
SciPost Phys. Codebases 33 (2024)

An algorithm to parallelise parton showers on a GPU

Michael H. Seymourand Siddharth Sule⋆

Department of Physics and Astronomy,
The University of Manchester, United Kingdom, M13 9PL

⋆ siddharth.sule@manchester.ac.uk

Abstract

The Single Instruction, Multiple Thread (SIMT) paradigm of GPU programming does
not support the branching nature of a parton shower algorithm by definition. However,
modern GPUs are designed to schedule threads with diverging processes independently,
allowing them to handle such branches. With regular thread synchronisation and careful
treatment of the individual steps, one can simulate a parton shower on a GPU. We present
a Sudakov veto algorithm designed to simulate parton branching on multiple events in
parallel. We also release a CUDA C++ program that generates matrix elements, show-
ers partons and computes jet rates and event shapes for LEP at 91.2 GeV on a GPU. To
benchmark its performance, we also provide a near-identical C++ program designed to
simulate events serially on a CPU. While the consequences of branching are not absent,
we demonstrate that a GPU can provide the throughput of a many-core CPU. As an ex-
ample, we show that the time taken to shower 106 events on one NVIDIA TESLA V100
GPU is equivalent to that of 295 Intel Xeon E5-2620 CPU cores.

Copyright M. H. Seymour and S. Sule.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

25-04-2024
06-08-2024
12-08-2024

Check for
updates

doi:10.21468/SciPostPhysCodeb.33

This publication is part of a bundle: Please cite both the article and the release you used.

DOI
doi:10.21468/SciPostPhysCodeb.33
doi:10.21468/SciPostPhysCodeb.33-r1.1

Type
Article
Codebase release

Contents

1 Introduction 2

2 The parallelised veto algorithm 3

3 Implementation and results for LEP at 91.2 GeV 5
3.1 Validation through physical results 5
3.2 Comparison of execution times 6
3.3 Comments on the cost of simulation 8

1

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33
mailto:siddharth.sule@manchester.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysCodeb.33&amp;domain=pdf&amp;date_stamp=2024-08-12
https://doi.org/10.21468/SciPostPhysCodeb.33
https://doi.org/10.21468/SciPostPhysCodeb.33
https://doi.org/10.21468/SciPostPhysCodeb.33-r1.1


SciPost Phys. Codebases 33 (2024)

4 Concluding remarks and outlook 10

A Parton showers and the veto algorithm 11

B An introduction to GPUs and GPU programming 15

C Pseudocode for the GPU parton shower 17

References 20

1 Introduction

Monte Carlo Event Generators can accurately simulate high-energy physics and, hence, form a
vital component of research at the LHC. That being said, they are computationally expensive:
The ATLAS Detector’s HL-LHC Roadmap document shows that event generators form around
17% of CPU usage [1]. This is because many simulated events are required to reduce the sim-
ulation uncertainty and allow exotic events (events with a very low probability of occurring)
to be simulated. This document also states that even conservative CPU usage cannot maintain
a sustainable budget. There is a demand for making event generators economical.

Two approaches have been presented to attain this requirement. The first involves profiling
and finding bottlenecks in the current code, leading to immediate solutions [2] (see also [3]
and other talks at the workshop [4]). The second involves adapting current event generation
algorithms to run on a High-Performance Computer, which may contain multiple Graphics Pro-
cessing Units (GPUs). This is an active area of research, with recent publications, notably the
PEPPER event generator [5] and the GPU version of MadGraph [6]. The Single Instruction
Multiple Data (SIMD) or the Single Instruction Multiple Thread (SIMT) paradigm for GPU
programming allows users to run repetitive tasks in parallel, increasing the throughput of the
simulation [7]. This paradigm can be applied to event generation, as each event is indepen-
dent. However, the GPU’s requirement to execute the same instruction implies that threads
cannot perform separate tasks. Hence, parton showers, which undergo different trajectories
every time, are by construction not designed for GPU programming.1 However, modern-day
GPUs have the feature to handle branching code – the threads in the GPU can run more com-
plicated, diverging tasks, and one can synchronise all threads at the end of the divergence [9].
We can use this feature, along with careful treatment of assigning tasks to threads, to simulate
parton showers on a GPU.

We present a parallelised version of the Sudakov veto algorithm, capable of handling events
in parallel. We also present a CUDA C++ implementation of the algorithm that simulates LEP
events at 91.2 GeV at the partonic level and outputs jet rates and event shapes. We validate the
program by studying the observables before comparing its execution time to a C++ program
designed to simulate event generation on a single-core CPU. Although an “apples-to-apples”
comparison cannot be made between simulating the shower on the CPU and the GPU, we work
to be fair during our comparison.

We hope to make our work appealing to physicists and computer scientists alike. Hence,
we provide brief introductions to both parton showers and GPU programming, but to avoid
breaking up the flow of the paper for readers already familiar with those topics, we cover

1Related issues were considered for a QED shower in [8]. Here, a partial synchronisation of threads was
achieved by precalculating n-emission cases, leading to a speedup of 11 times overall.

2

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33


SciPost Phys. Codebases 33 (2024)

them in appendices: Appendix A and Appendix B respectively. References to further reading
are also provided. The remainder of the paper is organised as follows. In Sect. 2, we describe
the approach we take in implementing our parton shower algorithm in a form suitable for GPU
running. In Sect. 3, we present and analyse the results, firstly briefly of the physics validation
of our code, and then in more detail of its speed in comparison to the equivalent code run
on a CPU, and an analysis of the associated energy cost. Finally, in Sect. 4, we make some
concluding remarks.

2 The parallelised veto algorithm

Today, most parton showers are simulated using the Sudakov veto algorithm [10]. In this
algorithm, a generated emission at an evolution scale t is accepted with a probability given
by the ratio of the emission probability and its overestimate. If there are multiple possible
emissions, the algorithm is run for all competing emissions and the one with the highest t is
deemed the winner. Figure 1 demonstrates this algorithm as a flowchart.

Generate
Trial 

Emission

Make 
Parton

Accept / 
Veto

t = t1

nEm = 0
t = t1

nEm = 0
t = t1

nEm = 1
t = tMax

nEm = 0
End

Accept / 
Veto

Generate
Trial 

Emission
t = t1

nEm = 0
t = tMax

nEm = 0

Generate
Trial 

Emission

Make 
Parton

Accept / 
Veto

t = t2

nEm = 0
t = t2

nEm = 0
t = t2

nEm = 1
t = t1

nEm = 0
End

Figure 1: The veto algorithm, written as a flowchart. The boxes represent the state
of the event, and the arrow represents a step of the process. There are two examples
of possible routes here. In the first route, the check is successful (accept), and a
new parton is generated at scale t1. However, in the second route, the check fails
(veto). This makes the code restart the while loop and generate the trial emission
with argument t1, giving t2. The check is successful, and the parton is generated
at t2.

On a GPU, we make one fundamental change: each step of the veto algorithm is executed
in parallel for all events. The algorithm is demonstrated in figure 2. For those interested
in the GPU programming aspects of the algorithm, we provide pseudocode with comments in
Appendix C. This can be done because the steps of the algorithm are repeated in identical order,
regardless of acceptance/vetoing of the emission (as seen by the symmetry in the columns in
figure 1. The key change we make is that if the emission is vetoed in a given event, it is idle,
while other events generate the new parton. Although this is inefficient, it ensures that all
events are synchronised for the next step of the algorithm.

The central issue of the algorithm can be seen at the start of the second cycle. Generating
a trial emission involves picking the highest possible emission from all particles in the system.
This would involve iterating through the particles in the event, and the differences in the
number of particles between events mean that each event wants to do something different

3

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33


SciPost Phys. Codebases 33 (2024)

Generate 
Trial 

Emission

Make 
Parton

Accept / 
Veto

t1

0

t1

0

t1

1

tMax
0

t1

0

t1

0

t1

1

tMax
0

t1

0

t1

0

tMax
0

t1

0

t1

0

t1

0

tMax
0

t2

0

t2

0

t2

1

t1

0
…

t2

0

t2

0

t2

0
…

…

…

Generate 
Trial 

Emission

Make 
Parton

Accept / 
Veto

t2

1

t2

1

t2

1

t2

1

t2

1

t2

2

Cycle 1 Cycle 2

Figure 2: A flowchart for the GPU algorithm. Now, all events and their states are part
of an array, and steps of the veto algorithm are executed in parallel for all events.
Here, events C and D fail the first veto and do not make the new parton, while B and
D fail the second veto and do not make a parton. This leads to all events being at the
same stage but with different numbers of partons.

from its surrounding events – leading to “divergence”. This issue is further complicated by
if-else statements within the loop (as a crude example, skip generating a trial emission
if the particle does not have enough energy to emit). The divergence between events does
not work in the SIMT paradigm, making parton showers unsuitable for GPUs by construction.
However, modern GPU architecture contains functionality to allow divergence in the form of
two features:

• Warps: GPUs split all their cores into batches, typically of 32, which run the same in-
structions simultaneously. Warps are entirely independent of other warps (like CPU
cores) and managed by a warp scheduler. For example, a 256-thread GPU would be-
have like it has 8 "Cores", where each of them follows SIMT [11]. Hence, the problem
of divergence between events is rescaled to 32 events.

• Independent thread scheduling: While the first implementations of GPUs assigned the
same command for each core in a warp, modern GPUs allow each core to assign its
own commands [9]. This allows each core to diverge from other cores to any extent.
However, unlike CPU cores, different commands are interleaved. As an example, in the
case where an if-else statement is provided to a warp, and 10 cores want to execute
the if command and the rest want to execute the else command, the GPU would
execute the if command for the 10 cores, while the rest are idle, followed by the else
command while the first 10 cores are idle. Not only does the GPU allow the use of for
loops and if-else statements, but it also automates them so that the user can write
sophisticated, high-level code. The efficiency of the code is entirely dependent on the
amount of divergence; optimal algorithms are designed to minimise branching (which
is why we break down the veto algorithm into individual GPU steps).

We take advantage of these two features to implement the veto algorithm and parton shower
on the GPU. In the next section, we study the impact of the features and the consequent
inefficiencies on the time taken to execute events.

A final inefficiency encountered with this algorithm is when the showers reach the cutoff
scale, tC . For the serial approach, once an event reaches t ≤ tC , it stops, and the next event
is showered. For the parallel approach, all events must reach t ≤ tC for the shower to end,
meaning that completed events must wait until all events are finished. Both of these cases are

4

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33


SciPost Phys. Codebases 33 (2024)

Generate 
Trial 

Emission

Check 
t > tc

tm
…

Conti.

tm
…

Conti.

tm
…

Conti.

tm
…

End

m-1 
cycles

m-1 
cycles

m-1 
cycles

m-1 
cycles

Check 
t > tc

Generate 
Trial 

Emission

Conti.
tm
…

m-1 
cycles

Check 
t > tc

Generate 
Trial 

Emission
tm
…

m-1 
cycles End

Figure 3: Flowcharts showing the serial and parallel veto algorithms’ behaviour at
the cutoff. As mentioned, the serial algorithm would start showering the next event,
while the parallel algorithm would hold completed events until all events have fin-
ished showering.

shown in figure 3. We haven’t made any attempts to improve this here, and we will study its
impact in the following section.

3 Implementation and results for LEP at 91.2 GeV

We implemented the parallelised veto algorithm in a matrix element + parton shower + ob-
servables event generator in CUDA C++ for e+e−→ qq̄. As a starting point, we used S. Höche’s
matrix element and dipole shower program from his “Introduction to Parton Showers” tuto-
rial [12]. Although the tutorial and hence our implementation is adapted from the DIRE
Shower [13], the parallelised veto algorithm can be applied to any parton shower model. We
also implemented an event generator in C++ for a fair comparison with a CPU-only system.
Apart from the CUDA syntax, the two generators are identical, demonstrating that one does
not need to change the veto algorithm when showering on a GPU.

We first validate the C++ and CUDA generators by replicating the results provided in
Höche’s tutorial. We then compare the execution times for the C++ program on a single core
with the CUDA program for all stages of event generation. We also briefly comment on the
power consumption of many-core CPUs and GPUs and discuss the implications of the observed
execution times. We compared the two programs on:

• CPU: Intel Xeon CPU E5-2620 v4 @ 2.10GHz [14]

• GPU: NVIDIA Tesla V100 for PCIe, 16 GB [15]

3.1 Validation through physical results

The momenta of the final state partons were used to calculate jet rates using the Durham
algorithm. The tutorial contained pre-calculated results of these distributions for validation
purposes. As seen in figure 4, both the C++ and the CUDA generators agree with these re-
sults, confirming that the matrix element and parton showers have been correctly ported from
the tutorial. The pre-calculated results come from a run of 105 events, while our runs were
of 106 events each, which accounts for the difference in uncertainties, but it is clear that all
three implementations agree within uncertainties. We have also checked that if the two imple-
mentations are provided with identical random numbers, they produce identical events (we

5

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33


SciPost Phys. Codebases 33 (2024)

plan to make this option available in a future version). We additionally provide results for the
thrust and heavy jet mass distributions in figure 5. Although we do not have pre-calculated
results to compare these to, the clear agreement is another test that the two implementations
are identical. Both of these event shapes depend on calculating the thrust axis, which is notori-
ously computationally expensive but is ideally suited to GPU implementation – the heart of the
computation, which is evaluated O(N3) times for N particles, just evaluates one dot-product
and one two-way choice between one vector addition or subtraction. The programs store the
distributions as Yoda files [16], which we plot using Rivet [17].

CPU
GPU
S. H.

10 3

10 4

Differential 2 → 3 jet resolution (Durham algorithm) at 91.2 GeV

d
σ

/
d

lo
g 10

(y
23

)

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

log10(y23)

R
at

io

CPU
GPU
S. H.

10−2

10−1

1

10 1

10 2

10 3

10 4

Differential 3 → 4 jet resolution (Durham algorithm) at 91.2 GeV

d
σ

/
d

lo
g 10

(y
34

)

-4 -3.5 -3 -2.5 -2 -1.5 -1
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

log10(y34)

R
at

io

CPU
GPU
S. H.

10−2

10−1

1

10 1

10 2

10 3

10 4

Differential 4 → 5 jet resolution (Durham algorithm) at 91.2 GeV

d
σ

/
d

lo
g 10

(y
45

)

-4 -3.5 -3 -2.5 -2 -1.5
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

log10(y45)

R
at

io

CPU
GPU
S. H.

1

10 1

10 2

10 3

10 4

Differential 5 → 6 jet resolution (Durham algorithm) at 91.2 GeV

d
σ

/
d

lo
g 10

(y
56

)

-4 -3.5 -3 -2.5 -2
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

log10(y56)

R
at

io

Figure 4: Jet Rates, using the Durham algorithm. These observables are calculated
using a jet clustering algorithm and are helpful to study the pT of emissions. All
three showers demonstrate the same result, apart from some differences in random
number generation. The C++ and CUDA results come from our CPU and GPU im-
plementations, respectively, while those labelled S.H. are the results pre-calculated
by Stefan Höche as part of his parton shower tutorial. The parameters used for the
shower were αs(mZ) = 0.118 and tC = 1GeV.

3.2 Comparison of execution times

We simulated a range of numbers of events up to 106, as this was the maximum number of
events the V100 GPU’s memory could store. The simulations were run a hundred times, and
the median and interquartile range were taken.2 We used the chrono namespace of the C++
standard library to measure the real world (“wall clock”) execution time taken at each step

2The median and interquartile range were chosen, rather than the mean and standard deviation, due to a small
fraction of events in which there were delays in the memory handling stages of event processing causing a small
but significant tail, which we will discuss further below.

6

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33


SciPost Phys. Codebases 33 (2024)

CPU
GPU

10 1

10 2

10 3

10 4

10 5

10 6

Thrust (1 − T) at 91.2 GeV

d
σ

/
d
(1

−
T
)

0 0.1 0.2 0.3 0.4 0.5
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

1 − T

R
at

io
CPU
GPU

10−1

1

10 1

10 2

10 3

10 4

10 5

Heavy Jet Mass at 91.2 GeV

d
σ

/
d

ρ
H

0 0.1 0.2 0.3 0.4 0.5 0.6
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

ρH

R
at

io

Figure 5: The Thrust and Heavy Jet Mass event shapes. These observables are helpful
to study how the final state partons are distributed. For example, the Thrust distri-
bution describes how “pencil-like” (closely distributed around an axis) an event is.
The same simulation was used for these plots, and hence, the same parameters apply
here.

of the event generation – matrix element, parton shower and observables. Although there
are CUDA namespaces available to measure just the GPU time, the CPU time must also be
accommodated such that we compare the time taken for the entire step. That is, both the C++
and CUDA showers starting and ending at a common state. It is vital to mention that this is
the closest possible approach to an ‘apples-to-apples’ comparison, which is not possible due
to the varying architectures of the CPU and the GPU. The comparison of execution times is
commonly used when comparing CPU-Only and CPU+GPU programs [18].

The execution times are shown in figure 6, arranged in the order of the event generation
steps. Two features are consistently observed in all three stages. Firstly, the C++ generator
is faster when simulating ∼ 1 events, while the CUDA generator is faster when simulating
∼ 1, 000 events and more. This result is coherent with the properties of the CPU and the GPU.
However, we also observe a steady increase in execution time on the GPU for 10, 000 events
and more. This is a consequence of requesting more threads than cores on the GPU – the GPU
has to distribute the events among the cores and handle them serially. The resulting impact
on the execution time is reduced by the efficiency and latency hiding of the GPU [19]; the
execution time of 106 events is not a hundred times larger than the execution time of 104

events. To illustrate this further, we applied a linear fit to the region of the increase, which
confirmed that the gradient of the fits are always less than 1. At maximum capacity (106

events), the speedup achieved by the CUDA shower is 87 times for the Matrix element, 295
times for the parton shower, 182 times for observables and 275 times in total.

A curious feature is noticeable in the Matrix Element results at 2,000 events, which take
approximately twice as long as 1,000 events, but this is not the start of a steady rise, which
starts at around 20,000 events or more. We also found that in the region from 2,000 to 20,000
events, there was a fraction of events that took a lot longer than the average – while this
fraction is small enough not to bias the average significantly, it does increase the standard
deviation, which is why we preferred to show the interquartile range. Upon further study, it
was discovered that allocating and freeing memory for the matrix element generator was the
cause of this increase in both time and variability. These steps are done once per run and the
memory they allocate is independent of the size of the events, yet their running time does
increase with number of events. This is likely because the GPUs have on-board memories at
various trade-offs of size and speed, which are automatically used as needed, depending on

7

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33


SciPost Phys. Codebases 33 (2024)

100 101 102 103 104 105 106

Number of events

10−4

10−3

10−2

10−1

100

E
x
ec

u
ti

o
n

ti
m

e
(s

)

Matrix Element

CPU

GPU

V100 GPU Cores

Linear Fit, Gradient = 0.77

100 101 102 103 104 105 106

Number of events

10−4

10−3

10−2

10−1

100

101

102

E
x
ec

u
ti

o
n

ti
m

e
(s

)

Parton Shower

CPU

GPU

V100 GPU Cores

Linear Fit, Gradient = 0.8

100 101 102 103 104 105 106

Number of events

10−2

10−1

100

101

E
x
ec

u
ti

on
ti

m
e

(s
)

Observables

CPU

GPU

V100 GPU Cores

Linear Fit, Gradient = 0.69

100 101 102 103 104 105 106

Number of events

10−2

10−1

100

101

102

E
x
ec

u
ti

on
ti

m
e

(s
)

Total

CPU

GPU

V100 GPU Cores

Linear Fit, Gradient = 0.77

Figure 6: Execution times for the different event generation steps and the total event
generation. As the matrix element is a leading-order analytical result, the function
involved simple arithmetic and could easily be ported to CUDA. The parton shower
benefits from the parallelised veto algorithm and independent thread scheduling. Not
only are the observables calculated in parallel, their values are binned into histograms
atomically, i.e. all at the same time (some examples of atomic histogramming can be
found in [20,21]). The vertical line represents the number of cores in the V100 GPU.
Beyond this, the GPU allocates waiting events to unoccupied warps. The linear fits
on the GPU times in the steady-increase region have a gradient less than 1, which,
on a log scale, implies a less-than-linear increase in execution time.

other memory usage for the events. These memory issues are more apparent in the Matrix
Element step than the other two because its actual computation code is simpler and faster,
exposing the memory moving times more clearly. This also highlights that the wall clock time
is more complex and more relevant than just the sum of the computation times, as it provides
a more realistic view of the simulation.

We also profiled the CUDA generator to split the total execution time by kernel (functions
that are executed for every event) using NVIDIA’s NSight Systems tool [22]. Table 1 shows the
time consumed by the different kernels for one simulation of 106 events. Selecting the trial
emission takes the most time, as the kernel has to go through all possible pairs.

To further study the end of the parton shower, we studied the number of veto algorithm
cycles taken to finish all events, for increasing number of events, shown in Figure 7. We
observed that most events finished showering by 40-50 cycles. We also saw that the increase
in a number of events directly corresponded to an increased waiting time at the end.

3.3 Comments on the cost of simulation

As our motivation is to make event generation sustainable, we connect our results with in-
formation on the devices’ power consumption. The upper limit of the power consumed by a
CPU chip is defined as the Thermal Design Power (TDP) [23, 24]. The CPU used for our tests,
the Intel Xeon CPU, has a TDP of 85 W [14] and eight dual cores. This TDP value can be

8

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33


SciPost Phys. Codebases 33 (2024)

Table 1: Statistics of the CUDA Kernels for a single run of 106 events. The kernels in
italics are built-in processes for managing memory and copying memory to and from
the device. Device Preparation involves allocating memory for the event objects. Pre-
writing involves moving the histograms to the host (CPU).

Name Instances Total Time (ns) Time (%)
Selecting the trial emission 119 291,300,033 46.3
Device prep. 1 105,578,119 16.8
Vetoing process 119 45,518,957 7.2
Thrust 1 42,478,087 6.8
Durham algorithm 1 26,657,439 4.2
Checking cutoff 119 25,702,499 4.1
Doing parton splitting 119 23,646,846 3.8
Calculating αs 119 20,654,227 3.3
Histogramming 1 17,950,803 2.9
Matrix element 1 7,605,270 1.2
Set up random states 1 7,439,289 1.2
Jet mass/broadening 1 5,758,537 0.9
Validate events 1 5,580,426 0.9
Prep shower 1 2,651,686 0.4
Set up αs calculator 1 8,800 0.0
Pre writing 1 5,856 0.0
Set up ME calculator 1 3,968 0.0

0 20 40 60 80 100 120

Cycle

0.0

0.2

0.4

0.6

0.8

1.0

N
u

m
b

er
of

C
om

p
le

te
d

E
ve

n
ts

/
T

ot
al

Number of Completed Events per Cycle

1000 Events

10000 Events

100000 Events

1000000 Events

0 20 40 60 80 100 120

Cycle

0.00

0.01

0.02

0.03

0.04

0.05

N
u

m
b

er
of

N
ew

ly
C

om
p

le
te

d
E

ve
n
ts

/
T

ot
al

Number of Newly Completed Events per Cycle

1000 Events

10000 Events

100000 Events

1000000 Events

Figure 7: Number of completed events against the cycle, given as a cumulative and
differential. It is important to mention that the number of cycles is not the same as
the time – smaller number of events take a shorter time to complete a cycle. We
also observed that near the end, when only a few events are active, the time taken
to complete a cycle decreases. Hence, we believe using cycles instead of time works
as a better unit for comparsion. In the cumulative plot, the vertical lines indicate
the end of showering all events. One can see that the smaller event size leads to
a shorter wait time. The differential plot shows that regardless of event size, most
of the showers’ events are finished in around 40 cycles. Note that this data is for an
individual run, and the endpoint is subject to fluctuations. An interesting study could
involve stopping the shower once a majority of the events have finished, and vetoing
events where the shower scale is above the cutoff.

9

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33


SciPost Phys. Codebases 33 (2024)

compared to the maximum power consumption provided by NVIDIA for the V100, which is
250 W [15]. Adding the TDP for one core3 gives us a maximum consumption of 255 W. To
match the performance of the GPU, one would need around 275 cores. Since the Intel Xeon
has 16 cores in total, around 17 of them would be needed. This setup would consume 1445 W,
five times more than the 1 CPU + 1 GPU setup (or equivalently, one Xeon core could be run
for 17 times longer than the GPU, again costing five times more energy). Moreover, using 17
times as many machines or running 17 times longer would increase power overheads beyond
that needed for our computation by 17 times.

4 Concluding remarks and outlook

In this paper, we demonstrate how the veto algorithm can be adapted to run on the GPU
without changing its structure. In summary, this veto algorithm relies on running each step in
parallel for all events. We also present a code that demonstrates a large throughput when com-
pared to sequentially running the parton shower, even while experiencing the consequences
of thread divergence. We hope this algorithm provides a starting point for more research on
optimising GPU parton shower simulation while keeping the structure coherent to the original.
One can intuitively change the splitting functions, colours, or kinematics.

From here, we plan to study whether we can obtain a similar speedup for a production-
level parton shower. This would involve moving from a massless final state-only parton shower
to a massive initial and final state parton shower, as seen in event generators like Pythia [25],
Sherpa [26] and Herwig [27]. Fortunately, the veto algorithm is unchanged in this case; one
must add the mass terms to the splitting functions and an extra step to evaluate Parton Dis-
tribution Functions for initial state showering. The PDF evaluation programs LHAPDF [5,28]
and PDFFlow [29] already offer multiple evaluations of PDFs on GPU.

The implementation of this algorithm, GAPS (a GPU-Amplified Parton Shower), can be
found in the GitLab repository: https://gitlab.com/siddharthsule/gaps If you encounter any
issues or want to discuss the CUDA C++ implementation further, please contact the corre-
sponding author. This code will be public and maintained as an open-source project. Complete
documentation and usage instructions are provided within the repository in the doc folder.

Acknowledgements

The authors acknowledge using S. Höche’s “Introduction to Parton Showers and Matching”
tutorial. The authors would like to thank A. Valassi and J. Whitehead for comments on the
preprint. The authors would like to thank the University of Manchester for access to the
Noether Computer Cluster. SS would like to thank Z. Zhang for valuable discussions on CUDA
programming, along with R. Frank for assistance with Cluster Computing.

Funding information SS would like to thank the UK Science and Technology Facilities Coun-
cil (STFC) for the studentship award. MS also acknowledges the support of STFC through
grants ST/T001038/1 and ST/X00077X/1.

3We profiled the application using NSight Systems again, and confirmed that only 1 Core of the 8-Core Xeon
CPU is being used, and not the whole CPU.

10

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33
https://gitlab.com/siddharthsule/gaps


SciPost Phys. Codebases 33 (2024)

A Parton showers and the veto algorithm

Here, we summarise the motivation, fundamentals, and computational details of the parton
shower. Parton showers have been in use for over forty years, and many texts have covered
the topic thoroughly [12,30–32].

For proton colliders like the LHC, QCD interactions are a significant component of the ob-
served events. For an event generator to be considered “general-purpose”, it must simulate
the hard (high-energy, short-range) interactions of partons, a collective term for hadron con-
stituents like quarks and gluons [30, ch. 4], and the soft (low-energy, long-range) interactions
of hadrons, the physical bound states. However, perturbation theory can only be used in the
hard regime; the soft regime is modelled using non-perturbative methods. As a solution, the
factorisation theorem is used to separate and study these regimes independently [33] [30,
ch. 7].

The two regimes are connected by the evolution of the scale (related to the momentum
transfer in the interactions). This evolution occurs through the production of additional par-
tons and the conversion of partons into hadrons. These processes are simulated in event gen-
erators using the parton shower and hadronisation models, respectively [31, ch. 1].

In a parton shower, quarks release energy by emitting gluons. These gluons split their
energy when emitting further gluons or producing quark-antiquark pairs. These processes,
termed branchings, lead to more partons with lower energies and smaller momenta. Consecu-
tive branchings, like a quark emitting two gluons, occur at lower scales. Eventually, the scale
of the branchings reaches the soft scale, where hadronisation models combine the final state
partons into hadrons [30, ch. 5]. For example, parton showering in a typical scattering is
shown in figure 8.

Figure 8: A fundamental interaction (black) with a parton shower in the initial state
(red) and final state (blue). Assuming all the incoming and outgoing particles are
quarks, they radiate gluons at high energies. For radiation before the interaction, one
must accommodate the shower so that the quarks have the right amount of energy
before interacting. This can be done by evolving backwards from the interaction and
using PDFs [31].

Simulating the branching of a parton ĩ j to partons i and j involves generating a set of
values (t, z,φ). The evolution variable t defines the scale of the momentum transfer in the
branching. The splitting variable z defines how the energy from the splitter is divided between
the children. The third variable, φ, represents the azimuthal angle of the branching. Many
variants of parton shower are possible, each with slightly differing definitions of t and z, but
all share these same general features.

11

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33


SciPost Phys. Codebases 33 (2024)

To generate the distribution of t values, we use the Sudakov form factor, defined as the
probability that no emissions occur between the initial scale of the system T and a smaller
scale t [34]. For this process, it is given by

∆ĩ j→i, j(t, T ) = exp

�

−
∫ T

t

d t̂
t̂

∫ z+

z−

dz
αs

�

p2
⊥( t̂, z)
�

2π
Pĩ j→i, j(z)

�

. (A.1)

Here, z± are limits on the z integration, which are functions of t̂ in general, and whose precise
form depends on the precise definitions of t and z, but which always obey z− > 0 and z+ < 1.
αs is the coupling strength of QCD, which, after renormalisation, can be considered a function
of scale and, to reproduce a set of higher order corrections correctly, should be evaluated at a
scale of order the transverse momentum of emitted gluons, p⊥. Pĩ j→i, j is called the splitting
function, derived from QCD in the collinear limit, which describes the probability distribution
of the sharing of ĩ j’s energy between i and j. For gluon emission, i.e. when i or j is a gluon,
Pĩ j→i, j(z) is divergent at z = 0 and/or 1.

The Kinoshita-Lee-Neuenberg theorem shows that the Standard Model is infrared-safe: the
divergences in virtual exchange and real emission integrals cancel each other [35–37]. Since
the dominant (logarithmically-enhanced) finite parts of the real and virtual emission integrals
are associated with these divergences, the corresponding probability distributions are unitary:
the sum of the probabilities of these two types of emission sums to one. This is satisfied by
the parton branching formalism; the virtual exchanges are accounted for in the no-branching
probability, ∆ and the real emissions are accounted for in 1−∆.

In Monte-Carlo sampling, t is generated from ∆ by solving

∆ĩ j→i, j = random[0,1] . (A.2)

However, solving this is often not feasible, as the integrand

f (t) =
1
t

∫ z+

z−

dz
αs

�

p2
⊥(t, z)
�

2π
Pĩ j→i, j(z) (A.3)

is too complicated to be analytically integrated and inverted.
In this case, an alternative method, called ‘the veto algorithm’, can be implemented [38].

Below, we provide a brief derivation based on [10,34]. Here, a simplified form of the integrand
is used, which must be greater than or equal to the current integrand4 at all values of t. In
our context, this ‘overestimated’ integrand g is given by

g(t) =
1
t

αover
s

2π

∫ zover
+

zover
−

dz Pover
ĩ j→i, j

(z) =
1
t

c , (A.4)

where αover
s = αs(p2

⊥(tC)), Pover
ĩ j→i, j

is an overestimate of the splitting kernel and zover
± are con-

stants satisfying 0 < zover
− ≤ z− and 1 > zover

+ ≥ z+. These are defined such that Pover
ĩ j→i, j

can

be integrated analytically and inverted – needed for generating z. The collective term c is a
constant, and hence the indefinite integral of g is

G(t) = c ln(t) ←→ G−1(x) = exp
� x

c

�

. (A.5)

This result is then substituted into (A.2) to give

t = G−1
�

G(T ) + ln(random[0,1])
�

= T · random[0,1]
1
c . (A.6)

4A simple extension to the algorithm also exists for cases in which the simplified form is not an overestimate,
provided their ratio is bounded [39].

12

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33


SciPost Phys. Codebases 33 (2024)

To generate the corresponding value of z, the equation
∫ z

zover
−

dz Pover
ĩ j→i, j

(z) = random[0,1]

∫ zover
+

zover
−

dz Pover
ĩ j→i, j

(z) (A.7)

can be solved similarly to give

z = Iover,−1
�

Iover(zover
− ) + (Iover(zover

+ )− Iover(zover
− )) · random[0, 1]

�

, (A.8)

where Iover(z) =
∫

dz Pover
ĩ j→i, j

(z). Assuming the azimuthal angle φ is uniformly distributed

(false when considering spin correlations), a phase space point (t, z,φ) is generated. This
phase space point is then accepted if

random[0,1]<
αs

�

p2
⊥(t, z)
�

αover
s

Pĩ j→i, j(z)

Pover
ĩ j→i, j

(z)
Θ(z− < z < z+) . (A.9)

This acceptance probability depends on the two components of f that were changed to create
the overestimate. The Θ-function in Eq. (A.9) ensures that only z values within the allowed
range between z− and z+ are accepted. If the point is accepted, the algorithm ends. If the point
is rejected, or in other words, “vetoed”, new values (t ′, z′) are generated from (A.6) and (A.8)
with the substitution T → t. This process is repeated until a new phase space point is accepted
or until t < tC , where tC is a fixed minimum scale, chosen to terminate the algorithm. The
veto algorithm has been analytically proven to return the correct Sudakov form factor [10, p.
64].

To generate a subsequent emission after (t, z,φ), which we now rename as (t1, z1,φ1),
the veto algorithm is reimplemented with the Sudakov form factor ∆ĩ j→i, j(t2, t1). In a parton
shower, this process is repeated for all possible subsequent emissions for all the particles in
the system. When multiple possible emissions exist, a trial emission of every kind is generated
using the overestimate function and (A.2). The emission with the highest value of t is deemed
the winner, and t is used as the proposed scale of the splitting. Since all emission types were
“offered the chance” to emit at scales above t, it is used as the upper scale for the subsequent
evolution of all partons, not only the products of the generated splitting.

In modern event generators, two classes of parton shower algorithms can be distinguished:
in the first, the parton shower is developed for each parton individually as a series of 1→ 2
branchings. Energy and momentum cannot then be conserved because the sum of the mo-
menta produced in a branching has an invariant mass that is greater than the parent’s. This is
rectified by a final stage of the algorithm, in which small amounts of energy and momentum
are shuffled between partons to ensure that they are conserved. In the second class, often
called a dipole shower, the emission from a parton is generated with reference to one or more
additional partons, with which energy and momentum are shuffled immediately so that they
are conserved after each branching. This is sometimes characterised as a 2→ 3 branching, but
might more properly called 1(+n)→ 2(+n) with n≥ 1, since it is properly a 1→ 2 branching
in the presence of n “spectator” partons [40]. To illustrate our discussion of GPU algorithms,
we have implemented the simplest possible dipole shower with a single spectator called the
colour partner.

The pseudocode algorithm below explains how the parton shower runs and is written using
S. Höche’s tutorial [12]. This algorithm is also shown as a flow chart in figure 1.

The heart of the algorithm is the function SelectWinnerEmission, which loops over
partons, offering each the chance to emit. It finds the generated emission with the highest scale
and returns it, provided that this is higher than the minimum allowed scale t_C. It assumes
that information about the partons in the event and the current value of t are available as
global variables.

13

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33


SciPost Phys. Codebases 33 (2024)

1 function SelectWinnerEmission:
2

3 winner_scale = t_C
4 winner_splitting_function = None
5

6 # For a Dipole Shower , we try all kernels for all splitter
7 # spectator combinations , and see which one generates
8 # the highest t
9 #

10 # In our CPU Shower , we can define the parton
11 # list as an empty array , where new partons are appended
12 # to the array as emissions are generated (this is not
13 # quite the same in the GPU case)
14 for splitter in parton_list:
15 for spectator in parton_list:
16

17 # Ensure that splitter != spectator
18 if splitter = spectator:
19 ignore
20

21 # Leading Colour -> colour connected dipoles
22 if splitter , spectator != color_connected:
23 ignore
24

25 for splitting_function in split_funcs
26

27 # P(u -> ug) may not be same as P(d -> dg), etc.
28 if splitting_function.splitter != splitter:
29 ignore
30

31 temp_scale = splitting_function.choose_scale ()
32

33 if temp_scale > winner_scale:
34

35 winner_scale = temp_scale
36 winner_splitting_function = splitting function
37

38 # Winner Emission Found!
39 return winner_scale , winner_splitting_function

The function GenerateEmission uses SelectWinnerEmission repeatedly to select a win-
ner emission, calculates the veto probability for this emission and, if accepted, reconstructs
the momenta of the produced partons and spectator.

1 function GenerateEmission:
2

3 while t > t_C:
4

5 # Generate Emissions and Determine Winner - above
6 winner_scale , winner_splitting_function =

SelectWinnerEmission ()
7

8 t = winner_scale
9

10 # To ensure we don’t make a new parton under the cutoff
11 if t > t_C:
12

13 # Veto: A vital step in the Parton Shower
14 p = generate_veto_probability ()
15 if random [0,1] < p:
16

14

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33


SciPost Phys. Codebases 33 (2024)

17 # Do Physics
18 solve_kinematics(splitter , spectator , t, z)
19 assign_colours(splitter , winner_kernel)
20

21 # Change the momenta and colour of current partons
22 update_emitter_and_spectator ()
23

24 # Add new parton to system (Emitted)
25 new parton(momentum , colour , ...)
26

27 # Ends Function after Branching is Done
28 break

Finally, a very simple main program can use these to shower quark-antiquark events at a fixed
centre-of-mass energy:

1 # Start the Shower by setting the starting t
2 parton_list = [quark , antiquark]
3 t = t_max = CoM_Energy ()
4

5 # A while loop repeatedly calls GenerateEmission
6 # until the system is full of partons and t = t_C
7 while t > t_C
8 GenerateEmission ()

B An introduction to GPUs and GPU programming

In this section, we highlight the key elements of GPUs and how to adjust C++ code to utilise
them. This section provides context for our new algorithm and provides further reasoning as
to why we cannot do an “apples-to-apples” comparison between the CPU-only and CPU+GPU
showers. The seminal text on this topic is the NVIDIA CUDA C++ Programming Guide, which
is regularly updated alongside new releases of GPUs and updates to the language [11]. Ad-
ditionally, one can further look into the GPU Computing Gems series of books, which contain
techniques and examples relevant to scientific computing [41].

The majority of computers are built following the Von Neumann Architecture, where a
Central Processing Unit (CPU) is in charge of undertaking complicated calculations, manag-
ing memory and connecting input and output devices [42]. Some computers also come with
multiprocessors, or multiple CPU cores, allowing one to parallelise tasks or alternatively com-
pute different tasks [43]. For this reason, data centres worldwide provide computer clusters
with hundreds of cores. However, suppose the task is simple and can easily be parallelised. In
that case, it might also be beneficial to compute it on a Graphics Processing Unit (GPU), which
contains thousands of smaller, less powerful cores that are managed as one. This architecture
is designed such that all cores execute the same command at a given time, which makes it a
valuable tool for solving simple embarrassingly parallel problems, where little effort is needed
to parallelise the task [44]. For example, if the elements of two arrays are independent, a
CPU would add them one at a time, but a GPU would add every element in parallel. That
being said, the smaller cores in the GPU may not be as fast for sophisticated tasks, so it is
important to utilise both CPU and GPU when computing. This is known as heterogeneous
programming [11]. Figure 9 summarises the difference between CPU and GPU cores.

Programming on a GPU can be done using languages such as CUDA, HIP [45], OpenCL [46]
or Kokkos [47]. We use CUDA (C++ version) in our program, which is specifically designed
for the NVIDIA GPUs. Programming on a GPU is similar to regular programming but involves
two crucial components: distributing tasks on the GPU cores and moving information from the

15

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33


SciPost Phys. Codebases 33 (2024)

CPU GPU

Figure 9: CPU and GPU cores. Here, the size of the core is used as a reference for
its computing ability. As mentioned, the CPU has a small number of powerful cores,
while the GPU has thousands of less powerful cores. This difference makes them
suited for different tasks.

CPU (often called host) to the GPU (often called device) and back. We provide a few beginner-
friendly CUDA examples in the doc folder of the GAPS repository. As an advanced example,
we look at matrix element generation here. For a leading order process like e+e− → qq̄, the
solution is known. In our code, we randomly generate a flavour, compute the matrix element,
and then use it to calculate the differential cross section. For simplicity, we neglect data related
to the kinematics of the event from our example. In a CPU-only program, one would use a
for loop to generate one random number, calculate the matrix element, and calculate the
differential cross section. On a GPU, this for loop can be replaced by a “kernel” (not to be
confused with splitting kernel!), which parallelises this task:

1 # Device = Function that can only run on the GPU
2 # If on GPU , can be called by all threads at once
3 __device__ function MatrixElement(int flavour)
4 # Formula Goes Here
5

6 # Global = Operates from the CPU and Runs on the GPU
7 # This is how you make each thread calculate one ME and XS
8 __global__ function calcDifferentialCrossSec(double *xs_data , int

N)
9

10 # Pseudocode for getting Thread ID
11 idx = getThreadID ()
12

13 # Safety Check:
14 # Don’t run if idx is greater than number of needed events
15 if (idx >= N): return
16

17 # Get random number for flavour
18 flavour = cuda.random(1, 5)
19

20 # Calc ME and XS

16

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33


SciPost Phys. Codebases 33 (2024)

21 ME = MatrixElement(flavour);
22 xs = # Formula to convert ME to XS
23

24 # Set the value
25 xs_data[idx] = xs
26

27 # Function Run Here
28

29 # Number of Events
30 N = 10000
31

32 # Make arrays on CPU and on GPU
33 double *host_xs , *device_xs;
34 malloc(host_xs , sizeof(double) * N)
35 cudaMalloc(device_xs , sizeof(double) * N)
36

37 # Launch a Kernel of size N for N events
38 kernel <N> calcDifferentialCrossSection(device_xs , N)
39

40 # Copy info on the device to the host
41 # Because we cannot write or store from the device
42 # Do this as few times as possible as it is very
43 # time/memory -consuming
44 #
45 # NB: We often have to mention the direction in
46 # which the memory is being copied. Here we
47 # specify copying from Device to Host
48 cudaMemcpy(host_xs , device_xs , DeviceToHost)

This way, the matrix elements can be calculated for many events without needing a many-
core CPU. The function MatrixElement is usually complicated enough that it takes longer to
evaluate once on a GPU than on a CPU, but this is more than compensated by the fact that it
can be calculated hundreds or thousands of times in parallel on the GPU.

C Pseudocode for the GPU parton shower

In the GPU Implementation, the steps are written as CUDA Kernels instead of functions. The
following kernels were used in our algorithm:

• Selecting the winner emission: Notice that almost all of it is identical to the CPU version
in Appendix A. Apart from being a kernel rather than a function, the only difference is
the simple flag that leaves the kernel very quickly if the shower has already terminated.
This is extremely important for the efficiency of our implementation.

1 __global__ function SelectWinnerEmission(object *events , int N
)

2

3 int idx = getThreadID ();
4

5 if idx >= N
6 return
7

8 # This is a VERY Important step
9 # If the shower has ended , the GPU Core will be assigned

10 # a different event. This is why the code is so fast , and
11 # why doing more events than GPU cores is better. We set
12 # this parameter after getting the new scale t.
13 #
14 # Note: This is set to true in the CheckCutOff Kernel

Below

17

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33


SciPost Phys. Codebases 33 (2024)

15 if events[idx]. endShower = True
16 return
17

18 winner_scale = t_C
19 winner_splitting_function = None
20

21 # This is the EXACT SAME code as the simple shower
22 # that is provided in Appendix A. We consider this
23 # as the biggest success of this algorithm. We
24 # remove the informative comments from that version
25 # here
26 #
27 # IMPORTANT: While we can reallocate memory on the
28 # GPU , it is very time consuming. Hence , instead of
29 # appending new elements to a dynamic -sized list ,
30 # we preallocate a set number of partons to every event
31 # (this is set to 50 for LEP , but in the future we can
32 # go higher , at the cost of fewer events being executed
33 # in parallel. For fair comparison , we also use this
34 # method in the CPU Shower)
35 for splitter in parton_list:
36 for spectator in parton_list:
37

38 if splitter = spectator:
39 ignore
40

41 if splitter , spectator != color_connected:
42 ignore
43

44 for splitting_function in split_funcs
45

46 if splitting_function.splitter != splitter:
47 ignore
48

49 temp_scale = splitting_function.choose_scale ()
50

51 if temp_scale > winner_scale:
52

53 winner_scale = temp_scale
54 winner_splitting_function = splitting function
55

56 event[idx]. winner_splitting_function =
winner_splitting_function

57 event[idx].t = winner_scale

• Checking the cutoff, t > tC

1 __global__ function CheckCutoff(object *events , int N)
2

3 int idx = getThreadID ();
4

5 if idx >= N
6 return
7

8 if events[idx]. endShower = True
9 return

10

11 if event[idx].t <= t_C
12

13 # The Default value for all events is false.
14 # Once the Cutoff is reached , this is set to
15 # True.

18

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33


SciPost Phys. Codebases 33 (2024)

16 #
17 # Before doing anything , the code checks if the
18 # event has ended. If it has , nothing
19 # is done in that thread.
20 event[idx]. endShower = True
21

22 # Add to the completed counter
23 # Atomic = multiple threads at the same time
24 AtomicAdd(completedEventsCounter , 1)

• Acceptance/Vetoing procedure

1 __global__ function AcceptOrVeto(object *events , int N)
2

3 int idx = getThreadID ();
4

5 if idx >= N
6 return
7

8 if events[idx]. endShower = True
9 return

10

11 p = generate_veto_probability(event[idx])
12 if random [0,1] < p
13 event[idx]. acceptEmission = True
14 else
15 event[idx]. acceptEmission = False

• Generating the splitting for accepted emissions

1 __global__ function GenerateEmission(object *events , int N)
2

3 int idx = getThreadID ();
4

5 if idx >= N
6 return
7

8 if events[idx]. endShower = True
9 return

10

11 if event[idx].veto == True
12

13 solve_kinematics(splitter , spectator , t, z)
14 assign_colours(splitter , winner_kernel)
15 update_emitter_and_spectator ()
16 new parton(momentum , colour , ...)

These kernels are called using a host (CPU) function

1 function runShower(N)
2

3 object events = FixedOrderEvent(N)
4

5 while completedEventsCounter < N
6

7 kernel <N> SelectWinnerEmission(events , N)
8 kernel <N> CheckCutoff(events , N)
9 kernel <N> AcceptOrVeto(events , N)

10 kernel <N> GenerateEmission(events , N)
11

12 # Now you have an event with Hard and Soft Particles.

19

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33


SciPost Phys. Codebases 33 (2024)

References

[1] ATLAS Collaboration, ATLAS software and computing HL-LHC roadmap, Tech. rep., CERN,
Geneva (2022).

[2] E. Bothmann, A. Buckley, I. A. Christidi, C. Gütschow, S. Höche, M. Knobbe, T. Martin
and M. Schönherr, Accelerating LHC event generation with simplified pilot runs and fast
PDFs, Eur. Phys. J. C 82, 1128 (2022), doi:10.1140/epjc/s10052-022-11087-1.

[3] C. Gutschow, Pathways towards sustainable event generation, Talk given at [4] (2023).

[4] M. Mangano et al.„ Event generators’ and N(n)LO codes’ acceleration, https://indico.cern.
ch/event/1312061.

[5] E. Bothmann, T. Childers, W. Giele, S. Höche, J. Isaacson and M. Knobbe, A
portable parton-level event generator for the high-luminosity LHC, (arXiv preprint)
doi:10.48550/arXiv.2311.06198.

[6] A. Valassi et al., Speeding up Madgraph5 aMC@NLO through CPU vectorization and GPU of-
floading: Towards a first alpha release, (arXiv preprint) doi:10.48550/arXiv.2303.18244.

[7] M. J. Flynn, Some computer organizations and their effectiveness, IEEE Trans. Comput.
C-21, 948 (1972), doi:10.1109/TC.1972.5009071.

[8] A. Vicini, Issues in the parallelization of physics algorithms on gpu, Talk given at [4] (2023).

[9] L. Durant, O. Giroux, M. Harris and N. Stam, Inside Volta: The world’s most advanced data
center GPU (2017).

[10] T. Sjöstrand, S. Mrenna and P. Skands, PYTHIA 6.4 physics and manual, J. High Energy
Phys. 05, 026 (2006), doi:10.1088/1126-6708/2006/05/026.

[11] NVIDIA Corporation & affiliates, CUDA C++ Programming guide, https://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html#.

[12] S. Höche, Introduction to parton-shower event generators, Journeys Through Precis.
Front.: Amplitudes Collid. 235 (2015), doi:10.1142/9789814678766_0005.

[13] S. Höche and S. Prestel, The midpoint between dipole and parton showers, Eur. Phys. J. C
75, 461 (2015), doi:10.1140/epjc/s10052-015-3684-2.

[14] Intel Coorportation, Intel Xeon processor E5-2620 v4 (20M Cache, 2.10 GHz)
specifications, https://www.intel.com/content/www/us/en/products/sku/92986/
intel-xeon-processor-e52620-v4-20m-cache-2-10-ghz/specifications.html.

[15] NVIDIA Corporation & affiliates, Nvidia tesla v100, https://www.nvidia.com/en-gb/
data-center/v100/.

[16] A. Buckley, L. Corpe, M. Filipovich, C. Gutschow, N. Rozinsky, S. Thor, Y. Yeh and J. Yellen,
Consistent, multidimensional differential histogramming and summary statistics with YODA
2, (arXiv preprint) doi:10.48550/arXiv.2312.15070.

[17] C. Bierlich et al., Robust independent validation of experiment and theory: Rivet version 3,
SciPost Phys. 8, 026 (2020), doi:10.21468/SciPostPhys.8.2.026.

[18] NVIDIA Corporation & affiliates, HPC application performance, https://developer.nvidia.
com/hpc-application-performance.

20

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33
https://doi.org/10.1140/epjc/s10052-022-11087-1
https://indico.cern.ch/event/1312061
https://indico.cern.ch/event/1312061
https://doi.org/10.48550/arXiv.2311.06198
https://doi.org/10.48550/arXiv.2303.18244
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1088/1126-6708/2006/05/026
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#
https://doi.org/10.1142/9789814678766_0005
https://doi.org/10.1140/epjc/s10052-015-3684-2
https://www.intel.com/content/www/us/en/products/sku/92986/intel-xeon-processor-e52620-v4-20m-cache-2-10-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/92986/intel-xeon-processor-e52620-v4-20m-cache-2-10-ghz/specifications.html
https://www.nvidia.com/en-gb/data-center/v100/
https://www.nvidia.com/en-gb/data-center/v100/
https://doi.org/10.48550/arXiv.2312.15070
https://doi.org/10.21468/SciPostPhys.8.2.026
https://developer.nvidia.com/hpc-application-performance
https://developer.nvidia.com/hpc-application-performance


SciPost Phys. Codebases 33 (2024)

[19] S.-Y. Lee and C.-J. Wu, Characterizing the latency hiding ability of GPUs,
2014 IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS) 145 (2014),
doi:10.1109/ISPASS.2014.6844477.

[20] N. Sakharnykh, GPU pro tip: Fast histograms using shared
atomics on Maxwell (2015), https://developer.nvidia.com/blog/
gpu-pro-tip-fast-histograms-using-shared-atomics-maxwell/.

[21] NVIDIA Corporation & affiliates, Histogram implementation - CUDA thurst library, https:
//github.com/NVIDIA/thrust/blob/master/examples/histogram.cu.

[22] NVIDIA Corporation & affiliates, NVIDIA Nsight systems (2024), https://developer.nvidia.
com/nsight-systems.

[23] Intel Coorportation, Thermal Design Power (TDP) in Intel Processors (2023), https://www.
intel.com/content/www/us/en/support/articles/000055611/processors.html.

[24] S. Pagani, H. Khdr, J.-J. Chen, M. Shafique, M. Li and J. Henkel, Thermal safe power
(TSP): Efficient power budgeting for heterogeneous manycore systems in dark silicon, IEEE
Trans. Comput. 66, 147 (2017), doi:10.1109/TC.2016.2564969.

[25] C. Bierlich et al., A comprehensive guide to the physics and usage of PYTHIA 8.3, SciPost
Phys. Codebases 8 (2022), doi:10.21468/SciPostPhysCodeb.8.

[26] E. Bothmann et al., Event generation with Sherpa 2.2, SciPost Phys. 7, 034 (2019),
doi:10.21468/SciPostPhys.7.3.034.

[27] G. Bewick et al., Herwig 7.3 release note, (arXiv preprint)
doi:10.48550/arXiv.2312.05175.

[28] A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht, M. Schönherr
and G. Watt, LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75,
132 (2015), doi:10.1140/epjc/s10052-015-3318-8.

[29] S. Carrazza, J. M. Cruz-Martinez and M. Rossi, PDFFlow: Parton distribution functions on
GPU, Comput. Phys. Commun. 264, 107995 (2021), doi:10.1016/j.cpc.2021.107995.

[30] R. K. Ellis, W. J. Stirling and B. R. Webber, QCD and collider physics, Cam-
bridge University Press, Cambridge, UK, ISBN 9780521581899 (1996),
doi:10.1017/CBO9780511628788.

[31] A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rep. 504, 145
(2011), doi:10.1016/j.physrep.2011.03.005.

[32] J. Campbell, J. Huston and F. Krauss, The black book of quantum chromo-
dynamics, Oxford University Press, Oxford, UK, ISBN 9780199652747 (2017),
doi:10.1093/oso/9780199652747.001.0001.

[33] J. C. Collins, D. E. Soper and G. Sterman, Factorization of hard processes in QCD, in
Advanced series on directions in high energy physics, World Scientific, Singapore, ISBN
9789814503266 (1989), doi:10.1142/9789814503266_0001.

[34] M. Bähr et al., Herwig++ physics and manual, Eur. Phys. J. C 58, 639 (2008),
doi:10.1140/epjc/s10052-008-0798-9.

[35] T. Kinoshita, Mass singularities of feynman amplitudes, J. Math. Phys. 3, 650 (1962),
doi:10.1063/1.1724268.

21

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33
https://doi.org/10.1109/ISPASS.2014.6844477
https://developer.nvidia.com/blog/gpu-pro-tip-fast-histograms-using-shared-atomics-maxwell/
https://developer.nvidia.com/blog/gpu-pro-tip-fast-histograms-using-shared-atomics-maxwell/
https://github.com/NVIDIA/thrust/blob/master/examples/histogram.cu
https://github.com/NVIDIA/thrust/blob/master/examples/histogram.cu
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://www.intel.com/content/www/us/en/support/articles/000055611/processors.html
https://www.intel.com/content/www/us/en/support/articles/000055611/processors.html
https://doi.org/10.1109/TC.2016.2564969
https://doi.org/10.21468/SciPostPhysCodeb.8
https://doi.org/10.21468/SciPostPhys.7.3.034
https://doi.org/10.48550/arXiv.2312.05175
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1016/j.cpc.2021.107995
https://doi.org/10.1017/CBO9780511628788
https://doi.org/10.1016/j.physrep.2011.03.005
https://doi.org/10.1093/oso/9780199652747.001.0001
https://doi.org/10.1142/9789814503266_0001
https://doi.org/10.1140/epjc/s10052-008-0798-9
https://doi.org/10.1063/1.1724268


SciPost Phys. Codebases 33 (2024)

[36] T. D. Lee and M. Nauenberg, Degenerate systems and mass singularities, Phys. Rev. 133,
B1549 (1964), doi:10.1103/PhysRev.133.B1549.

[37] N. Nakanishi, General theory of infrared divergence, Prog. Theor. Phys. 19, 159 (1958),
doi:10.1143/PTP.19.159.

[38] M. Bengtsson and T. Sjöstrand, A comparative study of coherent and non-coherent parton
shower evolution, Nucl. Phys. B 289, 810 (1987), doi:10.1016/0550-3213(87)90407-X.

[39] M. H. Seymour, Matrix-element corrections to parton shower algorithms, Comput. Phys.
Commun. 90, 95 (1995), doi:10.1016/0010-4655(95)00064-M.

[40] S. Catani and M. H. Seymour, A general algorithm for calculating jet cross sections in NLO
QCD, Nucl. Phys. B 485, 291 (1997), doi:10.1016/S0550-3213(96)00589-5.

[41] W. Hwu, GPU computing gems jade edition, Morgan Kaufmann, Burlington, USA, ISBN
9780123859631 (2012), doi:10.1016/C2010-0-68654-8.

[42] C. Shipley and S. Jodis, Programming Languages Classification, in Encyclopedia of in-
formation systems, Elsevier, Amsterdam, Netherlands, ISBN 9780122272400 (2003),
doi:10.1016/B0-12-227240-4/00138-6.

[43] L. Natvig, A. Iordan, M. Eleyat, M. Jahre and J. Amundsen, Multi- and many-cores, archi-
tectural overview for programmers, Wiley, Hoboken, USA, ISBN 9781119332015 (2017),
doi:10.1002/9781119332015.ch1.

[44] M. Herlihy, The art of multiprocessor programming, Morgan Kaufmann, Burlington, USA
(2006), doi:10.1145/1146381.1146382.

[45] Advanced Micro Devices Inc., HIP: Heterogeneous-compute Interface for Portability,
GitHub, https://github.com/ROCm/HIP.

[46] Khronos Group, OpenCL - The open standard for parallel programming of heterogeneous
systems, https://www.khronos.org/opencl/.

[47] C. R. Trott et al., Kokkos 3: Programming model extensions for the exascale era, IEEE Trans.
Parallel Distrib. Syst. 33, 805 (2022), doi:10.1109/TPDS.2021.3097283.

22

https://scipost.org
https://scipost.org/SciPostPhysCodeb.33
https://doi.org/10.1103/PhysRev.133.B1549
https://doi.org/10.1143/PTP.19.159
https://doi.org/10.1016/0550-3213(87)90407-X
https://doi.org/10.1016/0010-4655(95)00064-M
https://doi.org/10.1016/S0550-3213(96)00589-5
https://doi.org/10.1016/C2010-0-68654-8
https://doi.org/10.1016/B0-12-227240-4/00138-6
https://doi.org/10.1002/9781119332015.ch1
https://doi.org/10.1145/1146381.1146382
https://github.com/ROCm/HIP
https://www.khronos.org/opencl/
https://doi.org/10.1109/TPDS.2021.3097283

	Introduction
	The parallelised veto algorithm
	Implementation and results for LEP at 91.2 GeV
	Validation through physical results
	Comparison of execution times
	Comments on the cost of simulation

	Concluding remarks and outlook
	Parton showers and the veto algorithm
	An introduction to GPUs and GPU programming
	Pseudocode for the GPU parton shower
	References

