
SciPost Phys. Codebases 50 (2025)

Pymablock: An algorithm and a package
for quasi-degenerate perturbation theory

Isidora Araya Day1,2⋆, Sebastian Miles1, Hugo K. Kerstens2,
Daniel Varjas3,4 and Anton R. Akhmerov2†

1 QuTech, Delft University of Technology, 2600 GA Delft, The Netherlands
2 Kavli Institute of Nanoscience, Delft University of Technology,

2600 GA Delft, The Netherlands
3 Max Planck Institute for the Physics of Complex Systems,

Nöthnitzer Strasse 38, 01187 Dresden, Germany
4 Institute for Theoretical Solid State Physics,

IFW Dresden and Würzburg-Dresden Cluster of Excellence ct.qmat,
Helmholtzstr. 20, 01069 Dresden, Germany

⋆ iarayaday@gmail.com , † pymablock@antonakhmerov.org

Abstract

A common technique in the study of complex quantum-mechanical systems is to reduce
the number of degrees of freedom in the Hamiltonian by using quasi-degenerate per-
turbation theory. While the Schrieffer–Wolff transformation achieves this and constructs
an effective Hamiltonian, its scaling is suboptimal, it is limited to two subspaces, and
implementing it efficiently is both challenging and error-prone. We introduce an algo-
rithm for constructing an equivalent effective Hamiltonian as well as a Python package,
Pymablock, that implements it. Our algorithm combines an optimal asymptotic scaling
and the ability to handle any number of subspaces with a range of other improvements.
The package supports numerical and analytical calculations of any order and it is de-
signed to be interoperable with any other packages for specifying the Hamiltonian. We
demonstrate how the package handles constructing a k.p model, analyses a supercon-
ducting qubit, and computes the low-energy spectrum of a large tight-binding model. We
also compare its performance with reference calculations and demonstrate its efficiency.

Copyright I. Araya Day et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

2024-06-12
2025-01-21
2025-02-12

Check for
updates

doi:10.21468/SciPostPhysCodeb.50

This publication is part of a bundle: Please cite both the article and the release you used.

DOI
doi:10.21468/SciPostPhysCodeb.50
doi:10.21468/SciPostPhysCodeb.50-r2.1

Type
Article
Codebase release

1

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50
https://orcid.org/0000-0002-2948-4198
https://orcid.org/0009-0005-6425-8072
https://orcid.org/0009-0003-9685-5088
https://orcid.org/0000-0002-3283-6182
https://orcid.org/0000-0001-8031-1340
mailto:iarayaday@gmail.com
mailto:pymablock@antonakhmerov.org
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysCodeb.50&domain=pdf&date_stamp=2025-02-12
https://doi.org/10.21468/SciPostPhysCodeb.50
https://doi.org/10.21468/SciPostPhysCodeb.50
https://doi.org/10.21468/SciPostPhysCodeb.50-r2.1

SciPost Phys. Codebases 50 (2025)

Contents

1 Introduction 2

2 Constructing an effective model 4
2.1 k.p model of bilayer graphene 5
2.2 Dispersive shift of a transmon qubit coupled to a resonator 6
2.3 Induced gap in a double quantum dot 7
2.4 Selective diagonalization 8

3 Perturbative block-diagonalization algorithm 9
3.1 Problem statement 9
3.2 Existing solutions 11
3.3 Pymablock’s algorithm 13
3.4 Equivalence to Schrieffer–Wolff transformation 15
3.5 Extra optimization: common subexpression elimination 16

4 Implementation 16
4.1 The data structure for block operator series 16
4.2 The implicit method for large sparse Hamiltonians 18
4.3 Code generation 18

5 Benchmark 19

6 Conclusion 21

References 23

1 Introduction

Effective models enable the study of complex quantum systems by reducing the dimensionality
of the Hilbert space. Their construction separates the low and high-energy subspaces by block-
diagonalizing a perturbed Hamiltonian

H =
�

HAA
0 0
0 HBB

0

�

+H′ , (1)

where HAA
0 and HBB

0 are separated by an energy gap, and H′ is a series in a perturbative
parameter. This procedure requires finding a series of the basis transformation U that is unitary
and that also cancels the off-diagonal block of the transformed Hamiltonian order by order, as
shown in Fig. 1. The low-energy effective Hamiltonian H̃AA is then a series in the perturbative
parameter, whose eigenvalues and eigenvectors are approximate solutions of the complete
Hamiltonian. As a consequence, the effective model is sufficient to describe the low-energy
properties of the original system while also being simpler and easier to handle.

A common approach to constructing an effective Hamiltonian is the Schrieffer–Wolff trans-
formation [1, 2], also known as Löwdin partitioning [3], or quasi-degenerate perturbation
theory. This method parameterizes the unitary transformation U = e−S and finds the series S
that decouples the A and B subspaces of H̃ = eSHe−S . This idea enabled advances in mul-
tiple fields of quantum physics. As an example, all the k.p models are a result of treating
crystalline momentum as a perturbation that only weakly mixes atomic orbitals separated in

2

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50

SciPost Phys. Codebases 50 (2025)

H0

+

H1

U

H̃0 + H̃1 + H̃2

Figure 1: Block-diagonalization of a Hamiltonian with a first order perturbation.

energy [4–7]. More broadly, this method serves as a go-to tool in the study of superconducting
circuits and quantum dots, where couplings between circuit elements and drives are treated
as perturbations to reproduce the dynamics of the system [8, 9]. Applied to time-dependent
Hamiltonians, the Schrieffer–Wolff transformation is an essential tool for the design of quan-
tum gates [10,11].

Constructing effective Hamiltonians is, however, both algorithmically complex and compu-
tationally expensive. This is a consequence of the recursive equations that define the unitary
transformation, which require an exponentially growing number of matrix products in each
order. In particular, already a 4-th order perturbative expansion that is necessary for many
applications may require hundreds of terms. While the computational complexity is only a
nuisance when analysing model systems, it becomes a bottleneck whenever the Hilbert space is
high-dimensional. Several other approaches improve the performance of the Schrieffer–Wolff
algorithm by either using different parametrizations of the unitary transformation [3,12–15],
adjusting the problem setting to density matrix perturbation theory [16, 17], or a finding a
similarity transform instead of a unitary [18]. An alternative formulation of the perturbative
diagonalization uses Wegner’s flow equation [19,20] to construct a continuous unitary trans-
formation (CUT) that depends on a fictitious flow parameter, which at infinity eliminates the
undesired terms from the Hamiltonian [21, 22]. CUT is common in the study of many-body
systems [23], and it relies on solving a set of differential equations to obtain the effective
Hamiltonian. A more recent line of research even applies the ideas of Schrieffer–Wolff trans-
formation to quantum algorithms for the study of many-body systems [24,25]. Despite these
advances, neither of the approaches combines an optimal scaling with the ability to construct
effective Hamiltonians.

Another limitation of the Schrieffer–Wolff transformation is that it only decouples two sub-
spaces at a time. While a straightforward generalization of the Schrieffer–Wolff transforma-
tion to multiple subspaces is to decouple one block at a time, this approach is suboptimal and
depends on the order in which the blocks are decoupled. The literature on multi-block diago-
nalization is scarce and considers two approaches: the least action or the block-diagonality of
the generator [26]. The former constructs a unitary transformation that is as close as possible
to the identity, and the latter constructs a block off-diagonal unitary similar to the Schrieffer–
Wolff generator. These approaches are useful to design gates for superconducting qubits [27]
and to characterize nonlocal interactions in multi-qubit systems [28], both of which require
the decoupling of qubit subspaces from different sets of higher energy states. Reference [26],
however, showed that the two generalizations of the Schrieffer–Wolff transformation yield
different effective Hamiltonians when applied to more than two subspaces. While the per-
turbative CUT method naturally decouples multiple subspaces [29], in general solving the
differential equations inherent to the method may become a computational bottleneck. To our
knowledge, there is no general algorithm that constructs effective Hamiltonians for multiple
subspaces directly from the least action principle, and how to do so is an open question.

3

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50

SciPost Phys. Codebases 50 (2025)

We introduce an algorithm to construct effective models with optimal scaling, thus mak-
ing it possible to find high order corrections for systems with millions of degrees of freedom.
This algorithm exploits the efficiency of recursive evaluations of series satisfying polynomial
constraints and obtains the same effective Hamiltonian as the Schrieffer–Wolff transformation
in the case of two subspaces. Our algorithm, however, deals with any number of subspaces,
providing a generalization of the Schrieffer–Wolff transformation for multi-block diagonaliza-
tion and selective decoupling between any two states. We make the algorithm available via
the open source package Pymablock1(PYthon MAtrix BLOCK-diagonalization), a versatile tool
for the study of numerical and symbolic models.

2 Constructing an effective model

We illustrate the construction of effective models by considering several representative exam-
ples. The simplest application of effective models is the reduction of finite symbolic Hamilto-
nians, which appear in the derivation of low-energy dispersions of materials. Starting from a
tight-binding model, one performs Taylor expansions of the Hamiltonian near a k-point, and
then eliminates several high-energy states [4, 6]. In the study of superconducting qubits, for
example, the Hamiltonian contains several bosonic operators, so its Hilbert space is infinite-
dimensional, and the coupling between bosons makes the Hamiltonian impossible to diago-
nalize. The effective qubit model describes the analytical dependence of qubit frequencies
and couplings on the circuit parameters [8,30–34]. This allows to design circuits that realize
a desired qubit Hamiltonian, as well as ways to understand and predict qubit dynamics, for
which computational tools are being actively developed [35–37]. Finally, mesoscopic quan-
tum devices are described by a single particle tight-binding model with short range hoppings.
This produces a numerical Hamiltonian that is both big and sparse, which allows to compute a
few of its states but not the full spectrum [38]. Because only the low-energy states contribute
to observable properties, deriving how they couple enables a more efficient simulation of the
system’s behavior.

Pymablock treats all the problems, including the ones above, using a unified approach that
only requires three steps:

• Define a Hamiltonian.

• Call pymablock.block_diagonalize .

• Request the desired order of the effective Hamiltonian.

The following code snippet shows how to use Pymablock to compute the fourth order correc-
tion to an effective Hamiltonian H̃:

Define perturbation theory
H_tilde, *_ = block_diagonalize([H_0, H_1], subspace_eigenvectors=[vecs_A,

vecs_B]),→

Request 4th order correction to the effective Hamiltonian
H_AA_4 = H_tilde[0, 0, 4]

The function block_diagonalize interprets the Hamiltonian H0 + H1 as a series with two
terms, zeroth and first order and calls the block diagonalization routine. The subspaces to de-
couple are spanned by the eigenvectors vecs_A and vecs_B of H0. This is the main function

1The documentation and tutorials are available in https://pymablock.readthedocs.io/.

4

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50
https://pymablock.readthedocs.io/

SciPost Phys. Codebases 50 (2025)

Figure 2: Crystal structure and hoppings of AB-stacked bilayer graphene.

of Pymablock, and it is the only one that the user ever needs to call. Its first output is a mul-
tivariate series whose terms are different blocks and orders of the transformed Hamiltonian.
Calling block_diagonalize only defines the computational problem, whereas querying the

elements of H_tilde does the actual calculation of the desired order. This interface treats
arbitrary formats of Hamiltonians and system descriptions on the same footing and supports
both numerical and symbolic computations.

2.1 k.p model of bilayer graphene

To illustrate how to use Pymablock with analytic models, we consider two layers of graphene
stacked on top of each other, as shown in Fig. 2. Our goal is to find the low-energy model
near the K point [6]. To do this, we first construct the tight-binding model Hamiltonian of
bilayer graphene. The main features of the model are its 4-atom unit cell spanned by vec-
tors a1 = (1/2,

p
3/2) and a2 = (−1/2,

p
3/2), and with wave functions φA,1,φB,1,φA,2,φB,2,

where A and B indices are the two sublattices, and 1, 2 are the layers. The model has hoppings
t1 and t2 within and between the layers, respectively, as shown in Fig. 2. We also include a
layer-dependent onsite potential ±m.

We define the Bloch Hamiltonian using the Sympy package for symbolic Python [39].

t_1, t_2, m = sympy.symbols("t_1 t_2 m", real=True)
alpha = sympy.symbols(r"\alpha")

H = Matrix([
[m, t_1 * alpha, 0, 0],
[t_1 * alpha.conjugate(), m, t_2, 0],
[0, t_2, -m, t_1 * alpha],
[0, 0, t_1 * alpha.conjugate(), -m]]

)

H =

m t1α 0 0
t1α
∗ m t2 0

0 t2 −m t1α

0 0 t1α
∗ −m

,

where α(k) = 1+ eik·a1 + ek·a2 , with k the wave vector. We consider K = (4π/3, 0) the refer-
ence point point in k-space: k = (4π/3+ kx , ky) because α(K) = 0, making kx and ky small
perturbations. Additionally, we consider m≪ t2 a perturbative parameter.

5

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50

SciPost Phys. Codebases 50 (2025)

To call block_diagonalize , we need to define the subspaces for the block diagonalization,
so we compute the eigenvectors of the unperturbed Hamiltonian at the K point, H(α(K)=m=0).
Then, we substitute α(k) into the Hamiltonian, and call the block diagonalization routine using
that kx , ky , and m are perturbative parameters via the symbols argument.

vecs = H.subs({alpha: 0, m: 0}).diagonalize(normalize=True)[0]

H_tilde, U, U_adjoint = block_diagonalize(
H.subs({alpha: alpha_k}),
symbols=(k_x, k_y, m),
subspace_eigenvectors=[vecs[:, :2], vecs[:, 2:]] # AA, BB

)

The order of the variables in the perturbative series will be that of symbols . For ex-

ample, requesting the term ∝ ki
x k j

y ml from the effective Hamiltonian is done by calling

H_tilde[0, 0, i, j, l] , where the first two indices are the block indices (AA). The series

of the unitary transformation U and U† are also defined, and we may use them to transform
other operators. We collect corrections up to third order in momentum to compute the stan-
dard quadratic dispersion of bilayer graphene and trigonal warping. We query these terms
from H_tilde and those proportional to mass to obtain the effective Hamiltonian (shown as
produced by the code):2

H̃eff =

m
3t2

1
4t2
(−k2

x − 2ikx ky + k2
y)

3t2
1

4t2
(−k2

x + 2ikx ky + k2
y) −m

+

3mt2
1

2t2
2
(−k2

x − k2
y)

p
3t2

1
8t2
(k3

x − 5ik2
x ky + 9kx k2

y + 3ik3
y)p

3t2
1

8t2
(k3

x + 5ik2
x ky + 9kx k2

y − 3ik3
y)

3mt2
1

2t2
2
(k2

x + k2
y)

 .

The first term is the standard quadratic dispersion of gapped bilayer graphene. The second
term contains trigonal warping and the coupling between the gap and momentum. All the
terms take less than two seconds in a personal computer to compute.

2.2 Dispersive shift of a transmon qubit coupled to a resonator

The need for analytical effective Hamiltonians often arises in circuit quantum electrodynamics
(cQED) problems, which we illustrate by studying a transmon qubit coupled to a resonator [8].
Specifically, we choose the standard problem of finding the frequency shift of the resonator
due to its coupling to the qubit, a phenomenon used to measure the qubit’s state [30]. The
Hamiltonian of the system is given by

H = −ωt

�

a†
t at −

1
2

�

+
α

2
a†

t a†
t at at +ωr

�

a†
r ar +

1
2

�

− g(a†
t − at)(a

†
r − ar) , (2)

where at and ar are bosonic annihilation operators of the transmon and resonator, respectively,
andωt andωr are their frequencies. The transmon has an anharmonicity α, so that its energy
levels are not equally spaced. In presence of both the coupling g between the transmon and the
resonator and the anharmonicity, this Hamiltonian admits no analytical solution. We therefore
treat g as a perturbative parameter.

To deal with the infinite dimensional Hilbert space, we observe that the perturbation only
changes the occupation numbers of the transmon and the resonator by ±1. Therefore com-
puting n-th order corrections to the n0-th state allows to disregard states with any occupation

2The full code is available at https://pymablock.readthedocs.io/en/latest/tutorial/bilayer_graphene.html.

6

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50
https://pymablock.readthedocs.io/en/latest/tutorial/bilayer_graphene.html

SciPost Phys. Codebases 50 (2025)

numbers larger than n0 + n/2. We want to compute the second order correction to the levels
with occupation numbers of either the transmon or the resonator being 0 and 1. We accord-
ingly truncate the Hilbert space to the lowest 3 levels of the transmon and the resonator. The
resulting Hamiltonian is a 9× 9 matrix that we construct using Sympy [39].

Finally, to compute the energy corrections of the lowest levels, we call block_diagonalize

for each state separately, replicating a regular perturbation theory calculation for single wave-
functions. To do this, we observe that H0 is diagonal, and use subspace_indices to assign
the elements of its eigenbasis to the 4 subspaces of interest and the rest. This corresponds to a
multi-block diagonalization problem with 5 blocks. For example, to find the qubit-dependent
frequency shift of the resonator, χ, we start by computing the second order correction to |0t0r〉:

indices = [0, 1, 2, 3, 4, 4, 4, 4, 4] # 00 is the first state in the basis
H_tilde, *_ = block_diagonalize(H, subspace_indices=indices, symbols=[g])
H_tilde[0, 0, 2][0, 0] # 2nd order correction to 00

E(2)00 =
g2

−ωr +ωt
. (3)

Repeating this process for the states |1t0r〉, |0t1r〉, and |1t1r〉 requires requesting the terms
H_tilde[1, 1, 2][0, 0] , H_tilde[2, 2, 2][0, 0] , and H_tilde[3, 3, 2][0, 0] , and

yields the desired resonator frequency shift:

χ = (E(2)11 − E(2)10)− (E
(2)
01 − E(2)00)

= −
2g2

α+ωr −ωt
+

2g2

−α+ωr +ωt
−

2g2

ωr +ωt
+

2g2

ωr −ωt

= −
4αg2
�

αωt −ω2
r −ω

2
t

�

(ωr −ωt) (ωr +ωt) (−α+ωr +ωt) (α+ωr −ωt)
.

(4)

In this example, we have not used the rotating wave approximation, including the frequently
omitted counter-rotating terms ∼ ar at to illustrate the extensibility of Pymablock. Comput-
ing higher order corrections to the qubit frequency only requires increasing the size of the
truncated Hilbert space and requesting H_tilde[0, 0, n] to any order n.

2.3 Induced gap in a double quantum dot

Large systems pose an additional challenge due to the cubic scaling of linear algebra routines
with matrix size. To overcome this, Pymablock is equipped with an implicit method, which uti-
lizes the sparsity of the input and avoids the construction of the full transformed Hamiltonian.
We illustrate the efficiency of this method by applying it to a system of two quantum dots cou-
pled to a superconductor between them, shown in Fig. 3, and described by the Bogoliubov-de
Gennes Hamiltonian:

HBdG =

¨

(k2/2m−µsc)σz +∆σx , for L/3≤ x ≤ 2L/3 ,

(k2/2m−µn)σz , otherwise,
(5)

where the Pauli matrices σz and σx act in the electron-hole space, k is the 2D wave vector, m
is the effective mass, and ∆ the superconducting gap.

We use the Kwant package [40] to build the Hamiltonian of the system,3 which we define
over a square lattice of L×W = 200×40 sites. On top of this, we consider two perturbations:

3The full code is available at https://pymablock.readthedocs.io/en/latest/tutorial/induced_gap.html.

7

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50
https://pymablock.readthedocs.io/en/latest/tutorial/induced_gap.html

SciPost Phys. Codebases 50 (2025)

the barrier strength between the quantum dots and the superconductor, tb, and an asymmetry
of the dots’ potentials, δµ.

The system is large: it is a sparse array of size 63042× 63042, with 333680 non-zero ele-
ments, so even storing all the eigenvectors would take 60 GB of memory. The perturbations are
also sparse, with 632, and 126084 non-zero elements for the barrier strength and the poten-
tial asymmetry, respectively. The sparsity structure of the Hamiltonian and the perturbations
is shown in the left panel of Fig. 3, where we use a smaller system of L ×W = 8× 2 for visu-
alization. Therefore, we use sparse diagonalization [41] and compute only four eigenvectors
of the unperturbed Hamiltonian closest to zero energy, which are the Andreev states of the
quantum dots.

vals, vecs = scipy.sparse.linalg.eigsh(h_0, k=4, sigma=0)
vecs, _ = scipy.linalg.qr(vecs, mode="economic") # orthogonalize the vectors

We now call the block diagonalization routine and provide the computed eigenvectors.

H_tilde, *_ = block_diagonalize([h_0, barrier, dmu], subspace_eigenvectors=[vecs])

Because we only provide the low-energy subspace, Pymablock uses the implicit method.
Calling block_diagonalize is now the most time-consuming step because it requires pre-
computing several decompositions of the full Hamiltonian. It is, however, manageable and it
only produces a constant overhead of less than three seconds.

To compute the spectrum, we collect the lowest three orders in each parameter in an ap-
propriately sized tensor.

h_tilde = np.array(np.ma.filled(H_tilde[0, 0, :3, :3], fill_value).tolist())

This takes two more seconds to run, and we can now compute the low-energy spectrum after
rescaling the perturbative corrections by the magnitude of each perturbation.

def effective_energies(h_tilde, barrier, dmu):
barrier_powers = barrier ** np.arange(3).reshape(-1, 1, 1, 1)
dmu_powers = dmu ** np.arange(3).reshape(1, -1, 1, 1)
return scipy.linalg.eigvalsh(

np.sum(h_tilde * barrier_powers * dmu_powers, axis=(0, 1))
)

Finally, we plot the spectrum of the 2 Andreev states in Fig. 3. As expected, the crossing at
E = 0 due to the dot asymmetry is lifted when the dots are coupled to the superconductor. In
addition, we observe how the proximity gap of the dots increases with the coupling strength.

Computing the spectrum of the system for 3 points in parameter space would require the
same time as the total runtime of Pymablock in this example. This demonstrates the speed of
the implicit method and the efficiency of Pymablock’s algorithm.

2.4 Selective diagonalization

Lastly, we demonstrate the generality of Pymablock’s algorithm by applying it to decouple
arbitrary states in a generic Hamiltonian. This is an alternative to separating a Hamiltonian
into blocks, and it requires that the states to decouple are different in energy. To illustrate
this, we consider a 16 × 16 Hamiltonian H = H0 + H1 with H0 a diagonal matrix and H1 a
random Hermitian perturbation. Our goal is to construct an effective Hamiltonian whose only
matrix elements are those in a binary mask, which, without loss of generality, we choose to be
a smiley face.

8

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50

SciPost Phys. Codebases 50 (2025)

H00 +H10 +H01

H00

H10

H01

0 10−4
δµ

−5

0

5

E

×10−3

tb = 0.0

tb = 0.5

tb = 0.75µsc,∆µN, δµ µN, δµ

tb

L

W

Figure 3: Hamiltonian (left) and Andreev levels (right) of two quantum dots coupled
to a superconductor (inset). The barrier tb between the dots and the superconductor,
H10, and the asymmetry δµ between the dots’ potential, H01, are perturbations.

H0 +H1 Mask H̃

Figure 4: Selective diagonalization of a Hamiltonian with a random perturbation.

We apply the mask to the Hamiltonian by providing it as the fully_diagonalize argument

to block_diagonalize .4

H_tilde, *_ = block_diagonalize([H_0, H_1], fully_diagonalize={0: mask})

The argument fully_diagonalize is a dictionary where the keys label the blocks of the Hamil-
tonian, and the values are the masks that select the terms to keep in that block. We only used
one block in this example: the entire Hamiltonian. Finally, the effective Hamiltonian only
contains the terms in the mask, as shown in Fig. 4.

3 Perturbative block-diagonalization algorithm

3.1 Problem statement

Pymablock finds a series of the unitary transformation U (we use calligraphic letters to denote
series) that eliminates the off-diagonal components of the Hamiltonian

H = H0 +H′ , (6)

4The full code is available at https://pymablock.readthedocs.io/en/latest/tutorial/getting_started.html#
selective-diagonalization.

9

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50
https://pymablock.readthedocs.io/en/latest/tutorial/getting_started.html#selective-diagonalization
https://pymablock.readthedocs.io/en/latest/tutorial/getting_started.html#selective-diagonalization

SciPost Phys. Codebases 50 (2025)

with H′ = H′S +H′R containing an arbitrary number and orders of perturbations with block-
diagonal and block-offdiagonal components, respectively. Here and later we use the subscript
S to denote the selected part and R to denote remaining components of a series, with the
goal of the perturbation theory to obtain a Hamiltonian with only the selected part. In other
words, we aim to find a unitary transformation U that cancels the remaining part of the Hamil-
tonian. In different settings, selected and remaining parts may mean different things. In quasi-
degenerate perturbation theory, the Hilbert space is subdivided into A and B subspaces, which
makes H0 a block-diagonal matrix

H0 =

�

H0
AA 0

0 H0
BB

�

, (7)

and the goal of the perturbation theory is to eliminate the offdiagonal AB and BA blocks of H.
In this case the selected part is the block-diagonal part, and the remaining part is the block-
offdiagonal part. Differently, in the context of Rayleigh-Schrödinger perturbation theory, H0
is a diagonal matrix so that the selected part is the diagonal, and the remaining part of an
operator are all its matrix elements that are not on the diagonal.

To consider the problem in the most general setting, we only require the selected and
remaining parts of an operator to satisfy the following constraints:

1. The selected and remaining parts of an operator add to identity: A=AS +AR.

2. Taking either part of an operator is idempotent: (AS)S =AS .

3. Taking either part commutes with Hermitian conjugation: (AS)† = (A†)S .

4. The remaining part of any operator has no matrix elements within eigensubspaces of
H0. This is required to ensure that the perturbation theory is well-defined.

The separation of an operator into selected and remaining parts is a generalization of taking
block-diagonal and block-offdiagonal parts. In particular, the separation allows to choose any
subset of the offdiagonal matrix elements as remaining, as long as none of the matrix ele-
ments belong to an eigensubspace of H0. That none of the matrix elements belong to a same
eigensubspace of H0 becomes evident in the textbook quasi-degenerate perturbation theory,
where the corrections to energies and wavefunctions contain differences between energy of
the states from different subspaces. The main difference between our generalization and the
standard separation into block-diagonal and block-offdiagonal is that the product of a selected
part and remaining part of two operators may have a non-zero selected part: (ASBR)S ̸= 0,
while (AAABAB)AA = 0. The generality of the selected and remaining parts allows to consider
all perturbation theory methods with the same algorithm, including multi-block diagonaliza-
tion, selective diagonalization, and the Schrieffer–Wolff transformation. Several expressions
simplify if the selected part corresponds to a block-diagonal operator and simplify further if
there are only two subspaces. We keep track of these simplifications.

All the series we consider may be multivariate, and they represent sums of the form

A=
∞
∑

n1=0

∞
∑

n2=0

· · ·
∞
∑

nk=0

λ
n1
1 λ

n2
2 · · ·λ

nk
k An1,n2,...,nk

, (8)

where λi are the perturbation parameters and An1,n2,...,nk
are linear operators. The problem

statement, therefore, is finding U and H̃ such that

H̃ = U†HU , H̃R = 0 , U†U = 1 , (9)

10

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50

SciPost Phys. Codebases 50 (2025)

which is schematically shown in Fig. 1 for the case of two subspaces, where the selected parts
are AA and BB, and the remaining parts are AB and BA. Series multiply according to the Cauchy
product:

C =AB⇔ Cn =
∑

m+p=n

AmBp .

The Cauchy product is the most expensive operation in perturbation theory, because it involves
a large number of multiplications between potentially large matrices. For example, evaluating
n-th order of C requires ∼

∏

i ni ≡ N multiplications of the series elements.5 A direct com-
putation of all the possible index combinations in a product between three series ABC would
have a higher cost ∼ N2, however, if we use associativity of the product and compute this as
(AB)C, then the scaling of the cost stays ∼ N .

There are many ways to solve the problem (9) that give identical expressions for U and H̃.
We are searching for a procedure that satisfies two additional constraints:

• It has the same complexity scaling as a Cauchy product, and therefore ∼ N multiplica-
tions per additional order.

• It does not require multiplications by H0.

• It requires only one Cauchy product by HS , the selected part of H.

The first requirement is that the algorithm scaling is optimal: the desired expression at least
contains a Cauchy product of U and H. Therefore the complexity scaling of the complete
algorithm may not become lower than the complexity of a Cauchy product and we aim to
reach this lower bound. The second requirement is because in perturbation theory, n-th order
corrections to H̃ carry n energy denominators 1/(Ei−E j), where Ei and E j are the eigenvalues
of H0 belonging to different subspaces. Therefore, any additional multiplications by H0 must
cancel with additional energy denominators. Multiplying by H0 is therefore unnecessary work,
and it gives longer intermediate expressions. The third requirement we impose by considering
a case in which HR = 0, where HS must at least enter H̃ as an added term, without any
products. Moreover, because U depends on the entire Hamiltonian, there must be at least
one Cauchy product by H′S . The goal of our algorithm is thus to be efficient and to produce
compact results that do not require further simplifications.

3.2 Existing solutions

A common approach to constructing effective Hamiltonians in the 2 × 2 block case is to use
the Schrieffer–Wolff transformation [1]:

H̃ = eSHe−S ,

eS = 1+S + 1
2!
SS + 1

3!
SSS + · · · ,

(10)

where S =
∑

n Sn is an antihermitian polynomial series in the perturbative parameter, making
eS a unitary transformation. Requiring that H̃AB = 0 gives a recursive equation for Sn, whose
terms are nested commutators between the series of S and H. Similarly, the transformed
Hamiltonian is given by a series of nested commutators

H̃ =
∞
∑

j=0

1
j!

�

H,
∞
∑

n=0

Sn

�(j)

, (11)

5If both A and B are known in advance, fast Fourier transform-based algorithms can reduce this cost to
∼ N log N . In our problem, however, the series are constructed recursively and therefore this optimization is
impossible.

11

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50

SciPost Phys. Codebases 50 (2025)

where the superscript (j) denotes the j-th nested commutator [A, B](j) = [[A, B](j−1), B], with
[A, B](0) = A and [A, B](1) = AB−BA. Regardless of the specific implementation, this expression
does not meet either of our two requirements:

• The direct computation of the series elements requires∼ exp N multiplications, and even
an optimized one has a ∼ N2 scaling.

• Evaluating Eq. (11) contains multiplications by H0.

Additionally, while in the 2 × 2 block case the Schrieffer–Wolff transformation produces a
minimal unitary transformation, i.e. as close to identity as possible, this is not the case in the
multi-block case [26]. The generalization of this approach to multiple subspaces is an open
question [26].

Alternative parametrizations of the unitary transformation U require solving unitarity and
block diagonalization conditions too, but give rise to a different recursive procedure for the
series elements. For example, using hyperbolic functions

U = coshG + sinhG , G =
∞
∑

i=0

Gi , (12)

leads to different recursive expressions for Gi [13], but does not change the algorithm’s com-
plexity. On the other hand, using a polynomial series directly

U =
∞
∑

i=0

Ui , (13)

gives rise to another recursive equation for Ui [3, 12, 14, 15]. Still, this choice results in an
expression for H̃ whose terms include products by H0, and therefore requires additional sim-
plifications.

Another approach uses Wegner’s flow equation [19,20] to construct a continuous unitary
transformation (CUT) that depends smoothly on a fictitious parameter l, U(l). The goal is to
define a generator η(l) such that H(l) = U†(l)H(0)U(l) flows towards the desired effective
Hamiltonian:

dH(l)
dl

=
�

η(l),H(l)
�

, (14)

where U(l), H(l), and η(l) are once again series in the perturbative parameters. At l =∞,
the transformed Hamiltonian does not contain the undesired terms, H(∞) = H̃. Finding the
unitary amounts to solving a set of differential equations

dU(l)
dl

= η(l)U(l) . (15)

Together with the Eq. (14) and an appropriate choice of η, this gives a set of coupled differ-
ential equations, that become linear if solved order by order. The convergence and stability of
flow equations depends on the parameterization of the flow generator η, and multiple strate-
gies for this choice are known [23,42]. The CUT method is common in the study of many-body
systems, where one needs to either decompose the Hamiltonian into sets of quasiparticle cre-
ation and annihilation operators, or choose a different operator basis together with a set of
commutation rules. Despite the numerical complication of solving differential equations, CUT
extends beyond the perturbative regime [20,22,23].

The following three algorithms satisfy both of our requirements while solving a related
problem. First, density matrix perturbation theory [16, 17, 43] constructs the density matrix
ρ of a perturbed system as a power series with respect to a perturbative parameter:

ρ =
∞
∑

i=0

ρi . (16)

12

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50

SciPost Phys. Codebases 50 (2025)

The elements of the series are found by solving two recursive conditions, ρ2 = ρ and
[H,ρ] = 0, which avoid multiplications by H0 and require a single Cauchy product each. This
approach, however, deals with the entire Hilbert space, rather than the low-energy subspace,
and does not provide an effective Hamiltonian. Second, the perturbative similarity transform
by C. Bloch [2,18] constructs the effective Hamiltonian in a non-orthogonal basis, which pre-
serves the Hamiltonian spectrum while breaking its hermiticity. Third, the recursive Schrieffer–
Wolff algorithm [37] applies the Schrieffer–Wolff transformation to the output of lower-order
iterations, and calculates the effective Hamiltonian at a fixed perturbation strength, rather
than as a series. Finally, none of these linear scaling algorithms above handles more than
two subspaces. We thus identify the following open question: can we construct an effective
Hamiltonian with a linear scaling algorithm that produces compact expressions?

3.3 Pymablock’s algorithm

The first idea that Pymablock exploits is the recursive evaluation of the operator series, which
we illustrate by considering the unitarity condition. Let us separate the transformation U into
an identity and U ′ =W +V:

U = 1+U ′ = 1+W +V , W† =W , V† = −V . (17)

We use the unitarity condition U†U = 1 by substituting U ′ into it:

1= (1+U ′†)(1+U ′) = 1+U ′† +U ′ +U ′†U ′ . (18)

This immediately yields

W =
1
2
(U ′† +U ′) = −1

2
U ′†U ′ . (19)

Because U ′ has no 0-th order term, (U ′†U ′)n does not depend on the n-th order of U ′ nor W ,
and therefore Eq. (19) allows to compute W using the already available lower orders of U ′.
Alternatively, using Eq. (17) we could define W as a Taylor series in V:

W =
p

1+V2 − 1≡ f (V)≡
∑

n

anV2n .

A direct computation of all possible products of terms in this expression requires ∼ exp N mul-
tiplications. A more efficient approach for evaluating this expression introduces each term in
the sum as a new series An+1 = AAn and reuses the previously computed results. This opti-
mization brings the exponential cost down to∼ N2. However, we see that the Taylor expansion
approach is both more complicated and more computationally expensive than the recurrent
definition in Eq. (19). Therefore, we use Eq. (19) to efficiently compute W . More generally,
a Cauchy product AB where A and B have no 0-th order terms depends on A1, . . . ,An−1 and
B1, . . . ,Bn−1. This makes it possible to use AB in a recurrence relation, a property that we
exploit throughout the algorithm.

To compute U ′ we also need to find V , which is defined by the requirement H̃R = 0.
Additionally, we constrain V to have no selected part: VS = 0, a choice we make to minimize
the norm of U ′, and satisfy the least action principle [44]. That VS = 0 minimizes the norm of
U ′ follows from the following statements:

1. The norm of a series is minimal, when each of the subsequent terms is chosen to be
minimal order by order.

2. The Hermitian part of U ′, Wn, is determined by the unitarity condition (19) at each order
from lower orders of U ′.

13

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50

SciPost Phys. Codebases 50 (2025)

3. The norm of Wn+Vn is minimal, when the norm of Vn is minimal because of Hermiticity
properties of W and V .

4. Finally, because VR is fixed by the requirement H̃R = 0, VS = 0 provides the minimal
norm of U ′.

In the 2 × 2 block case, this choice makes W block-diagonal and ensures that the resulting
unitary transformation is equivalent to the Schrieffer–Wolff transformation (see section 3.4).
In general, however, WR ̸= 0.

The remaining condition for finding a recurrent relation for U ′ is that the transformed
Hamiltonian

H̃ = U†HU =HS +U ′†HS +HSU ′ +U ′†HSU ′ +U†H′RU , (20)

has only the selected part H̃R = 0, a condition that determines V . Here we used U = 1+ U ′
and H =HS +H′R, since H0 is has no remaining part by definition. Because we want to avoid
products by HS , we need to get rid of the terms that contain it by replacing them with an
alternative expression. Our strategy is to define an auxiliary operator X that we can compute
without ever multiplying by HS . Like U ′, X needs to be defined via a recurrence relation,
which we determine later. Because Eq. (20) contains HS multiplied by U ′ from the left and
from the right, eliminating HS requires moving it to the same side. To achieve this, we choose
X = Y +Z to be the commutator between U ′ and HS:

X ≡ [U ′,HS] = Y +Z , Y ≡ [V ,HS] = Y† , Z ≡ [W ,HS] = −Z† . (21)

If the selected part AS corresponds to a block-diagonal operator, Y is block off-diagonal. Ad-
ditionally, in the 2× 2 block case Z is block-diagonal. We use HSU ′ = U ′HS −X to move HS
through to the right and find

H̃ =HS +U ′†HS + (HSU ′) +U ′†HSU ′ +U†(H′RU)
=HS +U ′†HS +U ′HS −X +U ′†(U ′HS −X) +U†H′RU
=HS + (U ′† +U ′ +U ′†U ′)HS −X −U ′†X +U†H′RU
=HS −X −U ′†X +U†H′RU ,

(22)

where the terms multiplied by HS cancel according to Eq. (18). The transformed Hamilto-
nian does not contain multiplications by HS anymore, but it does depend on X , an auxiliary
operator whose recurrent definition we do not know yet. To find it, we first focus on its anti-
Hermitian part, Z. Since recurrence relations are expressions whose right-hand side contains
Cauchy products between series, we need to find a way to make a product appear. We do so
by using the unitarity condition U ′† +U ′ = −U ′†U ′ to obtain the recursive definition of Z:

Z = 1
2
(X −X †)

=
1
2

�

(U ′ +U ′†)HS −HS(U ′ +U ′†)
�

=
1
2

�

−U ′†(U ′HS −HSU ′) + (U ′HS −HSU ′)†U ′
�

=
1
2
(−U ′†X +X †U ′) .

(23)

Similar to computing Wn, computing Zn requires lower-orders of X and U ′. Then, we compute
the Hermitian part of X by requiring that H̃R = 0 in the Eq. (22) and find

YR = (U†H′RU −U ′†X −Z)R . (24)

14

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50

SciPost Phys. Codebases 50 (2025)

Once again, despite X enters the right hand side, because all the terms lack 0th order, this
defines a recursive relation Y . To fix YS , we use its definition (21), which gives

[V , H0] = Y − [V ,H′S] , (25)

which is a continuous-time Lyapunov equation for V . In order for this equation to be satisfiable,
the selected part of the right hand side must vanish, since the left hand side has no selected
part. Therefore we find:

YS = [V ,H′S]S , (26)

and it vanishes if the selected part corresponds to a block-diagonal matrix.
The final part is straightforward. Finding V from Y amounts to solving a Sylvester’s equa-

tion, Eq. (26), which we only need to solve once for every new order. This is the only step in
the algorithm that requires a direct multiplication by H′S . In the eigenbasis of H0, the solution
of Sylvester’s equation is Vn,i j = (YR − [V ,H′S]R)n,i j/(Ei − E j), where Ei are the eigenvalues
of H0. However, even if the eigenbasis of H0 is not available, there are efficient numerical
algorithms to solve Sylvester’s equation (see Sec. 4.2). An alternative is to decompose the
Hamiltonian into its eigenoperator basis. This approach avoids specifying the eigenbasis of
H0, and therefore it is better suited for second-quantized Hamiltonians [45,46].

We now have the complete algorithm:

1. Define series U ′ and X and make use of their block structure and Hermiticity.

2. To define the hermitian part of U ′, use W = −U ′†U ′/2.

3. To find the antihermitian part of U ′, solve Sylvester’s equation
[V , H0] = (Y − [V ,H′S])R. This requires X .

4. To find the antihermitian part of X , define Z = (−U ′†X +X †U ′)/2.

5. For the Hermitian part of X , use Y = (−U ′†X +U†H′U)R + [V ,H′S]S .

6. Compute the effective Hamiltonian as H̃ ≡ H̃S =HS −X −U ′†X +U†H′RU .

3.4 Equivalence to Schrieffer–Wolff transformation

Pymablock’s algorithm applied to 2× 2 block-diagonalization and the Schrieffer–Wolff trans-
formation both find a unitary transformation U such that H̃R = H̃AB = 0. They are therefore
equivalent up to a gauge choice in each subspace, A and B. We establish the equivalence
between the two by demonstrating that this gauge choice is the same for both algorithms.
The Schrieffer–Wolff transformation uses U = expS, where S = −S† and SAA = SBB = 0,
this restriction makes the result unique [2]. On the other hand, our algorithm produces the
unique block-diagonalizing transformation with a block structure UAA = UAA†, UBB = UBB† and
UAB = −U†

BA. The uniqueness is a consequence of the construction of the algorithm, where cal-
culating every order gives a unique solution satisfying these conditions. To see that the two
solutions are identical, we expand expS into Taylor series. In the resulting series every term
containing a product of an even number of terms of S is a Hermitian, block-diagonal matrix,
while every term containing a product of an odd number of terms of S is an anti-Hermitian
block off-diagonal matrix. Therefore expS has the same structure as U above. Because both
series are fixed by the hermiticity constraints on their block structure, we conclude that expS
from conventional Schrieffer–Wolff transformation is identical to U found by our algorithm.

15

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50

SciPost Phys. Codebases 50 (2025)

3.5 Extra optimization: common subexpression elimination

While the algorithm of Sec. 3.3 satisfies our requirements, we improve it further by reusing
products that are needed in several places, such that the total number of matrix multiplications
is reduced. Firstly, we rewrite the expressions for Z in Eq. (23) and H̃ in Eq. (22) by utilizing
the Hermitian conjugate of U ′†X without recomputing it:

Z = 1
2

�

(−U ′†X)− h.c.
�

, H̃ =HS +U†H′RU − (U ′†X + h.c.)/2−YS ,

where h.c. is the Hermitian conjugate, and Z drops out from H̃ because it is antihermitian.
Additionally, we reuse the repeated A≡H′RU ′ in

U†H′RU =H′R +A+A† +U ′†A . (27)

Next, we observe that some products from the U†HRU term appear both in X in Eq. (24) and
in H̃ (22). To avoid recomputing these products, we introduce B = X −H′R −A and define
the recursive algorithm using B instead of X . With this definition, we compute the remaining
part of B as:

BR =
�

Y +Z −H′R −A
�

R

=
�

A† +U ′†A−U ′†X
�

R

=
�

U ′†H′R +U ′†A−U ′†X
�

R

= −(U ′†B)R ,

(28)

where we also used Eq. (24) and the definition of A. The selected part of B, on the other
hand, is given by

BS =
�

X −H′R −A
�

S

=
�

1
2

�

(−U ′†X)− h.c.
�

+Y −A
�

S

=
�

1
2

��

−U ′†[X −H′R −A]
�

− h.c.
�

+Y − 1
2

�

A† +A
�

+
1
2

�

(−U ′†A)− h.c.
�

�

S

=
�

1
2

�

(−U ′†B)− h.c.
�

+
�

VH′S + h.c
�

−
1
2

�

A† + h.c.
�

�

S
,

(29)

where we used Eq. (23) and that U ′†A is Hermitian. Using B changes the relation for V in
Eq. (26) to

[V , H0] =
�

B−H′ −A− [V ,H′S]
�

R . (30)

Finally, we combine Eq. (22), Eq. (27), Eq. (29) and Eq. (28) to obtain the final expression for
the effective Hamiltonian:

H̃S =HS +
1
2

�

A−U ′†B+ 2VH′S + h.c.
�

S . (31)

Together with the series U ′ in Eqs. (19,30), A = H′RU ′, and B in Eqs. (29,28), this equation
defines the optimized algorithm.

4 Implementation

4.1 The data structure for block operator series

The optimized algorithm from the previous section requires constructing 14 operator series,
whose elements are computed using a collection of recurrence relations. This warrants defin-
ing a specialized data structure suitable for this task that represents a multidimensional series

16

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50

SciPost Phys. Codebases 50 (2025)

of operators. Because the recurrent relations are block-wise, the data structure needs to keep
track of separate blocks. In order to support varied use cases, the actual representation of
the operators needs to be flexible: the block may be dense arrays, sparse matrices, symbolic
expressions, or more generally any object that defines addition and multiplication. Finally, the
series needs to be queryable by order and block, so that it supports a block-wise multivariate
Cauchy product—the main operation in the algorithm.

The most straightforward way to implement a perturbation theory calculation is to write a
function that has the desired order as an argument, computes the series up to that order, and
returns the result. This makes it hard to reuse already computed terms for a new computation,
and becomes complicated to implement in the multidimensional case when different orders in
different perturbations are needed. We find that a recursive approach addresses these issues:
within this paradigm, each series needs to define how its entries depend on lower-order terms.

To address these requirements, we define a BlockSeries Python class and use it to repre-
sent the series of U , H, and H̃, as well as the intermediate series used to define the algorithm.
The objects of this class are equipped with a function to compute their elements and it stores
the already computed results in a dictionary. Storing the results for reuse is necessary to op-
timize the evaluation of higher order terms and it allows to request additional orders without
restarting the computation. For example, the definition of the BlockSeries for H̃ has the
following form:

H_tilde = BlockSeries(
shape=(2, 2), # 2x2 block matrix
n_infinite=n, # number of perturbative parameters
eval=compute_H_tilde, # function to compute the elements
name="H_tilde",
dimension_names=("lambda", ...), # parameter names

)

Here compute_H_tilde is a function implementing Eq. (31) by querying other series objects.

Calling H_tilde[0, 0, 2] , the second order perturbation∼ λ2 of the AA block, then does the
following:

1. Evaluates compute_H_tilde(0, 0, 2) if it is not already computed.

2. Stores the evaluation result in a dictionary.

3. Returns the result.

To conveniently access multiple orders at once, we implement NumPy array indexing so that
H_tilde[0, 0, :3] returns a NumPy masked array array with the orders ∼ λ0, ∼ λ1, and

∼ λ2 of the AA block. The masking allows to support a common use case where some orders
of a series are zero, so that they are omitted from the computations. We expect that the
BlockSeries data structure is suitable to represent a broad class of perturbative calculations,

and we plan to extend it to support more advanced features in the future.
We utilize BlockSeries to implement multiple other optimizations. For example, we ex-

ploit Hermiticity when computing the Cauchy product of U ′†U ′ in Eq. (19), by only evaluating
half of the matrix products, and then complex conjugate the result to obtain the rest. Similarly,
for Hermitian and anti-Hermitian series, like the off-diagonal blocks of U ′, we only compute
the AB blocks, and use the conjugate transpose to obtain the BA blocks. This approach should
also allow us to implement efficient handling of symmetry-constrained Hamiltonians, where
some blocks either vanish or are equal to other blocks due to a symmetry. Moreover, using
BlockSeries with custom objects yields additional information about the algorithm and ac-

commodates its further development. Specifically, we have used a custom object with a counter

17

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50

SciPost Phys. Codebases 50 (2025)

to measure the algorithm complexity (see also Sec. 5) and to determine which results are only
used once so that they can be immediately discarded from storage.

4.2 The implicit method for large sparse Hamiltonians

A distinguishing feature of Pymablock is its ability to handle large sparse Hamiltonians, that
are too costly to diagonalize, as illustrated in Sec. 2.3. Specifically, we consider the situations
when the size NE of the subspace of interest—explicit subspace—is small compared to the
entire Hilbert space, so that obtaining the basis ΨE of the explicit subspace is feasible using
sparse diagonalization. The projector on this subspace PE = Ψ

†
EΨE is then a low-rank matrix,

a property that we exploit to avoid constructing the matrix representation of operators in the
other, implicit, subspace.

The key tool to solve this problem is the projector approach introduced in Ref. [47], which
introduces an equivalent extended Hamiltonian using the projector PI = 1−PA onto the implicit
subspace:

H̄ =
�

Ψ†
EHΨE Ψ†

EHPI
PIHΨE PIHPI

�

. (32)

In other words, the explicit subspace is written in the basis of ΨE , while the basis of the implicit
subspace is the same as the original complete basis of H to preserve its sparsity. The extended
Hamiltonian projects out the E-degrees of freedom from the implicit subspace to avoid dupli-
cate solutions in H̄, which introduces NE eigenvectors with zero eigenvalues. Introducing H̄
allows to multiply by operators of a form PI HnPI efficiently by using the low-rank structure
of PE . In the code we represent the operators of the implicit subspace as LinearOperator

objects from the SciPy package [41], enabled by the ability of the BlockSeries to store ar-
bitrary objects. Storing the remaining blocks of H̄ as dense matrices—efficient because these
are small and dense—finishes the implementation of the Hamiltonian.

To solve the Sylvester’s equation we write it for every row of V EI
n separately:

V EI
n,i j(Ei −H0) = Y EI

n, j . (33)

This equation has a solution despite Ei − H0 not being invertible because Y EI
n PA = 0. We

solve this equation using the MUMPS sparse solver [48,49], which prepares an efficient sparse
LU-decomposition of Ei − H0, or the KPM approximation of the Green’s function [50]. Both
methods work on sparse Hamiltonians with millions of degrees of freedom.

4.3 Code generation

An efficient computation of a perturbative block-diagonalization requires a significant amount
of repeated optimizations. These include keeping track of the Hermiticity of involved series,
applying the simplifications due to block-diagonalization and the presence of only two blocks,
or deletion of series terms that are only used once. To separate the conceptual definition of the
algorithm from these optimizations, we designed the code generation system that accepts a
high-level description of the algorithm written in a domain-specific language and outputs the
optimized Python code using the Python parser and the manipulation of the Python abstract
syntax tree. For example, the definition of the series B from Eqs. (29,28) is written as:

with "B":
start = 0
if diagonal:

("U'† @ B" - "U'† @ B".adj + "H'_offdiag @ U'" + "H'_offdiag @ U'".adj) /
-2,→

18

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50

SciPost Phys. Codebases 50 (2025)

if diagonal:
zero if commuting_blocks[index[0]] else "V @ H'_diag" + "V @ H'_diag".adj

if offdiagonal:
-"U'† @ B"

The corresponding compiled function for evaluating the terms of B begins with

def series_eval(*index):
which = linear_operator_series if use_linear_operator[index[:2]] else series
result = zero
if index[0] == index[1]:

result = _zero_sum(
result,
diag(

_safe_divide(
_zero_sum(

which["U'† @ B"][index], -Dagger(which["U'† @ B"][index]),
which["H'_offdiag @ U'"][index],
Dagger(which["H'_offdiag @ U'"][index]),

), -2,
), index,

),
)

...

Here we only show the beginning of the generated function to illustrate the correspondence
between the high-level description and the generated code.

The code generation system has accommodated multiple rewrites of the algorithm during
the development. We anticipate that it will enable treating different types of perturbative com-
putations or other related algorithms, such as the derivative removal by adiabatic gate (DRAG)
algorithm [51,52]. Contrary to the perturbation theory setting, DRAG requires that the time-
dependent Hamiltonian is block-diagonal in the rotating frame, and it achieves this goal by
adding a series of corrections to the original Hamiltonian. Its overall setting, however, is sim-
ilar to time-dependent perturbation theory in that it amounts to solving a system of recurrent
algebraic equations. Our preliminary research already demonstrates that our code generation
framework allows for a generalization of our work to the time-dependent perturbation theory,
and we are confident that it applies to the DRAG algorithm as well.

5 Benchmark

To the best of our knowledge, there are no other packages implementing arbitrary order quasi-
degenerate perturbation theory. Literature references provide explicit expressions for the 2×2
effective Hamiltonian up to fourth order, together with the procedure for obtaining higher
order expressions [5]. Because the full reference expressions are lengthy,6 we do not provide
them, but for example at 4-th order the effective Hamiltonian is a sum of several expressions
of the form:

∑

m′′m′′′ l

H ′
mm′′

H ′
m′′m′′′

H ′
m′′′ l

H ′
lm′

(Em′′ − El)(Em′′′ − El)(Em − El)
, (34)

where the m-indices label states from the A-subspace and l-indices label the states from the
B-subspace. More generally, at n-th order each term is a product of n matrix elements of the

6The full expression takes almost a page of text.

19

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50

SciPost Phys. Codebases 50 (2025)

2 4 6 8
n

0

100

200
#

M
at

ri
x

p
ro

d
u

ct
s

H1

Hoffdiag,1

2 4 6 8
n

H′

H′offdiag

Figure 5: Matrix products required to compute H̃AA
n for a dense and block off-diagonal

first-order perturbation (left) and a dense and block off-diagonal perturbative series
with terms of all orders present (right).

Hamiltonian and n−1 energy denominators. Directly carrying out the summation over all the
states requires O(N2

A N n−1
B) operations, where NA and NB are the number of states in the two

subspaces. In other words, the direct computation scales worse than a matrix product with
the problem size. Formulating Eq. (34) as n−1 matrix products combined with n−1 solutions
of Sylvester’s equation, brings this complexity down to O((n−1)×NAN2

B). This optimization,
together with the hermiticity of the sum, allows us to evaluate the reference expressions for
the effective Hamiltonian for 2-nd, 3-rd, and 4-th order using 1, 4, and 27 matrix products,
respectively. Pymablock’s algorithm yields the following expressions for the first four orders
of the effective Hamiltonian:7

Y1,AB = H1,AB ,

H̃2,AA = H1,ABV †
1 /2+ h.c. ,

Y2,AB = V1H1,BB −H†
1,AAV1 ,

H̃3,AA = H1,ABV †
2 + h.c. ,

Y3,AB = −
V1V †

1 H†
1,BA

2
+ V2H1,BB −

�

H1,ABV †
1 + V1H†

1,AB

�

V1

2
−H†

1,AAV2 ,

H̃4,AA =
H1,ABV †

3

2
+

V1V †
1

�

H1,ABV †
1 + V1H†

1,AB

�

8
+ h.c. ,

(35)

where Vn are the solutions of Sylvester’s equation with Yn,AB as the right-hand side. These
expressions utilize 1, 3, and 11, matrix products to obtain the same orders of the effective
Hamiltonian. The advantage of the Pymablock algorithm becomes even more pronounced at
higher orders or with multiple perturbative parameters due to the exponential growth of the
number of terms in the reference expressions. While finding the optimized implementation
from the reference expressions is possible for the 3-rd order, we expect it to be extremely
challenging for the 4-th order, and essentially impossible to do manually for higher orders.
Moreover, because the BlockSeries class tracks absent terms, in practice the number of ma-
trix products depends on the sparsity of the block structure of the perturbation, as shown in
Fig. 5.

The efficiency of Pymablock becomes especially apparent when applied to sparse numer-
ical problems, similar to Sec. 2.3. We demonstrate the performance of the implicit method
by using it to compute the low-energy spectrum of a large tight-binding model, and compar-

7The output is generated by the algorithm, with manual modifications only done for formatting.

20

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50

SciPost Phys. Codebases 50 (2025)

δµ

E
O(δµ0)

δµ

O(δµ1)

δµ

O(δµ2)

δµ

O(δµ3)

0 1/2 1Time (s)

n = 3
n = 2

LU
Sparse

Figure 6: Top panels: band structure of the perturbative effective Hamiltonian
(black) of a tight-binding model compared to exact sparse diagonalization (gray).
Bottom panel: a comparison of the Pymablock’s time cost with sparse diagonaliza-
tion. Most of the time is spent in the LU decomposition of the Hamiltonian (red).
The entire cost of the implicit method is lower than a single sparse diagonalization
(gray). The operations of negligible cost are not shown. The bars length corresponds
to the average time cost over 40 runs, and the error bars show the standard devia-
tion.

ing Pymablock’s time cost to that of sparse diagonalization. We define a 2D square lattice of
52 × 52 sites with nearest-neighbor hopping and a random onsite potential µ(r). The per-
turbation δµ(r) interpolates between two different disorder realizations. For the sake of an
illustration, we choose the system’s parameters such that the dispersion of the lowest few lev-
els with δµ features avoided crossings and an overall nonlinear shape, whose details are not
relevant. Similar to Sec. 2.3, constructing the effective Hamiltonian involves three steps. First,
we compute the 10 lowest states of the unperturbed Hamiltonian using sparse diagonalization.
Second, block_diagonalize computes a sparse LU decomposition of the Hamiltonian at each

of the 10 eigenenergies. Third, we compute corrections H̃1, H̃2, and H̃3 to the effective Hamil-
tonian, each being a 10× 10 matrix. Each of these steps is a one-time cost, see Fig. 6. Finally,
to compare the perturbative calculation to sparse diagonalization, we construct the effective
Hamiltonian H̃ = H0 + δµH̃1 + δµ2H̃2 + δµ3H̃3 and diagonalize it to obtain the low-energy
spectrum for a range of δµ. This has a negligible cost compared to constructing the series.
The comparison is shown in Fig. 6. We observe that while the second order results are already
very close to the exact spectrum, the third order corrections fully reproduce the sparse diago-
nalization. At the same time, the entire cost of computing the perturbative band structure for
a range of δµ is lower than computing a single additional sparse diagonalization.

6 Conclusion

We developed an algorithm for constructing an effective Hamiltonian that combines advan-
tages of different perturbative expansions. The main building block of our approach is a set
of recurrence relations that define several series that depend on each other and combine into

21

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50

SciPost Phys. Codebases 50 (2025)

the effective Hamiltonian. Our algorithm constructs the same effective Hamiltonians as the
Schrieffer–Wolff transformation [1] in the case of 2 subspaces, while keeping the linear scaling
per extra order similar to the density matrix perturbation theory [16,17] or the non-orthogonal
perturbation theory [18]. Its expressions minimize the number of matrix multiplications per
order, making it appealing both for symbolic and numerical computations. Pymablock’s algo-
rithm performs multi-block diagonalization and selective diagonalization with a single opti-
mized algorithm.

We provide a Python implementation of the algorithm in the Pymablock package [53].
The package is thoroughly tested (95% test coverage as of version 2.1), becoming a reliable
tool for constructing effective Hamiltonians that combine multiple perturbations to high or-
ders. The core of the Pymablock interface is the BlockSeries class that handles arbitrary
objects as long as they support algebraic operations. This enables Pymablock’s construction of
effective models for large tight-binding models using its implicit method as well as for second
quantized Hamiltonians. As of version 2.1, applying Pymablock to second quantized Hamilto-
nians requires the user to provide a custom solver of the Lyapunov equation, which we plan to
streamline in future versions. It also allows Pymablock to solve both symbolic and numerical
problems in diverse physical settings, and potentially to incorporate it into existing packages,
such as scqubits [35], QuTiP [54,55], or dft2kp [56].

Beyond the Schrieffer–Wolff transformation, the Pymablock package provides a founda-
tion for defining other perturbative expansions. We anticipate extending it to time-dependent
problems, where the different regimes of the time-dependent drive modify the recurrence re-
lations that need to be solved [10,57]. Applying the same framework to problems with weak
position dependence would allow to construct a nonlinear response theory of quantum ma-
terials. These two extensions are active areas of research [7, 46, 51, 52, 58, 59]. Finally, we
expect that in the many-particle context the same framework supports implementing different
flavors of diagrammatic expansions.

Acknowledgments

We thank Valla Fatemi and Antonio Manesco for feedback on the manuscript. We also thank
David P. DiVincenzo for motivating and helpful discussions regarding the multi-block diago-
nalization algorithm.

Data availability The code used to produce the reported results is available on Zenodo [53].

Author contributions A. R. A. had the initial idea and oversaw the project. All authors
developed the algorithm. I. A. D., S. M., H. K. K, and A. R. A. wrote the package. I. A. D. and
A. R. A. wrote the paper.

Funding information This research was supported by the Netherlands Organization for Sci-
entific Research (NWO/OCW) as part of the Frontiers of Nanoscience program, a NWO VIDI
grant 016.Vidi.189.180, and OCENW.GROOT.2019.004. D.V. acknowledges funding from the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Ex-
cellence Strategy through the Würzburg-Dresden Cluster of Excellence on Complexity and
Topology in Quantum Matter – ct.qmat (EXC 2147, project-ids 390858490 and 392019).

22

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50

SciPost Phys. Codebases 50 (2025)

References

[1] J. R. Schrieffer and P. A. Wolff, Relation between the Anderson and Kondo Hamiltonians,
Phys. Rev. 149, 491 (1966), doi:10.1103/PhysRev.149.491.

[2] S. Bravyi, D. P. DiVincenzo and D. Loss, Schrieffer-Wolff transformation for quantum many-
body systems, Ann. Phys. 326, 2793 (2011), doi:10.1016/j.aop.2011.06.004.

[3] P.-O. Löwdin, Studies in perturbation theory. IV. Solution of eigenvalue problem by projection
operator formalism, J. Math. Phys. 3, 969 (1962), doi:10.1063/1.1724312.

[4] J. M. Luttinger and W. Kohn, Motion of electrons and holes in perturbed periodic fields,
Phys. Rev. 97, 869 (1955), doi:10.1103/PhysRev.97.869.

[5] R. Winkler, Spin-orbit coupling effects in two-dimensional electron and hole sys-
tems, Springer, Berlin, Heidelberg, Germany, ISBN 9783540011873 (2003),
doi:10.1007/b13586.

[6] E. McCann and M. Koshino, The electronic properties of bilayer graphene, Rep. Prog. Phys.
76, 056503 (2013), doi:10.1088/0034-4885/76/5/056503.

[7] B. A. Bernevig, Z.-D. Song, N. Regnault and B. Lian, Twisted bilayer graphene. I. Matrix
elements, approximations, perturbation theory, and a k · p two-band model, Phys. Rev. B
103, 205411 (2021), doi:10.1103/PhysRevB.103.205411.

[8] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson and W. D. Oliver, A
quantum engineer’s guide to superconducting qubits, Appl. Phys. Rev. 6, 021318 (2019),
doi:10.1063/1.5089550.

[9] J. Romhányi, G. Burkard and A. Pályi, Subharmonic transitions and Bloch-Siegert
shift in electrically driven spin resonance, Phys. Rev. B 92, 054422 (2015),
doi:10.1103/PhysRevB.92.054422.

[10] M. Malekakhlagh, E. Magesan and D. C. McKay, First-principles analysis of cross-resonance
gate operation, Phys. Rev. A 102, 042605 (2020), doi:10.1103/physreva.102.042605.

[11] A. Petrescu, C. Le Calonnec, C. Leroux, A. Di Paolo, P. Mundada, S. Suss-
man, A. Vrajitoarea, A. A. Houck and A. Blais, Accurate methods for the analy-
sis of strong-drive effects in parametric gates, Phys. Rev. Appl. 19, 044003 (2023),
doi:10.1103/physrevapplied.19.044003.

[12] J. H. Van Vleck, On σ-type doubling and electron spin in the spectra of diatomic molecules,
Phys. Rev. 33, 467 (1929), doi:10.1103/PhysRev.33.467.

[13] I. Shavitt and L. T. Redmon, Quasidegenerate perturbation theories. A canonical Van Vleck
formalism and its relationship to other approaches, J. Chem. Phys. 73, 5711 (1980),
doi:10.1063/1.440050.

[14] D. J. Klein, Degenerate perturbation theory, J. Chem. Phys. 61, 786 (1974),
doi:10.1063/1.1682018.

[15] K. Suzuki and R. Okamoto, Degenerate perturbation theory in quantum mechanics, Prog.
Theor. Phys. 70, 439 (1983), doi:10.1143/PTP.70.439.

[16] R. McWeeny, Perturbation theory for the Fock-Dirac density matrix, Phys. Rev. 126, 1028
(1962), doi:10.1103/PhysRev.126.1028.

23

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1016/j.aop.2011.06.004
https://doi.org/10.1063/1.1724312
https://doi.org/10.1103/PhysRev.97.869
https://doi.org/10.1007/b13586
https://doi.org/10.1088/0034-4885/76/5/056503
https://doi.org/10.1103/PhysRevB.103.205411
https://doi.org/10.1063/1.5089550
https://doi.org/10.1103/PhysRevB.92.054422
https://doi.org/10.1103/physreva.102.042605
https://doi.org/10.1103/physrevapplied.19.044003
https://doi.org/10.1103/PhysRev.33.467
https://doi.org/10.1063/1.440050
https://doi.org/10.1063/1.1682018
https://doi.org/10.1143/PTP.70.439
https://doi.org/10.1103/PhysRev.126.1028

SciPost Phys. Codebases 50 (2025)

[17] L. A. Truflandier, R. M. Dianzinga and D. R. Bowler, Notes on density matrix perturbation
theory, J. Chem. Phys. 153, 164105 (2020), doi:10.1063/5.0022244.

[18] C. Bloch, Sur la théorie des perturbations des états liés, Nucl. Phys. 6, 329 (1958),
doi:10.1016/0029-5582(58)90116-0.

[19] F. Wegner, Flow-equations for Hamiltonians, Ann. Phys. 506, 77 (1994),
doi:10.1002/andp.19945060203.

[20] S. Kehrein, The flow equation approach to many-particle systems, Springer, Berlin, Heidel-
berg, Germany, ISBN 9783540340676 (2006), doi:10.1007/3-540-34068-8.

[21] C. Knetter and G. S. Uhrig, Perturbation theory by flow equations: Dimerized and frus-
trated S= 1/2 chain, Eur. Phys. J. B - Condens. Matter Complex Syst. 13, 209 (2000),
doi:10.1007/s100510050026.

[22] J. Oitmaa, C. Hamer and W. Zheng, Series expansion methods for strongly interacting lat-
tice models, Cambridge University Press, Cambridge, UK, ISBN 9780521842426 (2006),
doi:10.1017/CBO9780511584398.

[23] H. Krull, N. A. Drescher and G. S. Uhrig, Enhanced perturbative continuous unitary trans-
formations, Phys. Rev. B 86, 125113 (2012), doi:10.1103/PhysRevB.86.125113.

[24] J. Wurtz, P. W. Claeys and A. Polkovnikov, Variational Schrieffer-Wolff transfor-
mations for quantum many-body dynamics, Phys. Rev. B 101, 014302 (2020),
doi:10.1103/PhysRevB.101.014302.

[25] Z. Zhang, Y. Yang, X. Xu and Y. Li, Quantum algorithms for Schrieffer-Wolff transformation,
Phys. Rev. Res. 4, 043023 (2022), doi:10.1103/PhysRevResearch.4.043023.

[26] I. N. H. Mankodi and D. P. DiVincenzo, Perturbative power series for block diagonalisation
of Hermitian matrices, (arXiv preprint) doi:10.48550/arXiv.2408.14637.

[27] E. Magesan and J. M. Gambetta, Effective Hamiltonian models of the cross-resonance gate,
Phys. Rev. A 101, 052308 (2020), doi:10.1103/PhysRevA.101.052308.

[28] X. Xu, M., C. Vignes, M. H. Ansari and J. Martinis, Lattice Hamiltonians and
stray interactions within quantum processors, Phys. Rev. Appl. 22, 064030 (2024),
doi:10.1103/PhysRevApplied.22.064030.

[29] C. Knetter, K. P. Schmidt and G. S. Uhrig, The structure of operators in effective
particle-conserving models, J. Phys. A: Math. Gen. 36, 7889 (2003), doi:10.1088/0305-
4470/36/29/302.

[30] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin and R. J. Schoelkopf, Cavity quantum
electrodynamics for superconducting electrical circuits: An architecture for quantum com-
putation, Phys. Rev. A 69, 062320 (2004), doi:10.1103/PhysRevA.69.062320.

[31] G. Zhu, D. G. Ferguson, V. E. Manucharyan and J. Koch, Circuit QED with flux-
onium qubits: Theory of the dispersive regime, Phys. Rev. B 87, 024510 (2013),
doi:10.1103/PhysRevB.87.024510.

[32] X. Li et al., Tunable coupler for realizing a controlled-phase gate with dynamically
decoupled regime in a superconducting circuit, Phys. Rev. Appl. 14, 024070 (2020),
doi:10.1103/PhysRevApplied.14.024070.

24

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50
https://doi.org/10.1063/5.0022244
https://doi.org/10.1016/0029-5582(58)90116-0
https://doi.org/10.1002/andp.19945060203
https://doi.org/10.1007/3-540-34068-8
https://doi.org/10.1007/s100510050026
https://doi.org/10.1017/CBO9780511584398
https://doi.org/10.1103/PhysRevB.86.125113
https://doi.org/10.1103/PhysRevB.101.014302
https://doi.org/10.1103/PhysRevResearch.4.043023
https://doi.org/10.48550/arXiv.2408.14637
https://doi.org/10.1103/PhysRevA.101.052308
https://doi.org/10.1103/PhysRevApplied.22.064030
https://doi.org/10.1088/0305-4470/36/29/302
https://doi.org/10.1088/0305-4470/36/29/302
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/PhysRevB.87.024510
https://doi.org/10.1103/PhysRevApplied.14.024070

SciPost Phys. Codebases 50 (2025)

[33] A. Blais, A. L. Grimsmo, S. M. Girvin and A. Wallraff, Circuit quantum electrodynamics,
Rev. Mod. Phys. 93, 025005 (2021), doi:10.1103/RevModPhys.93.025005.

[34] E. A. Sete, A. Q. Chen, R. Manenti, S. Kulshreshtha and S. Poletto, Floating tunable cou-
pler for scalable quantum computing architectures, Phys. Rev. Appl. 15, 064063 (2021),
doi:10.1103/PhysRevApplied.15.064063.

[35] P. Groszkowski and J. Koch, Scqubits: A Python package for superconducting qubits, Quan-
tum 5, 583 (2021), doi:10.22331/q-2021-11-17-583.

[36] S. P. Chitta, T. Zhao, Z. Huang, I. Mondragon-Shem and J. Koch, Computer-aided quantiza-
tion and numerical analysis of superconducting circuits, New J. Phys. 24, 103020 (2022),
doi:10.1088/1367-2630/ac94f2.

[37] B. Li, T. Calarco and F. Motzoi, Nonperturbative analytical diagonalization of
Hamiltonians with application to circuit QED, PRX Quantum 3, 030313 (2022),
doi:10.1103/PRXQuantum.3.030313.

[38] A. Melo, T. Tanev and A. R. Akhmerov, Greedy optimization of the geometry of Majorana
Josephson junctions, SciPost Phys. 14, 047 (2023), doi:10.21468/SciPostPhys.14.3.047.

[39] A. Meurer et al., SymPy: Symbolic computing in Python, PeerJ Comput. Sci. 3, e103
(2017), doi:10.7717/peerj-cs.103.

[40] C. W. Groth, M. Wimmer, A. R. Akhmerov and X. Waintal, Kwant: A software pack-
age for quantum transport, New J. Phys. 16, 063065 (2014), doi:10.1088/1367-
2630/16/6/063065.

[41] P. Virtanen et al., SciPy 1.0: Fundamental algorithms for scientific computing in Python,
Nat. Methods 17, 261 (2020), doi:10.1038/s41592-019-0686-2.

[42] S. Savitz and G. Refael, Stable unitary integrators for the numerical implemen-
tation of continuous unitary transformations, Phys. Rev. B 96, 115129 (2017),
doi:10.1103/PhysRevB.96.115129.

[43] R. McWeeny, Self-consistent perturbation thèory, Chem. Phys. Lett. 1, 567 (1968),
doi:10.1016/0009-2614(68)85047-X.

[44] L. S. Cederbaum, J. Schirmer and H.-D. Meyer, Block diagonalisation of Hermitian matri-
ces, J. Phys. A: Math. Gen. 22, 2427 (1989), doi:10.1088/0305-4470/22/13/035.

[45] G. T. Landi, Eigenoperator approach to Schrieffer-Wolff perturbation theory and dispersive
interactions, (arXiv preprint) doi:10.48550/arXiv.2409.10656.

[46] L. Reascos, G. F. Diotallevi and M. Benito, Universal solution to the Schrieffer-Wolff trans-
formation generator, (arXiv preprint) doi:10.48550/arXiv.2411.11535.

[47] M. Irfan, S. R. Kuppuswamy, D. Varjas, P. M. Perez-Piskunow, R. Skolasinski, M.
Wimmer and A. R. Akhmerov, Hybrid kernel polynomial method, (arXiv preprint)
doi:10.48550/arXiv.1909.09649.

[48] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent and J. Koster, A fully asynchronous multifrontal
solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl. 23, 15 (2001),
doi:10.1137/S0895479899358194.

25

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50
https://doi.org/10.1103/RevModPhys.93.025005
https://doi.org/10.1103/PhysRevApplied.15.064063
https://doi.org/10.22331/q-2021-11-17-583
https://doi.org/10.1088/1367-2630/ac94f2
https://doi.org/10.1103/PRXQuantum.3.030313
https://doi.org/10.21468/SciPostPhys.14.3.047
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1103/PhysRevB.96.115129
https://doi.org/10.1016/0009-2614(68)85047-X
https://doi.org/10.1088/0305-4470/22/13/035
https://doi.org/10.48550/arXiv.2409.10656
https://doi.org/10.48550/arXiv.2411.11535
https://doi.org/10.48550/arXiv.1909.09649
https://doi.org/10.1137/S0895479899358194

SciPost Phys. Codebases 50 (2025)

[49] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent and S. Pralet, Hybrid schedul-
ing for the parallel solution of linear systems, Parallel Comput. 32, 136 (2006),
doi:10.1016/j.parco.2005.07.004.

[50] A. Weiße, G. Wellein, A. Alvermann and H. Fehske, The kernel polynomial method, Rev.
Mod. Phys. 78, 275 (2006), doi:10.1103/RevModPhys.78.275.

[51] F. Motzoi, J. M. Gambetta, P. Rebentrost and F. K. Wilhelm, Simple pulses for elim-
ination of leakage in weakly nonlinear qubits, Phys. Rev. Lett. 103, 110501 (2009),
doi:10.1103/PhysRevLett.103.110501.

[52] L. S. Theis, F. Motzoi, S. Machnes and F. K. Wilhelm, Counteracting systems of diabatici-
ties using DRAG controls: The status after 10 years, Europhys. Lett. 123, 60001 (2018),
doi:10.1209/0295-5075/123/60001.

[53] I. Araya Day, S. Miles, H. K. Kerstens, D. Varjas and A. R. Akhmerov, Pymablock, Zenodo
(2024), doi:10.5281/zenodo.14188554.

[54] J. R. Johansson, P. D. Nation and F. Nori, QuTiP: An open-source Python framework for
the dynamics of open quantum systems, Comput. Phys. Commun. 183, 1760 (2012),
doi:10.1016/j.cpc.2012.02.021.

[55] J. R. Johansson, P. D. Nation and F. Nori, QuTiP 2: A Python framework for the
dynamics of open quantum systems, Comput. Phys. Commun. 184, 1234 (2013),
doi:10.1016/j.cpc.2012.11.019.

[56] J. V. V. Cassiano, A. de Lelis Araújo, P. E. Faria Junior and G. J. Ferreira,
DFT2kp: Effective kp models from ab-initio data, SciPost Phys. Codebases 25 (2024),
doi:10.21468/SciPostPhysCodeb.25.

J. V. V. Cassiano, A. de Lelis Araújo, P. E. Faria Junior and G. J. Fer-
reira, Codebase release 0.0 for DFT2kp, SciPost Phys. Codebases 25-r0.0 (2024),
doi:10.21468/SciPostPhysCodeb.25-r0.0.

[57] M. Rodriguez-Vega, M. Lentz and B. Seradjeh, Floquet perturbation theory: Formalism and
application to low-frequency limit, New J. Phys. 20, 093022 (2018), doi:10.1088/1367-
2630/aade37.

[58] J. Venkatraman, X. Xiao, R. G. Cortiñas, A. Eickbusch and M. H. Devoret, Static effective
Hamiltonian of a rapidly driven nonlinear system, Phys. Rev. Lett. 129, 100601 (2022),
doi:10.1103/PhysRevLett.129.100601.

[59] Y. Xu and L. Guo, Perturbative framework for engineering arbitrary Floquet Hamiltonian,
(arXiv preprint) doi:10.48550/arXiv.2410.10467.

26

https://scipost.org
https://scipost.org/SciPostPhysCodeb.50
https://doi.org/10.1016/j.parco.2005.07.004
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/PhysRevLett.103.110501
https://doi.org/10.1209/0295-5075/123/60001
https://doi.org/10.5281/zenodo.14188554
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.21468/SciPostPhysCodeb.25
https://doi.org/10.21468/SciPostPhysCodeb.25-r0.0
https://doi.org/10.1088/1367-2630/aade37
https://doi.org/10.1088/1367-2630/aade37
https://doi.org/10.1103/PhysRevLett.129.100601
https://doi.org/10.48550/arXiv.2410.10467

	Introduction
	Effective models enable the study of complex physical systems by reducing the space of interest to a low-energy one.
	A standard approach to constructing the effective model is the Schrieffer-Wolff algorithm.
	Even though these methods are standard, their algorithm is computationally expensive, scaling poorly for large systems and high orders.
	Existing algorithms do not generalize beyond two subspaces.
	We develop an efficient algorithm capable of symbolic and numeric computations and make it available in Pymablock.

	Constructing an effective model
	We consider scenarios for which perturbation theory is useful.
	We demonstrate how Pymablock solves these problems.
	k.p model of bilayer graphene
	We use bilayer graphene to illustrate how to use Pymablock with analytic models.
	We use sympy.
	We define the perturbative series.
	We obtain the effective Hamiltonian.

	Dispersive shift of a transmon qubit coupled to a resonator
	We illustrate the potential of Pymablock as a useful tool for the design and control of superconducting qubits.
	We truncate the Hamiltonian.
	We call block diagonalize and compute the qubit Hamiltonian

	Induced gap in a double quantum dot
	Large systems pose an additional challenge due to the scaling of linear algebra routines for large matrices.
	We use Kwant to build the Hamiltonian of the system.

	Selective diagonalization
	We illustrate the selective diagonalization feature of Pymablock.

	Perturbative block-diagonalization algorithm
	Problem statement
	Existing solutions
	Pymablock's algorithm does not use the Schrieffer–Wolff transformation, because the former is inefficient.
	There are algorithms that use different parametrizations for U a difference that is crucial for efficiency, even though the results are equivalent.
	Continuous unitary transformations are another approach that relies on solving differential equations.
	The existing algorithms with linear scaling are not suitable for the construction of an effective Hamiltonian.

	Pymablock's algorithm
	We use recursive expressions, for example, to apply the unitarity condition.
	To fully define the unitary transformation, we make a choice for V.
	We find V and the transformed Hamiltonian.
	The algorithm is complete.

	Equivalence to Schrieffer–Wolff transformation
	Our algorithm is equivalent to a Schrieffer–Wolff transformation

	Extra optimization: common subexpression elimination

	Implementation
	The data structure for block operator series
	To implement the algorithms, we need a data structure that represents a multidimensional series of block matrices.
	A recursive implementation of the algorithm is better than an explicit loop over orders.
	We address this by defining a BlockSeries class.
	Using the BlockSeries interface allows us to implement a range of optimizations that go beyond directly implementing the polynomial parametrization

	The implicit method for large sparse Hamiltonians
	Pymablock supports big sparse problems.
	We use the extended sparsity-preserving Hilbert space and LinearOperator objects.
	We use sparse or KPM solvers to compute the Green's function of the B subspace.

	Code generation
	To automate the implementation of the optimizations and allow further development of the algorithm, we design a code generation system.
	This enables further optimizations and extensions of the algorithm.

	Benchmark
	Pymablock is more efficient than a direct implementation of a Schrieffer–Wolff transformation.
	The entire implicit method costs less than a single sparse diagonalization.

	Conclusion
	Pymablock's algorithm combines advantages of other perturbation theory methods.
	The package provides a universal interface that handles constructing effective models in all quantum mechanical systems.
	The package provides a foundation to implement other perturbative expansions.

	References

