
SciPost Phys. Codebases 4 (2022)

The ITensor software library for tensor network calculations

Matthew Fishman1, Steven R. White2 and E. Miles Stoudenmire1?

1 Center for Computational Quantum Physics, Flatiron Institute, New York, NY 10010, US
2 Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575, US

? mstoudenmire@flatironinstitute.org

Abstract

ITensor is a system for programming tensor network calculations with an interface mod-
eled on tensor diagrams, allowing users to focus on the connectivity of a tensor network
without manually bookkeeping tensor indices. The ITensor interface rules out common
programming errors and enables rapid prototyping of algorithms. After discussing the
philosophy behind the ITensor approach, we show examples of each part of the interface
including Index objects, the ITensor product operator, tensor factorizations, tensor stor-
age types, algorithms for matrix product state (MPS) and matrix product operator (MPO)
tensor networks, quantum number conserving block sparse tensors, and the NDTensors
library. We also review publications that have used ITensor for quantum many-body
physics and for other areas where tensor networks are increasingly applied. To conclude
we discuss promising features and optimizations to be added in the future.

Copyright M. Fishman et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 25-07-2020
Accepted 22-03-2022
Published 23-08-2022

Check for
updates

doi:10.21468/SciPostPhysCodeb.4

This publication is part of a bundle: Please cite both the article and the release you used.

DOI
doi:10.21468/SciPostPhysCodeb.4
doi:10.21468/SciPostPhysCodeb.4-r0.3

Type
Article
Codebase release

Contents

1 Introduction 3

2 Interface Examples 5
2.1 Installing ITensor 5
2.2 Obtaining Help 5
2.3 Basic ITensor Usage 5
2.4 Setting ITensor Elements 6
2.5 Matrix Example 7
2.6 Summing ITensors 7
2.7 Priming Indices 8

1

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
mailto:mstoudenmire@flatironinstitute.org
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysCodeb.4&domain=pdf&date_stamp=2022-08-23
https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.21468/SciPostPhysCodeb.4-r0.3

SciPost Phys. Codebases 4 (2022)

2.8 Compiling ITensor 9
2.9 Online Code Examples 9

3 Index Objects 9

4 The ITensor Product Operator (∗) 11

5 Tensor Decompositions 14

6 Tensor Storage Layer 15

7 High Level Features: MPS and MPO Algorithms 18
7.1 OpSum and AutoMPO 18
7.2 DMRG Algorithm 19
7.3 MPS and MPO Operations 20

8 Quantum Number Block Sparse ITensors 23
8.1 QN Objects 24
8.2 QN Index 25
8.3 QN ITensor 25

9 NDTensors Library 28
9.1 Basic Interface 28
9.2 Block Sparse Tensors 29
9.3 Generic Index Types 30
9.4 Tensor Contraction Backend 30

10 Other Features of ITensor 31
10.1 Writing and Reading ITensor Objects with the HDF5 Format 31
10.2 Defining Custom Local Hilbert Spaces 31
10.3 DMRG Observer System 33

11 Applications of ITensor 34
11.1 Equilibrium Quantum Systems 34
11.2 Dynamics of Quantum Systems 35
11.3 Other Application Areas 35

12 Benchmarks of ITensor Performance 36
12.1 Comparison of Julia and C++ Implementations of ITensor 36
12.2 Benchmarks of ITensor Versus Other Software 40

13 Future Directions 41

A Full Code Examples 43
A.1 Contraction Example 43
A.2 DMRG Example 44

B ITensor Implementation and Interface in the C++ Language 45
B.1 C++ Contraction Example 46
B.2 C++ DMRG Example 46

References 47

2

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

1 Introduction

Tensor networks are a technique for working with tensors which have many indices [1–6]. The
naive memory and computing costs of working with a tensor having N indices (an order-N
tensor) scales exponentially with N . A tensor network is a representation of a large, high-order
tensor as the contracted product of many low-order tensors. When all of the tensors in the
network are low-order, a tensor network can make it efficient to perform important operations
such as summing two high-order tensors or computing their inner product. These operations
can remain efficient whether the high-order tensor represented implicitly by the network has
hundreds, thousands, or even an infinite number of indices.

Describing tensor networks can be difficult when using traditional notation: one must
come up with distinct names for indices and it can be hard to see the connectivity pattern
of the network. An elegant alternative is tensor diagram notation [7]. In diagram notation,
tensors are shapes and indices are depicted as lines emanating from them. Connecting two
index lines means they are contracted or summed over. For example, the following diagram is
equivalent to the traditional expression below it:

∑
k

TijkMkn Rijn=

=
i

j

k n n
i

j

Diagram notation is enormously helpful for expressing tensor networks, as it emphasizes
key aspects of tensor algorithms while suppressing implementation details such as the ordering
of tensor indices. It is just as rigorous as traditional index notation.

ITensor, short for intelligent tensor, is a software library inspired by tensor diagram nota-
tion. Its goal is enabling users to translate a tensor diagram into code without reintroducing
concepts not expressed by tensor diagrams. For example, when summing two ITensors the
only requirement is that they have the same set of indices in any order; the ITensor system
handles all other details of performing the sum.

Two “philosophical” principles guided the design of ITensor. The first was that in using the
library, any implementation details which are not a part of the conceptual algorithms should
be kept hidden from the user as much as possible. Not having to think about these details
allows one to focus more clearly on the essentials. A key early insight was that this principle
could apply to the ordering of indices in an ITensor. In typical tensor software, the user is
constantly thinking about the order of the indices. However, tensor diagrams do not have any
index ordering, just labels that keep track of the relevant information. Thus ITensors have
the ordering of their indices abstracted away as an implementation detail, using “intelligent”
indices that retain their identity. The second key principle is that the software should allow
one to interact with it at a variety of levels. At a high level, for calculations done in a standard
way one can call functions encapsulating a sophisticated algorithm (say, the density matrix
renormalization group, DMRG) without understanding much of the implementation details.
At an intermediate level, one can gain flexibility by working with moderately sophisticated
routines, such as for adding MPS. And finally, to do something more novel, one can work
at the lower level of individual ITensors. This multilevel access mandated that ITensor be a
library, not a single executable program with complicated input files.

3

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

These initial principles led to other interesting design choices over time. One consequence
of having intelligent tensor indices as distinct data objects (of type Index) is that they can
store extra information about themselves. A key use case is indices which have internal sub-
spaces labeled by conserved quantum numbers (symmetry group representation labels). Stor-
ing this information in the Index objects ensures that when contracting two quantum number
conserving ITensors, both are guaranteed to use the same ordering of the subspaces for storing
their data. Another consequence is that dense and sparse ITensors can be of the same type and
have essentially the same interface, because the implementation can inspect the indices and
internal storage type to determine the actual ‘type’ of any ITensor. Thus users can write very
generic code that works for any type of ITensor.

The design choice to have an ITensor manage its own index ordering is by no means an
obvious one. Benefits of ITensor’s intelligent index system include making addition of ITensors
A and B as simple as writing the code A+B for tensors with the same indices, or automating the
application of operators to matrix product states (MPS). A system to automate anti-commuting
“fermionic” tensor algebras is currently in development which heavily relies on the intelligent
index system to keep track of index ordering. Calculations where multiple tensor diagrams
have many of the same indices is another example where intelligent indices makes code simpler
and less error prone. An example is taking the gradient of a tensor network, which simply
involves removing that tensor from the network. But possible drawbacks of the intelligent
index approach include occasional extra lines of code to manipulate index properties and some
loss of control over low-level details of tensor operations when using very high-level features.
However we do offer more advanced features that give complete control over such details.

Most tensor libraries, in contrast, choose to expose the ordering of tensor indices to users
who must manage this ordering manually [8]. Such interfaces always give users fine-grained
control over details that can affect performance, but can put more of a burden on the user to
ensure correctness. While ITensor does not require users to think about the index ordering, it
can be manually controlled when needed by calling functions such as permute to explicitly
permute indices into a specified memory ordering. In tensor contractions, the index ordering
of the output tensor can be controlled by supplying it through an in-place contraction function.

Another contrast between ITensor and other tensor libraries relates to how networks con-
sisting of many tensors are handled. In many libraries, higher-level network interfaces are
offered by supplying temporary text labels for indices [9–11] or by placing tensors into a graph
or network structure and specifying contracted indices through the graph topology [12, 13].
Because ITensors have persistently labeled indices, any collection of ITensors with unique in-
dices already specifies a graph. We are currently taking advantage of this property of ITensors
to offer higher-level tensor network abstractions and make use of it in our upcoming automatic
differentiation tools.

ITensor was first implemented in C++ and extensively developed and refined through three
major releases over ten years. 1 Recently, ITensor has been fully ported to the Julia language
and most new features are being developed there. 2 In what follows we show examples in
Julia, though we emphasize that the high-level C++ and Julia interfaces are quite similar (see
the Appendix for full code examples in each language). Both versions are full implementations
of ITensor in each language: the Julia version is not a wrapper around the C++ version.

The goal of this article is to provide a high-level overview of the ITensor system, its de-
sign goals, and its main features. Much more information including detailed documentation
of the ITensor interface, code examples, and tutorials can be found on the ITensor website:
https://itensor.org.

1ITensor Github Repository (C++): https://github.com/ITensor/ITensor
2ITensor Github Repository (Julia): https://github.com/ITensor/ITensors.jl

4

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://itensor.org/
https://github.com/ITensor/ITensor
https://github.com/ITensor/ITensors.jl

SciPost Phys. Codebases 4 (2022)

2 Interface Examples

We first introduce ITensor by giving examples as an informal overview. In later sections, we
will discuss many more details of the individual elements making up the ITensor system such
as “intelligent” tensor indices, tensor factorizations, and block sparse ITensors.

2.1 Installing ITensor

Julia features a built-in package manager that makes installing libraries simple. To install
the ITensor library, all a user has to do is issue the following commands, starting from their
terminal:

� �
$ julia
julia>]
pkg> add ITensors� �

The julia command starts an interactive Julia session and typing] enters package manager
mode. The command add ITensors downloads and installs all the dependencies of the
ITensors.jl package then finally the ITensor library itself.3

2.2 Obtaining Help

Once ITensor is installed, the built-in Julia documentation system can be used to query ITensor
functions and types. For example

� �
julia> using ITensors
julia> ?
help?> Index� �

will give the output

� �
search: Index indexin IndexStyle IndexLinear ...

An Index represents a single tensor index with fixed
dimension dim. Copies of an Index compare equal unless
their tags are different.

...� �
and additional information describing the Index type and its constructors.

2.3 Basic ITensor Usage

To begin using the ITensors package in a Julia session or script, input the line

3The reason the Julia library is called “ITensors” and not ITensor is to keep the module name from conflicting
with name of the ITensor type.

5

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://github.com/ITensor/ITensors.jl

SciPost Phys. Codebases 4 (2022)

� �
using ITensors� �

Before creating an ITensor, one first creates its indices. The line of code

� �
i = Index(3)� �

creates a tensor Index of dimension 3 and assigns this Index object to the reference i. Upon
creation, this Index is stamped with an immutable, unique id number which allows copies of
the Index to be compared and matched to one another. A portion of this id is shown when
printing the Index, with typical example output of the command @show i being:

� �
i = (dim=3|id=804)� �

After making a few Index objects i,j,k,l one can define ITensors:

� �
A = ITensor(i)
B = ITensor(j,i)
C = ITensor(l,j,k)� �

Because matching Index pairs can automatically recognize each other through their id num-
bers, tensor contraction can be carried out as:

� �
D = A * B * C� �

The * operator finds all matching indices between two ITensors and sums over or contracts
these indices. The i Index is summed in the first contraction above and j in the second,
leaving D with indices l and k. The ITensor product operator “*” can also be used for outer
products and scalar products, and is discussed in more detail in Section 4.

2.4 Setting ITensor Elements

Setting an element of an ITensor A = ITensor(i,j,k) is done by

� �
A[i=>2,j=>3,k=>1] = 0.837� �

which assigns the value 0.837 to the element of A for which index i has the value 2, j has
value 3, and k has value 1. (Note that in Julia, the built-in notation x=>ymakes a Pair(x,y)
object.) ITensor indices are 1-indexed, similar to Julia arrays.

Because the Index objects are provided along with their values, they can be passed in any
order. Thus the following lines of code

� �
A[i=>2,j=>3,k=>1] = 0.837

6

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

A[k=>1,i=>2,j=>3] = 0.837� �
have exactly the same effect on the ITensor A.

To create an ITensor with normally-distributed random elements instead of specific values,
one can use the constructor

� �
T = randomITensor(i,j,k)� �

to make a real-valued random tensor or

� �
T = randomITensor(ComplexF64,i,j,k)� �

to construct a complex-valued random ITensor.

2.5 Matrix Example

To illustrate the usefulness of the ITensor approach involving Index objects and the * operator,
consider a pair of order-2 tensors (matrices)

� �
A = ITensor(i,j)
B = ITensor(k,j)� �

In a typical matrix or tensor library, to contract A with B and sum over their shared index j,
one would need to write code similar to

� �
C = A * transpose(B)� �

Note that the above line is not ITensor code!
Within ITensor, all one needs to do is to write

� �
C = A * B� �

and the * operator handles the transposition of B automatically. If B is redefined with the
ordering of its indices reversed, the operation A * B continues to give the correct result. This
type of behavior makes ITensor applications robust to changes in the code that may modify
the ordering of tensor indices or the layout of tensors in memory.

2.6 Summing ITensors

ITensors can be added and subtracted as long as they have the same set of indices. Even if the
indices are in a different order, addition always works straightforwardly because the ITensor
system is able to internally deduce the data permutation required:

7

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

� �
A = randomITensor(i,j,k)
B = randomITensor(k,i,j)
C = A + B� �

ITensors may also be subtracted and multiplied by scalars, including complex scalars, for
example:

� �
D = 4*A - B/2
F = A + 3.0im * B� �

2.7 Priming Indices

Sometimes it is not desirable to contract all of the indices shared between two tensors. Con-
sider two ITensors

� �
A = ITensor(i,j)
B = ITensor(i,j)� �

and say we want to contract only over the index j leaving the i indices uncontracted.
A convenient way to achieve this while still using the * operator is to prime one of the i

indices

� �
Ap = prime(A,i)� �

The ITensor Ap has the same elements as A but has indices (i',j). When contracting Apwith
B, now only the j indices will match or compare equal, so it will be the only Index contracted

� �
C = Ap * B
hasind(C,i) == true
hasind(C,i') == true� �

Diagrammatically we can notate the above contraction as:

=
Ap

i' j ii' i

BC *

8

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

2.8 Compiling ITensor

Although the experience of using Julia is similar to using an interpreted language, it is actually
a just-in-time compiled language.

The initial compilation time when Julia first encounters new functions or types can be large
in a new Julia session, though there is ongoing work to provide ahead-of-time compilation tools
for Julia. To reduce just-in-time compilation overhead, we offer a convenient way for users
to compile most of the ITensors.jl code ahead of time with the following commands within an
interactive Julia session:

� �
julia> using ITensors
julia> ITensors.compile()� �

The compilation process can take many minutes, but only has to be performed once each time
the ITensors.jl library is upgraded to a new version. After the command is run, it will suggest
command-line arguments that can be passed to the julia language program that will load
a precompiled ITensors.jl system image when running Julia. Running ITensor code this way
typically reduces startup times to only a few seconds.

2.9 Online Code Examples

For more extensive and frequently updated examples of ITensor code, including full applica-
tions, we include an set of examples as part of our source code distribution at the following
link: ITensor Code Examples.

3 Index Objects

A core concept of the ITensor system is that tensor indices carry information beyond just their
dimension. Mathematically, this corresponds to the notion that an index labels the basis of a
vector space, and that two vector spaces may be different from each other despite having the
same dimension.

The notion that a tensor index corresponds to a specific vector space is encoded in the
unique id number assigned to an Index object when it is constructed:

� �
i = Index(4)
@show i # prints: i = (dim=4|id=577)� �

Printing an Index as in the code above shows a portion of the (64 bit) id number.4

Because a new id is assigned each time an Index is constructed, other separately con-
structed Index objects will not compare equal to i even if they have the same dimension

� �
j = Index(4)
j != i # true� �

4As a technical note, the Index id numbers are generated randomly, but collisions are highly improbable because
of the 64-bit length of the ids. Random id generation has many advantages over sequential, including using ITensor
for parallel algorithms and reading ITensors from files and mixing these ITensors with newly generated ones.

9

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://github.com/ITensor/ITensors.jl/tree/main/examples

SciPost Phys. Codebases 4 (2022)

In other words, comparison operations (==,!=) require two Index objects to have the same id
for them to compare equal.

To enrich the Index system one may also add tags to indices

� �
s = Index(3,"s,Site")� �

The Index s above has a dimension 3, as well as two tags "s" and "Site". For efficiency
reasons, tags can have a maximum of eight characters and indices can have a maximum of four
tags. These maximum values are currently hard-coded into the library and may be increased
in the future as use cases arise that require longer tags or more tags.

Tags can serve multiple purposes: helping to identify Index objects when printing them;
collecting subsets of indices sharing a common tag or tags; and preventing certain Index pairs
from contracting with each other. This last use of tags extends the rule for Index comparisons:
for Index objects to compare equal they must have the same tags as well as the same id number.

As discussed in the previous section, one other way to prevent Index objects from com-
paring equal is to change their prime level. Every Index carries an integer prime level which
defaults to zero.

� �
i = Index(2,"i")
@show plev(i) # plev(i) = 0� �

A copy of Index i but with a prime level of 1 can be created by calling

� �
ip = prime(i)
@show plev(ip) # plev(ip) = 1� �

or for convenience by writing

� �
ip = i'� �

Two copies of the same Index which have different prime levels do not compare equal

� �
i == i' # false
i == i'' # false� �

Because both primes and tags can be used to prevent Index objects from comparing equal
to each other and being contracted by the * operator, some experience is needed to choose the
best approach. Primes are useful when indices are only distinguished temporarily; it is easy
afterward to call noprime(T) on an ITensor to reset the prime levels of all of its indices. On
the other hand, tags should be used when there is some application-specific understanding
of why certain indices are distinguished. For example in the case of a tensor network with a
square lattice structure, where all indices linking the tensors together may describe the same
vector space, we might use the tags "x=-1", "x=0", "x=1", . . . to label a unique horizontal

10

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

position in the lattice and the tags "y=-1", "y=0", "y=1", . . . to specify a unique vertical
position. This is particularly useful in applications involving translational invariance, where
many copies of the same Index can appear in different contexts and it can become cumbersome
to distinguish them by prime levels alone.

4 The ITensor Product Operator (∗)

Just as tensor diagrams unify many concepts, the ITensor product operator * likewise unifies
many operations into a single operation:

• The * product of ITensors with no indices in common computes an outer product.

• The * product of ITensors with all the same indices computes an inner product, resulting
in a scalar ITensor.

• Otherwise, for a pair of ITensors having just some indices in common, the * operator
computes a tensor contraction.

A simple example of an outer product is the product of two vectors which do not share a
common index:

� �
v = ITensor(i)
w = ITensor(j)
x = v * w� �

ji

=
v

ji

wx *

Using the * operator to compute an inner product results in a scalar ITensor with no indices
as in the following example (note that the indices do not need to be in the same order for the
result to be correct):

� �
A = ITensor(i,j,k)
B = ITensor(k,i,j)
C = A * B� �

11

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

= A

B
C *

The scalar function can be called to convert a scalar ITensor into a real or complex number

� �
x = scalar(C)� �

or alternatively one can call x = C[].
Finally, to illustrate the case of a tensor contraction where only some of the indices are

summed, we can use the following example which was also shown at the beginning of this
article:

� �
T = ITensor(i,j,k)
M = ITensor(k,n)
R = T * M� �

=
T * MR

In the diagram above, we have omitted the names of the indices to emphasize the typical user
experience: all that a user needs to know to get a correct result in the above example is that
T and M share one Index. Keeping track of the ordering of the uncontracted indices, which
become the indices of R, is not necessary.

Besides contracting regular tensors, the * operator can also be used in conjunction with
specially constructed tensors to manipulate tensor indices. One example of such a special
tensor type is a delta tensor, also known as a copy tensor, which has all diagonal elements
equal to one and other elements equal to zero, and is often shown as a solid black circle in
tensor diagrams. In the ITensor library, a delta tensor uses special diagonal-sparse storage
internally, not only to save memory but also to ensure that the contraction of delta tensors
with other tensors is performed using specially optimized routines.

A delta tensor can be used to replace an Index with another Index of the same dimension:

� �
A = ITensor(k,j)
A = A * delta(k,i)
@show hasind(A,i) # true� �

12

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

= i k ji j

AA δ *

or to duplicate (or split) an index as follows:

� �
B = ITensor(k)
B = B * delta(k,i,j)� �

j
i =

B

k

B *

i

j
δ

Note that in Julia, one can use the unicode character δ to write the code above as
B = B * δ(k,i,j).

Another example of a special tensor type is a combiner ITensor. When contracted with
another ITensor, a combiner merges multiple indices into a single Index.

� �
T = ITensor(i,j,k)
C = combiner(i,j)
cT = C * T� �

i j k= T

c

C
*

c k

cT

The Index c shown in the diagram above can be retrieved by calling combinedind(C) on
the combiner ITensor. Alternatively one can call commonind(C,cT) to retrieve this Index,
since it is the one that the combiner and cT will necessarily have in common.

Taking the product with the conjugate of the combiner reverses this operation.

13

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

= cT
ci j k

dag(C)
*k

T

i j

Like delta tensors, combiners also use a special storage type with a negligible memory footprint
and optimized contraction algorithms for combining and uncombining indices.

The action of a combiner on a tensor is conceptually identical to the concept of permuting
and reshaping a multi-dimensional array, at least for the case of dense ITensors. For quan-
tum number conserving or symmetric ITensors, combiners can perform additional steps like
grouping multiple copies of a quantum number together in the combined Index, or managing
anticommutation properties in the case of the upcoming ITensor fermion system.

5 Tensor Decompositions

Many commonly used tensor network decompositions are built from matrix decompositions
such as the QR and singular value decompositions (SVD) known from linear algebra. Despite
being defined in terms of matrices, these factorizations can be straightforwardly defined for
tensors too. All that is needed is a mapping from a tensor to a matrix, defined by specifying a
certain group of indices as row indices and the rest as column indices, then treating each group
as a single larger index when computing the decomposition. ITensor automates the tedious
and error-prone process of converting tensors to matrices and back, providing a tensor-level
interface for various decompositions.

Consider an ITensor T with indices i,j,k. We can compute a QR decomposition of T by
just specifying that i,k are the row indices as follows:

� �
T = randomITensor(i,j,k)
Q,R = qr(T,(i,k))� �

k
=

Q

i ji j

RT
k

*

A new Index is generated by the qr function which links the Q tensor to the R tensor as shown
above. This makes it straightforward to recover the tensor T just by using the * operator:

� �
Q*R ≈ T # true� �

14

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

(In Julia, the≈ operator is overloaded to compute the relative difference between the two sides
of an equation, and return true if it is below a prescribed threshold.) Note that when computing
the product Q*R one does not need to know any details of the new Index introduced by the
factorization, such as whether it is the first or second index of R, or its dimension. However,
in situations where one wants to retrieve this Index, a convenient way to do it is as follows:

� �
q = commonind(Q,R)� �

where the commonind function returns the first Index found that is shared by the two ITensors.
The SVD plays a key role in tensor network calculations, and is implemented as

� �
W = randomITensor(i,j,m,k)
U,S,V = svd(W,(j,i))
U*S*V ≈ W # true� �

k
=

U

i
j

SW
k

*

m

V*

i m
j

In the example above, j,i were specified as the row indices, leaving m,k as the column
indices.

An important feature of certain decompositions such as the SVD is that they allow con-
trolled truncation of the tensors resulting from the factorization. By default, ITensor decom-
positions do not truncate, though they do always compute the “thin” version of a decompo-
sition when available. A truncated decomposition can be computed by specifying truncation
keyword arguments. In the following example

� �
U,S,V = svd(W,(j,i);cutoff=1E-8,maxdim=10)� �

the truncation will be determined by summing the squares of the singular values from small-
est to largest until the truncation error reaches 10−8 while also ensuring that the maximum
number of singular values kept is less than or equal to 10.

6 Tensor Storage Layer

A powerful feature of ITensor is that ITensors can have a wide variety of storage formats while
offering the same user interface. Users can mix sparse and dense tensors together in calcula-
tions and manipulate any kind of tensor using identical high-level code.

In most cases users do not set the storage type manually; instead special storage types occur
automatically when using other features: after computing the singular value decomposition

15

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

of an ITensor, the singular values are returned as an ITensor with diagonal-sparse storage;
constructing an ITensor from indices with quantum number subspaces makes the storage au-
tomatically block sparse.

Importantly, because the storage types used by an ITensor are distinct types, each one can
use the most optimal memory layout possible, and performance-critical algorithms such as
tensor contraction and factorization can be specialized for each storage type or combination of
storage types. For this purpose, we take full advantage of Julia’s multiple dispatch mechanism
to organize specialized algorithms into separate code pathways to keep the library code simple.
These optimizations are hidden from the user, who can just contract ITensors together using
the * operation and automatically get the best possible performance available.

Some of the most common storage types available in ITensor are:

• Dense storage:

this is the default storage type when constructing an ITensor from regular Index objects
and setting elements. The Dense storage type is parameterized over its element type,
so that Dense{Float64} (real-valued dense storage) and Dense{ComplexF64}
(complex-valued dense storage) are actually different storage types. The type used to
hold the data for Dense storage can also be changed through a second, optional type
parameter, to types such as Vector{Float64} or SubArray{Float64}.

• Diagonal storage: diagonal-sparse tensors occur naturally in algorithms such as the sin-
gular value decomposition and eigenvalue decomposition. In such settings, all of the
diagonal elements can be different and so an array of the diagonal elements is stored. A
special case of diagonal storage is uniform diagonal storage, where all of the elements
of the diagonal are constrained to be the same. For this special storage only the value
of the repeated, identical diagonal element is stored and specially-optimized contrac-
tion algorithms are invoked. If the uniform diagonal value is equal to 1.0 then such
a diagonal tensor can be used to replace one Index with another under the contraction
or * operation, or as a “copy” or “delta” (δ) tensor as used in certain tensor network
algorithms.

• Combiner storage:

This storage type uses essentially no memory and stores no tensor components. Rather,
it stands for a tensor which conceptually merges two or more indices into one larger
index. A combiner tensor C can be created as C = combiner(i,j,k) where i,j,k
are the indices one wants to combine together. Contracting the combiner ITensor with
an ITensor having these indices results in a new ITensor where the indices are merged
into the Index cind = combinedind(C). The new combined Index is created auto-
matically by the combiner.

• Block sparse storage: Block sparse storage is automatically used when an ITensor is cre-
ated from Index objects with quantum number subspaces. This is an important case for
quantum physics calculations, where the sparsity enforces symmetries or conservation
laws and allows calculations to be performed more efficiently. The block sparse and
quantum number system is discussed in more detail in Section 8. An important consid-
eration for block sparse storage is that the overhead of managing the layout of blocks and
movement of blocks within algorithms must be kept very low in order to benefit from
the efficiency of the tensor sparsity. Currently, the ITensor block sparse storage holds
all of the non-zero tensor elements in a single, contiguous array and keeps a dictionary
mapping block indices such as (2,1,7) to offsets in the array.

16

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

• GPU storage: GPU (graphics processing unit) storage is an experimental feature sup-
ported by the ITensorGPU.jl package. An ITensor with GPU storage stores its elements
in GPU memory, and calls specialized routines for operations including tensor contrac-
tion and tensor factorizations. Taking advantage of the parallel processing capabilities
of GPUs can give speedups ranging from two to a hundred times the speed of CPU cal-
culations. Because different storage types are handled automatically behind the same
ITensor interface, GPU ITensors can take advantage of the same set of high-level algo-
rithms available in the ITensor library written originally for regular tensors stored in host
memory.

• Empty Storage : ITensors support a special storage type EmptyStorage which is used
to represent an ITensor which is numerically zero but without incurring the cost of al-
locating any memory. Calling a constructor such as ITensor(i,j,k) results in an
ITensor with empty storage.

Another feature of the empty storage type is that it can be used as a convenient work-
around for specifying a complicated set of tensor indices in advance. A key example
is when summing a set of tensors which are known to have the same indices as each
other, but where the user does not want or need to explicitly work with these indices.
In such cases, a default-initialized ITensor (which will have empty storage) can be used
as a “universal zero” tensor which can be summed with any other tensor, for example:

� �
i = Index(2)
V = [randomITensor(i), randomITensor(i)]
T = ITensor()
for A in V

T += A
end� �

The flexibility of the ITensor storage system will let us explore other interesting possi-
bilities in the future. Some planned extensions include IdentityStorage storage which
represents an identity map from one collection of indices to another, UnitaryStorage stor-
age representing a unitary map, and storage types which handle common operations such as
conjugation in a lazy or delayed manner.

An important direction we plan to pursue is further sparsity patterns, including fully gen-
eral sparsity. Technically, general sparsity is already handled by the ITensor block sparse system
in the limit of all block sizes set to 1, and we have already observed speedups from represent-
ing sparse tensors in this limit. However, we plan to expose generally sparse tensors more
explicitly and possibly handle them in a more optimized way.

Lower-precision floating-point data is already supported by our storage layer, and can sig-
nificantly speed up calculations such as when using GPU hardware. Also we have experimental
support for more exotic numerical types such as tropical numbers, thanks to contributions by
Jin-Guo Liu [14]. More systematic handling of numerical types such as integer, boolean, or
nonnegative tensor elements is a planned future direction.

Given the usefulness of the flexible storage type system in ITensor, we plan to formalize
and carefully document the steps for users to make their own custom storage types. Because
of the dynamic nature of the Julia language, such types can be fully defined outside of the
ITensor library itself yet be treated as first-class storage types for ITensors.

17

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://github.com/ITensor/ITensors.jl/tree/main/ITensorGPU

SciPost Phys. Codebases 4 (2022)

7 High Level Features: MPS and MPO Algorithms

To make ITensor a productive system for rapidly prototyping tensor network algorithms, it
provides the most common and well-developed tensor network formats and algorithms. The
two most well developed formats are the matrix product state (MPS) tensor network [4,15,16],
also known as the tensor train [6], and the matrix product operator (MPO) tensor network
[17,18].

Algorithms included with the core ITensor library include summation of MPS and MPO;
truncation of MPS and of MPO; optimization of MPS through the DMRG algorithm; and mul-
tiplication of an MPS by an MPO. These algorithms offer a high degree of customizability: the
multiplication of an MPS by an MPO can be performed using at least three different algorithms
(selected by a keyword argument), with each algorithm offering tradeoffs in terms of scaling,
performance, and controllability. The DMRG code offers different modes, including finding the
ground state (dominant eigenvector) of an implied sum of multiple MPOs or finding excited
states (sub-dominant eigenvectors).

Throughout this section, code examples will use strings denoting local operators such as
"Sz", "S+", or "S-" or strings denoting states of the local Hilbert space such as "Up" and
"Dn". The way ITensor is able to know the appropriate definition of these operators and states
is through a flexible and extensible system of mapping operator and state names to tensors
and tensor elements.

7.1 OpSum and AutoMPO

A very useful and popular feature of ITensor is the OpSum/AutoMPO system. An OpSum is
a type that lets users input sums of products of local linear operators in a domain-specific
language and AutoMPO is the backend system for “compiling” these sums to MPO tensor net-
works. Constructing sums of local operators is particularly important for physics applications,
where one studies Hamiltonian operators. A typical example being the Heisenberg Hamilto-
nian:

H =
N−1
∑

i=1

~Si · ~Si+1 =
N−1
∑

i=1

Sz
i Sz

i+1 +
1
2

S+i S−i+1 +
1
2

S−i S+i+1 . (1)

This particular Hamiltonian can be exactly written as an MPO of bond dimension 5, [18] but
the construction is technical and tedious to program by hand. The AutoMPO system automates
the construction of this Hamiltonian MPO from the OpSum object:

� �
function heisenberg_mpo(N)

Make N S=1/2 spin indices
sites = siteinds("S=1/2",N)

Input the operator terms
os = OpSum()
for i=1:N-1
os += "Sz",i,"Sz",i+1
os += 1/2,"S+",i,"S-",i+1
os += 1/2,"S-",i,"S+",i+1
end

Convert these terms to an MPO
H = MPO(os,sites)

18

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

return H
end

H = heisenberg_mpo(100)� �
Comparing the lines of code in the for loop above to the Hamiltonian definition in Eq. (1) one
can observe a close similarity.

The AutoMPO system is powerful. Following a major enhancement of the backend code by
Anna Keselman based on Ref. [19], AutoMPO can accept terms with more than two local oper-
ators and local operators separated by arbitrary distances, and uses an SVD-based compression
algorithm to obtain a nearly-optimal MPO bond dimension.

We are working on or envision many useful extensions to this system:

• Improved compression techniques based on better-scaling algorithms generalized from
techniques used for non-local Hamiltonians arising in quantum chemistry [20].

• Compiling exponentials of OpSums into quantum circuits using Trotter-Suzuki decom-
positions.

• Extensions to infinite, translation-invariant systems, including truncation methods de-
veloped for infinite MPOs like the ones introduced in Ref. [21].

• Generalizations to other tensor network topologies, such as tree tensor networks (TTNs)
and projected entangled pair operators (PEPOs).

• Converting OpSums corresponding to interacting fermionic Hamiltonians to free fermion
approximations using mean field approximations like Hartree-Fock, which could then be
used by free fermion formulations of tensor networks [22] 5.

7.2 DMRG Algorithm

One of the most heavily used high-level algorithms included with ITensor is the density matrix
renormalization group (DMRG) [3,23]. The DMRG algorithm computes low-energy states of
quantum systems, or in mathematical terms, dominant eigenvectors of very large Hermitian
linear operators.

The main inputs to a DMRG calculation is a Hamiltonian Ĥ and an initial guess Ψ(i)0 for its
ground state Ψ0. The ITensor DMRG implementation works generically for any Hamiltonian
which can be represented as an MPO tensor network, so that the same code can be applied not
only to one-dimensional systems, but also quasi-two-dimensional systems and systems with
long-range interactions. By taking advantage of the OpSum system discussed above, users can
rapidly set up DMRG calculations of complicated Hamiltonians.

Given a Hamiltonian MPO constructed as in Section 7.1 above, one can prepare an initial
product state, a schedule of sweeps (DMRG algorithm iterations) and accuracy parameters,
then run the DMRG algorithm:

� �
Prepare initial state MPS
state = [isodd(n) ? "Up" : "Dn" for n=1:N]
psi0_i = MPS(sites,state)

5ITensorGaussianMPS.jl is a package for constructing tensor networks of free fermion states.

19

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://github.com/ITensor/ITensors.jl/tree/main/ITensorGaussianMPS

SciPost Phys. Codebases 4 (2022)

Do 10 sweeps of DMRG, gradually
increasing the maximum MPS
bond dimension
sweeps = Sweeps(10)
setmaxdim!(sweeps,10,20,100,200,400,800)
setcutoff!(sweeps,1E-8)

Run the DMRG algorithm
energy,psi0 = dmrg(H,psi0_i,sweeps)� �

For Hamiltonians defined as the sum of different sets of terms Ĥ = Ĥ1 + Ĥ2 + Ĥ3 one can
run a DMRG calculation as:

� �
energy,psi0 = dmrg([H1,H2,H3],psi0_i,sweeps)� �

where H1,H2,H3 are separate MPOs. Instead of summing these MPOs explicitly, which can
be costly and inaccurate, the algorithm loops over them internally as if they were summed.
This technique can be helpful in applications such as quantum chemistry where Hamiltonians
can become large and complex, yet have a nearly block diagonal MPO form if represented as
a single MPO. Expressing a Hamiltonian as a sum of MPOs also has the advantage that parts
of the DMRG algorithm, like forming the environment tensors and diagonalizing the local
effective Hamiltonian, become trivially parallelizable [24]. In initial tests we found that this
parallelization is very effective and can be used in conjunction with block sparse parallelism,
which we plan to make available as a feature in future versions of ITensor.

To compute an excited state of a Hamiltonian (sub-dominant eigenvector) with ITensor
DMRG having first computed both the ground state MPS psi0, and first excited state psi1,
say, one provides [psi0,psi1] as an extra argument to DMRG, meaning that the next state
computed should be constrained to be orthogonal to these previous ones:

� �
energy,psi2 = dmrg(H,[psi0,psi1],psi2_i,sweeps)� �

In the implementation of this particular DMRG routine, projectors onto the previous states
psi0 and psi1 are effectively added to the Hamiltonian times an “energy penalty", pushing
up the energy of these states in the eigenvalue spectrum so they are no longer part of the
low-energy subspace [25]. Other techniques for computing excited states are planned in the
future, such as the quasiparticle MPS ansatz [26,27].

7.3 MPS and MPO Operations

Far from being black-box software for performing calculations with MPS, ITensor provides
many elementary building blocks for creating custom algorithms involving MPS, MPOs, and
other tensor networks built from these components such as projected entangled pair states
(PEPS).

The most elementary interface to MPS and MPO tensor networks involves retrieving and
updating individual factor tensors making up the network. An MPS is a factorization of a

20

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

tensor psi of the following form

ψs1s2···sN =
∑

{α}

As1
α1

As2
α1α2

As3
α2α3
· · ·AsN

αN−1
, (2)

where we have omitted an explicit site-label j on each A tensor for compactness. The factor
tensor A

s j
α j−1α j

on site j can be obtained as

� �
A = psi[j]� �

and updated as

� �
psi[j] = new_A� �

To analyze the properties of an MPS, one is often interested in expected values of local
operators. To compute the expected value of an operator at every site and return an array of
the results, one can use the function expect. For example, calling

� �
avgSz = expect(psi,"Sz")� �

on an MPS psiwill compute 〈ψ|Ŝz
j |ψ〉 for every site j and return an array of the results, where

here we use the example of the spin Ŝz operator as our local operator.
Another common quantity of interest is the two-point correlation function of a pair of local

operators acting at distant sites i and j. Using the example of a spin system again, let us say
we are interested in the correlation matrix given by Ci j = 〈ψ|Ŝ+i Ŝ−j |ψ〉. This correlation matrix
can be efficiently computed as:

� �
C = correlation_matrix(psi,"S+","S-")� �

The correlation_matrix function accepts optional keyword arguments such as a smaller
range of sites over which to compute the correlation matrix, versus the whole system. It
also automatically ensures correct results for fermionic operators such as "Cdag" and "C"
(spinless fermion ĉ† and ĉ operators).

An important technical step involving an MPS is bringing it into an orthogonal form, where
all of the factor tensors to the left or right of the center tensor at a site j are equivalent to
partial isometries (i.e. either their rows or their columns are orthogonal). To bring an MPS
into orthogonal form efficiently in ITensor, one calls:

� �
orthogonalize!(psi,j)� �

where we follow the convention adopted in Julia programming that functions whose name
end with ! may modify their first argument. An interesting feature of ITensor MPS objects is
that they store information about which tensors are known to be orthogonal, so that calling
orthogonalize!(psi,j) repeatedly for the same value of j does no extra work, and

21

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

shifting the orthogonality center of an already partially orthogonalized MPS can be done with
the minimum amount of computation.

Another fundamental operation is truncating an MPS: computing another MPS of a smaller
bond dimension which is as close to the original MPS as possible. For MPS such a truncation
can be done optimally through various deterministic algorithms. Truncating an MPS psi in
ITensor can be done by calling:

� �
truncate!(psi;maxdim=500,cutoff=1E-8)� �

where for the sake of example we have shown specific values of the two most commonly used
truncation parameters. The maxdim parameter sets an upper limit on the bond dimension of
the MPS after the truncation, whereas the cutoff parameter allows the new bond dimension
to be determined adaptively as long as the resulting truncation error remains below the value
provided. Using a cutoff can allow the bond dimension to fall below the maxdimwhen possible
while still ensuring an accurate approximation of the original MPS.

ITensor supports arithmetic involving MPS and MPOs to be performed using the add func-
tion. Performing exact sums can lead to quickly growing costs, so that one normally truncates
the result by providing a truncation-error cutoff. For example, to add two MPS psi and phi
one can call:

� �
eta = add(psi,phi;cutoff=1E-10)� �

and similarly for adding two MPOs. Currently this method uses a particular backend algorithm
known as the “density matrix” algorithm [28] but other backends will be available in the future
to select through an optional keyword argument.

Algorithms such as time-evolving quantum states or contracting two-dimensional “PEPS”
tensor networks can be formulated in terms of products of an MPO with MPS or with another
MPO. To approximately multiply an MPS psi by an MPO W, one can call the function

� �
Wpsi = contract(W,psi;maxdim=50)� �

with example parameters controlling the truncation shown. The product of two MPOs R and
W can also be computed:

� �
RW = contract(R,W;cutoff=1E-9)� �

Importantly, these functions provide multiple backend algorithm implementations with various
tradeoffs in terms of the cost, accuracy, and control offered. For example, to select the accurate
yet expensive “naive” algorithm for multiplying an MPS by an MPO one may call

� �
Wpsi = contract(W,psi;method="naive")� �

22

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

8 Quantum Number Block Sparse ITensors

An important technique used in state-of-the-art physics calculations is enforcing constraints on
tensors arising from conserved quantities. These are quantities such as total particle number
or total spin along an axis which are conserved due to symmetries of the Hamiltonian operator.
The value of each conserved quantity is known as a quantum number.

Quantum number conservation can be important since physical systems commonly respect
symmetries such as rotational symmetry or particle number conservation symmetry, making
it necessary for simulations to conserve these to be comparable to experimental results. Just
as importantly, conserving quantum numbers allows calculations to run much faster and use
less memory because of a block sparse structure that is naturally imposed on the tensors in a
tensor network [29]. A detailed discussion of structures imposed by symmetries on tensors
and tensor networks is given in Refs. [29–31].

The power of the ITensor approach to conserving quantum numbers is that quantum num-
ber conserving ITensors offer nearly the same interface as regular, dense ITensors. Algorithms
can be written generically for dense ITensors and automatically work for the symmetric case
too, as long as tensors are correctly conjugated using the dag function, which would be nec-
essary to use to obtain correct results with complex-valued tensors anyway.

The design of the ITensor quantum number (QN) system is that QN information is stored
in Index objects in a fixed order. This information is queried when an ITensor is constructed to
determine whether the storage should be block sparse, as well as the layout of the blocks, and
which blocks are allocated. When such ITensors are summed, contracted, or factorized, opti-
mized routines are used and the QN information is propagated to the indices of the resulting
ITensor.

Currently ITensor only supports quantum numbers arising from symmetries under Abelian
groups such as U(1) or Zn, which are ubiquitous in physics. We are also in the planning stages
of support for non-Abelian symmetries such as SU(2) in a future version of ITensor, but the
remainder of this section will discuss only the Abelian case.

As an illustrative example of ITensor’s QN system, say we have defined two indices with
information about their QN subspaces:

� �
i = Index(QN(0)=>2,QN(1)=>3;tags="i")
j = Index(QN(1)=>2,QN(2)=>1;tags="j")� �

The Index i has a total dimension of 5 because it has two subspaces, one carrying a quantum
number QN(0) and of dimension of 2; the other carrying a quantum number QN(1) and of
dimension 3. Similarly j has a total dimension of 3, coming from its two subspaces.

Using these indices, we can define an ITensor T in the usual way as

� �
T = ITensor(i,j)� �

where initially this ITensor will have Empty storage (see Sec. 6), and thus an as-yet unspecified
pattern of non-zero blocks. Then, we set an element of T as

� �
T[i=>3,j=>1] = 31.0� �

23

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

Note that this element corresponds to the QN(1) subspace of i and the QN(1) subspace of j,
for a combined “QN flux” of flux(T) == QN(2). (Mathematically the flux corresponds to
the overall irreducible representation under which the tensor transforms. More intuitively, it
describes whether a tensor is a source or sink of quantum numbers and by how much.) When
setting any further elements, only those elements of T consistent with a flux QN(2) will be
allowed to be non-zero. This constraint imposes a block-sparse structure on T, since most
values of the indices combine to form fluxes other than QN(2) and thus remain zero. Only
allowed blocks consistent with the total flux are stored in memory. Block-sparse computations
can then be much more efficient than with dense tensors because fewer non-zero elements
have to be handled and the presence of disjoint blocks allows major parts of calculations to be
performed in parallel.

For the rest of this section, we discuss in more detail the different types composing the QN
block sparse ITensor system.

8.1 QN Objects

Block-sparse ITensors arise from vector spaces which are a direct sum of smaller subspaces.
In physics calculations, these subspaces are associated with different quantum numbers. In
ITensor, sets of quantum numbers are stored in QN objects as a collection of name-value pairs,
where the value is always an integer. Different values may be combined according to the usual
rules of integer addition and subtraction, possibly modulo some other integer N . (For the case
of quantum numbers arising from non-Abelian symmetries, these rules must be generalized.)

QN objects carrying a single quantum number, such as total z-component spin "Sz", may
be constructed as:

� �
q0 = QN("Sz",0)
q1 = QN("Sz",1)� �

QNs may be added, subtracted, and compared:

� �
q0 + q1 == QN("Sz",1) # true
q1 + q1 == QN("Sz",2) # true� �

QN objects can also carry multiple quantum numbers as follows:

� �
a = QN(("N",0),("Sz",0))
b = QN(("N",1),("Sz",-1))� �

Because the quantum numbers are named, they can be provided to the QN constructor in any
order and are sorted internally. For convenience when there is only one quantum number, its
name can be omitted; this is equivalent to choosing the name to be the empty string.

Some quantum numbers of physical systems obey a ZN addition rule. A key example is
fermion parity, which is only conserved modulo two in systems such as superconductors. A ZN
addition rule for a quantum number can be specified by providing N as the third entry of the
tuple defining that quantum number:

24

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

� �
p0 = QN("P",0,2)
p1 = QN("P",1,2)
p1 + p1 == QN("P",0,2)� �

The 2 following the quantum number values above specifies that the "P" quantum number
obeys Z2 addition.

The reason quantum numbers have names and are not just distinguished positionally is
that having names allows QNs containing different quantum numbers to be combined auto-
matically and correctly. This becomes important when different local physical spaces (such as
spin versus particle degrees of freedom) are defined separately, then combined or mixed later.
Key examples of physical models combining two otherwise separate types of physical spaces
are the Hubbard-Holstein model, where electron sites are intermixed with boson sites, or the
Kondo model mixing electron sites with spin sites.

8.2 QN Index

As discussed above, the block-sparse structure of quantum number conserving tensors arises
from the direct-sum structure of the vector spaces over which they are defined. To specify
additional information about direct-sum subspaces, an Index object can be constructed from
QN-integer pairs, as follows:

� �
i = Index(QN("N",0)=>1,

QN("N",1)=>3,
QN("N",2)=>2; tags="i")� �

where we note that (a=>b) == Pair(a,b) is built-in Julia notation for constructing a pair
of values a and b.

In the example above, the Index i has three subspaces, of dimensions 1, 3, and 2 re-
spectively. Therefore the total dimension of i is six, or dim(i) == 6. The subspaces are
associated with the quantum numbers QN("N",0), QN("N",1), and QN("N",2) respec-
tively.

A crucial aspect of QN Index objects not yet discussed is that they have an Arrow direction,
which can be Out or In, with Out being the default. Mathematically, the direction of an
Index says whether it is covariant (In) or contravariant (Out) and expresses how the Index
transforms under the symmetry group action. A physicist might view an Out arrow as denoting
a “ket” index and an In arrow as a “bra” index. The arrows of QN indices play two important
roles in working with QN ITensors:

• A pair of QN indices must have opposite arrow directions to be contracted.

• When computing the QN flux of an ITensor block, QNs corresponding to an Out Index
are added and QNs corresponding to an In Index are subtracted.

Examples of these arrow and flux rules will be given in the next section on QN ITensors.

8.3 QN ITensor

Constructing an ITensor from QN Indices makes it a QN ITensor, with a block sparse storage
type. In addition to the block sparse real and complex storage types, there are also diagonal

25

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

block sparse storage types which are usually obtained from factorizations such as the SVD of
block sparse ITensors.

In most respects, working with QN ITensors is quite similar to working with dense ITensors.
Operations like adding QN ITensors or multiplying them by scalars work in a straightforward
way. However, one small but important difference from dense ITensors arises when contracting
QN ITensors: matching QN indices must have opposite arrow directions to be contracted.
This rule is important for consistent bookkeeping of QN flux under Hermitian conjugation of
ITensors. But because computing the Hermitian conjugate dag(T) of a QN ITensor T is defined
to reverse all of the arrows of its indices, code which is already written correctly for complex,
dense ITensors (with proper use of dag to handle complex conjugation) will automatically be
correct in terms of QN conservation too.

Having discussed all of the types involved in the QN ITensor system, let us discuss some
examples which integrate all of these elements. An example motivated by physics is the Hilbert
space of a single “hard-core” boson: a type of particle which cannot share an orbital or site
with another boson. Such bosons can be used to model atoms which have large, short-range
repulsive interactions. The Hilbert space of a single hard-core boson is spanned by two basis
states |0〉 and |1〉, representing no particle and one particle. Along with these basis states, one
can define the elementary operators a, a†, n, which lower, raise, or measure the number of
particles:

a|1〉= |0〉 ,

a†|0〉= |1〉 ,
n|0〉= 0 ,

n|1〉= |1〉 . (3)

Diagrammatically the equation a|1〉= |0〉 can be expressed as

1

a
= 0

where in the diagram note that the tensors now have arrows on their indices, with contracted
indices having opposite arrow directions (In versus Out). Within ITensor, we can represent
the Hilbert space of this boson as an Index

� �
s = Index(QN("N",0)=>1,

QN("N",1)=>1;
tags="Boson")� �

This Index is the representation in code of the index lines

1

a
= 0

in the a|1〉= |0〉 diagram above.
By default, Index objects have an Out arrow direction meaning a contravariant index.

We can next construct the operator a as the following ITensor

26

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

� �
a = ITensor(s',dag(s))
a[s'=>1,s=>2] = 1.0� �

The first line constructs a as an ITensor with indices s' and dag(s) with elements all zero,
and the second line sets the only non-zero element of a. We can visualize the resulting tensor
as follows

[[00

1

0 1

0

1

0
s'

dag(s)

a =

The small, red labels above denote the subspaces of the Index s by labelling them accord-
ing to the value of the "N" quantum number. We can also see the single non-zero element
corresponding to the (1,2) entry of the tensor and having the value 1.0.

A key point about the example of the ITensor for the a operator is that the only element
stored in memory is the one shown above. All other entries shown in light gray are assumed
zero and not stored in memory. To see why this is the case, let us label each block of the a
tensor (or any tensor having the same indices as a) by its quantum number flux:

[[0

1

0 1

0

0

-1

+1

0
s'

dag(s)

The non-zero element of the tensor a is in the block with flux QN("N",-1) and physically
means this operator always reduces the particle number by 1. Because the convention in
ITensor is that QN-conserving ITensors must have a well-defined flux, only blocks with the same
flux are stored in memory and the rest are assumed to be zero and not stored. In contrast, the
n operator has a flux of zero, and therefore will have two allowed blocks: the blocks labeled
0 and shown in blue in the diagram above.

Unlike the examples above, general QN-conserving ITensors will have many blocks which
can be non-zero, and having block sizes greater than 1×1. Summations, factorizations, and
especially contractions of general block sparse tensors can be much faster than for dense ten-
sors with the same index dimensions, not only because the zero (unallocated) blocks can be
skipped over, but also because operations on non-zero blocks can be performed in parallel.
Both the Julia and C++ implementations of ITensor use multi-core parallelism within their
block sparse tensor contraction algorithm, with speedups of up to 5× observed in practical
physics applications, though the speedups vary depending on the application.

Finally, all other operations available for dense tensors work for QN-conserving ITensors
too, with exactly the same interface. This includes the use of combiner ITensors, factorizations

27

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

such as the SVD and QR, and higher-level algorithms involving matrix product states and
operators. For further reading on how various tensor operations can be implemented while
respecting Abelian group symmetries and related quantum numbers, see Ref. [29].

9 NDTensors Library

Early on in the design of the ITensor library, a conscious decision was made to separate the
high-level ITensor interface, involving “intelligent” Index objects and related features, from
the lower-level parts of the code focusing on efficient contraction routines and sparse tensor
storage layouts. With the port of the ITensor library to Julia, we have taken this design one
step further by making the lower-level part of the library a separate submodule6 known as
NDTensors (N -Dimensional Tensors) which can be used and developed separately from ITen-
sors.jl.7

Some of the goals of developing NDTensors as a separate module include:

• Separating low-level NDTensors algorithms from high-level ITensor logic simplifies and
modularizes the code and prevents bugs.

• Encouraging more community contributions to the ITensor project, since some commu-
nity members may find the NDTensors interface and features more familiar and appeal-
ing, and may not prefer to work with the ITensor layer when making contributions.

• Other software besides ITensor could eventually use NDTensors as a backend, which
would promote community efforts to improve tensor software and share resources. Fully
realizing this possibility would require releasing it as a separate library in the future,
which we plan to do.

9.1 Basic Interface

The NDTensors library is a full-featured, standalone library emphasizing generic, high-perfor-
mance algorithms and support for a variety of sparse tensor types. Unlike the ITensor library,
NDTensors has a more traditional interface where users must keep track of the ordering of
tensor indices. For example, one can construct a dense tensor with dimensions 3, 7,4 as

� �
using ITensors.NDTensors

T = Tensor(3,7,4)� �
which by default is filled with all zeros and then set its elements as

� �
T[1,2,1] = 1.23
T[3,2,3] = -0.456� �

6By a module and a submodule we mean a separate namespace for defining types and methods.
7At the time of writing this paper, the NDTensors library can only be installed by installing the ITensors library

for convenience of developing the libraries in tandem, however we plan to split it off so it can be installed seperately
from ITensors in the near future.

28

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://github.com/ITensor/ITensors.jl/tree/main/NDTensors

SciPost Phys. Codebases 4 (2022)

Tensor objects are 1-indexed, similar to Julia arrays. A tensor with complex entries can be
constructed as

� �
T = Tensor(ComplexF64,5,4,3)� �

Contracting two Tensors is done by specifying temporary labels for tensor indices; matching
labels indicate two indices are contracted while unique labels denote uncontracted indices. In
the following example:

� �
A = randomTensor(3,7,2)
B = randomTensor(4,2,3)
C = contract(A,(-1,1,-2),B,(2,-2,-1))� �

the label -1 of the first index of A matches the -1 label of the third index of B, so those two
indices are contracted with each other. Likewise the third index of A and second of B share
the label -2 and are contracted. The use of negative integers to label contracted indices is not
required, but is just a convention to make the code more readable.

9.2 Block Sparse Tensors

NDTensors provides sparse tensor types as well. An important example is block sparsity. One
way to construct a block sparse tensor is as follows:

� �
blockdims = ([2,2],[2,3])
nzblocks = [(1,2),(2,1)]
A = randomBlockSparseTensor(nzblocks,blockdims)� �

The code above specifies that the tensor A has two indices of dimension 4 (= 2+2) and
5 (= 2+3) respectively, with the first index having two subspaces of dimensions 2 and 2 and
the second index having two subspaces of dimensions 2 and 3. Thus A has four blocks overall,
because its two indices each have two subspaces. The array nzblocks lists which blocks of
A can be non-zero and will be actually allocated in memory, with each tuple giving a subspace
number for each index. We can visualize a typical result for the tensor A as follows:

2

1

A = [3
4

1

2 3 4 5

-0.1 0.8 2.7

1.2 0.9 -0.7

0

0

0

0

-1.0-0.2 00 0

00 00.70.3
[

where the zeros shown in light gray are only assumed and not actually allocated in memory.

29

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

9.3 Generic Index Types

A crucial feature of NDTensor is that tensors are allowed to represent their indices not just
as a collection of integers or block dimensions (specifying each the dimension of each index),
but as any object providing a certain index interface. This generic design allows seamless
interoperation between the NDTensors library and the ITensor library, as well as making it
easy to provide features such as tensor slicing.

For dense and diag storage, essentially all that is required of the container inds represent-
ing the indices of a Tensor is that one can call the function dim on its nth element. Examples
of valid inds objects are collections of integers, collections of ITensor Index objects (pro-
vided an overload of the method dim is provided), Dims objects provided by the Julia Base
library for indexing built-in Julia tensors, and BlockDims objects defined by NDTensors for
indexing block sparse tensors. By default, the strides are determined by the dimensions of
the indices, but can be overloaded if needed such as for tensor slicing applications. Unless
an explicit set of indices is provided, Tensor objects default to using the Dims type (a tu-
ple of integers) to represent its indices and BlockSparseTensor objects default to using
BlockDims. For block sparse storage types, an overload of the blockdim function is re-
quired for any block index, which is used to query the size of a specified block in a specified
dimension.

9.4 Tensor Contraction Backend

Tensor contractions are often the computational bottleneck of tensor network algorithms. Thus
implementing it as efficiently as possible is critical for performance.

For contracting two dense tensors, NDTensors currently uses a strategy of permuting and
reshaping the tensors into matrices, so that the contraction maps to a matrix multiplication.8

The motivation behind this strategy is that BLAS libraries such as Intel MKL offer such high
performance that the extra overhead of permuting the tensors is worthwhile. It is also im-
portant to note that the tensor permutation has a sub-leading scaling relative to the matrix
multiplication, so that in the limit of large tensors the computation is dominated by the BLAS
dgemm or zgemm routines. Though this strategy is a common one for tensor libraries, its
implementation in NDTensors is done carefully to ensure that every case where permutation
can be avoided is taken advantage of. Also if two equivalent strategies exist to permute the
contracted tensors to matrices where one of the permutations is trivial, the code chooses to
permute the smaller of the two tensors.

The case of block sparse tensor contraction reduces to doing a set of smaller, dense tensor
contractions on various pairs of blocks from the tensors being contracted. 9. Thus it is built
on top of the dense contraction layer of NDTensors, but also offers an excellent opportunity
to exploit parallelism, since contraction of the blocks can be done independently, although
one does have to handle cases where multiple block pairs contribute to the same block of the
resulting tensor. By exploiting multi-core parallelism for the same algorithm within the C++
implementation of ITensor we have observed speedups of 2− 3× for DMRG and related MPS
calculations (depending on the sparsity and block sizes involved, which varies strongly based

8This is sometimes referred to as the Transpose-Transpose-GEMM-Transpose (TTGT) [32] approach
9Currently the default in ITensor is that block sparse tensors are contracted directly without first reshaping

into a matrix. An alternative is to first permute and reshape the block sparse tensors into block sparse matrices.
With that strategy, degenerate quantum number blocks can be combined, leading to a contraction involving a
smaller number of larger blocks, which is advantageous for BLAS [33] This alternative contraction strategy can
be enabled with the experimental ITensors.enable_combine_contract() function which enables a global
flag. Currently we find that neither of the two strategies (contracting versus combining then contracting) is better
in every situations, and it depends on details like the quantum numbers, sparsity and order of the tensors being
contracted.

30

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

on the symmetries used), and up to 5× for tree tensor network calculations. More recently,
we have implemented the same kind of multi-core parallelism in the block sparse contraction
algorithm in NDTensors using Julia’s native multithreading and have seen similar speedups to
those we see in the C++ implementation that uses OpenMP.

Looking ahead, a key improvement to NDTensors will be to offer support for more advanced
tensor contraction algorithms that have been recently developed. These algorithms build on
sophisticated research into BLAS software, where it was realized that modern BLAS imple-
mentations could apply to the case of tensors of arbitrary order, and not just matrices. The
two implementations of this type we are aware of are TBLIS [34] and TCL/GETT [32]. These
libraries significantly reduce, if not totally eliminate, the permutation overhead inherent to the
permute-to-matrix strategy discussed above, offering superior performance to the default con-
traction algorithm of C++ ITensor and NDTensors [35]. We currently have an experimental
feature in the Julia version of ITensors.jl that provides TBLIS as an optional contraction back-
end, and have seen speedups over our current contraction code, particularly when contracting
larger tensors. We plan to do benchmarks using this TBLIS backend for more sophisticated
algorithms like DMRG in the near future.

10 Other Features of ITensor

The ITensor library has many other features which are important for productive programming,
developing new algorithms or treating new problem domains, but whose precise details are
somewhat beyond this high-level introduction. In this section we briefly highlight these fea-
tures.

10.1 Writing and Reading ITensor Objects with the HDF5 Format

One important feature is that nearly every type involved in a tensor network, from Index
objects to IndexSet’s to ITensors, MPS, and MPOs can be written to and read from HDF5
files. The HDF5 format is a widely used and standardized format for writing large datasets
and heterogenous data. It offers portability across operating systems with different binary
formats; metadata and a file-system structure for organizing and retrieving data; and efficient
use of memory including compression of numerical data. ITensor objects written to HDF5 files
can be both written to and read from both the C++ and Julia versions of ITensor, allowing
users with large C++ codes to use the new Julia version for tasks such as performing analysis
of simulation results.

10.2 Defining Custom Local Hilbert Spaces

An important feature for physics applications is the ability to define custom “degrees of free-
dom” or local Hilbert spaces and associated local operators to allow users to implement their
own systems of interest within high-level tools like OpSum. ITensor includes built-in defini-
tions for only a handful of common cases such as S = 1/2 and S = 1 spin degrees of freedom,
spinless and spinful fermions, and the Hilbert space of the t−J model. But physics applica-
tions of ITensor often call for other definitions, such as of local Hilbert spaces for bosons, higher
spin moments such as S = 3/2, and more exotic degrees of freedom such as ZN parafermions.
Users may also want to extend built-in Hilbert space types by defining additional local oper-
ators. The C++ version of ITensor already lets users define custom local Hilbert spaces and
operators, but due to limitations of the C++ language the customization process has remained
cumbersome and users have often had trouble mastering the necessary tasks of defining C++
types, constructors, and methods.

31

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

� �
using ITensors
import ITensors: op #allows overloading of ITensors.op

op(::OpName"Sz",::SiteType"S=3/2") = [
+3/2 0 0 0

0 +1/2 0 0
0 0 -1/2 0
0 0 0 -3/2

]

op(::OpName"S+",::SiteType"S=3/2") = [
0 sqrt(3) 0 0
0 0 2 0
0 0 0 sqrt(3)
0 0 0 0

]

op(::OpName"S-",::SiteType"S=3/2") = [
0 0 0 0

sqrt(3) 0 0 0
0 2 0 0
0 0 sqrt(3) 0

]� �
Listing 1: Overloads of the ITensors.op method which define custom mappings of
operator names to ITensors for Index objects having the tag "S=3/2".

Fortunately, in the Julia version of ITensor we have been able to streamline the process of
defining and using custom Hilbert spaces. The key innovation is that certain Index tags can
be designated as special by defining associated “site types”. For example, say a user wants
any Index carrying the tag "S=3/2" to be interpreted as a S = 3/2 spin (the Index should
also have the appropriate dimension of 4). Practically this means we want systems such as
OpSum to know how to make the appropriate local operators such as "Sz", "S+", and "S-"
which act on the Hilbert space of this Index. To tell ITensor how these operators should be
defined, a user can create overloads of the ITensors.opmethod which accept a special type:
SiteType"S=3/2". Examples of such overloads are shown in Listing 1 and can be defined
outside the ITensor library in user code. The notation SiteType"S=3/2" is a convenient
Julia macro syntax which is used to create a unique type parameterized by a string. Creating
types out of values allows one to effectively overload functions over different values, even
though technically functions can only be overloaded over different types.

After defining these functions, the following code will return "Sz", "S+", and "S-" op-
erators as ITensors given an Index s which has the "S=3/2" tag� �
s = Index(4,"S=3/2") # make an Index with the tag "S=3/2"
Sz = op("Sz",s)
Sp = op("S+",s)
Sm = op("S-",s)� �

32

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

The ITensor library reads the tags of the Index passed as the second argument to op, then
checks if any of these tags have an associated SiteType overload of ITensors.op. If
exactly one tag and operator name pair does have an ITensors.op method defined for it,
such as the ::OpName"Sz", ::SiteType"S=3/2" overload in Listing 1 above, then that
overload is called to produce the operator corresponding to the requested name as an ITensor.
Users can also overload other functions which both construct and return the operator ITensor,
giving more control over the whole process.

What makes this system powerful is that the same op method and its overloads are called
by the OpSum system and various MPS and MPO constructors within ITensor library code.
So after defining the SiteType"S=3/2" overloads of the op functions above, the following
code “just works” and correctly makes an MPO of the Heisenberg Hamiltonian for an N -site
system of S = 3/2 spins:

� �
sites = [Index(4,"S=3/2,n=$n") for n=1:N]

os = OpSum()
for j=1:N-1

os += "Sz",j,"Sz",j+1
os += 1/2,"S+",j,"S-",j+1
os += 1/2,"S-",j,"S+",j+1

end

H = MPO(os,sites)� �
Various special tags with associated SiteType operator definitions can even be mixed to-
gether in Index arrays like the sites array above, permitting easy setup of calculations for
mixed systems such as spin chains of alternating S = 1/2 and S = 1 sites or models of alter-
nating spin and boson sites.

10.3 DMRG Observer System

The DMRG code within ITensor is the most heavily used high-level feature of the library due
to the continued popularity and staying power of the DMRG algorithm. Although ITensor’s
implementation of DMRG prints some useful details about the results of each sweep, such as
the estimated energy (dominant eigenvalue) and typical bond dimension of the MPS being
optimized, there are many situations where a user would like to customize the code further,
such as to measure local observables throughout each sweep.

To make this customization process as easy as possible, the ITensor DMRG code accepts
an optional observer keyword argument which allows users to pass any object which is a
sub-type of AbstractObserver. This type should also have an overload of at least one of
the methods measure! and checkdone! defined for it too. These methods can be defined
in any way the user sees fit and have minimal requirements. Both are called by the ITensor
DMRG code at each step of the DMRG algorithm.

The measure! method gets passed a variety of properties describing the current state of
the DMRG calculation, such as the number of the current sweep and location of the site(s) of
the MPS whose local tensors are currently being optimized, and even the entire MPS itself. A
customized measure! function can use this information to produce a detailed snapshot of
how the optimization is proceeding. One such use of the observer system in the past was to
make animated movies of a DMRG calculation to be used in lectures.

33

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

The checkdone! method can be defined if the user wants to set some criterion for the
DMRG calculation to stop before all of the requested sweeps have been performed. Exam-
ple criteria could include some measure of convergence, such as the energy variance, or an
external signal from the user.

11 Applications of ITensor

ITensor has been cited in approximately 450 research articles from 2009 to 2021.10 Below we
highlight papers which show the diverse applications of ITensor. We expect to see ever wider
applications in the future as tensor network algorithms become more powerful for two- and
three-dimensional systems, ab-initio Hamiltonians, and long-time dynamics [36, 37], and as
more applications of tensor networks are developed in applied mathematics, computer science,
and machine learning [38–40].

11.1 Equilibrium Quantum Systems

The most common application area of tensor networks and the ITensor software to date has
been equilibrium quantum systems. A common starting point for understanding equilibrium
systems is through their ground state, and the DMRG algorithm which launched the field of
tensor networks is primarily a ground state finding method. More recently, tensor network
methods have been extended to study finite-temperature systems. Another important area
of development in the field has been extending DMRG and MPS methods to handle ab initio
systems such as in quantum chemistry, where details of continuum, atomic physics must be
treated.

An excellent example of a ground-state study using ITensor is that of Keselman and
Berg [41], who used ITensor’s DMRG algorithm to compute properties of a one-dimensional
model of superconducting electrons. A detailed study of properties of finite-size systems, includ-
ing of quantities at the edge of open systems, supports the existence of a topological state of
matter even in the absence of a gap in the excitation spectrum.

The state-of-the-art efficiency of ITensor’s DMRG codes makes it a powerful tool for study-
ing two-dimensional systems as well. DMRG remains one of the leading methods for studying
two-dimensional quantum systems even though it scales exponentially in the transverse system
size. In Refs. [42, 43], Kallin, Gustainis, Johal, Stoudenmire, Melko, et al. used a combina-
tion of exact diagonalization, numerical linked cluster methods, and ITensor DMRG to obtain
entanglement entropies associated with sharp corners in the subsystem geometry for various
quantum systems at their critical points. Based on the numerical results, a conjecture was put
forward for a universal scaling of this corner entanglement which was afterward supported by
field theoretic methods [44].

An exemplary study using ITensor DMRG for a two-dimensional system of strongly-correla-
ted electrons is the work by Venderley and Kim [45], who studied the hole-doped Hubbard
model on the triangular lattice, finding a transition from p-wave to d-wave superconductivity
as the strength of on-site interactions increase.

ITensor has also been used for studying continuum electronic systems such as quantum
chemistry calculations of hydrogen chains [20,46,47]; for finite-temperature studies, primarily
in the context of the minimally entangled typical thermal state (METTS) algorithm [48–51];
and for calculations involving PEPS two-dimensional tensor networks [52,53].

10List of papers citing ITensor: https://itensor.org/papers

34

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://itensor.org/papers

SciPost Phys. Codebases 4 (2022)

11.2 Dynamics of Quantum Systems

Dynamical behavior of quantum systems or quantum systems out-of-equilibrium is currently
an active research area, where the flexibility and customizability offered by ITensor has been an
excellent fit. Such customizability is important because there are many algorithms available
for time-evolving quantum states [54], most of which are not totally black-box and require
some care to use well. Frontier research problems also involve a variety of settings, such as
closed versus open systems, or evolution via Hamiltonians versus circuits, as well as a wide
range of measurements to be made of the state.

One paper typifying the use of ITensor for dynamics research, blending numerical results
with theoretical predictions, is that of Alba and Calabrese Ref. [55], who showed that for
integrable systems, such as the XXZ spin chain, one can accurately predict the entanglement
entropy at both short and long times.

Nahum, Ruhman, Vijay, and Haah used ITensor in Ref. [56] to simulate dynamics of quan-
tum states evolved by random unitary circuits, supporting their prediction that the growth of
entanglement entropy is governed by the KPZ universality class related to the classical statis-
tical physics of surface growth.

Schreiber et al. used ITensor to simulate the dynamics of cold atom experiments in Ref. [57],
obtaining good agreement with experimental observations of the difference between the num-
ber of atoms in even versus odd minima of the external potential.

A rather different application of dynamical tensor network methods are as “solver” sub-
routines for the dynamical mean field theory (DMFT) algorithm, which can treat infinite-size
systems in two and three dimensions. A novel DMFT solver based on fork tensor network states
was proposed and demonstrated using ITensor by Bauernfeind, Zingl, et al. in Ref. [58], al-
lowing DMFT methods to achieve greater resolution for electron spectral functions and other
benefits.

11.3 Other Application Areas

Historically tensor network methods have mainly been developed and applied within con-
densed matter physics. But the recent decade has seen a major broadening in applications of
tensor networks inside and outside of physics. These newer applications range from study-
ing holographic dualities between physical theories [59, 60] to computing high-dimensional
integrals in applied mathematics [38,61].

An area where tensor network methods are becoming increasingly important is quantum
computing, where they can be used to perform efficient classical simulations of quantum de-
vices. Tensor networks offer important advantages such as linear scaling with the number of
qubits. The library PastaQ (available at github.com/GTorlai/PastaQ.jl) uses ITensor as a back-
end to offer tensor network methods not only for quantum simulation, but also optimization
of quantum circuits, tomography of quantum systems and quantum processes, and more.

A rather different application area of tensor networks is applied mathematics and machine
learning. Here tensor decomposition methods have found many different uses, from com-
pressing weight layers of neural networks [39], to recovering missing or corrupted data using
partial information [62]. Machine learning is an area where ITensor has potential to be used
much more in the future, and ITensor has already been used to investigate new models and
algorithms for machine learning, including supervised [63, 64] and unsupervised [65] learn-
ing using models parameterized by tensor networks, and to investigate generalization of these
models by studying synthetic data [66].

35

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://www.pastaq.org
https://github.com/GTorlai/PastaQ.jl

SciPost Phys. Codebases 4 (2022)

12 Benchmarks of ITensor Performance

To ensure that ITensor offers state-of-the-art performance, we next present benchmark results
of ITensor implementations of typical tensor network algorithms and operations. One goal is
comparing the performance of the C++ versus Julia implementations of ITensor, as Julia is
a relatively new language whose potential for high performance computing has not yet been
fully verified in every domain. Other goals of the benchmarks include testing the scaling of
algorithm implementations of ITensor and showing the relative benefits of multithreading.
Finally, we discuss benchmarks of ITensors versus other tensor network libraries, which we
make available as an online resource, since all of the libraries involved are frequently updated
and continually optimized.

All benchmarks shown here were carried out on a single workstation with four Intel Xeon
Gold 6128 (Skylake) 3.4 GHz CPUs with six cores each. Times shown are “wall” or actual
time, not CPU time. The BLAS and LAPACK distribution used for both the C++ and Julia cal-
culations was Intel MKL. For the Julia ITensor benchmarks we used version 0.2.0 of ITensors.jl
running on Julia version 1.6.1. The benchmarks presented below are publicly available at:
https://github.com/ITensor/ITensorBenchmarks.jl.

Before we present the benchmarks, here are the high-level conclusions we draw from them:

• At least for the domain of tensor network algorithms, Julia is very competitive with C++
as a high-performance programming language.

• Some ITensor algorithms, especially those involving block sparse tensors, are currently
fastest in the Julia implementation due to recent optimization efforts made there. Though
most of these optimizations can be carried out in C++ too, the productivity of the Julia
language and its superior libraries and tooling makes optimizations easier to identify
and implement.

We again emphasize that the Julia version of ITensor is written entirely in the Julia lan-
guage, without needing to perform any low-level operations in systems languages such as C++
as is often necessary in languages like Python to achieve high performance. Of course certain
external libraries we use, such as BLAS and LAPACK, are written in other languages such as
Fortran, but such libraries are standard and widely used by many tensor libraries including
both the C++ and Julia implementations of ITensor.

12.1 Comparison of Julia and C++ Implementations of ITensor

First we present a set of benchmarks comparing the performance of the C++ and Julia imple-
mentations of ITensor on seminal tensor network algorithms.

As a first comparison between the C++ and Julia implementations of ITensor, a simple but
powerful tensor network algorithm is the tensor renormalization group (TRG) [67,68], which
computes properties of classical statistical mechanics models at finite temperature through
a decimation procedure. Each step of TRG essentially consists of contracting four tensors
together into a single tensor, then performing a truncated factorization of that tensor. Below
we present benchmarks of the TRG algorithm in the C++ and Julia version of ITensor, using
dense tensors only, and showing calculations with 1, 4, and 8 threads used by the BLAS library
within the tensor contraction steps and for different maximum bond dimensions used during
the truncation steps:

36

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://github.com/ITensor/ITensorBenchmarks.jl

SciPost Phys. Codebases 4 (2022)

From the results, we can see that the C++ and Julia implementations have very similar
performance, with the C++ version performing slightly better at bond dimension 40 and the
Julia version performing better at bond dimension 50. The BLAS and LAPACK threading is
clearly effective for speeding up these contraction-dominated calculations.

Another algorithm used to study classical statistical models, as well as to contract infinite
PEPS tensor networks, is the corner transfer matrix renormalization group (CTMRG) [69–71].
The CTMRG algorithm decimates a contracted network of tensors by absorbing bulk tensors
into boundary tensors and computing new boundary tensors at each step. Below we show the
benchmark results for CTMRG using dense tensors:

Here the Julia implementation is consistently faster for a wide range of larger bond di-
mensions of the boundary tensors. Allowing the BLAS to use four threads gives a speedup,
but using eight threads gives little additional speedup. The relative performance as a function
of BLAS threads is similar between the C++ and Julia codes, showing how the effectiveness
of BLAS multithreading is dependent on the system studied and algorithm used. Speedups
of the Julia versus the C++ calculations are likely due to improved dense tensor permutation
libraries, specifically Strided.jl, used in the Julia version.

Now we turn to benchmarks of the density matrix renormalization group (DMRG) algo-
rithm. DMRG calculations are the most common application of the ITensor library. We will
also use DMRG as a setting to study the effect of conserving quantum numbers, resulting in
block sparse tensors.

37

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://github.com/Jutho/Strided.jl

SciPost Phys. Codebases 4 (2022)

First we benchmark the simplest application of DMRG: a one-dimensional spin chain, with
no quantum number conservation, that is, dense tensors:

The relatively better performance of the Julia version over the C++ implementation is
similar to that for CTMRG, which is sensible as the details of both algorithms are similar.

Next we consider DMRG for the same system, but conservation of the total Sz spin quantum
numbers and taking advantage of the resulting tensor block sparsity:

The results above show that the handling of block sparse tensors is currently much more
efficient in the Julia version of ITensor versus the C++ version. This is the result of an extensive
recent optimization effort, using techniques such as storing the locations of the non-zero blocks
in a dictionary data structure instead of an array and optimizing contractions of small blocks.
An interesting contrast of block sparse calculations versus dense calculations is that BLAS
multithreading is much less effective in the block sparse case, which is likely because many
of the blocks are much smaller than the overall tensor dimension, leading to smaller matrices
being multiplied at the BLAS level.

Finally we benchmark the DMRG algorithm for a quasi-two-dimensional system treated by
wrapping an MPS on a cylinder. Here we use the example of the Hubbard model with U/t = 8
and conservation of both the total Sz and particle number symmetries:

38

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

While the Julia version also outperforms the C++ version for this system, the single-
threaded case is similar for both code versions, perhaps due to certain larger non-zero tensor
blocks.

A technique to sparsify the tensors more in the context of two-dimensional DMRG calcu-
lations is to also conserve the momentum quantum number ky in the y-direction, or periodic
direction around the cylinder [72]. By using that technique in the following benchmarks of the
same two-dimensional Hubbard system, we can see that the overall time needed is reduced
and the better-optimized block sparse operations in the Julia version give an even larger ad-
vantage:

Finally, the block-sparse structure of quantum-number conserving tensors gives an oppor-
tunity for performing contractions of the non-zero blocks in parallel. We offer multithreading
over block-sparse tensor contractions in both the C++ and Julia versions of ITensor. Turning
on this feature and using different numbers of threads for 2D DMRG calculations gives the
following timings:

39

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

where we see a speedup of between 1.5x to 2x compared to case using no block-sparse thread-
ing. Though the single-threaded Julia implementation is slightly more efficient, the multi-
threading is more effective in the C++ implementation, possibly because the native Julia mul-
tithreading has a higher overhead than the OpenMP multithreading we use in C++. We plan
to investigate the discrepancy in more detail.

To conclude this section, we note that the C++ implementation of ITensor, including both
its tensor contraction routines and implementations of algorithm such as DMRG are already
highly optimized, nearing state-of-the-art performance. So the even better performance of the
Julia version of ITensor is a non-trivial outcome. The Julia version was originally modeled on
the C++ implementation, but recent optimization efforts supported by Julia’s more productive
programming environment currently put it well ahead.

12.2 Benchmarks of ITensor Versus Other Software

It is important to determine how the performance of ITensor compares to other leading soft-
ware. For this purpose, we have performed benchmarks comparing the Julia version of ITensor
to the TeNPy high-performance tensor network library, which is implemented in a combination
of Python and C++ with a Python interface [73].

However, because both ITensor and TeNPy are continually being optimized and developed,
and due to subtleties of comparing different implementations of algorithms such as DMRG, we
have opted not to present a definitive set of benchmarks here, but rather to host these on an
external site where the results and underlying codes can be periodically updated. The latest
TeNPy and ITensor benchmarks can be viewed at the following link: ITensorBenchmarks TeNPy
and ITensor Comparisons.

To summarize the results of this ongoing benchmark effort, we found first of all a number of
implementation differences that can inform the design and default choices of each library. For
example, TeNPy by default uses a sparse representation of the Hamiltonian which we found
typically speeds up DMRG significantly, so we have now implemented a similar capability
in ITensor through a function called splitblocks, though whether using leads to better
performance depends on the system, so we have not currently made it the default. Another
difference is that TeNPy’s DMRG implementation (as of version 0.8.4) performs more Lanczos
steps within each step of DMRG compared to ITensor, which generally results in longer running
times for a fixed number of DMRG sweeps. But this number is only a default setting and can
be adjusted by the user. Once the algorithmic details and external dependencies (such as the
BLAS library used) were made as similar as possible, we found both libraries gave comparable
performance.

40

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://tenpy.readthedocs.io/en/latest/
https://itensor.github.io/ITensorBenchmarks.jl/dev/tenpy_itensor/index.html
https://itensor.github.io/ITensorBenchmarks.jl/dev/tenpy_itensor/index.html

SciPost Phys. Codebases 4 (2022)

In the future, we plan to not only expand the set of algorithms used in the benchmark,
but also to set up an automatic benchmarking system, and to include other software in the
comparisons.

13 Future Directions

Although the ITensor library already offers high performance and powerful features for imple-
menting any tensor network algorithm, many improvements and optimizations are planned or
already under way. Here we discuss the main features under development, though some may
take a different form when implemented.

A high-priority feature is support for automatic differentiation (AD). This technique has
been popularized for applications in machine learning and neural networks, but has recently
been demonstrated to work well for tensor networks too. For example, AD can be used for
state-of-the-art infinite PEPS calculations and for calculating critical properties of classical sys-
tems [74]. In addition, it has proven useful for optimizing tensor networks with unitary or
isometric constraints like quantum circuits, MERA, and gauged MPS [75–78] as well as for
computing excitations and structure factors of MPS and PEPS [79,80]. The unique index sys-
tem and generic high level interface makes ITensor ideal for defining differentiation through a
variety of ITensor operations. Julia’s ChainRules.jl [81,82] package can be used to define basic
reverse and forward mode differentiation rules independent of the particular AD framework.
In conjunction with source-to-source AD frameworks available in Julia such as Zygote.jl [83]
which has high coverage for differentiating through most native Julia language features, a
basic ITensor AD system involving differentiating through a surprising number of ITensor op-
erations can be written in only a few lines of code. Our use of ChainRules will allow us to
target next generation AD systems being developed in Julia such as Diffractor.jl. Using this
system, we have prototypes for using AD to optimize a variety of tensor network applications,
such as gradient optimization of MPS, variational circuit optimization, and PEPS. We plan to
extend our set of rules and coverage of ITensor operations (for example better support for dif-
ferentiating tensor factorizations and MPS/MPO operations), incorporate high level support
for using AD to optimize ITensor networks with unitary constraints, etc. In addition, we are
investigating adding features for computing higher order derivatives of tensor networks using
backends like AutoHOOT [84].

Another high-priority feature is automatic support for fermionic Hilbert spaces. Systems
of fermions are foundational for physics applications of tensor networks, and are the most
common type of system studied in condensed matter physics. Currently, the only automatic
support for fermions in ITensor is within the OpSum/AutoMPO system, which relies on lookup
tables of operator names designated as anti-commuting. That approach works well for many
matrix product state calculations, but leads to a confusing experience for users when some
parts of the library handles fermions automatically yet other parts of the calculation require
manually introducing Jordan-Wigner string operators, such as when computing certain corre-
lation functions or when using higher-dimensional networks such as PEPS. We are therefore
experimenting with a system that introduces fermionic properties at the level of tensor in-
dices, where index permutations result in a minus sign if odd-parity QN subspaces undergo
an odd-parity permutation. Our ambitious goal is for calculations involving fermions to work
with exactly the same code as for bosonic degrees of freedom. Even if some manual steps are
occasionally required, this new fermion system could still be very useful.

Following the completion of the fermion system, support for other types of symmetries
and non-trivial vector spaces is an important future direction. In particular, support of non-
Abelian symmetries such as SU(2)will be a very powerful feature for variants of the Heisenberg

41

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://github.com/JuliaDiff/Diffractor.jl

SciPost Phys. Codebases 4 (2022)

and Hubbard models and for electronic structure Hamiltonians such as in quantum chemistry
applications.

More sophisticated optimizations of tensor contraction sequences is another future direc-
tion for ITensor. We currently have a backend for optimizing the contraction sequence of
ITensors, for example to determine that the optimal sequence of a contraction like A*B*C*D
is (A*(B*C))*D, based on the algorithm introduced in Ref. [85]. This can be enabled for
every contraction with a global flag or for a specific contraction with a keyword argument, and
additionally a custom sequence can be provided of the form [[1,[2,3]],4].

We are also developing tools for visualizing tensor networks which are enabled by an-
notating a tensor contraction with a macro, for example @visualize A*B*C*D. We plan
to provide a variety of backends, such as a text output and an interactive output based on
Makie.jl [86]. This will make it easier to visualize a contraction sequence and debug code.
We would like to provide alternative contraction sequence optimization backends like CoTen-
Gra [87]which could be used to find contraction sequences for larger tensor networks than our
current implementation. In addition, we are investigating incorporating general approximate
contraction algorithms like those introduces in Refs. [88,89].

We soon plan to offer first-class support for infinite MPS and MPO algorithms, with pre-
liminary work nearly completed in the currently separate package ITensorInfiniteMPS.jl. This
will include the latest developments in obtaining dominant and sub-dominant eigenvalues and
MPS eigenvectors of infinite MPOs, using algorithms such VUMPS [90] and MPS tangent-space
methods [27], as well as obtaining canonical forms of infinite MPS and MPOs and applying
infinite MPOs to infinite MPS [91]. This will all be offered with the same level of convenience
as the currently available finite MPS and MPO methods, including an infinite version of Op-
Sum/AutoMPO.

We plan to continue developing GPU support throughout the library. Currently, only dense
tensor operations can be performed on GPU, so an initial goal will be to support block sparse
tensor operations on GPU. More broadly, we plan to make GPU support a first-class feature,
with the eventual goal that most code written for ITensors on CPU can work directly for ITen-
sors on GPU with high performance and minimal user effort, including code that uses auto-
matic differentiation.

Last but not least, we hope to offer more high-level features for PEPS (two-dimensional
tensor network) calculations. Algorithms and methods for optimizing PEPS have reached a
point of maturity such that there are now a handful of essentially standard approaches, such
as variational iPEPS [74, 92, 93] and fixed-point methods for computing PEPS environment
tensors [71]. Many of these algorithms will be provided with ITensor in the future, and in
particular leverage tools we are developing for a general tensor network interface, automatic
differentiation, and contraction sequence optimization.

Acknowledgements

We thank Johannes Hauschild for many discussions about the TeNPy software and for taking
significant time to work with us to provide and develop benchmark codes. We thank Nils
Wentzell for providing expertise and help regarding a custom Python environment on the
Flatiron Institute computing cluster, as well as help designing the multithreading strategy for
threaded block sparse contractions.

Key contributors to ITensor include: Katharine Hyatt for developing a GPU-accelerated
backend for the ITensors.jl package; 11 Anna Keselman for contributing a major improvement
to the OpSum/AutoMPO system which handles long-range interactions and multi-site opera-

11ITensorGPU: https://github.com/ITensor/ITensors.jl/tree/main/ITensorGPU

42

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://github.com/jcmgray/cotengra
https://github.com/jcmgray/cotengra
https://github.com/ITensor/ITensorInfiniteMPS.jl
https://github.com/ITensor/ITensors.jl/tree/main/ITensorGPU

SciPost Phys. Codebases 4 (2022)

tors; Thomas E. Baker for expanding and improving the ITensor documentation, in particular
the tutorials. Thanks to Jing Chen, Ying-Jer Kao, John Terilla, and Tyler Bryson for discus-
sions about automatically handling fermion signs. We also thank Jing-Guo Liu for helping us
to generalize the tensor contraction backend of ITensors.jl to handle more arbitrary number
types.

Significant contributions and bug fixes to the C++ version of ITensor were made by Anna
Keselman, Mingru Yang, Jack Kemp, Kyungmin Lee, Tatsuto Yamamoto, Juraj Hasik, Benedikt
Bruognolo, Jose Lado, Hoi Hui, Lars-Hendrik Frahm, Lucas Vieira, Markus Wallerberger, Miles
Chen, Yevgeny Bar-Lev, Jessica Alfonsi, Chuang Xi, and Andrey Antipov. We would also like to
thank Nils Wentzell, Alex Wietek, and Daniel Bauernfeind for their help designing and testing
block sparse multi-threading with OpenMP and development of Krylov solvers for TDVP.

Significant features and bug fixes to the initial release of ITensors.jl (the Julia version of
ITensor) were contributed by Katharine Hyatt, Ori Alberton, Christopher White, Jan Schneider,
Alvaro Rubio-Garcia, Yiqing Zhou, Michael Abbott, Nicolau Werneck, Michael Sven Ferguson,
Nick Robinson, and Amartya Bose. We also thank Giacomo Torlai, Jan Reimers, Loïc Herviou,
Benedikt Kloss, Linjian Ma, Angkun Wu, Hersh Singh, and Dominic Rose for significant recent
contributions.

Funding information SRW acknowledges the support of the U.S. Department of Energy
under grant DE-SC0008696. ITensor was initiated through the generous support of the DOE
under award DE-SC0008696 and the NSF under award DMR-1812558, both of which continue
to support the efforts of Steven R. White and his group. We are grateful for ongoing support
through the Flatiron Institute, a division of the Simons Foundation.

A Full Code Examples

In addition to the code examples below, we include an extensive and growing set of examples
as part of our source code distribution at the following link: ITensor Code Examples.

A.1 Contraction Example

To show a fully working example of contracting two ITensors with a complicated index struc-
ture, consider the following code:12

� �
using ITensors

function main()
a = Index(3,"a")
b = Index(2,"b")
c = Index(4,"c")
d = Index(5,"d")
i = Index(2,"i")
j = Index(6,"j")

A = randomITensor(a,b,d,c)
B = randomITensor(i,d,j)

12Collections of indices can be made with a more compact syntax a,b,c,d,i,j = Index.((3,2,4,5,2,6),
("a","b","c","d","i","j")), which makes use of Julia’s built in broadcast (.) syntax.

43

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://github.com/ITensor/ITensors.jl/tree/main/examples

SciPost Phys. Codebases 4 (2022)

C = A * B

@show hasinds(C,a,b,c,i,j)

return C
end

main()� �
The contraction computed by this code can be expressed by the following diagram:

ib

c

=

A

a

B*

d

j

ib

c j

a

C

Note that the Index tags such as "a","b","c", etc. are not required for this code to function
properly, but in this context are just for making the indices easier to identify when printed.

The line of code

� �
@show hasinds(C,a,b,c,i,j)� �

shows the output of the hasinds function which checks that the ITensor C has all of the
indices a,b,c,i,j. The code above will output

� �
hasinds(C,a,b,c,i,j) = true� �

A.2 DMRG Example

The following code example shows the use of higher-level features of the ITensor Library to
compute the ground-state wavefunction of the S = 1/2 Heisenberg quantum spin chain model
using the density matrix renormalization group (DMRG) algorithm:

� �
using ITensors

function main(N)
sites = siteinds("S=1/2",N)

os = OpSum()
for j=1:N-1

os += "Sz",j,"Sz",j+1

44

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

os += 1/2,"S+",j,"S-",j+1
os += 1/2,"S-",j,"S+",j+1

end
H = MPO(os,sites)

psi0 = randomMPS(sites; linkdims=10)

sweeps = Sweeps(5)
setmaxdim!(sweeps, 10,20,100,100,200)
setcutoff!(sweeps, 1E-11)

energy, psi = dmrg(H,psi0, sweeps)
println("G.S. energy = $energy")
return energy, psi

end

energy, psi = main(100)� �
A typical output of this code is:

After sweep 1 energy=-44.062476890249 maxlinkdim=10 time=4.819
After sweep 2 energy=-44.123591549762 maxlinkdim=20 time=0.304
After sweep 3 energy=-44.127657130701 maxlinkdim=79 time=1.631
After sweep 4 energy=-44.127738543656 maxlinkdim=100 time=4.357
After sweep 5 energy=-44.127739882502 maxlinkdim=139 time=5.997
G.S. energy = -44.127739882501665

where note that the longer time in the first sweep includes compilation time. Brief explanations
of the major steps of the above code are:

• Construct an array of N = 100 Index objects corresponding to S = 1/2 spins (which
are dimension-2 Index objects labeled by the tag "S=1/2").

• Input the terms of the one-dimensional Heisenberg Hamiltonian into an OpSum object.

• Construct an MPO H out of the OpSum.

• Construct a random MPS psi0 of bond dimension 10.

• Create a Sweeps struct which indicates that five sweeps of the DMRG algorithm are to
be performed, with various maximum bond dimensions allowed for each sweep and a
truncation error cutoff of 10−11 throughout.

• Run the DMRG algorithm, which returns the ground-state energy and ground-state wave-
function MPS.

B ITensor Implementation and Interface in the C++ Language

In this appendix, we give code examples for the C++ version of ITensor to show the similarities
to and differences from the Julia version.

45

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

B.1 C++ Contraction Example

Here we show the same example of contracting two ITensors with a complicated index struc-
ture as in the previous Appendix section A.1. Consider the following code:

� �
#include "itensor/all.h"
#include "itensor/util/print_macro.h"
using namespace itensor;

int main()
{
auto a = Index(3,"a");
auto b = Index(2,"b");
auto c = Index(4,"c");
auto d = Index(5,"d");
auto i = Index(2,"i");
auto j = Index(6,"j");

auto A = randomITensor(a,b,c,d);
auto B = randomITensor(i,d,j);

auto C = A * B;

Print(hasInds(C,a,b,c,i,j));
}� �

By comparing to the Julia language example A.1, one can see that the C++ code above
is very similar with the main differences being the use of include statements to import the
library headers, the use of the C++ keyword auto on lines of code that result in the definition
of a new variable, and semicolons terminating each line of procedural code. The last line uses
a macro Print provided by ITensor, which has a similar behavior to the Julia @show macro
and which in this case generates the output:

� �
Print(hasInds(C,a,b,c,i,j)) = true� �

B.2 C++ DMRG Example

Here we show the same example of a DMRG calculation as in the previous Appendix section
A.2. Consider the following code:

� �
#include "itensor/all.h"
using namespace itensor;

int main()
{
auto N = 100;

46

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4

SciPost Phys. Codebases 4 (2022)

auto sites = SpinHalf(N,{"ConserveQNs=",false});

auto ampo = AutoMPO(sites);
for(auto j : range1(N-1))

{
ampo += "Sz",j,"Sz",j+1;
ampo += 0.5,"S+",j,"S-",j+1;
ampo += 0.5,"S-",j,"S+",j+1;
}

auto H = toMPO(ampo);

auto psi0 = randomMPS(sites,10);

auto sweeps = Sweeps(5);
sweeps.maxdim() = 10,20,100,100,200;
sweeps.cutoff() = 1E-11;

auto [energy, psi] = dmrg(H,psi0,sweeps,{"Quiet=",true});

println("G.S. energy = ",energy);
}� �

By comparing to the Julia language example A.2, one can see that the codes are again rather
similar overall. Some key differences beyond the ones mentioned for the contraction example
include that the site Index arrays (“site sets”) in the C++ version include quantum number
information by default, which we turn off in this example, and the dmrg routine outputs much
more information by default, so we pass the named argument {"Quiet=",true}. These
two parts of the code highlight a custom named-argument system developed for the C++
version of ITensor which could be more generally useful in other C++ codes and which we
plan to release as a separate library in the future.

References

[1] R. Orús, A practical introduction to tensor networks: Matrix product states and projected
entangled pair states, Ann. Phys. 349, 117 (2014), doi:10.1016/j.aop.2014.06.013.

[2] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao and D. P. Mandic, Tensor networks
for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor decom-
positions, FNT in Machine Learning 9, 249 (2016), doi:10.1561/2200000059.

[3] U. Schollwöck, The density-matrix renormalization group in the age of matrix product
states, Ann. Phys. 326, 96 (2011), doi:10.1016/j.aop.2010.09.012.

[4] S. Östlund and S. Rommer, Thermodynamic limit of density matrix renormalization, Phys.
Rev. Lett. 75, 3537 (1995), doi:10.1103/PhysRevLett.75.3537.

[5] W. Hackbusch and S. Kühn, A new scheme for the tensor representation, J. Fourier Anal.
Appl. 15, 706 (2009), doi:10.1007/s00041-009-9094-9.

[6] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput. 33, 2295 (2011),
doi:10.1137/090752286.

47

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1561/2200000059
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevLett.75.3537
https://doi.org/10.1007/s00041-009-9094-9
https://doi.org/10.1137/090752286

SciPost Phys. Codebases 4 (2022)

[7] R. Penrose, Applications of negative dimensional tensors, Comb. Math. Appl. 1, 221
(1971), https://homepages.math.uic.edu/~kauffman/Penrose.pdf.

[8] C. Psarras, L. Karlsson, J. Li and P. Bientinesi, The landscape of software for tensor compu-
tations, arXiv:2103.13756.

[9] R. N. C. Pfeifer, G. Evenbly, S. Singh and G. Vidal, NCON: A tensor network contractor for
MATLAB, arXiv:1402.0939.

[10] Jutho, ho-oto, maartenvd, getzdan, Leo, D. Aluthge, S. Lyon, A. Morley, A. Privett,
D. Iouchtchenko, E. Saba, F. Otto et al., Jutho/tensoroperations.jl: v3.2.3, (2021),
doi:10.5281/zenodo.5180716.

[11] C. R. Harris et al., Array programming with NumPy, Nature 585, 357 (2020),
doi:10.1038/s41586-020-2649-2.

[12] J. Gray, quimb: A python package for quantum information and many-body calculations,
J. Open Source Softw. 3, 819 (2018), doi:10.21105/joss.00819.

[13] C. Roberts, A. Milsted, M. Ganahl, A. Zalcman, B. Fontaine, Y. Zou, J. Hidary, G. Vi-
dal and S. Leichenauer, Tensornetwork: A library for physics and machine learning,
arXiv:1905.01330.

[14] J.-G. Liu, L. Wang and P. Zhang, Tropical tensor network for ground states of spin glasses,
Phys. Rev. Lett. 126, 090506 (2021), doi:10.1103/PhysRevLett.126.090506.

[15] G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Phys.
Rev. Lett. 91, 147902 (2003), doi:10.1103/PhysRevLett.91.147902.

[16] D. Perez-Garcia, F. Verstraete, M. M. Wolf and J. I. Cirac, Matrix product state representa-
tions, Quantum Info. Comput. 7, 401 (2007), doi:10.5555/2011832.2011833.

[17] F. Verstraete, J. J. García-Ripoll and J. I. Cirac, Matrix product density operators: Simu-
lation of finite-temperature and dissipative systems, Phys. Rev. Lett. 93, 207204 (2004),
doi:10.1103/PhysRevLett.93.207204.

[18] I. P. McCulloch, From density-matrix renormalization group to matrix product states, J.
Stat. Mech. P10014 (2007), doi:10.1088/1742-5468/2007/10/p10014.

[19] G. Kin-Lic Chan, A. Keselman, N. Nakatani, Z. Li and S. R. White, Matrix product opera-
tors, matrix product states, and ab initio density matrix renormalization group algorithms,
J. Chem. Phys. 145, 014102 (2016), doi:10.1063/1.4955108.

[20] E. M. Stoudenmire and S. R. White, Sliced basis density matrix renormal-
ization group for electronic structure, Phys. Rev. Lett. 119, 046401 (2017),
doi:10.1103/PhysRevLett.119.046401.

[21] D. E. Parker, X. Cao and M. P. Zaletel, Local matrix product operators: Canon-
ical form, compression, and control theory, Phys. Rev. B 102, 035147 (2020),
doi:10.1103/PhysRevB.102.035147.

[22] M. T. Fishman and S. R. White, Compression of correlation matrices and an efficient method
for forming matrix product states of fermionic Gaussian states, Phys. Rev. B 92, 075132
(2015), doi:10.1103/PhysRevB.92.075132.

[23] S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev.
Lett. 69, 2863 (1992), doi:10.1103/PhysRevLett.69.2863.

48

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://homepages.math.uic.edu/~kauffman/Penrose.pdf
https://arxiv.org/abs/2103.13756
https://arxiv.org/abs/1402.0939
https://doi.org/10.5281/zenodo.5180716
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.21105/joss.00819
https://arxiv.org/abs/1905.01330
https://doi.org/10.1103/PhysRevLett.126.090506
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.5555/2011832.2011833
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1088/1742-5468/2007/10/p10014
https://doi.org/10.1063/1.4955108
https://doi.org/10.1103/PhysRevLett.119.046401
https://doi.org/10.1103/PhysRevB.102.035147
https://doi.org/10.1103/PhysRevB.92.075132
https://doi.org/10.1103/PhysRevLett.69.2863

SciPost Phys. Codebases 4 (2022)

[24] H. Zhai and G. Kin-Lic Chan, Low communication high performance ab initio den-
sity matrix renormalization group algorithms, J. Chem. Phys. 154, 224116 (2021),
doi:10.1063/5.0050902.

[25] E. M. Stoudenmire and S. R. White, Studying two-dimensional systems with the den-
sity matrix renormalization group, Annu. Rev. Condens. Matter Phys. 3, 111 (2012),
doi:10.1146/annurev-conmatphys-020911-125018.

[26] M. Van Damme, R. Vanhove, J. Haegeman, F. Verstraete and L. Vanderstraeten, Efficient
matrix product state methods for extracting spectral information on rings and cylinders,
Phys. Rev. B 104, 115142 (2021), doi:10.1103/PhysRevB.104.115142.

[27] L. Vanderstraeten, J. Haegeman and F. Verstraete, Tangent-space methods
for uniform matrix product states, SciPost Phys. Lect. Notes 1, 7 (2019),
doi:10.21468/SciPostPhysLectNotes.7.

[28] Tensornetwork.org contributors, Density matrix algorithm — tensornetwork.org, (2021),
https://tensornetwork.org/mps/algorithms/denmat_mpo_mps/.

[29] S. Singh, R. N. C. Pfeifer and G. Vidal, Tensor network states and algorithms
in the presence of a global U(1) symmetry, Phys. Rev. B 83, 115125 (2011),
doi:10.1103/PhysRevB.83.115125.

[30] S. Singh, R. N. C. Pfeifer and G. Vidal, Tensor network decompositions in the presence of a
global symmetry, Phys. Rev. A 82, 050301 (2010), doi:10.1103/PhysRevA.82.050301.

[31] S. Singh and G. Vidal, Tensor network states and algorithms in the presence of a global
SU(2) symmetry, Phys. Rev. B 86, 195114 (2012), doi:10.1103/PhysRevB.86.195114.

[32] P. Springer and P. Bientinesi, Design of a high-performance GEMM-like tensor-tensor mul-
tiplication, arXiv:1607.00145.

[33] G. Evenbly, private communication.

[34] D. A. Matthews, High-Performance tensor contraction without transposition,
arXiv:1607.00291.

[35] Tensornetwork.org contributors, Benchmarks — tensornetwork.org, (2021), https://
tensornetwork.org/benchmarks/.

[36] C. David White, M. Zaletel, R. S. K. Mong and G. Refael, Quantum dynamics of thermal-
izing systems, Phys. Rev. B 97, 035127 (2018), doi:10.1103/PhysRevB.97.035127.

[37] T. Rakovszky, C. W. von Keyserlingk and F. Pollmann, Dissipation-assisted operator evolu-
tion method for capturing hydrodynamic transport, arXiv:2004.05177.

[38] I. Oseledets and E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays, Lin-
ear Algebra Appl. 432, 70 (2010), doi:10.1016/j.laa.2009.07.024.

[39] A. Novikov, D. Podoprikhin, A. Osokin and D. Vetrov, Tensorizing neural networks, Adv.
Neural Inf. Process. Syst. 28, arXiv:1509.06569.

[40] B. Rakhshan and G. Rabusseau, Tensorized random projections, Proc. Mach. Learn. Res.
108, 3306 (2020), http://proceedings.mlr.press/v108/rakhshan20a.html.

[41] A. Keselman and E. Berg, Gapless symmetry-protected topological phase of fermions in one
dimension, Phys. Rev. B 91, 235309 (2015), doi:10.1103/PhysRevB.91.235309.

49

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://doi.org/10.1063/5.0050902
https://doi.org/10.1146/annurev-conmatphys-020911-125018
https://doi.org/10.1103/PhysRevB.104.115142
https://doi.org/10.21468/SciPostPhysLectNotes.7
https://tensornetwork.org/mps/algorithms/denmat_mpo_mps/
https://doi.org/10.1103/PhysRevB.83.115125
https://doi.org/10.1103/PhysRevA.82.050301
https://doi.org/10.1103/PhysRevB.86.195114
https://arxiv.org/abs/1607.00145
https://arxiv.org/abs/1607.00291
https://tensornetwork.org/benchmarks/
https://tensornetwork.org/benchmarks/
https://doi.org/10.1103/PhysRevB.97.035127
https://arxiv.org/abs/2004.05177
https://doi.org/10.1016/j.laa.2009.07.024
https://arxiv.org/abs/1509.06569
http://proceedings.mlr.press/v108/rakhshan20a.html
https://doi.org/10.1103/PhysRevB.91.235309

SciPost Phys. Codebases 4 (2022)

[42] A. B. Kallin, E. M. Stoudenmire, P. Fendley, R. R. P. Singh and R. G. Melko, Corner contri-
bution to the entanglement entropy of an O(3) quantum critical point in 2+1 dimensions,
J. Stat. Mech. P06009 (2014), doi:10.1088/1742-5468/2014/06/p06009.

[43] E. M. Stoudenmire, P. Gustainis, R. Johal, S. Wessel and R. G. Melko, Corner contribution
to the entanglement entropy of strongly interacting O(2) quantum critical systems in 2+ 1
dimensions, Phys. Rev. B 90, 235106 (2014), doi:10.1103/PhysRevB.90.235106.

[44] P. Bueno, R. C. Myers and W. Witczak-Krempa, Universality of corner en-
tanglement in conformal field theories, Phys. Rev. Lett. 115, 021602 (2015),
doi:10.1103/PhysRevLett.115.021602.

[45] J. Venderley and E.-A. Kim, Density matrix renormalization group study of supercon-
ductivity in the triangular lattice Hubbard model, Phys. Rev. B 100, 060506 (2019),
doi:10.1103/PhysRevB.100.060506.

[46] M. Motta et al., Towards the solution of the many-electron problem in real materials: Equa-
tion of state of the hydrogen chain with state-of-the-art many-body methods, Phys. Rev. X
7, 031059 (2017), doi:10.1103/PhysRevX.7.031059.

[47] S. R. White and E. M. Stoudenmire, Multisliced Gausslet basis sets for electronic structure,
Phys. Rev. B 99, 081110 (2019), doi:10.1103/PhysRevB.99.081110.

[48] S. R. White, Minimally entangled typical quantum states at finite temperature, Phys. Rev.
Lett. 102, 190601 (2009), doi:10.1103/PhysRevLett.102.190601.

[49] E. M. Stoudenmire and S. R. White, Minimally entangled typical thermal state algorithms,
New J. Phys. 12, 055026 (2010), doi:10.1088/1367-2630/12/5/055026.

[50] B. Bruognolo, Z. Zhu, S. R. White and E. M. Stoudenmire, Matrix product state techniques
for two-dimensional systems at finite temperature, arXiv:1705.05578.

[51] J. Chen and E. M. Stoudenmire, Hybrid purification and sampling approach for thermal
quantum systems, Phys. Rev. B 101, 195119 (2020), doi:10.1103/PhysRevB.101.195119.

[52] S. Jiang, P. Kim, J. Hoon Han and Y. Ran, Competing spin liquid phases in
the S=1

2 Heisenberg model on the Kagome lattice, SciPost Phys. 7, 006 (2019),
doi:10.21468/SciPostPhys.7.1.006.

[53] K. Hyatt and E. M. Stoudenmire, DMRG approach to optimizing two-dimensional tensor
networks, arXiv:1908.08833.

[54] S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana, U. Schollwöck and C. Hubig,
Time-evolution methods for matrix-product states, Ann. Phys. 411, 167998 (2019),
doi:10.1016/j.aop.2019.167998.

[55] V. Alba and P. Calabrese, Entanglement and thermodynamics after a quantum
quench in integrable systems, Proc. Natl. Acad. Sci. U.S.A. 114, 7947 (2017),
doi:10.1073/pnas.1703516114.

[56] A. Nahum, J. Ruhman, S. Vijay and J. Haah, Quantum entanglement growth under random
unitary dynamics, Phys. Rev. X 7, 031016 (2017), doi:10.1103/PhysRevX.7.031016.

[57] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk, E. Altman,
U. Schneider and I. Bloch, Observation of many-body localization of interacting fermions
in a quasirandom optical lattice, Science 349, 842 (2015), doi:10.1126/science.aaa7432.

50

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://doi.org/10.1088/1742-5468/2014/06/p06009
https://doi.org/10.1103/PhysRevB.90.235106
https://doi.org/10.1103/PhysRevLett.115.021602
https://doi.org/10.1103/PhysRevB.100.060506
https://doi.org/10.1103/PhysRevX.7.031059
https://doi.org/10.1103/PhysRevB.99.081110
https://doi.org/10.1103/PhysRevLett.102.190601
https://doi.org/10.1088/1367-2630/12/5/055026
https://arxiv.org/abs/1705.05578
https://doi.org/10.1103/PhysRevB.101.195119
https://doi.org/10.21468/SciPostPhys.7.1.006
https://arxiv.org/abs/1908.08833
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1073/pnas.1703516114
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1126/science.aaa7432

SciPost Phys. Codebases 4 (2022)

[58] D. Bauernfeind, M. Zingl, R. Triebl, M. Aichhorn and H. Gerd Evertz, Fork tensor-product
states: Efficient multiorbital real-time DMFT solver, Phys. Rev. X 7, 031013 (2017),
doi:10.1103/physrevx.7.031013.

[59] B. Swingle, Entanglement renormalization and holography, Phys. Rev. D 86, 065007
(2012), doi:10.1103/PhysRevD.86.065007.

[60] F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting
codes: Toy models for the bulk/boundary correspondence, J. High Energ. Phys. 149 (2015),
doi:10.1007/jhep06(2015)149.

[61] S. Dolgov and D. Savostyanov, Parallel cross interpolation for high-precision calcu-
lation of high-dimensional integrals, Comput. Phys. Commun. 246, 106869 (2020),
doi:10.1016/j.cpc.2019.106869.

[62] H. Huang, Y. Liu and C. Zhu, Low-rank tensor grid for image completion,
arXiv:1903.04735.

[63] E. M. Stoudenmire and D. J. Schwab, Supervised learning with tensor networks, Adv. Neu-
ral Inf. Process. Syst. 29, 4799 (2016), https://proceedings.neurips.cc/paper/2016/
file/5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf.

[64] J. A. Reyes and E. M. Stoudenmire, Multi-scale tensor network architecture for machine
learning, Mach. Learn.: Sci. Technol. 2, 035036 (2021), doi:10.1088/2632-2153/abffe8.

[65] E. M. Stoudenmire, Learning relevant features of data with multi-scale tensor networks,
Quantum Sci. Technol. 3, 034003 (2018), doi:10.1088/2058-9565/aaba1a.

[66] T.-D. Bradley, E. M. Stoudenmire and J. Terilla, Modeling sequences with quantum states:
A look under the hood, Mach. Learn.: Sci. Technol. 1, 035008 (2020), doi:10.1088/2632-
2153/ab8731.

[67] M. Levin and C. P. Nave, Tensor renormalization group approach to two-
dimensional classical lattice models, Phys. Rev. Lett. 99, 120601 (2007),
doi:10.1103/PhysRevLett.99.120601.

[68] Z.-C. Gu, M. Levin and X.-G. Wen, Tensor-entanglement renormalization group approach
as a unified method for symmetry breaking and topological phase transitions, Phys. Rev. B
78, 205116 (2008), doi:10.1103/PhysRevB.78.205116.

[69] T. Nishino and K. Okunishi, Corner transfer matrix renormalization group method, J. Phys.
Soc. Jpn. 65, 891 (1996), doi:10.1143/JPSJ.65.891.

[70] T. Nishino and K. Okunishi, Corner transfer matrix algorithm for classical renormalization
group, J. Phys. Soc. Jpn. 66, 3040 (1997), doi:10.1143/JPSJ.66.3040.

[71] M. T. Fishman, L. Vanderstraeten, V. Zauner-Stauber, J. Haegeman and F. Verstraete,
Faster methods for contracting infinite two-dimensional tensor networks, Phys. Rev. B 98,
235148 (2018), doi:10.1103/PhysRevB.98.235148.

[72] J. Motruk, M. P. Zaletel, R. S. K. Mong and F. Pollmann, Density matrix renormalization
group on a cylinder in mixed real and momentum space, Phys. Rev. B 93, 155139 (2016),
doi:10.1103/PhysRevB.93.155139.

[73] J. Hauschild and F. Pollmann, Efficient numerical simulations with tensor net-
works: Tensor network python (TeNPy), SciPost Phys. Lect. Notes 1, 5 (2018),
doi:10.21468/SciPostPhysLectNotes.5.

51

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://doi.org/10.1103/physrevx.7.031013
https://doi.org/10.1103/PhysRevD.86.065007
https://doi.org/10.1007/jhep06(2015)149
https://doi.org/10.1016/j.cpc.2019.106869
https://arxiv.org/abs/1903.04735
https://proceedings.neurips.cc/paper/2016/file/5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf
https://doi.org/10.1088/2632-2153/abffe8
https://doi.org/10.1088/2058-9565/aaba1a
https://doi.org/10.1088/2632-2153/ab8731
https://doi.org/10.1088/2632-2153/ab8731
https://doi.org/10.1103/PhysRevLett.99.120601
https://doi.org/10.1103/PhysRevB.78.205116
https://doi.org/10.1143/JPSJ.65.891
https://doi.org/10.1143/JPSJ.66.3040
https://doi.org/10.1103/PhysRevB.98.235148
https://doi.org/10.1103/PhysRevB.93.155139
https://doi.org/10.21468/SciPostPhysLectNotes.5

SciPost Phys. Codebases 4 (2022)

[74] H.-J. Liao, J.-G. Liu, L. Wang and T. Xiang, Differentiable programming tensor networks,
Phys. Rev. X 9, 031041 (2019), doi:10.1103/PhysRevX.9.031041.

[75] G. Evenbly and R. N. C. Pfeifer, Improving the efficiency of variational tensor network
algorithms, Phys. Rev. B 89, 245118 (2014), doi:10.1103/PhysRevB.89.245118.

[76] I. A. Luchnikov, M. E. Krechetov and S. N. Filippov, Riemannian geometry and automatic
differentiation for optimization problems of quantum physics and quantum technologies,
New J. Phys. 23, 073006 (2021), doi:10.1088/1367-2630/ac0b02.

[77] M. Hauru, M. Van Damme and J. Haegeman, Riemannian optimization of isometric tensor
networks, SciPost Phys. 10, 040 (2021), doi:10.21468/SciPostPhys.10.2.040.

[78] C. Geng, H.-Y. Hu and Y. Zou, Differentiable programming of isometric tensor networks,
Mach. Learn.: Sci. Technol. 3, 015020 (2022), doi:10.1088/2632-2153/ac48a2.

[79] W.-L. Tu, H.-K. Wu, N. Schuch, N. Kawashima and J.-Y. Chen, Generating func-
tion for tensor network diagrammatic summation, Phys. Rev. B 103, 205155 (2021),
doi:10.1103/PhysRevB.103.205155.

[80] B. Ponsioen, F. F. Assaad and P. Corboz, Automatic differentiation applied to
excitations with projected entangled pair states, SciPost Phys. 12, 006 (2022),
doi:10.21468/SciPostPhys.12.1.006.

[81] L. White, M. Zgubic, M. Abbott, J. Revels, A. Arslan, S. Axen, S. Schaub, N. Robinson,
Y. Ma, G. Dhingra, willtebbutt, N. Heim et al., Juliadiff/chainrules.jl: v1.12.1, (2021),
doi:10.5281/zenodo.5595024.

[82] L. White, M. Zgubic, M. Abbott, J. Revels, N. Robinson, A. Arslan, D. Widmann, S. Schaub,
Y. Ma, willtebbutt, S. Axen, P. Vertechi et al., Juliadiff/chainrulescore.jl: v1.11.1, (2021),
doi:10.5281/zenodo.5639510.

[83] M. Innes, Don’t unroll adjoint: Differentiating SSA-form programs, arXiv:1810.07951.

[84] L. Ma, J. Ye and E. Solomonik, AutoHOOT, in Proceedings of the ACM international confer-
ence on parallel architectures and compilation techniques, Association for Computing Ma-
chinery, New York, USA, ISBN 9781450380751 (2020), doi:10.1145/3410463.3414647.

[85] R. N. C. Pfeifer, J. Haegeman and F. Verstraete, Faster identification of opti-
mal contraction sequences for tensor networks, Phys. Rev. E 90, 033315 (2014),
doi:10.1103/PhysRevE.90.033315.

[86] S. Danisch and J. Krumbiegel, Makie.jl: Flexible high-performance data visualization for
Julia, J. Open Source Softw. 6, 3349 (2021), doi:10.21105/joss.03349.

[87] J. Gray and S. Kourtis, Hyper-optimized tensor network contraction, Quantum 5, 410
(2021), doi:10.22331/q-2021-03-15-410.

[88] F. Pan, P. Zhou, S. Li and P. Zhang, Contracting arbitrary tensor networks: General approx-
imate algorithm and applications in graphical models and quantum circuit simulations,
Phys. Rev. Lett. 125, 060503 (2020), doi:10.1103/PhysRevLett.125.060503.

[89] C. T. Chubb, General tensor network decoding of 2D Pauli codes, arXiv:2101.04125.

[90] V. Zauner-Stauber, L. Vanderstraeten, M. T. Fishman, F. Verstraete and J. Haegeman, Vari-
ational optimization algorithms for uniform matrix product states, Phys. Rev. B 97, 045145
(2018), doi:10.1103/PhysRevB.97.045145.

52

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://doi.org/10.1103/PhysRevX.9.031041
https://doi.org/10.1103/PhysRevB.89.245118
https://doi.org/10.1088/1367-2630/ac0b02
https://doi.org/10.21468/SciPostPhys.10.2.040
https://doi.org/10.1088/2632-2153/ac48a2
https://doi.org/10.1103/PhysRevB.103.205155
https://doi.org/10.21468/SciPostPhys.12.1.006
https://doi.org/10.5281/zenodo.5595024
https://doi.org/10.5281/zenodo.5639510
https://arxiv.org/abs/1810.07951
https://doi.org/10.1145/3410463.3414647
https://doi.org/10.1103/PhysRevE.90.033315
https://doi.org/10.21105/joss.03349
https://doi.org/10.22331/q-2021-03-15-410
https://doi.org/10.1103/PhysRevLett.125.060503
https://arxiv.org/abs/2101.04125
https://doi.org/10.1103/PhysRevB.97.045145

SciPost Phys. Codebases 4 (2022)

[91] B. Vanhecke, M. Van Damme, J. Haegeman, L. Vanderstraeten and F. Verstraete,
Tangent-space methods for truncating uniform MPS, SciPost Phys. Core 4, 004 (2021),
doi:10.21468/SciPostPhysCore.4.1.004.

[92] L. Vanderstraeten, J. Haegeman, P. Corboz and F. Verstraete, Gradient methods for vari-
ational optimization of projected entangled-pair states, Phys. Rev. B 94, 155123 (2016),
doi:10.1103/PhysRevB.94.155123.

[93] P. Corboz, Variational optimization with infinite projected entangled-pair states, Phys. Rev.
B 94, 035133 (2016), doi:10.1103/PhysRevB.94.035133.

53

https://scipost.org
https://scipost.org/SciPostPhysCodeb.4
https://doi.org/10.21468/SciPostPhysCore.4.1.004
https://doi.org/10.1103/PhysRevB.94.155123
https://doi.org/10.1103/PhysRevB.94.035133

	Introduction
	Interface Examples
	Installing ITensor
	Obtaining Help
	Basic ITensor Usage
	Setting ITensor Elements
	Matrix Example
	Summing ITensors
	Priming Indices
	Compiling ITensor
	Online Code Examples

	Index Objects
	The ITensor Product Operator (contract)
	Tensor Decompositions
	Tensor Storage Layer
	High Level Features: MPS and MPO Algorithms
	OpSum and AutoMPO
	DMRG Algorithm
	MPS and MPO Operations

	Quantum Number Block Sparse ITensors
	QN Objects
	QN Index
	QN ITensor

	NDTensors Library
	Basic Interface
	Block Sparse Tensors
	Generic Index Types
	Tensor Contraction Backend

	Other Features of ITensor
	Writing and Reading ITensor Objects with the HDF5 Format
	Defining Custom Local Hilbert Spaces
	DMRG Observer System

	Applications of ITensor
	Equilibrium Quantum Systems
	Dynamics of Quantum Systems
	Other Application Areas

	Benchmarks of ITensor Performance
	Comparison of Julia and C++ Implementations of ITensor
	Benchmarks of ITensor Versus Other Software

	Future Directions
	Full Code Examples
	Contraction Example
	DMRG Example

	ITensor Implementation and Interface in the C++ Language
	C++ Contraction Example
	C++ DMRG Example

	References

