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Abstract

Low energy nuclear physics experiments are transitioning towards fully digital data ac-
quisition systems. Realizing the gains in flexibility afforded by these systems relies on
equally flexible data reduction techniques. In this paper, methods utilizing data frames
and in-memory techniques to work with data, including data from self-triggering, digital
data acquisition systems, are discussed within the context of a Python package, sauce.
It is shown that data frame operations can encompass common analysis needs and allow
interactive data analysis. Two event building techniques, dubbed referenced and refer-
enceless event building, are shown to provide a means to transform raw list mode data
into correlated multi-detector events. These techniques are demonstrated in the analysis
of two example data sets.
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1 Introduction

Low energy nuclear physics is concerned with the structure, properties, and origin of nuclei.
As a consequence of the broad reach of this field, complementary experimental efforts happen
at both billon dollar facilities with collaborations of several hundred participants, to univer-
sity run labs where critical experimental information might be the product a few individuals.'
While the trend has been slow, both national user facilities and university labs have transi-
tioned or are transitioning away from traditional analog electronics and towards fully digital
data acquisition systems (DAQ).? These digital systems have removed the need for complex
analog setups that handle triggering and signal processing. As a result, the data processing
pipeline, both online and offline, is now tasked with software implementations of much of the
logic that would have previously been handled by nuclear electronics, thus placing additional
requirements on the field’s data analysis tools.

Currently, a stumbling block for this transition to digital DAQs is that low energy nuclear
physics frequently adopts the analysis tools and software of the high energy particle physics
community, despite the significant structural differences between the data produced by the two
fields. As simple example of this difference, consider two of the most prominent experiments
from the 1990s in both fields: the CDF and Df) experiments at Fermilab responsible for the
discovery of the top quark in 1995 [1, 2] for the high energy particle physics community, and
the construction and operation of Gammasphere at Lawrence Berkeley and Argonne National
Labs in the low energy nuclear physics community. Both D@ and CDF produced events (time
correlated collections of all detector signals) of around 200 KB in size [3]. Gammasphere,
however, was producing events of only 100 B [4]. In the current era this gap has narrowed with
the CMS and ATLAS experiments at the Large Hadron Collider producing events on the order
of a MB [5,6] while the Gamma-Ray Energy Tracking Array (GRETA) has a single crystal event
size of 8 kB implying a maximum event size of 960 kB [7]. Despite the narrowing in raw event
size, the structure of the events between the two fields remains dramatically different. GRETA's
events come from just 120 channels with a majority of an event’s size coming from waveform
data, while the CMS and ATLAS events contain aggregate information on hundreds of millions
of channels. Looking at these examples it is reasonable to say that when comparing the data
produced by experiments for low energy nuclear physics and those of high energy particle
physics, we are looking at the difference between nearly all information being recorded from
hundreds to thousands of channels with low average detector multiplicity versus aggregate
information from hundreds of millions of channels with high detector multiplicity. The final

Thttps://aruna.physics.fsu.edu.

2This transition has been slowest among applications that had little need for the greater throughput of the
digital systems, but would suffer from the degraded timing and spectroscopic information. The gap in energy and
timing resolution between digital and analog systems has narrowed considerably over the last decade.


https://scipost.org
https://scipost.org/SciPostPhysCodeb.37
https://aruna.physics.fsu.edu

SC|| SciPost Phys. Codebases 37 (2024)

volume of data produced from these experiments might be comparable, but for low energy
nuclear physics these data will constitute hundred of experiments, resulting in average data
sets orders of magnitude smaller. Due to these facts, analysis methods tailored to smaller
events sizes and fewer channels greatly benefit the field and allow experimenters to utilize
computational resources to speed up data exploration and analysis.

In this paper an analysis framework designed specifically for smaller scale low energy nu-
clear physics will be discussed. This framework utilizes data frames for in-memory analysis
(all the data can fit into random access memory (RAM)) encouraging rapid and interactive
data exploration. Although designed with digital DAQs in mind, many of the benefits of the
framework can be utilized for analog systems as well. A concrete implementation of the frame-
work’s principles resides in a Python package called sauce,®> which will be used in examples
throughout the paper. However it is the goal of this paper to discuss the recurring challenges
that arise when dealing with digital DAQs and data reduction in as much generality as possible.

2 Motivation and design choices

For the remainder of this paper, code snippets will be given frequently. It is assumed the reader
is familiar with the syntax of the Python programming language. Rapid data exploration is
aided by minimizing the amount of code required to carry out common analysis tasks. Consider
what it would take to be able to find the timing difference between two detectors in one line
of code:

dt = detO.time - detl.time

Where this single line of code represents an array operation such that every timestamp
recorded for detO is subtracted from those of detl. For this operation to be meaningful, it
is required that the two timestamp arrays be equal in length and ordered so that only the dif-
ference of related timestamps is computed. Ensuring these two conditions are met is difficult,
and so it is far more common to write some variation of the following:

for i, event in enumerate (events):

if detO.time and detl.time:
dt[i] = detO.time - detl.time

Ignoring how a collection of events was even constructed to begin with, this small snippet
of code already poses problems for exploratory analysis. First, we are forced to sort through
every event to find the few that we are interested in, which can be computationally expen-
sive. Second, any further analysis requires we either write many such loops, or worse that
we add more logic within the body of the existing loop. Third, such granular logic is prone
to introducing errors. This last point is especially important when an analysis starts directly
from the list mode data of the DAQ. In this case, experimenters would be implementing their
own sorting routines, making the lower level code of the later sample a larger liability for the
correctness and efficiency of any subsequent analysis. The additional complexity that comes
with digital DAQs further exacerbates these problems.

We can avoid these issues entirely by developing a scheme that will enable the simple
declarative nature of the former code sample. Doing so will require we have effective ways of
handling list mode data and event building, which, in turn, requires we find a suitable data
structure to hold and work with these data. The argument will be made that data frames
serve this purpose well in Sec.2.2, but first a discussion on some of the pitfalls of commonly
employed data and event structures is merited.

3https://github.com/camarsha/sauce.
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Figure 1: Simple event struture for a peak sensing ADC. The pulse height recorded
in each channel is one element of an N-dimensional array.

2.1 Representation of list mode data

Modeling our data as a collection of events that hold the information for each channel in the
system closely mirrors the data flow from a traditional analog signal processing setup, and
could be in part why such a data pipeline is so common. To clarify the operation of such a
setup, a peak sensing analog to digital converter (ADC) is coupled to analog signal processing
and logic. Prior to data recording, a trigger logic is decided upon and implemented. The ADC
gate will open and record data when signals of interest are present. Offline analysis involves
sifting through these “events”, which consist of the pulse height information of all the channels
that fired within the ADC gate. Correlations between detectors are completely dictated by the
hardware trigger logic and cannot be altered in software. In this case, it is simple to represent
the DAQ’s list mode data as a single N-dimensional array of pulse heights as shown in Fig. 1.

While attractively simple, this approach is memory inefficient. As the number of channels
in the system grows, the N-dimensional array will increase in size as well, but critically its
memory consumption is only tied to the number of channels and the system wide event rate.
The same amount of memory is required for each event regardless of how many channels have
fired. As an example, consider a system with 128 channels (four 32-channel ADCs) with 16 bit
energy resolution firing at a total rate of 10 kHz. If a fixed length array is chosen to represent
these data, then 9 GB of data would be produced in one hour. The size of this data can be
unwieldy to deal with even if it fits into memory, as a loop will have to sift over 36 million
events for any operation on the data. It is likely to push an experimenter towards a workflow
of a single monolithic event loop to populate histograms and then viewing those histograms
after the sorting has been completed. This cycle of sorting and viewing would have to be
repeated until the analysis is finalized.

Sticking to the analog case for the moment, what if we were to only process the data from
the channels that fired in an event? We would need to identify each channel that fired with
a channel number (conservatively assumed to be 8 bits in this case) and an event number to
group the channel hits that belong to the same event (conservatively assumed to be 32 bits).
Software logic would then be needed to reconstruct events. However, the amount of data
produced in an hour is now dependent on the average number of channels that fire, ranging
from 250 MB if one channel fires on average to 32 GB if all channels fire. Less data is produced
than the N-dimensional array case for average channel multiplicities below 35. It also seems
more reasonable to start an analysis by working on individual channels and then, only when
needed, looking at correlations between different channels.

Now consider self-triggering digital DAQs, where each channel in the system triggers in-
dependently and records any data that passes an electronic threshold to disk. Pulse height
information is now accompanied by timestamps and there is no longer a hardware definition
of an “event” [8]. Instead, we must start our data reduction with raw list mode data from the
DAQ, which for simplicity can be thought of as a tuple of numbers:

hit = (channel,adc, timestamp). D

4
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Figure 2: Simple event structure for a self-triggering DAQ. The pulse height (blue)
is now recorded with a timestamp (red) in each channel. Each channel can fire any
number of times within an event leading to an N-dimensional jagged array.

In this case, channel is a general variable that uniquely identifies an electronic channel in
the system, adc is a digitized pulse height with arbitrary units, and timestamp is an absolute
digital timestamp with a resolution that is system dependent. A lack of trigger logic also means
that when events are built, multiple hits from a channel could be present within a single event.
If we were to try and maintain our N-dimensional array event model, we would need jagged
arrays (Fig. 2) where each element of the array can have any number of sub-elements. A
naive implementation of this data structure would be for each element of our N-dimensional
array to contain a dynamically sized array (for superior implementations see Refs. [9, 10]).
Assuming 64 bit timestamps and dynamic arrays that require 192 bits of overhead (64 bits
for the memory address, size, and capacity), the 9 GB of the analog case would become 157
GB with only 1 hit per channel per event. This amount of data is likely to force our event
loop to stream data from disk further slowing down analysis. Since the event building scheme
must be adopted before seeing the data, additional challenges arises when trying to change
the event building parameters like the coincidence window. It is clear that by trying to avoid
the inherent complexity of a trigger-less digital DAQ and merely extending our existing data
structure of events as N-dimensional arrays, we are lead towards an imperative programming
style, degraded performance, and a loss of interactivity in our analysis. If we instead start by
aggregating individual channel hits and take advantage of the fact that we can always recover
event information from the timestamps (i.e. dynamically build events), we can directly store
the tuple given in Eq. (1), yielding 400 MB with average multiplicity of 1 and 51 GB with an
average multiplicity of 128. Using such a scheme and with appropriate tools, an in memory
analysis becomes feasible for a large number of nuclear physics experiment.

2.2 Data frames

Effective analysis of data from a digital DAQ requires a data structure that is suited towards
working with the raw list mode data of Eq. (1). The chosen data structures should have a set of
operations that closely map to typical analysis tasks, such as applying thresholds or performing
an energy calibration, while also providing tools to avoid the intensive memory costs of sparse
arrays. The choice made for sauce and that will be discussed for the rest of the paper is to
use data frames for these tasks. Briefly, data frames are a type of columnar data structure
that combine properties of relational tables and matrices [11]. They were first introduced in
the context of the S programming language [12] and have since become widespread tools for
data analysis. Implementations of data frames exist in numerous programming languages,
including R [13] and Python [14,15]. The version of sauce described in this paper has been
implemented using the Python bindings of the polars® library.

“https://pola.rs.
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Figure 3: Sketch of the transformation of list mode data to data frames that occurs
for each channel. sauce associates each data frame with a name in a class called

Detector so that it can be identified when combining data from multiple channels.
PH and TS stand for pulse height and timestamp, respectively.

Detector Signal

To clarify the structure of the sauce’s channel data frames, recall the basic list mode datum
given in Eq. 1. For each channel identifier, a separate data frame would be created such that
we have a columnar data set of adc and timestamp values. Fig. 3 shows the transformation of
list mode data into channel specific data frames which are named to uniquely identify them.
Notice that as a consequence of this storage scheme pulse heights are naturally associated
with their time stamps and visa-versa. If the DAQ produces additional information (e.g pile-up
detection or waveform data) it can simply become another column. In sauce, these structures
are implemented in a class called Detector, which stores a data frame along with an identifier
(name). There is no requirement that data frames for individual channels be the same length
or have the same number of columns. When it becomes necessary for the analysis to compare
hits in different channels, multi-channel data frames will be constructed programmatically
using event building (Sec. 3).

2.3 Basic nuclear physics analysis as data frame operations

There has been some effort in to formalize data frame operations in Ref. [11] (see Table 1
in that work), which are partially derived from Ref. [16]. However, in this discussion I will
present code snippets showing the necessary polars operations to keep this work grounded
in their practical use. While this removes some generality from the discussion, it has the
benefit of showing the utility of data frames for this application as well as the brevity of the
resulting code. Many polars operations are analogous to similarly named SQL functions or
share names with common higher-order functions from the functional programming paradigm
(filter, reduce, etc.).

Before moving on to sauce, let’s look at some basic analysis using data frame operations
directly. A hypothetical data set comprised of all hits in a single data taking run has three
columns: channel, adc, time. The data set has been saved as a parquet file. Loading the entire
data set into memory is done with:

run = pl.read_parquet("run_data.parquet")
Our simplified experimental setup system of only two detectors occupying channels 0 and
1 of the system, respectively, and dubbed, affectionately, “det0” and “det1”. The hits belonging

to “det0” can be found by selecting the rows that have the number 0 in the “channel” column
and likewise for “det1”:

detO0 = run.filter(pl.col("channel") == 0)
detl = run.filter(pl.col("channel") == 1)

6
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Now detO and detl are data frames that only consist of the hits that occurred in those
channels of the system. As a result, if we wanted to look at the pulse height spectrum, we
would merely need to select the “adc” column and then histogram it (for example using the
histogram function of numpy [17]). Column selection can be done with either:

detO0.select (pl.col("adc"))

or

detO["adc"]

Energy calibration can be taken care of in one line of code per detector. Assuming a linear
calibration with slope a and intercept b that will give us units of keV:
detO0 = detO.with_columns(

(a * pl.col("adc") + Db).alias("energy")
)

A new column, “energy”, is added to the data frame that has the energy calibrated values.
Now an energy threshold can be applied to only keep hits above 100 keV. Again using the filter
operation:

detO = detO.filter(pl.col("energy") > 100.0)

The toy problems above show that data frames give us tools to act on entire columns with-
out having to write loops. However, these are extremely simplified examples. Any real analy-
sis would quickly run into bookkeeping issues when the number of detectors is large, and the
timing information is useless until events can be built to compare timing differences between
detectors. As mentioned at the end of Sec. 2.2, sauce wraps data frames in a Detector class
that associates them with named identifiers. Methods for these classes are also implemented
to make the expressions from above less verbose and to ensure in-place (destructive) modi-
fication of data frames to cut down on unnecessary copying. Utilizing this class, the above
becomes for “det0”:
det0 = sauce.Detector ("det0")
detO0.find_hits("run_data.parquet", channel=0)

detO["energy"] = a * detO["PH"] + b
detO.apply_threshold (100.0, col="energy")

where it is understood that the parameter col is sauce’s shorthand for a column name. All
function’s that take the col parameter use it as the first optional parameter, meaning that the
user can also write:

detO.apply_threshold (100.0, "energy")

The underlying polars data frame can still be accessed directly using:

# get the data frame contained in the detector.
det0.data

which is necessary for more complex analysis (see Sec. 4.2).

Before moving on to event building, two additional operations need to be defined that
do not have the same immediate utility of those given above but will be essential for dealing
with the complexities of real detectors. The first of these is the union or concatenation of
data frames. By applying a union to data frames from several channels, a single aggregate
data frame will be returned that includes the hits of all the input channels. This is a useful
operation for physical detectors that are readout with many channels. In sauce we write:

# returns a new detector called det_0&1
sauce.detector_union("det_0&1", detO, detl)
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However, once a union has been performed, it is no longer possible to track which channel
produced a hit. In order to recover this information, a “tagging” operation has been introduced.
A tag merely adds a constant value to every hit in a data frame. If a Detector is tagged prior to
a union, the resulting “tag” column will allow us to recover the individual channel information.

# create a new column called "tag" filled with O
det0.tag(0)

To see these two operations used in practice refer to Sec. 4.2, which treats a position sensitive
micro-channel plate detector (MCP) with four corners as a single detector with a tag “corner”.

3 Event building

A self-triggering DAQ cannot group channel data together without the concept of event build-
ing. Hits in two channels can only be said to be related if their timestamps fall within a
specified time interval, ultimately based on both physical (time-of-flight, lifetimes, etc.) and
electronic properties (signal delay, overhead in signal processing, etc.). Hits that fall within the
time interval can be assigned an event number, and at later stage in the analysis these event
numbers can be used to examine correlations between the separate channels by combining
their data frames. The basic operations covered in the last section are of little use if we cannot
relate the hits in one channel/data frame to another. However, once events are built, nearly
any analysis task can be defined using some combination of basic data frame operations and
event building. Below, two schemes for event building are described that cover a majority of
common use cases. They are dubbed referenceless and referenced event building. The former
allows any channel hit to start an event building period, and is well suited to working with a
single detector that has multiple segments being readout into separate channels (e.g. a HPGe
clover detector or segmented silicon detector). The latter is more suited for looking at coin-
cidences from distinct detectors, since it will use only selected channels to build events (e.g.
particle-gamma coincidence measurement of Sec.4.1).

Before going further, all the data frames for the channels are assumed to be sorted by their
timestamps such that they are increasing:

to<t;<t,<..., 2)

this is a trivial procedure to carry out with data frames, and the Detector class does it auto-
matically when the data is loaded and when operations that could alter the order are carried
out (e.g. a union operation).

3.1 Referenceless event building

Given that we have a set of n channel hits that are time ordered from ¢, to t,_;, a referenceless
event builder can be defined using only a single parameter, the build window At. Starting
from the earliest hit, t,, and beginning to enumerate the events, evt = 0, all subsequent hits,
t; that satisfy ty < t; < ty+ At are assigned evt = 0. The next hit that does not satisfy the
condition, call it ¢,,, is taken as the start of the next build window, evt is incremented, and
all hits within t,, < t; < t,,, + At are assigned evt = 1. The steps are repeated until all hits
have been assigned to an event. Event building of this type is the equivalent procedure in
analog electronics of using a logical OR from the channels to open an ADC gate. A sketch of
this procedure is shown in Fig. 4, and pseudo-code is given in Fig. 5.

It is possible with this technique to lose true coincidences due to background counts open-
ing a build window which closes before all of the coincident hits are processed. When this
happens, true coincident hits will be assigned different event numbers and effectively be lost.

8
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By considering two Poisson processes that generate the background counts and true coinci-
dences, a rough estimate can be made to quantify the impact of the event builder failing to
properly group hits. Let t,., A,, t,, and A, be the timestamps (in seconds) and rates of a hit
of interest and noise (in Hz), respectively. Assuming coincident hits always come at a fixed
time from t,., we define a coincident time interval dt.,;,. The number of dropped hits is the
expected number of background counts occurring at a time such that (t, —t,) + 6t ., > At.
Since t, and t, are independent, the chances of this happening is simply the expected number
of noise counts in the time interval 6t.,;,. Expressing the ratio of the number of measured
coincidences after event building, N,,,,,,, to the true number of coincidences, N, ., gives:

N
—neds == 5tcoinkn . (3)

Note that this is independent of the build window and only depends on the timing difference
between the signal of interest and noise rate. A Monte-Carlo simulation was carried out that
simulated the two process explicitly, and was found to agree with Eq. 3 for noise rates below
1 MHz and build windows within a factor of 2 of 6t,,;,. For measurements that have high
backgrounds relative to the signal of interest, there is a risk of a referenceless event builder
dropping a significant fraction of coincidences due to high rate channels; however, by using a
digital DAQ timestamps can be shifted such that 6t,,;, can be made arbitrarily small, down to
the timing resolution of the system. If this precaution is taken, referenceless event building is
a viable choice for a system wide event building scheme. However, practically, referenceless
event building on a system wide scale can lead to a complex data reduction. Since it does not
enforce a one-to-one relationship between hits in different channels, additional logic needs to
be implemented by the experimenter in order to examine coincidences. Due to this consider-
ation, referenceless event building is included in sauce as a method of the Detector class.
An example:

# build referenceless events

detO.build_referenceless_events (500.0)

detO["event_det0"] # event numbers
detO["multiplicity"] # number of hits in an event

The number passed to the event builder is the At (i.e the build window) from above and uses
the units of the timestamp column. A “multiplicity” column is added automatically, since it is
frequently needed as a diagnostic after referenceless event building.

3.2 Referenced event building

The referenced event building procedure differs from the referenceless builder discussed above
because it gives priority to user selected channels. Reference channels are selected from the
system and their timestamps are used to build a set of non-overlapping time windows. If some
number of windows would overlap, then only the window defined by the earliest timestamp
is kept. Once these windows are built, they are enumerated to define the events. Hits in other
channels are then assigned event numbers if they fall into a given window, again with only the
earliest hit being kept. As a result of these steps, the referenced event builder guarantees that
events will only contain one hit per Detector object. This principle is illustrated in Fig. 6.
To implement such a scheme, all hits must be time sorted, a build window must be de-
fined, and n channels must be selected as reference channels. Additionally, keeping track of
the number of hits that are dropped, we can define an event builder live time for diagnostic
purposes:
Live Time = Ngg/Npaw €Y
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Figure 4: Operation of the referenceless event builder. The top of the figure shows
four channels projected along the time axis after they have been digitized. Pulses
have a height (light blue) and time (light red), the pulse width corresponds to the
sampling rate of the digitizer. The dark blue dashed boxes show the events that would
be constructed using the referenceless event builder described in the text. The bottom
image shows the list mode data from these same events collected into data frames
and then processed in software to achieve the desired result of the top panel.

def build_referenceless_events(time_array, build_window):

t_i = time_array [0]

t_f = t_i + build_window

event = 0

# start of window
# end of window

# array that will hold the event numbers
event_numbers = np.empty(len(time_array))

for i in range(len(time_array)):

# current timestamp
tc = time_array[i]

# if it is within the window, assign it an event number
if tc >= t_i and tc < t_f:

event_numbers[i] = event
# else it is its own event, and starts a new window

else:
t_i = tc

t_f = tc + build_window

event += 1

event_numbers[i] = event

return event_numbers

Figure 5: Referenceless event builder in Python using numpy arrays.

10
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Figure 6: Operation of the referenced event builder. The top of the figure shows four
channels (circles) projected along the time axis after they have been digitized. The
black circle denotes the reference channel. Pulses have a height (light blue) and time
(light red), the pulse width corresponds to the sampling rate of the digitizer. The dark
blue dashed boxes show the events that would be constructed using the referenced
event builder described in the text. Hits that are dropped due to the referenced event
builder are gray. The bottom image shows the list mode data from these same events
collected into data frames and then processed in software to achieve the desired
result of the top panel.

where N is the number of hits once the disjoint intervals are built and Ng,, is the initial
number of hits. If the reference channels are not expected to be in coincidence, then small live
times indicate a build window that is too large considering the hit rate. For digital systems,
build windows can be made smaller to partially compensated for high dead times by shifting
the timestamps of channels that have a large temporal separation compared to the reference
channels.

Since referenced event building prioritizes specific channels unlike the referenceless case,
noisy channels have no impact on coincidences (Sec. 3.1). On the other hand, the deliberate
choice to drop hits so that every event has only one hit per considered channel makes it difficult
to combine information from multi-channel detectors. In such a case, multiple applications of
referenced event building would be required in order to not unnecessarily drop data.

Owing to the greater complexity in the implementation of referenced event building, in
sauce there is a dedicated class for handling its operations.

# construction

eb = sauce.EventBuilder ()

# either pass a Detector object or array of timestamps.
eb.add_timestamps (detO)

# construct the build windows.
eb.create_build_windows (-500.0, 500.0)

# In place modification of the data frame.

# Drops all hits after the first and adds event column.
eb.assign_events_to_detector_and_drop (det0)
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Although this class performs all of the operations detailing the text, it does not prescribe a
specific way to combine the events in separate Detectors. Event combination is instead
handled by its own dedicated class, meaning that the construction of the disjoint build windows
with eb.create_build_windows is the last interaction with the event builder most users
will have.

3.3 Combining events

The operations defined above only enumerate the events for Detector objects. A system is
still needed to match event numbers between Detector objects and combine their respective
data frames. On the data frame level, polars provides the join function (analogous to SQL’s
JOIN), which can be used to combine two data frames on a shared column. Depending on
whether the two Detector objects should be in coincidence or anti-coincidence, then either
an inner-join or anti-join is applied. However, a join takes the columns from each data frame,
which all come from list mode data and presumably share column names. This is the issue that
was first alluded to in Sec. 2.2, and why the Detector class has a required name argument. On
the inner-join or anti-join, we append this name to all columns in the Detector’s data frame.
For example, if we want to combine two data frames with names “det0” and “det1”, each one
will have a “ph” (pulse height) and “ts” (timestamp) column. We keep these columns distinct
in the combined frame by renaming them “ph_det0”, “ph_det1”, “ts_det0”, and “ts_det1”.
The operation to define coincidences is verbose in plain polars, so sauce abstracts away
the details in the Coincidence class. First, an EventBuilder is constructed, build windows
are created, and then it is used to initialize a Coincidence object.
eb = sauce.EventBuilder ()

eb.add_timestamps (detO0)
eb.create_build_windows (-500.0, 500.0)

coin = sauce.Coincidence (eb)

# get the coincidences between det0 and detl

both = coin[detO, deti]

# get the events in detO0 that are anti-coincident with detl
anti = coin[det0O, ~detl]

The compact syntax produces a new Detector object containing a data frame with all
hits within the individual Detector objects that pass the event builder. Anti-coincidences are
denoted with ~ before a Detector object. All columns associated with det0 are now named
column_detO and the same goes for det1. Construction of coincidences on demand means
that we do not have to waste memory on large, sparse coincidence matrices. It is also at this
point that we can finally realize the goal stated in Sec. 2 and compute the timing difference
between two detectors in one line of code:

both["dt"] = both["time_det0"] - both["time_detl"]

In fact, any event-by-event processing for the coincidences can be carried out by operations
on the coincident Detector data frame columns (i.e gates).

3.4 Combining separate files

Data acquisition is periodically halted to insure data quality and adjust experimental param-
eters as needed (for example beam retuning). The result is that the total data set will not be
one large unbroken file, but will instead be a series of smaller data sets with varying param-
eters such as integrated beam current. sauce relies on this to assume it can load individual
runs into memory, but it then becomes necessary to save the run-to-run analysis to build up
the final dataset. After a single run has been analyzed and reduced to the relevant counts,
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Detector objects can be tagged and saved to disk for later combination. The tags can then
be used to filter the data by run and apply run specific corrections if they are combined via a
detector_union. For example:

det_of_interest.tag(run_number, tag_name="run"
det_of_interest.save("det_int_run_number.parquet")

det_of_interest = []

for run in run_numbers:
det = sauce.Detector("det_of_interest").load(f"det_int_{run}.
parquet")
det_of_interest.append(det)

det_of_interest = sauce.detector_union("det_of_interest", *
det_of_interest)

4 Example analysis

Two examples analysis are presented below. Descriptions of the analysis are in this text along
with code blocks. The full analysis code can be found in the in the code repository and the
data files are provided with each release.”

4.1 a-r coincidence measurement

The purpose of this example analysis is to demonstrate the methods of correlating two separate
detectors using referenced event building (Sec. 3.2) in order to extract the absolute activity of
an a source.

The a-decay of 2*'Am lends itself to a-y coincidence counting as approximately 35% of
all decays will coincide with the emission of a 60-keV y-ray from the second excited state to
ground state transition of the daughter nucleus *’Np. Owing to the strong y transition, a
modest coincident setup can produce an accurate measurement of the source’s activity. Since
the coincidence technique, to first order, is not influenced by geometry or detector efficiency,
it is a robust and simple precision measurement [ 18-20].

An a-y coincidence measurement was carried out to determine the absolute activity of an
241 Am source. The source was purchased from Eckert & Ziegler [21] and consists of 24! Am
material electroplated onto a platinum surface in an aluminum A-2 capsule. The quoted NIST
traceable activity is 1.230(15) uCi at the 68% level. The coincidence setup consisted of a
silicon surface barrier detector (SSB) located, along with the source, inside of a small vacuum
chamber. A CeBr detector is located in atmosphere separated from the vacuum by an acrylic
window. A diagram of the setup is shown in Fig. 7. The charge-sensitive preamp signal of the
silicon detector and output of the CeBr photomultiplier tube (PMT) were fed directly into a
single XIA Pixie-16 module. The list mode data of the Pixie-16 was stored to disk and then
read into sauce offline.

The goal of this example is to determine the decay rate of the source, which is denoted Nj,.
The observed rate in our detectors (N) will be a function of their respective efficiencies (¢),
decay branching ratios (B), and solid angles Q2. For the a and y decay channels we have three

Shttps://github.com/camarsha/sauce/releases/tag/v2.0.0.
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PMT

Acrylic Window

- 2~ Active Area

|241Am Source I

Figure 7: Sketch of the side view of the coincidence setup used to determine the
activity of the 22! Am source. A CeBr scintillator detects the y-rays coincident with
a-particles in the silicon surface barrier (SSB) detector. The acrylic window serves as
the vacuum interface for chamber. The gap between the the CeBr detector and the
acrylic window is only for visualization purposes.

equations that can be related to the observed decay rates:

N

Na =NOQaZBa;iEa;i> (5)
i=1

N
Ny = Nofy, Z Byi€yi
i=1

N
Noy =No,Q% D By iBusi€ori-
i=1

For the 2! Am case, energy discrimination on the 60-keV y-ray and assuming all branches

of N, can be counted gives:
N,N,
=N. (6)
No.
It can be seen that source activity is related only to measured quantities (corrected for dead
time and background). More details and discussion can be found in Ref. [18].

A Parquet® file can be found in the current release on github that can be loaded with sauce.
Our goal is to extract Ny, N,, and N,,_,. Starting with the singles data, N, is the number of
counts observed in the SSB spectrum between the electronic threshold and the highest energy
a-particle (5544-keV in this case). In sauce:

run_info = sauce.Run(data_path)

ssb = sauce.Detector("ssb")

# ssb hits are in module 2, channel O
ssb.find_hits (run_info, module=2, channel=0)

Shttps://parquet.apache.org.
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Since the spectrum is not energy calibrated, we must identify the adc channels by eye to
determine the appropriate cut. In a Python repl this can be done using matplotlib, which
sauce has a few wrappers around in order to call reasonable defaults:

import matplotlib.pyplot as plt

X, y = ssb.hist (0, 32000, 32000)
sauce.utils.step(x, y)

plt.show ()

# we have now seen where to apply the cut
ssb.apply_cut ((0, 3100))

# counts are the number of rows

c_ssb = ssb.counts ()

The SSB resolution was limited in this case, and as a result the 5468 keV peak cannot be
separated from the 5511 and 5544 keV peaks. Closer inspection of the data prior to the cut
shows that pile up was present, but based on just the high energy region is on the level of
0.01% of all events.

A similar analysis follows for the CeBr detector, but now is limited to the 60 keV region.
Deducing N, for the 60 keV region posed more difficulty as is shown in Fig. 8. The low energy
tail comes from interaction of the gamma rays with the source backing, silicon detector, and
acrylic window. Depending on the exact energy cut taken, the final deduced activity could
fluctuate over 3%. A relatively narrow region was defined around the maximum of the photo-
peak. A side band estimate of the background was taken from the 100 channels adjacent to
the 60 keV peak. The code in sauce:

cebr = sauce.Detector("cebr")
cebr.find_hits(run_info, module=2, channel=1)

# regions of interest

peak_region = [1200, 1600]

bkg_region = [2000, 2100]

peak_bins = peak_region[1] - peak_region[0]

# copy creates a new detector instance
bkg = cebr.copy().apply_cut(bkg_region).counts ()
bkg_per_bin = bkg / (bkg_region[1l] - bkg_region[0])

cebr.apply_cut (peak_region)
c_cebr = cebr.counts() - (peak_bins * bkg_per_bin)

The “copy” command is necessary to avoid destructive operations on the peak Detector object
and it copies all information into a fresh “Detector” object.

N,., requires the use of the referenced event builder. In this case, the reference was the
energy gated silicon detector. A build window of £1 us was selected to account for the
Ty, = 67.2(7) ns [22] half life of the state. The event building dead time (Eq. (4)) was
0.13%. Coincidences were constructed for both for the CeBr peak + tail and peak only energy
gates. The random coincident rate was estimated from the flat portion of the spectra. The
code:
eb = sauce.EventBuilder ()

eb.add_timestamps (ssb)
eb.create_build_windows (-1000, 1000) # nanoseconds

coin = sauce.Coincident (eb)
ssb_cebr = coinl[ssb, cebr]
ssb_cebr["dt"] = ssb_cebr["evt_ts_ssb"] - ssb_cebr["evt_ts_cebr"]

’T,;, was taken from ENSDF (https://www.nndc.bnl.gov/ensdf) which updated the suggested value from
Ref. [22].
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peak_region = [-500, 250]
bkg_region = [250, 1000]
peak_bins = peak_region[1] - peak_region[0]

bkg = ssb_cebr.copy().apply_cut(bkg_region, "dt").counts ()
bkg_per_bin = bkg / (bkg_region[l] - bkg_region[0])

c_coin = ssb_cebr.apply_cut(peak_region, "dt") - (peak_bins *
bkg_per_bin)

The last element needed is the total running time of the experiment in seconds. We can closely
approximate this by using the timestamps of first and last hits of the run:

dt = (run_data.data["evt_ts"][-1] - run_data.datal["evt_ts"]J[0]) / 1le9

activity = ((c_cebr * c_ssb) / c_coin) / dt / 37000

Errors from all source (background estimates and counting statistics) were propagated
through the calculations via Monte Carlo and can be found in the jupyter notebook. The
resulting samples were well described by a normal distribution, and we quote that distributions
mean and standard deviation for the reported activities. Our value is Ny = 1.284(23) uCi. The
statistical uncertainty is dominated by the counting uncertainty in the number of coincidences.
This value is in slight tension with the NIST value of N5t = 1.230(15) uCi. Systematic
effects such as non-uniformity of the active area of the 24! Am source were difficult to estimate
due to the poorly controlled geometry, but are thought to not amount to more than 5%.

Looking at the code samples for this example, it should be clear that in the case of simple
analysis tasks sauce leads to a very declarative format. There is not a single level of indention
in the whole analysis, meaning we did not have to write loops, conditionals, or dedicated
functions even though we essentially started from raw list mode data. Despite not knowing
the exact regions to define our gates, it was never necessary to alter any of the code nor update
the body of a loop. It serves as a demonstration that the framework outlined in this paper is
well matched to its problem domain.

4000+

3000

2000+

1000

Count/Channel (arb. unit)

0 1000 2000 3000 4000 5000 6000
Channel Number (arb. unit)

Figure 8: y-ray singles spectra of the CeBr detector. Shown are the 33-keV and

60-keV states with heavy low energy tailing induced from the material between the
source and the detector.
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Figure 9: Sketch of the side view of the SECAR focal plane section used in this exam-
ple. Two position sensitive MCPs are mounted on the top of the chambers to detect
electrons produced by the interact of charged particles with aluminized Mylar foils.
A 8Gd source is located in front of the ionization chamber window, but out of the
mid-plane of the separator. An additonal Mylar window provides the vacuum inter-
face between the gas filled ionization chamber and the beam line. Note that for the
data presented here the IC was evacuated and at vacuum, with only the DSSSD being
biased.

4.2 SECAR focal plane detectors

The purpose of this example analysis is to demonstrate a more advanced analysis that requires
all of the tools presented in this paper. It will require referenced and referenceless event
building, tagging, and direct usage of data frame operations. Although it is significantly more
complicated then the proceeding example, it shows that sauce is not limited to simple use
cases.

SECAR is a recoil mass separator located at the Facility for Rare Isotope Beams. It is devoted
primarily towards measuring (p, y) reactions of astrophysical interest on radioactive nuclei up
toA = 65 [23]. Through a combination of magnetic dipoles and velocity filters, the intense flux
of beam particles are separated from the reaction products. After mass separation, the final
section of SECAR consists of two position sensitive micro channel plate (MCP) detectors and
stopping detectors including a double sided silicon strip detector (DSSSD) and/or ionization
chamber (IC). These combination of detectors are expected to increase the overall rejection of
beam particles another 3 orders of magnitude. For the data considered here a hybrid detector
(a DSSSD inside of an IC) and two MCPs were used. Descriptions of MCPs similar to those used
here can be found in Ref. [24] and likewise for the IC in Ref. [25]. The data is from a 100 uCi
241 Am source positioned at the target position of SECAR. The separator was tuned to transmit
4.6 MeV a-particles to the final focal plane. The lower energy is a result of amount of material
required to create such a high activity source, which results in a significant energy loss. A
148Gd source was also positioned upstream of the hybrid detector to serve as a constant source
of counts for gain matching of the DSSSD strips. Due to the low energy of the a-particles, the
IC was not utilized and no gas was added to the hybrid detector.

Our goal is to look at 3 fold coincidences between the two MCPs and the DSSSD. These
coincidences require reducing the data by combining the 4 position signals for each MCBE and
the 32 strips for the front and back of the DSSSD. The general strategy for making a composite
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detector in sauce is to tag each channel with an identifier, make a union of all of the channels
into a single Detector object, perform referenceless event building, and then use group by
operations on the events to reduce the data in the desired manner.

Lets start with the MCPs, since their analysis is relatively simple compared to the DSSSD.
For each MCE the four corners of a resistive anode encoder are read into a channel and are
denoted “A”, “B”, “C”, and “D”. The relation between the charge detected in the corners and
the horizontal (X) and vertical position(Y) is:

N Qp+Qc¢
Qa+Qp+Qc+Qp’
N Qa+Qp
Qa+Qp+Qc+Qp’
These positions must be further calibrated if the position information is to correspond to the X

and Y coordinates of the separator; however, this is beyond the scope of the current example.
Lets look at the first block of code for the upstream detector:

7

corners = ["A", "B", "Cc", "D"]
channels = [4, 5, 6, 7]
umcp = [

sauce.Detector ("temp") # this detector will not need a name
.find_hits(run_data, crate=1, channel=channel, module=2)
.apply_threshold(2.0) # cut out noise

.tag(corner, tag_name="corner") # apply tag

for corner, channel in zip(cormners, channels)

]

umcp = sauce.detector_union("umcp", *umcp)

umcp.build_referenceless_events (500.0) # 500.0 ns build window

The code is terse, but uses a list comprehension to build a list of detectors for each of
the corners, applies a small threshold value to get rid of low energy hits, and then tags each
detector with the name of the corner. This list is then used to build a single MCP detector
via a union operation. Finally referenceless event building is performed with a 500 ns build
window. Calculating X and Y from Eq. 7 requires that we only look at events where each of
the four channels fired. Complex requirements like this are beyond the operations of sauce,
and require that we drop down to the data frame level to accomplish our goal. Using polars
we can do the following: count the number of unique corners in each event and assign that
number to a new column, then filter the data frame to keep only the rows that have 4 corners
and at least 4 hits, finally if there are multiple hits from a single corner in an event keep the
earliest one.

# make a copy of the detector data

df = umcp.data

# see the polars documentation on windowing functions

# this counts the unique corners within the "event_umcp" group,

# and assigns them to a new column called "corners"

df = df.with_columns (
pl.col("corner") .n_unique () .over(pl.col("event_umcp")).alias ("
ncorner")

)

# next drop the rows that don’t have each of the four cormners

df = df.filter((pl.col("ncorner") == 4))

# drop multiple hits keeping the earliest

df = df .unique(["event_umcp", "corner"], maintain_order=True, keep="

first")
umcp.data = df # update the detector data frame
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Positions can be calculated and associated with each event. The function below shows
how this is achieved, but there are several equivalent ways to arrive at the same answer. The
constants of 0.5 and 8.0 are chosen to give an approximate physical scale, but a means of
calibration would be needed to make these positions meaningful.

def calc_pos (mcp):
g_a = get_corner (mcp.data, "A")
gq_b = get_corner (mcp.data, "B")
g_c = get_corner (mcp.data, "C")
g_d = get_corner (mcp.data, "D")
denom = gq_a + q_b + gq_c + q_d

x_raw = ((q_b + q_c) / denom -

0.5) * 8.0
y_raw ((g_a + q_b) / denom - 0.5) * 8.0

# each event will now have a mean energy and the earliest
timestamp
mcp.data = mcp.data.group_by("event_" + mcp.name, maintain_order=
True) .agg(
pl.col("adc") .mean(),
pl.col("evt_ts").min(),
)

# assign the position values.
mcp["x_raw"] = x_raw
mcp["y_raw"] = y_raw

return mcp

Each side of the DSSSD undergoes a similar procedure to the MCPs, where each strip
is tagged and then combined via detector_union. It is possible using referenceless event
building to correct for inter-strip events, where charge is distributed among adjacent strips
[26,27]. Figure 10 shows these events by plotting the hit that arrives first versus the hit
that arrives second. Additional details can be found in supplemental notebook, the correction
process is lengthy and requires gain matching the 32 strips per side, combining charge-sharing
events, then reducing each column based on its own logic (i.e we keep the strip with the
maximum energy in an event, the earliest timestamp, etc.).

Relating the processed MCP and DSSSD hits requires referenced event building. The front
strips of the DSSSD are the best candidate for the reference detector. An estimate of the
efficiency of the MCPs for the alpha particles can be found by assuming the DSSSD is 100%
efficient and looking at the number of coincidences in the 2! Am peak.
eb = sauce.EventBuilder ()

eb.add_timestamps (front)
eb.create_build_windows (-500.0, 500.0)

coin = sauce.Coincidence (eb)
umcp_front = coin[umcp, front]
eff = umcp_front.counts() / front.counts ()

Doing this we see around 60 — 70% efficiency for either of the MCPs. It should be clear that
at this point we can examine any set of coincidences that we wish, and the data are ready for
further, more detailed analysis. Histograms can be saved to a simple text file with:

X, y = umcp_front.hist (0, 32000, 32000, "energy_front")
sauce.utils.save_txt_spectrum("dsssd_front_energy.txt", x, y)

sauce’s role in the analysis is now finished.
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Figure 10: First and second energies for multiplicity equals 2 events from the DSSSD.
The charge from inter-strip hits is distributed into two adjacent strips as show here.
Strips were gain matched to the 2! Am peak (assumed to be 4600 keV). The low
energy line comes from the 148Gd source (3271 keV before the IC entrance window).
The lowest energy events are assumed to be electronic noise.

5 Discussion and conclusions

Looking over the examples it can been seen that the data pipeline presented throughout this
paper has been hand tuned towards low energy nuclear physics experiments. It takes advan-
tage of the relatively low data rates and channel numbers (in the hundreds) to ensure that
every portion of the data reduction can be carried out interactively and iteratively. Decisions
about how to sort data or combine the information from various detectors can be made while
viewing the data, there is no compile and sort cycle typical to many programs in our field,
encouraging experimenters to explore the effects of different cuts and event building schemes
rather than worry about how to implement these steps. Once the exploratory phase is over,
these same commands can easily be amalgamated into scripts and automated. The advan-
tages of such a system are most apparent with trigger less digital DAQs that provide data with
minimal structure, but any experiment that lacks a dedicated analysis framework can benefit.

It should be mentioned that similar methods have been described in the literature, see
Ref. [28] and references therein, but to the author’s knowledge these frameworks only ever
attempted to tackle data that had already undergone event building. In this regard, sauce
is novel. By treating event building dynamically, experimenters gain full control over their
analysis. There is no longer a distinction between operations that work event-by-event (gating,
timing differences) and ones that can be carried out on a histogram (energy calibration, single
channel thresholds).

It may be noted that in the case of the SECAR focal plane analysis there was a significant
amount of data frame specific code. Future work could focus on making such operations more
compatible with the higher level Detector class. Additionally, the author would argue that
much of this complexity is coming from the possibility of multiple hits in a channel during
one event. This plagued an earlier version of sauce that relied solely on referenceless event
building. The result was that each analysis would have to specify how to treat multiple hits on
a channel-by-channel bases, with some channels needing to keep the most energetic hit, while
others would need to keep the earliest. As a result, it was not clear that there was much of an
advantage over using an event loop. Referenced event building removed this complexity by
aggressively throwing out multiple hits, allowing a more universal analysis framework. Mov-
ing forward, it might be beneficial to further diminish the role of referenceless event building
and adapt as much analysis as possible to the referenced case.
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There is one more potential setback, the techniques described in this paper have been tai-
lored to in memory analysis of list mode data. The focus has been on a fast and responsive
data pipeline that can carry out complex analysis interactively, but that is incapable of handling
data sets that would exhaust the physical memory of a system. Data sets that are more than
20 GB per run are less common in low energy nuclear physics but by no means rare. Scaling
the system described above so that it can handle larger than memory data is well outside the
scope of this paper; however, the core idea of using data frames to provide a flat data structure
and complement this structure with purpose built operations could be adapted to use libraries
such as Dask [29] and Vaex [30] that extend data frames to larger than memory data sets. It
should be stressed that this step should only be taken as needed, as the in memory methods
are typically faster and more flexible. Of all the libraries experimented with during the de-
velopment of sauce, polars seemed to be the best match. It provides excellent speed, most
notably for its reading of data from disk, and its data frame interface is well suited towards
the highly regular structure of list mode data. Out-of-memory solutions were experimented
with, but the cost in performance was dramatic. Regardless the point stands: smaller size data
sets are a critical part of the low energy nuclear physics mission and tools suited towards their
needs have an important place in the field.
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