Tensor network Python (TeNPy) version 1
Johannes Hauschild, Jakob Unfried, Sajant Anand, Bartholomew Andrews, Marcus Bintz, Umberto Borla, Stefan Divic, Markus Drescher, Jan Geiger, Martin Hefel, Kévin Hémery, Wilhelm Kadow, Jack Kemp, Nico Kirchner, Vincent S. Liu, Gunnar Möller, Daniel Parker, Michael Rader, Anton Romen, Samuel Scalet, Leon Schoonderwoerd, Maximilian Schulz, Tomohiro Soejima, Philipp Thoma, Yantao Wu, Philip Zechmann, Ludwig Zweng, Roger S. K. Mong, Michael P. Zaletel, Frank Pollmann
SciPost Phys. Codebases 41 (2024) · published 26 November 2024
- doi: 10.21468/SciPostPhysCodeb.41
- live repo (external)
- Submissions/Reports
This Publication is part of a bundle
When citing, cite all relevant items (e.g. for a Codebase, cite both the article and the release you used).
DOI | Type | |
---|---|---|
10.21468/SciPostPhysCodeb.41 | Article | |
10.21468/SciPostPhysCodeb.41-r1.0 | Codebase release |
Abstract
TeNPy (short for 'Tensor Network Python') is a python library for the simulation of strongly correlated quantum systems with tensor networks. The philosophy of this library is to achieve a balance of readability and usability for new-comers, while at the same time providing powerful algorithms for experts. The focus is on MPS algorithms for 1D and 2D lattices, such as DMRG ground state search, as well as dynamics using TEBD, TDVP, or MPO evolution. This article is a companion to the recent version 1.0 release of TeNPy and gives a brief overview of the package.
Cited by 1
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 2 Johannes Hauschild,
- 1 2 Jakob Unfried,
- 3 Sajant Anand,
- 3 4 Bartholomew Andrews,
- 5 Marcus Bintz,
- 6 Umberto Borla,
- 3 Stefan Divic,
- 1 2 Markus Drescher,
- 1 2 7 Jan Geiger,
- 1 2 Martin Hefel,
- 1 Kévin Hémery,
- 1 2 Wilhelm Kadow,
- 5 Jack Kemp,
- 1 2 Nico Kirchner,
- 5 Vincent S. Liu,
- 8 Gunnar Moller,
- 3 5 9 Daniel Parker,
- 10 11 Michael Rader,
- 1 2 Anton Romen,
- 1 12 Samuel Scalet,
- 8 Leon Schoonderwoerd,
- 13 14 Maximilian Schulz,
- 3 5 Tomohiro Soejima,
- 1 2 Philipp Thoma,
- 3 15 Yantao Wu,
- 1 2 Philip Zechmann,
- 1 2 Ludwig Zweng,
- 16 Roger Mong,
- 3 17 Mike Zaletel,
- 1 2 Frank Pollmann
- 1 Technische Universität München / Technical University of Munich [TUM]
- 2 Munich Center for Quantum Science and Technology [MCQST]
- 3 University of California, Berkeley [UCBL]
- 4 Eidgenössische Technische Hochschule Zürich / Swiss Federal Institute of Technology in Zurich (ETH) [ETH Zurich]
- 5 Harvard University
- 6 האוניברסיטה העברית בירושלים / Hebrew University of Jerusalem [HUJI]
- 7 Max-Planck-Institut für Quantenoptik / Max Planck Institute of Quantum Optics [MPQ]
- 8 University of Kent
- 9 University of California, San Diego [UCSD]
- 10 Fraunhofer Austria / Fraunhofer Austria
- 11 Institut für Theoretische Physik / Institute for Theoretical Physics, University of Innsbruck [ITP]
- 12 University of Cambridge
- 13 Max-Planck-Institut für Physik komplexer Systeme / Max Planck Institute for the Physics of Complex Systems
- 14 University of St Andrews
- 15 理化学研究所 / RIKEN [RIKEN]
- 16 University of Pittsburgh
- 17 Lawrence Berkeley National Laboratory [LBNL]
- Army Research Office (ARO) (through Organization: United States Army Research Laboratory [ARL])
- Austrian Science Fund (FWF) (through Organization: Fonds zur Förderung der wissenschaftlichen Forschung / FWF Austrian Science Fund [FWF])
- Deutsche Forschungsgemeinschaft / German Research FoundationDeutsche Forschungsgemeinschaft [DFG]
- Engineering and Physical Sciences Research Council [EPSRC]
- Gordon and Betty Moore Foundation
- Horizon 2020 (through Organization: European Commission [EC])
- Japan Science and Technology Agency [JST]
- 理化学研究所 / RIKEN [RIKEN]
- Royal Society
- Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung / Swiss National Science Foundation [SNF]
- United States Department of Energy [DOE]
- University of Kent