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Abstract

TorchGPE is a general-purpose Python package developed for solving the Gross-Pitaevskii
equation (GPE). This solver is designed to integrate wave functions across a spectrum
of linear and non-linear potentials. A distinctive aspect of TorchGPE is its modular ap-
proach, which allows the incorporation of arbitrary self-consistent and time-dependent
potentials, e.g., those relevant in many-body cavity QED models. The package employs
a symmetric split-step Fourier propagation method, effective in both real and imagi-
nary time. In our work, we demonstrate a significant improvement in computational
efficiency by leveraging GPU computing capabilities. With the integration of the latter
technology, TorchGPE achieves a substantial speed-up with respect to conventional CPU-
based methods, greatly expanding the scope and potential of research in this field.
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1 Introduction

TorchGPE is a Python package specifically developed to numerically calculate the ground state
and dynamical solutions of the Gross-Pitaevskii equation (GPE) in 2D. It provides extensive
capabilities to handle advanced physical problems involving both linear potentials in the wave
function ψ and non-linear ones. The numerical methods employed in TorchGPE are based
on the efficient split-step spectral algorithm, ensuring accurate and efficient computations. In
comparison to various open-source packages solving the GPE, e.g GPELab [1, 2], GPUE [3],
spinor-GPE [4], BEC2HPC [5], and others, the distinctive features of our work are:

• A user-friendly Python package with a modular approach to defining arbitrary linear,
non-linear, time-dependent, and self-consistent potentials;

• A library of ready-to-use potentials of interest for the quantum gas community. This
includes potentials modeling the dispersive matter-light interaction at the core of many-
body cavity QED;

• Support for GPU optimization through the PyTorch library [6, 7], specifically targeting
computational bottlenecks like fast Fourier transforms and Hadamard products.

The paper is organized as follows: in the next section, we introduce the Gross-Pitaevskii
equation. Section 3 describes the algorithmic approach chosen. Following this, Section 4
outlines the GPU implementation and examines its performance on various devices and com-
pared to the CPU-based implementation. Finally, in Section 5, we present benchmark results
that provide a validation of our code. Despite our code being applicable to a vast class of
problems, for the purpose of benchmarking we focus on Bose-Einstein condensates subject to
optical potentials and possibly coupled to driven optical cavities.
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2 Gross-Pitaevskii equation

The Gross-Pitaevskii equation is a nonlinear self-consistent partial differential equation that
models the collective behavior of identical bosons in a condensate at effectively zero temper-
atures [8]. The time-dependent form of the GPE reads:

iħh
∂ψ

∂ t
= ĤGPE(t)ψ=

�

−ħh
2∇2

2m
+ Vext(r, t,ψ) + g|ψ|2

�

ψ , (1)

where ψ(r, t) represents the condensate’s wave function at position r and time t, m denotes
the mass of the bosonic particles, and ħh is the reduced Planck constant. This nonlinear equa-
tion incorporates a local potential Vext(r, t,ψ), which may vary in time and space and self-
consistently depend on ψ itself. The term g|ψ|2 describes the self-interaction among particles
in a 3D condensate.

Solutions to the GPE are rarely analytical. Thus, efficiently obtained numerical solutions
present a powerful tool to approximately compute many of the most relevant features of
Bose-Einstein condensates such as density distributions, stability, dynamics, and collective
behaviors. Several computational methods have been developed to solve the GPE. Notable
among these are Runge-Kutta integrators [9], Suzuki-Trotter solvers [10], the Crank-Nicolson
method [11], and the split-step Fourier method [12]. Given the self-consistent nature of the
GPE, these methods typically involve an iterative process. This process starts with an initial
guess forψ and employs a contractive minimization approach [13] until convergence to a sta-
tionary configuration is reached (cf. Fig. 1). Among all methods, the split-step Fourier method
is particularly efficient and compact, allowing both computation of the ground state and the
real-time dynamics of the system [14].

3 Computational algorithm

3.1 Split-step Fourier method

The split-step Fourier method is a straightforward approach for evaluating the state ψ(t) of a
system at time t by solving the evolution equation iħh∂tψ(t) = ĤGPEψ(t). The general solution
to this non-linear Schrödinger equation can be written as

|ψ(t + dt)〉= U |ψ(t)〉= exp

�

− iĤGPE(t)dt
ħh

�

|ψ(t)〉 , (2)

where U is the time-ordered evolution operator. To facilitate the computation, the Hamiltonian
operator ĤGPE = T̂ + V̂ is divided into its kinetic energy component T̂ = −ħh2∇2/2m, which
is diagonal in reciprocal space, and the potential energy component V̂ = Vext(r, t,ψ) + g|ψ|2,
which is diagonal in real space. By splitting the full evolution operator into N steps corre-
sponding to time intervals ∆t = t/N , the evolution operator for a single time step takes the
form

e−
i
ħh ĤGPE∆t = eeT/2eeV eeT/2eO(∆t3) , (3)

where eT = − i
ħh T̂∆t and eV = − i

ħh V̂∆t are dimensionless operators. The computation of the
evolution operators exp(eV ) and exp(eT/2) is performed in real and Fourier space, respectively.
Denoting by |ψk〉 the wave function in Fourier space, the evolution over a single time step can
be expressed as

|ψk(t +∆t)〉 ≈ eeT/2 F
�

eeV F−1
�

eeT/2 |ψk(t)〉
��

, (4)
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Figure 1: Visualization of working principle. The code starts with an initial wave
function. Different types of potentials can be added in a modular fashion. The split-
step Fourier method is implemented with PyTorch utilizing memory parallelization
via GPUs. Callbacks allow the injection of custom code in the propagation, e.g., to
read out observables during the evolution.

which is equivalent to the application of the full propagator up to third order in ∆t. The
Fourier transform operation, denoted as F , is implemented using the Fast Fourier Transform
(FFT) algorithm, applied to the wave function discretized over the computational grid. Notice
that the Fourier transformation of the wave function automatically imposes periodic boundary
conditions on the grid. The implementation of forward and backward Fourier transformations
in the evaluation of the equation is associated with minimal computational expense compared
to the direct calculation of the kinetic energy term by numerical differentiation. Note that due
to its non-linearity, the potential has to be recalculated at each step, employing each time the
most up-to-date wave function [15].

3.2 Adimensionalization of the GPE and contact interactions renormalization

In numerical computations, the challenge of handling operations on numbers with vastly dif-
ferent magnitudes is well-recognized. This issue, known as the loss of significance problem,
arises due to the inherent limitations in floating-point precision of digital calculations. For
example, when adding a very small number to a very large one, the contribution from the
small number may be effectively lost due to the limited precision with which the numbers are
stored.

This issue is most prominent when expressing the GPE in physical units [16]. To circumvent
it, in TorchGPE, we reformulate the GPE using dimensionless variables, rescaled according to
the system’s natural units of length and time. Specifically, we employ the natural units of a
quantum harmonic oscillator, with the frequency ωℓ serving as the fundamental reference.
This choice establishes the reference time and length scales, denoted by

τℓ =
1
ωℓ

, and ℓ=

√

√ ħh
mωℓ

, (5)
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respectively. Consequently, in our dimensionless framework, we define the time and length
units as:

t ′ =
t
τℓ

, and r′ =
r
ℓ

. (6)

Additionally, we rescale the energies and the wave function as

E′ =
E
ħhωℓ

, and ψ′ = ℓ d/2ψ , (7)

where d is the dimension of the system. This rescaling ensures that our numerical computa-
tions are stable and accurate without altering the problem’s underlying physics.

A complete description of a physical system usually requires performing simulations in a
tridimensional space. While our code is, in principle, able to perform such simulations, it is
true that often the relevant physics can be extrapolated from effective descriptions in lower
dimensional spaces where simulations are much less computationally challenging. This occurs,
for instance, in several experimentally accessible devices with a strong harmonic confinement
in one or two directions. If the dynamics unfolds primarily over the x y plane, equation (1) is
virtually unchanged, except for the contact interaction strength which is rescaled as

g2D =
gp

2πa⊥
. (8)

The renormalization length a⊥ allows to approximate the physics of the confined 3D gas
through an effective 2D description [17, 18]. Note that in the weakly interacting limit, a⊥ is
well approximated by the harmonic oscillator length along the transverse direction (cf. equa-
tion (5)).

3.3 Imaginary-time evolution

The imaginary-time evolution algorithm is a commonly used method to find the minimal en-
ergy solution |ψ0〉 of the GPE [11,19–22]. The method is based on a transformation to imag-
inary time (t → −iτ), often referred to as Wick rotation, leading to the exponential decay of
all states relative to the ground state. The underlying principle of this method parallels that
of the power method and ensures that in the limit of τ→∞, the evolved wave function ulti-
mately converges to the ground state of the system |ψ(τ→∞)〉 ≈ |ψ0〉. This outcome holds
independently of the initial wave function chosen, as long as this is not orthogonal to |ψ0〉.

The problem of determining the ground state of the system can thus be addressed by evolv-
ing an arbitrary initial wave function for a sufficiently long imaginary duration. In TorchGPE,
this evolution is achieved using the split-step Fourier propagation method discussed above,
where the time step ∆t is replaced with −i∆τ. Due to the diffusive nature of the resulting
equation, the wave function must be normalized after each iteration to prevent it from decay-
ing completely.

4 GPU-accelerated PyTorch implementation

Originally designed for 3D graphics rendering, Graphical Processing Units (GPUs) have be-
come pivotal in computationally intensive domains like Deep Learning. In this study, we har-
ness the GPU’s robust data parallelization capabilities to enhance the efficiency of the split-step
spectral method. The FFT algorithm and Hadamard products are particularly well-suited for
the exploitation of the parallel processing capabilities of GPUs. Drawing on the insights of
Ref. [4], our approach utilizes the CUDA programming framework in conjunction with the
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Figure 2: Benchmark. Performance comparison between the implementation of the
imaginary time propagation algorithm for different grid sizes Nx = Ny = 2n on a
CPU (circles) and several NVIDIA GPU processors (squares). The simulated system
is a trapped, non-interacting BEC, with the only potential being a fixed harmonic
confinement. The data represented via the dashed line have been obtained by stor-
ing numerical values in the single-precision floating-point format, as opposed to the
double-precision format used for the other simulations. The data represented via the
dash-dotted line have been obtained by using the GPELab package in MATLAB.

PyTorch library. This combination enables efficient processing of large datasets, markedly
surpassing CPU performance in tasks such as matrix-matrix multiplications and Fourier trans-
formations. TorchGPE’s default behavior is to execute on GPUs when a compatible NVIDIA
processor is present; otherwise, it resorts to using the CPU.

This section offers a comparative analysis of our code’s performance across various CPUs
and GPUs. Our focus is to assess the effectiveness of GPU integration in boosting computational
efficiency, highlighting the advantages of this approach in handling complex, data-intensive
operations.

4.1 Computational performance

To accurately compare GPU and CPU performance, we adopt the methodology from Ref. [4]
and, to minimize the impact of slow data transfers between CPU RAM and GPU memory,
we pre-allocate the necessary tensors on the respective devices. The figure of merit of our
benchmark is the execution time averaged over five independent runs, each involving 103 steps
of imaginary time propagation, across various two-dimensional grid sizes (N = Nx ×Ny). The
results, depicted in Fig. 2, highlight the performance differences and the significant speedup
achieved with GPU acceleration.

The data reveals a consistent and substantial speedup in GPU execution for all grid sizes
and processors tested. Notably, the speed-up becomes significant for

p
N ≳ 26 points per side,

reaching up to a 40-fold increase for
p

N ≳ 29. Note that the comparison is conducted on
grids where the number of samples in each direction is an integer power of two, where the FFT
algorithm is maximally efficient [23]. Nevertheless, we do not record qualitative deviations
from the observed trend for non-optimal grid sizes. The GPU scaling behavior presents two
distinct patterns. For smaller grids, the execution time appears constant and stable around
a value which depends on the processor’s specifications, e.g. number of CUDA cores, clock
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speed and memory bandwidth, as well as its instantaneous workload. Conversely, for larger
grids, the behavior mirrors that of CPUs, showing a power-law dependence on N . This shift
is interpreted as the GPU reaching its limit for simultaneous data operations, necessitating
sequential batch processing for larger grids. This hypothesis is supported by the observation
that the device reaching first the turning point is the GeForce RTX 3070 GPU, which is the
one of the three with the least amount of memory. It is then followed by the GeForce RTX
4090, and finally the RTX A6000which is the one with the largest memory. Additionally, using
regular precision floats, which require half the memory, we can extend the range of values of
N where this efficient flat computation rate is observed.

Furthermore, in Fig. 2 we present a performance comparison between our package and the
GPELab library in MATLAB. Both the software packages demonstrate comparable execution
time when run on the same CPU machine. However, it is worth noting that GPELab currently
does not support GPU acceleration, whereas our package takes full advantage of this capability,
leading to drastically better performance on GPU systems.

5 Benchmarking

A benchmark on a physical system is essential to assess the performance and accuracy of our
code. It allows us to validate the computational model against known experimental or theo-
retical results, ensuring its reliability or identifying potential discrepancies.

5.1 Harmonically trapped Bose-Einstein condensate

The simplest model for comparing our numerical simulation with an analytical solution is the
probability distribution of a harmonically trapped interacting Bose-Einstein Condensate (BEC).
In this example, we consider an isotropic confining potential Vt =

1
2 mω2

t (x
2+ y2)with trapping

frequency ωt. We compare our numerical results to the analytical solution provided by the
Thomas-Fermi approximation, as shown in Fig. 3. The comparison shows excellent agreement,
except at the edges of the density distribution, where the Thomas-Fermi approximation, which
neglects the kinetic energy of the gas, predicts an unphysical sharp kink in the density.

5.2 Simulating Kapitza-Dirac diffraction of a BEC in an optical lattice

As a second example, we explore the diffraction of a BEC from an optical lattice switched
on for a time τ. We consider an optical lattice created by two counterpropagating lasers of
wavelength λ along the y-direction. They interfere and form a standing wave with electric
field E(y) = E0Π(t/τ) cos(k y)e−iωp t , of amplitude E0, wavenumber k = 2π/λ and angular
frequency ωp (cf. Fig. 4a). Π is a unit pulse of duration τ, corresponding to the time that the
lasers are turned on. The corresponding potential energy in Eq. (1) is

V (x , y, t) = V0(t) cos2(k y) + Vt(x , y) , (9)

where V0 = −α(λ)|E0|2Π(t/τ) is the light shift experienced by the atoms, and α(λ) the scalar
atomic polarisability [24]. In the potential, we also consider an additional harmonic confine-
ment in the isotropic form of the previous example Vt =

1
2 mω2

t (x
2 + y2).

Diffraction from a lattice was one of the first applications of coherent atom optics [25,26].
Nowadays, this method is commonly used to measure the depth of an optical lattice since it
can be modeled by solving the Schrödinger equation of motion of the lowest few momen-
tum states |2nħhk〉, which is accurate at low interaction strengths g and short times τ. The
experimental protocol consists of flashing the lattice for a duration τ and recording the popu-
lation in the different momentum states after ballistic expansion. By repeating the experiment
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Figure 3: BEC in a harmonic trap. Linear probability density of the BEC along a cut
through the centre of the cloud. The profile calculated analytically using the Thomas-
Fermi approximation (orange dashed line) is compared to the results of an imaginary
time evolution using TorchGPE (blue line). The inset highlights the smoothening
effect of the kinetic energy term in the GPE equation.

for varying pulse durations τ, the lattice depth can be determined. While in experiments,
the momentum-space populations are typically retrieved from time-of-flight measurements, in
our simulations, we can directly access them, at no additional cost, from the wave-function
amplitude in reciprocal space (cf. Fig. 4b). In Fig. 4c, we plot the results of the simulation for
both the interacting and the non-interacting cases, showcasing the coherent oscillations of the
diffracted populations.

5.3 Numerical calculation of the self-organization phase diagram of a BEC in
an optical cavity

Self-organization refers to the spontaneous formation of ordered patterns in the condensate,
driven by the balance between kinetic energy and cavity-mediated atomic interactions [27].
These interactions give rise to spatial patterns characterized by symmetric density distribu-
tions. The emergence of such patterns in a BEC breaks two continuous symmetries: phase
invariance for superfluidity and translational invariance for crystal formation. In this context,
the lattice structure emerging from a self-organized BEC is also known as lattice supersolid, a
quantum phase that intriguingly combines crystallization in a many-body system with the dis-
sipationless flow typical of superfluids [27]. Given the self-consistent nature of this problem,
our framework allows for an efficient simulation of the physics.

In this section, we use our code to numerically solve the GPE associated with this model,
characterizing the physics observed in the experimental realizations of the latter [28]. In the
mean-field limit, the potential energy is

V (r) = Vt(r) + Vp(r) + Vc(r) + Vi(r) , (10)
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Figure 4: Kapitza-Dirac diffraction of a trapped BEC. (a) Experimental configu-
ration. A trapped BEC is illuminated by two counterpropagating Gaussian beams
described by quasi-plane waves with wavevector k, inducing a standing-wave mod-
ulation along the y-direction with period λ/2. (b) Representative momentum-space
probability distributions for t = (18, 34,55) µs. (c) Time evolution of different mo-
mentum mode populations. The solid (dashed) curves are calculated for an s-wave
scattering length of as = 300 aB (as = 0 aB). The non-interacting case shows good
agreement with the analytical approach of integrating the Schrödinger equation in
momentum space. To ensure numerical convergence of the simulation, we used a grid
size of N x = N y = 29 points, covering space of 30µm and a time step of d t = 0.1µs.

where Vt is the trapping potential and Vp, Vc, and Vi denote the pump, cavity, and interference
lattices, respectively. The trapping potential is harmonic and time-independent, while the
others are defined as:

Vp = V0 cos2(k y) , (11)

Vc = U0|α|2 cos2(kx) , (12)

Vi = 2
p

V0U0 Re(α) cos(kx) cos(k y) , (13)

where V0 is the depth of the pump lattice, U0 the depth of the single-photon lattice inside the
cavity, and α the coherent field amplitude in the cavity. Notably,

α= N
p

V0U0

∫

cos(kx) cos(k y)|ψ|2dx dy

∆̃c + iκ
, (14)

is explicitly dependent on the atomic wave function at time t, introducing an additional ele-
ment of self-consistency to the problem. Here, κ is the decay rate of the intra-cavity light field.
As a result, α is calculated at each time step using the current value of the density |ψ(t)|2. The
term appearing at the denominator

∆̃c =∆c − U0

∫

cos2(kx)|ψ(x , y)|2dxdy , (15)

9
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Figure 5: Self-organization of a trapped BEC in an optical cavity. (a) Experimental
configuration. Two counter-propagating Gaussian beams illuminate a trapped BEC,
forming a standing wave modulation along the y direction. The BEC (N = 2 · 105

particles) is placed in the center of an optical cavity with its axis along x . (b) (Left)
Mean number of photons Nph in the cavity for different values of pump strength
V0 and cavity detuning ∆c . The pump strength is expressed in units of the recoil
energy Er = (ħhk)2/2m. In blue (green) the phase boundary for an s-wave scattering
length of as = 100 aB (as = 0 aB) is shown. (Right) Corresponding values of α in a
longitudinal cut through the phase diagram detailing the gradual development of a
non-vanishing order parameter characteristic of a second-order phase transition. The
pump power is linearly increased from 0 to 15 Er in a total time of 15 ms. (c) Wave
function in real (left) and momentum space (right) of the interacting BEC in the
normal phase. The cavity detuning has been set to∆c = −2π ·15 MHz and the pump
strength to V0 = 2 Er. (d) Wave function in real (left) and momentum space (right)
of the interacting BEC in the organized phase. The cavity detuning has been set to
∆c = −2π · 15 MHz and the pump strength to V0 = 6 Er. The spatial extent of the
grid is set to 30µm with a grid size of Nx = Ny = 210 points. This choice guarantees
the numerical convergence of the results.

is the dispersively shifted cavity detuning. A formal justification of the self-consistent potential
is beyond the scope of this work. For further details, we refer the reader to Ref. [27].

In Fig. 5, we present results that stem from the solution of the GPE in both imaginary- and
real-time. Replicating the experimental setting shown in Fig. 5a, where a BEC is illuminated
by a laser orthogonal to the cavity mode, we observe the presence of two different phases. For
values of V0 smaller than a critical threshold, the density distribution is only modulated by the
transverse lattice (cf. Fig. 5c) and the cavity population is vanishing (cf. Fig. 5b). Conversely,
as V0 is increased beyond its critical value, the system self-organizes into the chequerboard
density modulated phase displayed in Fig 5d. Concurrently, the cavity acquires a non-vanishing
population as seen in Fig. 5b. We display simulations for both interacting and non-interacting
gases, revealing that repulsive interatomic interactions in the BEC increase the critical pump
power necessary for the system to self-organize. Not captured by low-energy theories, this
behavior is well-reproduced in our GPE simulations and visible in Fig. 5b.
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Figure 6: Bragg spectroscopy of Soft Mode in Lattice Supersolid. (a) Schematic
of the simulated system. Atoms in the optical cavity with the applied transverse
pump lattice (kp) and the applied Bragg probe beam (kc). (b) Sketch of the mode
softening in the dispersion relation. The arrows indicate the role of the pump and
probe beams, where the pump is detuned by ∆a from the excited atomic state |e〉.
(c) Mode softening (blue, left axis) and cavity field (red, right axis) extracted from
the GPE simulation as the transverse pump power V0 approaches its critical value.
The gas is made of N = 2 · 105 Rb87 atoms trapped in a harmonic potential with
frequency ω= 2π ·100 Hz. The cavity detuning has been set to ∆c = −2π ·20 MHz,
and the atomic one to ∆a = −2π · 76.6 GHz.

This implementation can also be generalized to explore previous experiments on multi-
cavity systems or on setups with a running-wave component added to the transverse beam,
where different symmetries appear [29–31]. Indeed, a preliminary version of this software
package has already been employed to quantitatively reproduce a novel, dissipation-induced
dynamical effect leading to spatial transport of the atoms [32].

5.4 Simulated roton spectroscopy at the self-organization phase transition

Fundamental insight into the underpinnings of emergent many-body effects in quantum fluids
is provided by the investigation of the spectrum of their elementary excitations. Indeed, the
self-organization phase transition can be understood as resulting from a virtual process where
cavity photons mediate an effective long-range interaction between the atoms. Long-range
interactions have long been predicted to give rise to a softening of the excitation spectrum
at a finite momentum k = krot, similar to that observed in superfluid helium [33] and, more
recently, in dipolar BECs [34, 35]. Under simplifying assumptions, e.g. infinite uniform gas,
the correction to the free-particle dispersion relation εk can be derived in the framework of
the Bogolyubov theory [36,37]. This results in the dispersion relation

ε̃k = εk

√

√

√

1+
2g2D|ψ(r)|2 + 4NV Ṽ (k)

εk
, (16)

where εk is the free kinetic energy, Ṽ (k) is the Fourier transform of the mode structure of the
long-ranged potential V (r) = cos(kc ·r) cos(kp ·r), and V = ħhV0U0∆̃c/

�

∆̃2
c +κ

2
�

is its effective
strength. The presence of the cavity-mediated long-range interaction leads to a renormaliza-
tion of the energy spectrum around the wavevector k, thus creating a minimum of energy at
finite momentum, like illustrated in 6b.
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Experimentally, the roton spectrum can be probed through a variant of Bragg spec-
troscopy [38]. After preparing the system at a given interaction strength, the cavity field
is excited with a weak pulse along the cavity axis, with frequency detuned by ∆p from the
frequency of the driving laser. In the regime of adiabatic elimination of the light field dy-
namics, the on-cavity axis probe is modeled by modifying the cavity field in equation (14) to
α′(t) = α+δα(t) with

δα(t) =
Ωc exp
�

i(∆p t +φ)
�

∆c − U0

∫

cos2(kpr)|ψ(r)|2d2r + iκ
. (17)

Here,Ωc is the strength of the on-cavity axis driving field, andφ is the phase of the probe beam.
The interference between the cavity probe and the transverse pump results in an amplitude-
modulated probing potential

V = 2
p

V0U0Re(α) cos
�

kpr
�

cos(kc r) . (18)

Such modulation acts on the BEC and results in photons being scattered from the pump to the
cavity field, and hence in the oscillation of the latter. Therefore, the light leaking out of the
cavity follows the oscillatory evolution of the density modulation, and the system’s response
to the modulation can be observed in the intracavity photon number. The excitation energy
can be extracted by monitoring the field leaking out of the cavity and analyzing the response
of the system to different probing frequencies.

In Fig. 6, we present the results of the cavity spectroscopy protocol performed with
TorchGPE, showing the mode softening as the phase transition is approached. In Fig. 6a
we sketch the experimental apparatus, and in Fig. 6b the qualitative behavior of rotonic exci-
tations. Fig. 6c shows numerical results of the excitation energy of the soft mode accompanied
by the diverging response in the cavity light field. The results have been obtained by first com-
puting the ground state of the gas via imaginary time propagation and subsequently evolving
the system in real-time while probing for 4ms with an amplitude of Ωc = 100Er. The mean
photon number in the cavity has been computed for different values of the detuning between
the probe and the pump ∆p, and fitted with a Gaussian function [38]. The frequency of the
soft mode and the strength of the response have been extracted from the fit results. Bragg
spectroscopy also allows determining the dynamic structure factor of the system around the
mode softening, providing information about the emergence of quasi-particle modes and their
energy [39]. This can be computed with TorchGPE, as it provides direct access to both the
cavity field and the condensate’s wave function.

6 Outlook

The future prospects of the presented package include three main areas of development. First,
extending the method to three dimensions would broaden its applicability to a wider range of
physical systems. Second, the use of an unevenly spaced computational grid would allow the
sampling to be adjusted to the characteristics of the potentials. Consequently, it would reduce
the integration time without greatly affecting the quality of the results. Lastly, incorporating
spinor wavefunctions would enable a description of systems involving spin degrees of freedom.
These future directions aim to enhance the package’s versatility, accuracy, and usability.
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