Examples
folder of the code repository [88].

C Effective Hamiltonians and coefficients

Here we present the large Hamiltonians and table of parameters for the materials presented in
the main text. These correspond to the zincblende crystals for Fig. 3, wurtzite crystals of Fig. 4,
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Table 7: Table of parameters for the zincblende materials, where the coefficients
cn refer to the terms of HZB in the equation listed in Table 10. The coefficient c0 is
negative for HgTe due to the Γ6–Γ8 band inversion.

Zincblende GaAs HgTe CdTe
c0 (eV) 0.403 -1.16 0.36
c1 (eV) 0.00011 2.23e-05 3.68e-05
c2 (eV) -0.335 -0.773 -0.851

c3 (eV nm) 0.000486 -0.0117 0.00232
c4 (eV nm) 0.00268 -0.023 0.00499
c5 (eV nm) -0.635 -0.543 0.559
c6 (eV nm) -0.436 0.341 0.363
c7 (eV nm2) 0.0293 0.0354 0.0347
c8 (eV nm2) -0.0978 -0.0772 -0.0577
c9 (eV nm2) -0.0437 -0.0339 -0.0262
c10 (eV nm2) -0.0321 0.0128 -0.0153
c11 (eV nm2) -0.0608 -0.0375 -0.0303
c12 (eV nm2) -0.000588 -0.0036 -0.000109
c13 (eV nm2) 0.0632 0.0558 0.0398
c14 (eV nm2) 0.0397 -0.0259 0.0231
c15 (eV nm2) -0.0362 0.0479 0.0361
c16 (eV nm2) -0.0275 -0.0349 0.0261

and rock-salt crystals of Fig. 6. For the other examples shown in Fig. 7, the corresponding
Hamiltonians and numerical parameters can be seen in Examples folder in the code repository.

The numerical coefficients for the zincblende, wurtzite, and rock-salt materials are shown
in Tables 7, 9, and 8, respectively. These correspond to the effective Hamiltonians shown in
Tables 10, 11, and 12. In all cases we use k± = kx ± iky , k2 = k2

x + k2
y + k2

z , k2
∥ = k2

x + k2
y ,

K̂ = k2
x − k2

y , which is also used in Appendix C of Ref. [15].

Table 8: Table of parameters for the rock-salt materials, where the coefficients cn
refer to the terms of HRS in the equation listed in Table 12.

Rock-salt PbSe SnTe
c0 (eV) 0.235 0.125
c1 (eV) 0.284 0.000141

c2 (eV nm) 0.168 0.193
c3 (eV nm) -0.122 -0.111
c4 (eV nm2) -0.134 -0.713
c5 (eV nm2) 0.223 0.214
c6 (eV nm2) 0.119 0.637
c7 (eV nm2) -0.151 -0.158
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Table 9: Table of parameters for the wurtzite materials, where the coefficients cn
refer to the terms of HWZ in the equation listed in Table 11.

Wurtzite GaP GaN InP
c0 (eV) 1.75 1.76 0.457
c1 (eV) 9.73e-06 -1.16e-07 1.4e-07
c2 (eV) -6.28e-06 -5.09e-09 -4.07e-06
c3 (eV) 1.31 4.11 1.1
c4 (eV) -0.208 -0.0405 -0.162
c5 (eV) 4.7e-08 0.000658 6.89e-09
c6 (eV) -0.0442 -0.00602 -0.0395
c7 (eV) 7.82e-05 -7.29e-05 8.11e-05

c8 (eV nm) 0.00448 0.00586 -0.0112
c9 (eV nm) 0.00214 0.00075 0.0137
c10 (eV nm) 0.118 -0.0733 -0.184
c11 (eV nm) 0.455 -0.372 -0.392
c12 (eV nm) -0.472 -0.381 0.436
c13 (eV nm) -0.00429 -0.00428 -0.0195
c14 (eV nm) 0.00811 0.0024 0.0223
c15 (eV nm) 0.0234 0.0128 0.0301
c16 (eV nm) -0.0268 0.0134 -0.0428
c17 (eV nm) -0.0112 -0.00416 -0.0377
c18 (eV nm) 0.0055 -0.00109 0.0202
c19 (eV nm) 0.801 -0.568 -0.616
c20 (eV nm) 0.214 -0.116 -0.298
c21 (eV nm) -0.00918 -0.00423 -0.0294
c22 (eV nm2) 0.0203 0.0266 0.0282
c23 (eV nm2) 0.0182 0.00155 -0.0109
c24 (eV nm2) 0.00486 0.000225 -0.00585
c25 (eV nm2) -2.32e-05 8.08e-05 -0.000406
c26 (eV nm2) 0.273 0.128 0.264
c27 (eV nm2) -0.0267 -0.0151 -0.0262
c28 (eV nm2) 0.00735 0.00235 0.00881
c29 (eV nm2) -0.00672 0.00214 -0.00733
c30 (eV nm2) -0.0558 -0.0259 -0.0411
c31 (eV nm2) 0.0285 -0.0109 0.0178
c32 (eV nm2) -0.0581 -0.0255 -0.0433
c33 (eV nm2) -0.000342 0.00025 0.000387
c34 (eV nm2) 0.00537 -0.00331 -0.00541
c35 (eV nm2) 0.0223 -0.0176 -0.017
c36 (eV nm2) 0.0241 0.0197 -0.0248
c37 (eV nm2) 0.00671 0.000335 -0.00687
c38 (eV nm2) 0.0214 0.00371 -0.00757
c39 (eV nm2) -0.0229 0.0034 0.0112
c40 (eV nm2) 0.00903 -0.000739 0.00432
c41 (eV nm2) -0.00964 -0.000377 -0.0054
c42 (eV nm2) 0.00366 -0.000194 0.00471
c43 (eV nm2) -7.74e-05 4.97e-06 0.000177
c44 (eV nm2) 0.0266 0.0241 0.0318
c45 (eV nm2) -0.0156 -0.00776 0.00148
c46 (eV nm2) -0.00304 -0.00173 -0.0025
c47 (eV nm2) 0.0326 0.0175 0.031
c48 (eV nm2) -0.0661 -0.0482 -0.0636
c49 (eV nm2) -0.0107 -0.00713 -0.0205
c50 (eV nm2) -0.0334 -0.0158 -0.0379
c51 (eV nm2) -0.0294 -0.0139 -0.0242
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Table 10: Effective Hamiltonian for zincblende crystals considering the 8 × 8
extended Kane model.
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Table 11: Effective Hamiltonian for wurtzite crystals considering the 10×10 model
with two conduction bands.
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Table 12: Effective Hamiltonian for rock-salt crystals considering the 4 × 4 model
composed by the L±6 irreps of D3D.
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[130] K. Gawarecki, P. Scharoch, M. Wísniewski, J. Ziembicki, H. S. Mączko, M. Gładysiewicz
and R. Kudrawiec, Invariant expansion of the 30-band k · p model and its parameters for
III-V compounds, Phys. Rev. B 105, 045202 (2022), doi:10.1103/physrevb.105.045202.

[131] A. Marnetto, M. Penna and M. Goano, An accurate dual-expansion-point full-Brillouin-
zone k · p model for wurtzite semiconductors, J. Appl. Phys. 108, 033701 (2010),
doi:10.1063/1.3459883.

[132] S. Zhang et al., VASP2KP: k · p models and Landé g-factors from ab initio calculations,
Chinese Phys. Lett. 40, 127101 (2023), doi:10.1088/0256-307X/40/12/127101.

[133] A. Matsugatani, S. Ono, Y. Nomura and H. Watanabe, qeirreps: An open-source program
for Quantum ESPRESSO to compute irreducible representations of Bloch wavefunctions,
Comput. Phys. Commun. 264, 107948 (2021), doi:10.1016/j.cpc.2021.107948.

43

https://scipost.org
https://scipost.org/SciPostPhysCodeb.25
https://doi.org/10.1038/nphys1270
https://doi.org/10.1038/nphys1274
https://doi.org/10.1021/nl504493d
https://doi.org/10.1103/physrevb.95.155406
https://doi.org/10.1103/physrevb.82.045122
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/physrev.142.530
https://doi.org/10.1063/1.1505990
https://doi.org/10.1063/1.2957068
https://doi.org/10.1063/1.3295900
https://doi.org/10.1103/physrevb.105.045202
https://doi.org/10.1063/1.3459883
https://doi.org/10.1088/0256-307X/40/12/127101
https://doi.org/10.1016/j.cpc.2021.107948

	Introduction
	Methods
	The kp model 
	The optimal symmetry-adapted form of H
	Symmetry optimization
	Matrix elements via DFT
	Matrix elements of the velocity
	Matrix elements of the symmetry operators


	Hands-on example: Graphene
	Overview of the theory and symmetry optimization
	Running the code
	Spinful graphene

	Examples
	Zincblende crystals
	Wurtzite crystals
	Effects of the SOC corrections on Pm,n

	Rock-salt crystals
	Other examples

	Discussions
	Convergence
	Full zone kp

	Conclusions
	Mass-velocity corrections are negligible
	DFT parameters
	Effective Hamiltonians and coefficients
	References

