
SciPost Phys. Codebases 51 (2025)

SOLAX: A Python solver for fermionic quantum
systems with neural network support

Louis Thirion1, Philipp Hansmann1 and Pavlo Bilous2⋆

1 Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg,
91058 Erlangen, Germany

2 Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany

⋆ pavlo.bilous@mpl.mpg.de

Abstract

Numerical modeling of fermionic many-body quantum systems presents similar chal-
lenges across various research domains, necessitating universal tools, including state-
of-the-art machine learning techniques. Here, we introduce SOLAX, a Python library
designed to compute and analyze fermionic quantum systems using the formalism of
second quantization. SOLAX provides a modular framework for constructing and manip-
ulating basis sets, quantum states, and operators, facilitating the simulation of electronic
structures and determining many-body quantum states in finite-size Hilbert spaces. The
library integrates machine learning capabilities to mitigate the exponential growth of
Hilbert space dimensions in large quantum clusters. The core low-level functionali-
ties are implemented using the recently developed Python library JAX. Demonstrated
through its application to the Single Impurity Anderson Model, SOLAX offers a flexible
and powerful tool for researchers addressing the challenges of many-body quantum sys-
tems across a broad spectrum of fields, including atomic physics, quantum chemistry,
and condensed matter physics.

Copyright L. Thirion et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

2024-09-02
2025-02-03
2025-02-20

Check for
updates

doi:10.21468/SciPostPhysCodeb.51

This publication is part of a bundle: Please cite both the article and the release you used.

DOI
doi:10.21468/SciPostPhysCodeb.51
doi:10.21468/SciPostPhysCodeb.51-r1.0

Type
Article
Codebase release

Contents

1 Introduction 3
1.1 Code availability and dependencies 4

2 Solver for fermionic quantum systems 5
2.1 Basis 5

2.1.1 Object construction 5
2.1.2 Conversion to a Python string and printing 6

1

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51
mailto:pavlo.bilous@mpl.mpg.de
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysCodeb.51&domain=pdf&date_stamp=2025-02-20
https://doi.org/10.21468/SciPostPhysCodeb.51
https://doi.org/10.21468/SciPostPhysCodeb.51
https://doi.org/10.21468/SciPostPhysCodeb.51-r1.0

SciPost Phys. Codebases 51 (2025)

2.1.3 Length, indexing, and slicing 7
2.1.4 Set operations 8

2.2 State 9
2.2.1 Fundamentals 9
2.2.2 Hilbert space operations 10
2.2.3 Chopping and equality of states 13

2.3 OperatorTerm 14
2.3.1 Object construction 15
2.3.2 Similarities with the State class 16
2.3.3 Hermitian conjugate 16
2.3.4 Acting on states and bases 17
2.3.5 GPU acceleration and batches 18

2.4 Operator 19
2.4.1 Construction of simple operators 19
2.4.2 Addition as a way to build operators 20
2.4.3 Similarities with the OperatorTerm class 21
2.4.4 Manipulations with Operator objects 22

2.5 OperatorMatrix 23
2.5.1 Obtaining an OperatorMatrix 23
2.5.2 Conversion to SciPy and NumPy 24
2.5.3 Manipulations with OperatorMatrix objects 25
2.5.4 Linear operations and Hermitian conjugate 27
2.5.5 Equality of OperatorMatrix objects 28

2.6 Demonstration Computation for SIAM 29
2.6.1 Introduction to SIAM 29
2.6.2 Model description 30
2.6.3 Eigenvalue problem and solution procedure 31
2.6.4 Representation of Slater determinants 32
2.6.5 Starting basis object 32
2.6.6 Operator object for Hamiltonian 33
2.6.7 Hamiltonian matrix and state energy 35
2.6.8 Basis extension 35
2.6.9 An example of full computation 36
2.6.10 Optimization of matrix construction 37

3 Neural network support for tackling big basis sets 40
3.1 Introduction to neural networks 40

3.1.1 Regression with dense neural networks 40
3.1.2 Neural network training 41
3.1.3 Neural network as a classifier 42
3.1.4 Convolutional neural networks 43

3.2 Algorithm description 43
3.3 BasisClassifier 44

3.3.1 RandomKeys 46
3.4 BigBasisManager 47

3.4.1 Random selection 48
3.4.2 Deriving the cutoff 49
3.4.3 Using the neural network 50
3.4.4 Checking and processing of the results 51
3.4.5 Computation time benchmarks 53

2

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

4 Saving/loading SOLAX objects and reproducing computations 54
4.1 Standard mechanism 55
4.2 Saving/loading BasisClassifier objects 57
4.3 A note on randomization under GPU acceleration 57

5 Conclusions and outlook 58

References 59

1 Introduction

Accurate numerical modeling of fermionic quantum many-body systems presents an essential
challenge across many research domains. In atomic physics, for example, precise knowledge
of electronic energy levels is indispensable for the development of atomic frequency stan-
dards, the understanding of astrophysical spectra, and the search for phenomena beyond
the Standard Model [1]. In particular, the promising yet scarcely explored domain of highly
charged ions lacks experimental data and requires extensive computational support [2]. In
quantum chemistry, the pursuit of highly accurate electronic structure calculations, such as
those achieved through full configuration interaction (full CI) methods [3–7], is crucial for
the accurate determination of molecular properties and the prediction of chemical reactiv-
ity. In condensed matter physics, quantitative research on low-energy effective Hamiltonians
such as the Hubbard model [8] and its derivatives, supports the qualitative understanding
of microscopic mechanisms underlying phenomena like unconventional superconductivity in
cuprates [9,10], iron pnictides [11], and nickelates [12,13]. While the core motivations and
goals in all these diverse research areas are often completely different, the computational chal-
lenges are similar and the most challenging tasks are often identical from the technical point
of view. Alongside methodological developments, advanced simulation codes for quantum
many-body systems are therefore essential for scientific progress across a broad spectrum of
fields.

Despite these advances, many challenges still demand computational efforts that exceed
the capabilities of even the most efficient codes and/or the available computational resources.
In such cases, machine learning techniques can be applied to reduce the complexity of the
calculation without compromising the accuracy. Possible approaches based on a neural net-
work (NN) were demonstrated in Refs. [14,15] for problems in computational atomic physics,
and in Ref. [16] in a more general context of fermionic systems requiring large expansions
of the wave function in the basis of Slater determinants. In the latter work, the machine
learning functionality based on the TensorFlow library [17] was interfaced with the Quanty CI
code [18]. Following the successful “proof of principle” in Ref. [16], we saw the need to im-
plement an integrated Python library rather than interfacing existing codes. Here we present
the resulting SOLAX package.

SOLAX is a comprehensive NN-boosted Python library designed for the study of fermionic
quantum many-body systems. Within the standard quantum many-body formalism of second
quantization, SOLAX provides a framework for constructing and solving quantum cluster prob-
lems. The SOLAX package offers a versatile set of tools to efficiently encode and manipulate ba-
sis sets, quantum states, and operators, enabling users to simulate and explore the structure of
quantum many-body systems. The library supports the accurate determination of many-body
quantum states in finite-size Hilbert spaces. Beyond its core functionalities, it includes built-in
machine learning tools. Specifically, SOLAX addresses the exponential growth of Hilbert space
dimensions in large quantum clusters: When full diagonalization becomes computationally
infeasible, a NN classifier can be employed to approximate the solution through efficient ba-

3

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

sis optimization. The SOLAX library has already been successfully applied to the study of
molecules such as N2 [19]. The NN algorithm presented in this article was first demonstrated
in Ref. [16] in its application to the Single Impurity Anderson Model (SIAM).

Typically, selection methods for basis states were developed in Fortran or similar languages,
see e.g. Ref. [20]. This makes it difficult to include NNs in the code, since the standard libraries
for NNs are primarily provided within the Python ecosystem. We implemented SOLAX directly
in Python with the core low-level functionalities based on the JAX library recently developed
at Google [21]. JAX offers highly efficient GPU-accelerated mechanisms to manipulate data
organized as arrays, similar to those from the well-known NumPy library [22]. This allows
for a seamless transition of data to and from the NumPy format, which is the main method
for storing data in SOLAX. Importantly, JAX was initially designed for high-performance ma-
chine learning research and offers powerful capabilities to leverage NNs. We would like to
highlight the recently developed JAX-based NetKet package [23,24], built around the concept
of neural quantum states, i.e., NNs that approximately encode states of quantum many-body
systems [25]. Here, we follow a different approach from Ref. [16], using a NN classifier to
perform selection of important basis states. To the best of our knowledge, SOLAX is the first
integrated JAX-based implementation of such a NN-supported approach.

We assume the reader of this article to be familiar with the Python programming language
and the libraries NumPy [22] and SciPy [26] which are both extensively used in scientific
programming. The necessary information on the tools from the JAX ecosystem will be provided
as they are used. We do not assume that the reader has experience with machine learning using
NNs and provide an introduction to the basic NN concepts relevant for this work. For more
information on NNs we refer to the classical work [27]. Machine learning from the general
(probabilistic) perspective is discussed in depth in the comprehensive source [28, 29]. For a
practical introduction to machine learning (including neural networks using TensorFlow), we
recommend the book [30].

The article is structured as follows. In Section 2, we showcase the core functionality of
SOLAX for solving the fermionic many-body problem and provide an exemplary computation
for SIAM. Section 3 presents the built-in SOLAX tools for NN-assisted computations and their
application to SIAM along with computational time benchmarks. In Section 4, we describe the
mechanisms for saving and loading SOLAX objects, as well as reproducing SOLAX computa-
tions. The article closes with the conclusions and outlook in Section 5.

1.1 Code availability and dependencies

The SOLAX code can be cloned directly from the GitHub repository [31], where we also pro-
vide Jupyter notebooks with the code snippets shown in this article. Apart from packages
from the standard Python library available without separate installation, SOLAX employs the
following third-party libraries: NumPy [22], Pandas [32], SciPy [26], JAX [21], FLAX [33],
and Orbax [34] (the latter 3 libraries belong to the JAX ecosystem). The versions of Python and
the listed packages used in SOLAX at the moment of the present publication are summarized
in Table 1. The user is required to perform the necessary installations before using SOLAX.
For installing JAX, we suggest to follow the instructions on the webpage [35], where different
installation aspects are addressed. For leveraging GPU acceleration, a GPU-capable version of
JAX must be installed. The current version of SOLAX includes a possibility to perform some
computations in parallel on multiple GPUs. Note, however, that this functionality is still under
development, and is considered here as an experimental feature. We also note that compat-
ibility of the presented SOLAX version with newer versions of the listed packages cannot be
guaranteed, especially for the libraries from the JAX ecosystem which are still under exten-
sive development. In further SOLAX versions we plan to take into account the development
progress for the dependencies.

4

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

Table 1: The versions of Python and the third-party libraries used in SOLAX at the
moment of the present publication.

Python NumPy Pandas SciPy JAX FLAX Orbax
3.10.9 1.26.1 1.5.3 1.10.0 0.4.30 0.8.5 0.1.9

2 Solver for fermionic quantum systems

The core functionality of the SOLAX package consists of encoding and solving eigenvalue equa-
tions for fermionic quantum many-body systems. Fully antisymmetric Slater determinants
serve as the basis for many-body Hilbert spaces of fermionic wave functions. The occupation
number representation of a Slater determinant is a binary string of zeroes “0” and ones “1” (ad-
hering to the Pauli exclusion principle). As the full set of Slater determinants forms a complete
basis on a given Hilbert space, any many-body quantum state in this space can be expanded
using this basis. SOLAX follows this paradigm in the representation of quantum states. Op-
erators within the SOLAX package are expressed in terms of creation (â†

i) and annihilation
(âi) operators which act on basis Slater determinants or quantum states represented as linear
combinations of Slater determinants. These ladder operators are indexed by single-particle
quantum numbers i which indicate the positions in the occupation-number string on which
they act. In this formalism, a standard Hamilton operator can be decomposed into single-
particle, two-particle, and more generally, n-particle operators. Each of these terms in the
Hamiltonian is expressed as a sum of ladder-operator products containing the corresponding
number of creation and annihilation operators.

In the following, we describe how Slater determinant bases, many-body quantum states,
operators, and their matrix representation can be defined and manipulated in SOLAX. We first
introduce the main components implemented in SOLAX as Python classes: Basis, State,
OperatorTerm, Operator, and OperatorMatrix. Subsequently, we demonstrate these fun-
damental tools with the help of an example by finding the ground state of the paradigmatic
Single Impurity Anderson Model (SIAM). The data storage and processing for the presented
classes are primarily based on NumPy arrays [22], which also facilitate convenient interaction
with the user. Internally, SOLAX enhances operations on 2D NumPy arrays using the Pandas
library [32]. This powerful data analysis tool allows us to leverage hash maps and signifi-
cantly speed up operations in which search in 2D NumPy arrays is needed. At the same time,
the central quantum solver operations like e.g. acting with operators on quantum states are
implemented in JAX [21] and support automatic GPU acceleration.

2.1 Basis

We begin by introducing the Basis class in SOLAX, which facilitates efficient manipulation
of basis sets composed of Slater determinants. To utilize SOLAX and NumPy in a Python
environment, the libraries are imported as follows:

import solax as sx
import numpy as np

2.1.1 Object construction

A Basis instance is created from a collection of strings, each representing a Slater determinant
in the occupation number representation (note that when initializing a Basis with a single
Slater Determinant, the latter still must be included in a Python collection, e.g. a list).

5

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

All determinants (strings) must have the same length corresponding to the number of the
underlying single-particle degrees of freedom which we refer to from here on as “spin-orbitals”.
For example, a Basis object basis with all possible Slater determinants for two electrons
occupying four spin-orbitals is constructed as follows:

basis = sx.Basis(["1100", "1010", "1001", "0110", "0101", "0011"])

SOLAX treats the received strings as binary representations of 8-bit integer numbers (in general
a few for each determinant) and stores these efficiently in a 2D NumPy array. The length of
each Slater determinant (i.e. the total number of 0s and 1s) in a Basis object can be accessed
using the read-only bitlen property:

print(basis.bitlen)

4

As will be seen in the following, Basis objects behave similarly to Python sets in many con-
texts. In particular, if repeated determinants are passed to the class constructor, these are
automatically discarded.

2.1.2 Conversion to a Python string and printing

The user can convert a Basis to a Python string and print it in order to see the stored deter-
minants in the usual format:

print(basis)

1100
1010
1001
0110
0101
...

Note that only the first five (the default value of the print limit) determinants are reflected
in the printed string. The value of this limit can be changed using the context manager
dets_printing_limit:

with sx.dets_printing_limit(10):
print(basis)

1100
1010
1001
0110
0101
0011

The user provides here the maximal number of printed determinants (in this case 10) or None
if no limit is to be used.

6

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

2.1.3 Length, indexing, and slicing

A. Basis as a Python sequence. The Basis class implements the Python sequence protocol,
i.e. its objects have length and can be indexed and sliced in the standard way. The length is
the number of the contained Slater determinants, and can be obtained with the Python built-in
len function:

print(len(basis))

6

Indexing and slicing picks the Slater determinants at the corresponding positions and returns
a new Basis object:

print(basis[0])

1100

print(basis[0:3])

1100
1010
1001

Note that in contrast to the typical behavior of sequences, basis[0] is again of type Basis.
However, this is natural for this particular class and still complies with the Python sequence
interface.

B. “Fancy” and boolean indexing. On top of the standard Python sequence functionality,
the Basis class supports the NumPy-style “fancy” and boolean indexing [36]. That is, Basis
objects can be indexed in two additional ways: using a list on indices and with a boolean mask,
respectively:

print(basis[0, 1, 4])

1100
1010
0101

print(basis[True, True, False, False, True, False])

1100
1010
0101

As for NumPy arrays, the boolean mask here must have the same length as the sequence itself.

7

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

Important note! There is a crucial difference between the indexing mechanisms shown in
(A) and (B), which is inherited from NumPy. In NumPy, standard Python indexing and slicing
do not create a new array but instead reference a sub-array of the original array. In contrast,
fancy or boolean indexing does create a new array in memory. This behavior extends to the
Basis class, as it is based on NumPy (like most classes in SOLAX). While a new Basis object is
created regardless, this does not necessarily hold for the underlying NumPy arrays. Therefore,
for efficient memory usage, the indexing method described in (A) should be preferred.

2.1.4 Set operations

From the operational perspective, Basis objects behave similarly to Python sets. However,
they do not fully implement the standard Python set interface. The reason for this is twofold:
(1) not all set operations are necessary for SOLAX applications, and (2) the standard Python set
nomenclature can be somewhat confusing in this context. Below, we describe the operations
with Basis objects as implemented in SOLAX.

A. Equality relation. As for Python sets, the equality relation == disregards the order of the
Slater determinants in the compared Basis instances. For example, we compare the created
basis object with its reverse:

print(basis == basis[::-1])

True

B. Addition (set union). Objects of the Basis class can be added (unified like sets) using
the + operator. Note that the analogous operator for Python sets is |. As an example, consider
two Basis objects obtained from basis by selecting only Slater determinants at even and
odd positions, respectively:

basis_even = basis[::2]
basis_odd = basis[1::2]

As expected, their addition equals the initial basis:

print(basis_even + basis_odd == basis)

True

Repeated determinants are automatically excluded from the resulting Basis. For example,
unification of basis with itself gives again basis since no new determinants are added:

print(basis + basis == basis)

True

8

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

C. Set difference. Basis objects can be subtracted like sets. This operation is bound to the
operator % instead of - as for Python sets. For instance, for the objects basis, basis_even
and basis_odd introduced above, we have:

print(basis % basis_even == basis_odd)

True

Note that both for the + and the % operator, the Slater determinants in both operands must
have the same length in the sense of the total number of 0s and 1s (which can be accessed
using the bitlen property).

2.2 State

We proceed with the State class in SOLAX. While the Basis class incorporates sets of Slater
determinants, the State class also includes real or complex coefficients assigned to each de-
terminant. As such, a State object represents a quantum state expanded in the basis of Slater
determinants. SOLAX supports linear algebra operations on State objects including their
scalar product, thereby implementing the structure of a Hilbert space.

2.2.1 Fundamentals

Here we demonstrate the basic usage of the State class. As will be seen, many aspects are
similar to those of the Basis class. A State instance is created from a Basis instance and a
NumPy array of associated coefficients:

state = sx.State(basis, np.ones(6))

Here we used the basis object created in the previous section and a NumPy array with real
numbers all equal 1. Note that states as represented by the SOLAX State class can be unnor-
malized, e.g. as the just created state object. Objects of the State class can be converted to
a Python string and printed:

print(state)

|1100> * 1.0
|1010> * 1.0
|1001> * 1.0
|0110> * 1.0
|0101> * 1.0
...

As for the Basis class, the number of shown determinants can be changed using the
dets_printing_limit context manager. The underlying Basis object and the array of
coefficients can be accessed directly as the attributes basis and coeffs:

9

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

print(state.basis)

1100
1010
1001
0110
0101
...

print(state.coeffs)

[1. 1. 1. 1. 1. 1.]

Analogously to the Basis class demonstrated in the previous section, the State class
implements the Python sequence protocol and supports NumPy-style “fancy” and boolean in-
dexing [36]. From the quantum mechanical perspective, this functionality corresponds to
projecting the state onto the Hilbert subspace spanned by the selected determinants.

Additionally, SOLAX supports operations of the form State % Basis, which remove from
the State object all determinants present in the Basis together with their associated coef-
ficients. Quantum mechanically, this operation corresponds to projecting the state along the
Hilbert subspace spanned by the deleted determinants. We demonstrate this operation using
the basis_even and basis_odd objects from the previous section. The following code line
retains in the resulting State only the determinants present in basis_odd:

state_odd = state % basis_even
print(state_odd)

|1010> * 1.0
|0110> * 1.0
|0011> * 1.0

print(state_odd.basis == basis_odd)

True

The equality operator == is not directly implemented for the State class because the latter
involves real or complex coefficients that are represented up to machine precision. Treating
these accurately is important to avoid unexpected behavior. Later in this section, we will
demonstrate a method for comparing State objects with user-defined accuracy.

2.2.2 Hilbert space operations

The State class represents quantum many-body states and supports corresponding operations
in the Hilbert space.

10

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

A. Multiplication by a scalar. A State object can be multiplied by a real or complex number
resulting in a new State instance:

print(2 * state)

|1100> * 2.0
|1010> * 2.0
|1001> * 2.0
|0110> * 2.0
|0101> * 2.0
...

The resulting State object contains a newly created NumPy array of coeffs, while the un-
derlying basis is shared between the new and original State objects. The scalar can be
used as both the left and right operand. In addition to multiplication by a scalar, SOLAX also
supports division by a scalar and the unary - operator.

B. Addition. Two State objects can be added using the + operator, which also applies the
+ operator to their underlying Basis objects, as described in the previous section. The coeffi-
cients associated with the same Slater determinants in the operands are summed. For instance,
consider two State objects obtained from state via “fancy” indexing:

state1 = state[0, 1, 4]
print(state1)

|1100> * 1.0
|1010> * 1.0
|0101> * 1.0

state2 = state[0, 3]
print(state2)

|1100> * 1.0
|0110> * 1.0

The addition operation gives:

print(state1 + state2)

|1100> * 2.0
|1010> * 1.0
|0101> * 1.0
|0110> * 1.0

The subtraction operation based on addition and unary negation are also supported:

11

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

print(state1 - state2)

|1100> * 0.0
|1010> * 1.0
|0101> * 1.0
|0110> * -1.0

Important note! As demonstrated in the previous example, Slater determinants with zero
coefficients are not automatically removed in SOLAX. Instead, determinants with exact zero
coefficients, as well as those with very small coefficients, must be manually removed using a
user-defined cutoff. This approach allows us to treat equivalently the following examples of
“zeros” (where only the first is exactly zero as represented in the machine):

print(0.1 + 0.1 - 0.2)

0.0

print(0.1 + 0.2 - 0.3)

5.551115123125783e-17

We show in the following how to “chop off” such zeros using SOLAX tools.

C. Scalar product and normalization. SOLAX supports Hermitian scalar product of State
objects:

print(state1 * state2)

1.0

which allows to compute the norm as

print(state * state)

6.0

Once the norm is known, a State can be normalized using division by a scalar. SOLAX offers
a shortcut for this operation implemented as the normalize method:

state_normalized = state.normalize()
print(state_normalized * state_normalized)

1.0000000000000002

The normalize method does not transform the initial State object but returns a new one.
The underlying basis is shared.

12

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

2.2.3 Chopping and equality of states

Chopping a State object to a specified threshold is a useful operation implemented in SOLAX.
As demonstrated below, the chop operation also enables the comparison of two State objects
with a user-defined error margin.

A. The chop method. The chop method removes all Slater determinants from a State ob-
ject whose coefficients have absolute values smaller than a specified threshold. This operation
creates a new State instance, leaving the original one unmodified. For demonstration, we
consider the following State:

state3 = state2[-1]
state123 = state1 - state2 - state3
print(state123)

|1100> * 0.0
|1010> * 1.0
|0101> * 1.0
|0110> * -2.0

Below we show 3 State objects obtained by chopping state123 with respect to different
thresholds:

state_chopped1 = state123.chop(1e-14)
print(state_chopped1)

|1010> * 1.0
|0101> * 1.0
|0110> * -2.0

state_chopped2 = state123.chop(1.5)
print(state_chopped2)

|0110> * -2.0

state_chopped3 = state123.chop(2.5)
print(state_chopped3)
print(len(state_chopped3))

0

As shown by the first example, the chop method allows the user to manually delete deter-
minants with (numerically) zero coefficients. We stress again that in SOLAX this is not done
automatically.

13

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

B. Equality of two State objects. As mentioned above, the direct equality relation == is not
implemented for the State class due to the finite machine precision of the involved real or
complex coefficients. Instead, we can construct the difference of the State objects and chop
the result with respect to a small cutoff. If the obtained State is empty, then the compared
State objects were close within the precision determined by the threshold. For demonstration,
we use the following State objects state_a and state_b which are not exactly equal due
to the machine error of the involved coefficients:

state_mini = state[:2]
state_a = 0.1 * state_mini + 0.2 * state_mini
print(state_a)

|1100> * 0.30000000000000004
|1010> * 0.30000000000000004

state_b = 0.3 * state_mini
print(state_b)

|1100> * 0.3
|1010> * 0.3

Following the described procedure, we obtain:

state_diff = state_a - state_b
print(state_diff)

|1100> * 5.551115123125783e-17
|1010> * 5.551115123125783e-17

Now, chopping state_diff with respect to a small threshold gives an empty state:

state_zero = state_diff.chop(1e-14)
print(len(state_zero))

0

meaning that state_a and state_b are indeed equal within the error of 1e-14. Practice
shows that proper control here can be crucial to avoid unexpected behavior.

2.3 OperatorTerm

We now introduce quantum mechanical operators represented in SOLAX by two classes:
OperatorTerm and Operator. The OperatorTerm class efficiently represents products of
ladder operators with the same structure, while the Operator class encapsulates multiple
OperatorTerm objects with different structures in a single entity. We will further discuss
quantum operators as implemented in SOLAX through a concrete example, beginning with
the OperatorTerm class.

14

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

Once more we consider the case of two electrons occupying four spin-orbitals. In this
example, the four slots with indices 0, 1, 2, and 3 correspond to the electronic states ↑(1),
↓(1), ↑(2), and ↓(2), respectively. Here, the arrow and superscript indicate the spin and orbital
quantum numbers, respectively. We examine the following hopping operator:

V̂ = v
�

â†
0â2 + â†

1â3

�

+ h.c.≡ v
�

â†
1↑â2↑ + â†

1↓â2↓

�

+ h.c. , (1)

and assume v = 1. For clarity, we additionally provided the formula in the format typically
used in quantum mechanics via “≡”. Note that V̂ consists of ladder operator products of the
same structure â†

i â j and, therefore, can be represented by one OperatorTerm object. We
start with the non-Hermitian operator

V̂0 = â†
0â2 + â†

1â3 ≡ â†
1↑â2↑ + â†

1↓â2↓ , (2)

and gradually build up V̂ using the functionality provided in SOLAX.

2.3.1 Object construction

Here we show how OperatorTerm objects are instantiated by considering the example of the
introduced V̂0 operator. However, to keep the explanation generic, we denote the number of
multipliers in each ladder operator product as L, and the number of the summed products as
K (specifically for V̂0 we have L = 2 and K = 2).

Each OperatorTerm has 3 ingredients:

• daggers is a tuple of 0s and 1s of length L showing which ladder operators in the
products are annihilation (0s) and which are creation (1s) operators;

• posits is a 2D NumPy array of shape K×L and integer type indicating at which positions
(as counted from 0) the ladder operators in each product act;

• coeffs is a 1D NumPy array of length K containing real or complex coefficients for each
product.

For V̂0:

daggers = (1, 0)

posits = np.array([
[0, 2],
[1, 3]

])

coeffs = np.array([
1.0,
1.0

])

15

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

An OperatorTerm instance is then created as

V0 = sx.OperatorTerm(daggers, posits, coeffs)
print(V0)

OperatorTerm(
daggers=(1, 0),
posits=array([[0, 2],

[1, 3]]),
coeffs=array([1., 1.])

)

We stress that in SOLAX, the ordering of ladder operators is fully the choice of the user which is
controlled by the argument daggers indicating the positions of the creation and annihilation
operators.

Unlike the Basis and State classes, which contain NumPy arrays with encoded Slater de-
terminants that are not directly readable by the user, the OperatorTerm class displays its un-
derlying NumPy arrays without any special formatting when converted to a Python string and
printed. Additionally, if the posits array passed to OperatorTerm contains repeated rows,
these duplicates are automatically removed, and the corresponding coefficients in coeffs are
summed.

2.3.2 Similarities with the State class

The OperatorTerm class has strong similarities with the State class. Conceptually, they
both represent expansions over some basis elements (ladder operator products and Slater
determinants, respectively). At the technical level, both classes incorporate a 2D NumPy array
with an accompanying 1D coefficient array. We list here the analogous features without going
into comprehensive details.

• OperatorTerm implements the Python sequence protocol and supports the NumPy-style
“fancy” and boolean indexing [36] (see also the section on the Basis class).

• Objects of OperatorTerm can be added using the + operator. If the daggers tuples
of the summands are equal (i.e. the quantum operators have the same structure), the
result is of the OperatorTerm type and otherwise of the Operator type (the latter class
is considered in the next section).

• The OperatorTerm class supports multiplication with scalars.

• OperatorTerm objects can be “chopped” with respect to a real threshold using the chop
method.

• Equality relation == is not implemented for the OperatorTerm class. As for the State
class, the equality up to a user-determined precision can be checked with the binary -
operator and subsequent chopping.

2.3.3 Hermitian conjugate

The OperatorTerm class supports the operation of Hermitian conjugation via the hconj prop-
erty returning a new OperatorTerm object:

16

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

print(V0.hconj)

OperatorTerm(
daggers=(1, 0),
posits=array([[2, 0],

[3, 1]]),
coeffs=array([1., 1.])

)

Using the introduced functionality, we can construct now the full operator V̂ as

V = V0 + V0.hconj
print(V)

OperatorTerm(
daggers=(1, 0),
posits=array([[0, 2],

[1, 3],
[2, 0],
[3, 1]]),

coeffs=array([1., 1., 1., 1.])
)

Note that the Hermitian conjugate V̂ †
0 has the same operator structure as V̂0, and hence the

sum is represented by an OperatorTerm object.

2.3.4 Acting on states and bases

OperatorTerm objects represent quantum mechanical operators, meaning they can act on
quantum states. To illustrate this, we consider the singlet state |Ψ〉, which is a normalized,
anti-symmetric combination of a spin-up and spin-down electron, ensuring that the total spin
Sz = 0:

basis = sx.Basis(["1001", "0110"])
cfs = np.array([1.0, -1.0])

psi = sx.State(basis, cfs)
psi = psi.normalize()

print(psi)

|1001> * 0.7071067811865475
|0110> * -0.7071067811865475

The operator action V̂ |Ψ〉 can be now performed as a call

17

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

result_psi = V(psi)
print(result_psi)

|1100> * 1.414213562373095
|0011> * 1.414213562373095

Additionally, it is possible to act with an OperatorTerm directly on Basis objects. The result
is then also of type Basis and contains the same Slater determinants as when acting on a
State:

result_basis = V(psi.basis)
print(result_basis)

1100
0011

As will be demonstrated later in this work, the operation of acting directly on Basis objects
is useful for iterative basis extension procedures via acting with operators.

2.3.5 GPU acceleration and batches

Acting with OperatorTerm is implemented using the JAX library [21] which supports com-
putations on an NVIDIA GPU. Therefore, if such GPU is available on the machine and a GPU-
capable version of JAX is installed, it will be automatically used for this operation.

Batching. Since GPU memory is often scarce, we provide the user with the possibility to
perform the operator action in batches by using the call arguments det_batch_size and
op_batch_size. They are responsible for batching the State (or Basis) object and the
OperatorTerm object, respectively. Note that these are keyword-only arguments and have to
be provided with the argument names explicitly. For example:

result_psi_batches = V(psi, det_batch_size=1, op_batch_size=2)

We can now use the standard procedure to ensure that the State objects obtained with and
without batching are equal within a very small error:

s = result_psi_batches - result_psi
s = s.chop(1e-14)
print(len(s))

0

Note, however, that the internal ordering of the Slater determinants in the resulting objects
may be different as computed with and without batching. We note also that in this demon-
stration example, very small batch sizes are chosen, but in general, the user should aim at
maximally exhausting the GPU memory.

18

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

Multiple GPUs. Parallelization across multiple GPUs is currently under development and is
made partially available in the current SOLAX version as an experimental feature. The action of
an OperatorTerm can be enabled for multi-GPU mode by setting the keyword-only argument
multiple_devices=True. In this mode, the batches of the State (or Basis) object are
automatically distributed across all available GPUs on the machine. Note that for multi-GPU
processing, the argument det_batch_sizemust be specified for creation of multiple batches.
Otherwise, only one batch will be present and therefore only one GPU will be used. We stress
again that this functionality is at the moment under development and is partially accessible as
an experimental feature.

2.4 Operator

Thus far, we have considered quantum operators consisting of ladder operator products with
the same structure, differing only in the positions on which the ladder operators act. These
are represented in SOLAX using the OperatorTerm class. As the next step, we introduce the
Operator class, which encapsulates OperatorTerm objects of different structures along with
a scalar term. An Operator object can encode any quantum operator expressed in the second
quantization formalism using annihilation and creation operators.

While computations can be performed using only the OperatorTerm class introduced in
the previous section, we recommend the users to follow these guidelines:

• prefer the Operator class for basic usage like acting on quantum states or basis sets;

• access the underlying OperatorTerm objects to fine-tune the operator.

In this section we will demonstrate this approach in practice.

2.4.1 Construction of simple operators

The basic way to instantiate Operator objects is based on the same ingredients as for the
OperatorTerm class, i.e. daggers, posits and coeffs (see Section 2.3.1). These argu-
ments can be passed directly to the Operator constructor:

op = sx.Operator(daggers, posits, coeffs)
print(op)

Operator({
(1, 0): OperatorTerm(

daggers=(1, 0),
posits=array([[0, 2],

[1, 3]]),
coeffs=array([1., 1.])

)
})

Explanation of the printing output. From the technical perspective, the Operator class im-
plements the Python mapping protocol. In practice, this means that its objects behave similarly
to Python dictionaries. Specifically, Operator objects store their underlying OperatorTerm
objects as values in key-value pairs, with the keys being the corresponding daggers tuples. It
is also possible to include a scalar term, which is associated with the string key "scalar". This
structure is reflected when Operator objects are converted to a Python string and printed, as
demonstrated in the example above.

19

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

Once daggers, posits and coeffs are received, SOLAX creates automatically an
OperatorTerm from the provided arguments and wraps it in an Operator object for con-
venient usage and further extension. In particular, this can be seen from the printed output
for the op object above. Alternatively, the same Operator can be instantiated directly from
the OperatorTerm:

print(sx.Operator(V0))

Operator({
(1, 0): OperatorTerm(

daggers=(1, 0),
posits=array([[0, 2],

[1, 3]]),
coeffs=array([1., 1.])

)
})

Here we reused the OperatorTerm object V0 created in the previous section.

2.4.2 Addition as a way to build operators

The Operator created above is still trivial in the sense that it hosts only one OperatorTerm.
More advanced Operator objects can be constructed from more basic ones using addition.
Also addition of an Operator with an OperatorTerm or a scalar leads to another Operator.
Moreover, as mentioned in the previous section, addition of two incompatible OperatorTerm
objects does not lead to an error but creation of an Operator hosting the summands. For
illustration, we introduce the following onsite energy operator:

Û = u01 â†
0â0â†

1â1 + u23 â†
2â2â†

3â3 ≡ u1 â†
1↑â1↑â

†
1↓â1↓ + u2 â†

2↑â2↑â
†
2↓â2↓ , (3)

with u01 = 0.25≡ u1 and u23 = 0.75≡ u2 as an example. As before, we additionally provided
the formula in the format typically used in quantum mechanics via “≡”. We encode Û as an
Operator object using the described standard way:

daggers_u = (1, 0, 1, 0)
posits_u = np.array([

[0, 0, 1, 1],
[2, 2, 3, 3]

])
coeffs_u = np.array([0.25, 0.75])

U = sx.Operator(daggers_u, posits_u, coeffs_u)
print(U)

Operator({
(1, 0, 1, 0): OperatorTerm(

daggers=(1, 0, 1, 0),
posits=array([[0, 0, 1, 1],

[2, 2, 3, 3]]),
coeffs=array([0.25, 0.75])

)
})

20

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

Now we can construct e.g. the compound operator

Ĥ = 1+ V̂ + Û = 1+ V̂0 + V̂ †
0 + Û , (4)

directly as

H = 1 + V0 + V0.hconj + U
print(H)

Operator({
(1, 0): OperatorTerm(

daggers=(1, 0),
posits=array([[0, 2],

[1, 3],
[2, 0],
[3, 1]]),

coeffs=array([1., 1., 1., 1.])
),
scalar: 1,
(1, 0, 1, 0): OperatorTerm(

daggers=(1, 0, 1, 0),
posits=array([[0, 0, 1, 1],

[2, 2, 3, 3]]),
coeffs=array([0.25, 0.75])

)
})

As seen from the printed output, the resulting Operator consists of the scalar 1 and two
OperatorTerm objects.

2.4.3 Similarities with the OperatorTerm class

The Operator class contains operations which are similar to the OperatorTerm class.

• Linear operations of addition and multiplication with scalars.

• Hermitian conjugation using the hconj property.

• Action on State and Basis objects — is delegated to the underlying OperatorTerm
components and multiplication with the scalar with subsequent addition of the partial
results. Note that in case of action on a Basis, the scalar, if present, acts effectively as
the unity operator (even if it is equal to zero).

• The keyword-only batching arguments det_batch_size and op_batch_size are
available for the Operator action, and control batching for the OperatorTerm com-
ponents.

• We remind the user here, that the underlying OperatorTerm objects automatically sup-
port computations on an NVIDIA GPU.

• For leveraging the multi-GPU parallelization (experimental!), the Operator action
call can receive the keyword-only argument multiple_devices=True which prop-
agates to the underlying OperatorTerm objects. In this case, batches corresponding to
det_batch_size will be distributed over a few GPUs, if available.

21

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

2.4.4 Manipulations with Operator objects

A. Accessing underlying components. A key difference between the Operator and
OperatorTerm classes is the container type they implement. OperatorTerm objects are
sequences and can be indexed using integer positions and slices, as well as NumPy’s “fancy”
and boolean indexing mechanisms. In contrast, the Operator class implements the Python
mapping protocol, making it similar to Python dictionaries, which are indexed via their keys.
For Operator objects, the keys are either the daggers tuples or the "scalar" string. For
example:

print(H[1, 0, 1, 0])

OperatorTerm(
daggers=(1, 0, 1, 0),
posits=array([[0, 0, 1, 1],

[2, 2, 3, 3]]),
coeffs=array([0.25, 0.75])

)

print(H["scalar"])

1

Note that for indexing, the “tuple” parenthesis for daggers can be omitted as in the example
above. As usual Python dictionaries, Operator instances support views keys, values and
items for iteration over their entries.

B. Operator length. Operator objects as mappings have length, which however only re-
flects the number of the stored components and is not related to the length of the underlying
OperatorTerm objects. Indeed:

print(len(H))

3

whereas for the contained OperatorTerm components the lengths are:

for key, term in H.items():
if key != "scalar":

print(f"Length of the OperatorTerm {key} is {len(term)}")

Length of the OperatorTerm (1, 0) is 4
Length of the OperatorTerm (1, 0, 1, 0) is 2

C. Dropping components. We have seen how Operator instances can be enriched with
new components using addition. Conversely, if there is a need to remove an OperatorTerm
or the scalar, this can be done using the drop method, which takes the key of the component
to be removed and returns a new Operator object without it. The original Operator remains
unmodified. For example:

22

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

H_without_V = H.drop(1, 0)
print((1, 0) in H_without_V)

False

H_without_scalar = H.drop("scalar")
print("scalar" in H_without_scalar)

False

Here we used the Python in keyword for membership checks. This becomes automatically
possible since the Operator class implements the mapping interface.

D. Chopping OperatorTerm components. The chopping operation is implemented for the
Operator class as the chop method, but can be applied only to a particular OperatorTerm
via its daggers key. The returned Operator object contains the chopped version of the cor-
responding OperatorTerm or does not contain it at all if it has become empty after chopping.
The initial Operator stays unchanged. Chopping for the scalar term is not supported. For
instance, chopping U with respect to the cutoff 0.5 is performed as

H_chopped1 = H.chop((1, 0, 1, 0), 0.5)
print(len(H_chopped1[1, 0, 1, 0]))

1

leaving only one entry out of the two in the corresponding OperatorTerm. Chopping with
respect to 1.0 leads to chopping it off completely:

H_chopped2 = H.chop((1, 0, 1, 0), 1.0)
print((1, 0, 1, 0) in H_chopped2)

False

2.5 OperatorMatrix

To solve a quantum many-body eigenvalue problem, it is often necessary to construct the ma-
trix representation of a quantum mechanical operator (e.g. Hamiltonian) on a given basis set.
We address this requirement with the SOLAX class OperatorMatrix, which provides tools
for efficient matrix construction. It is important to note that the OperatorMatrix class is
designed solely for the efficient construction of the operator matrix, while subsequent diago-
nalization is performed by the user with the help of the SciPy library [26].

2.5.1 Obtaining an OperatorMatrix

For the demonstration, we reconsider again the case of two electrons in four spin-orbitals. We
use the Operator object H constructed in the last section and create here also a Basis of
Slater determinants with the spin projection Sz = 0:

23

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

basis = sx.Basis(["1001", "1100", "0110", "0011"])

The matrix of the operator Ĥ on this basis can be built directly using the build_matrix
method of the corresponding Operator object (this method is available also for the
OperatorTerm class):

matrix = H.build_matrix(basis)

The result is an object is of the OperatorMatrix class, which stores matrix elements in a co-
ordinate sparse format, meaning only non-zero matrix elements are stored. Here, we highlight
the main features of the matrix construction operation:

• It is possible to construct non-square matrices using two distinct Basis objects for rows
and columns by passing them as arguments to the build_matrix method.

• The build_matrix function supports the keyword-only arguments det_batch_size
and op_batch_size which are used in evaluation of the matrix elements via action of
the OperatorTerm objects (see the section on the OperatorTerm class).

• Matrix evaluation inherits from the OperatorTerm class the possibility to perform com-
putations automatically on an NVIDIA GPU, if available.

• Computations on multiple GPUs (experimental!) can be switched on by providing
multiple_devices=True to the build_matrix method. In this case, batches cor-
responding to det_batch_size will be distributed over a few GPUs, if available (see
the section on the OperatorTerm class).

The dimensions of the constructed matrix can be accessed using the read-only size property:

print(matrix.size)

(4, 4)

The number of the non-zero matrix elements (i.e. the total number of the stored matrix ele-
ments) can be obtained as

print(matrix.num_nonzero)

12

The content of an OperatorMatrix object can be viewed after conversion to SciPy and NumPy
which we discuss in the following.

2.5.2 Conversion to SciPy and NumPy

The built OperatorMatrix can be now converted to the SciPy format using the to_scipy
method:

coo_matrix = matrix.to_scipy()

24

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

The returned object is of type scipy.sparse.coo_matrix, and stores the matrix in the
coordinate sparse format similarly to the OperatorMatrix class. If necessary, the user can
now convert it to a different sparse format using the SciPy means. Here, we convert the matrix
to the usual NumPy dense format and print it:

dense_matrix = coo_matrix.todense()
print(dense_matrix)

[[1. 1. 0. 1.]
[1. 1.25 -1. 0.]
[0. -1. 1. -1.]
[1. 0. -1. 1.75]]

Note that the NumPy dense representation is feasible only for small matrices, e.g. for
demonstration or testing purposes. In this section we will often perform such conversion of
OperatorMatrix objects in order to print their content in a usual matrix format. Therefore,
we define the shortcut function:

def print_matrix(m):
print(m.to_scipy().todense())

2.5.3 Manipulations with OperatorMatrix objects

Once obtained from an Operator or OperatorTerm, the OperatorMatrix object allows
for further useful manipulations, which we present here. In all examples considered below, a
new transformed OperatorMatrix instance is created while the original remains unmodified.
Here, we always utilize the matrix object constructed and shown above.

A. Displace. The displace method allows to shift the matrix content along the row and
the column axes with the corresponding change of the matrix dimensions. The two method
arguments are the number of positions the matrix is displaced by vertically (row axis) and
horizontally (column axis), respectively. The shifts can be positive and negative. For example:

print_matrix(
matrix.displace(2, 1)

)

[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 1. 1. 0. 1.]
[0. 1. 1.25 -1. 0.]
[0. 0. -1. 1. -1.]
[0. 1. 0. -1. 1.75]]

25

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

print_matrix(
matrix.displace(-1, -1)

)

[[1.25 -1. 0.]
[-1. 1. -1.]
[0. -1. 1.75]]

As seen from these examples, the newly created positions are effectively filled with zeros,
whereas the entries with resulting negative positions are dropped.

B. Window. The window method implements a rectangular filter, which sets all elements
outside this rectangle to zero without changing the matrix shape. Technically, the filtered
out matrix elements are directly discarded, since only non-zero matrix elements are stored in
OperatorMatrix objects. For instance:

print_matrix(
matrix.window((1, 1), (3, 4))

)

[[0. 0. 0. 0.]
[0. 1.25 -1. 0.]
[0. -1. 1. -1.]
[0. 0. 0. 0.]]

The tuples passed to the window method correspond to the positions of the left upper (inclu-
sive) and the right lower (exclusive) corners of the filter. If tuples (a, b) and (c, d) are passed,
then the matrix values at the intersection of rows i: a ≤ i < c and columns j: b ≤ j < d
survive, whereas the other matrix elements become zero. If any of the arguments a, b, c, d is
None, it will be replaced by a position leading to the largest possible filter size.

C. Shrink basis. After the matrix on a particular basis is constructed, it is straightforward to
obtain the matrix on any sub-basis by extracting the corresponding matrix elements. This can
be done using the shrink_basis method as we show in the following. We choose the sub-
basis of our basis object corresponding to the electrons occupying different spatial orbitals:

sub_basis = basis[0, 2]
print(sub_basis)

1001
0110

Then the matrix of the same operator Ĥ on this sub-basis can be obtained as

26

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

print_matrix(
matrix.shrink_basis(basis, sub_basis)

)

[[1. 0.]
[0. 1.]]

By default, this operation shrinks the basis along both axes. It is also possible to shrink the
basis only along the row or the column axis by passing an additional argument axis=0 or
axis=1 to the shrink_basis method, respectively.

Important note! Both the sub-basis and the initial basis have to be passed to the
shrink_basis method. Therefore, it is important to perform the sub-matrix extraction prior
to any matrix displacements, since displaced matrices are not related to the initial basis any-
more.

D. Chopping. The chop method provides the possibility to discard matrix elements with
absolute values less than a user-defined threshold. These entries are effectively set to zero
(we remind that zeros are not stored in OperatorMatrix objects). As an example, we chop
our matrix with respect to the threshold 1.1:

print_matrix(
matrix.chop(1.1)

)

[[0. 0. 0. 0.]
[0. 1.25 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 1.75]]

2.5.4 Linear operations and Hermitian conjugate

Like other SOLAX classes related to quantum mechanical operators, the OperatorMatrix
class supports addition, multiplication by real or complex scalars, and Hermitian conjugation
via the hconj property. However, it is important to note that the addition operation deviates
from the standard linear algebra convention. Specifically, OperatorMatrix objects can be
added regardless of their shape. If the dimensions do not match, the matrices are effectively
padded with zeros to form a minimal rectangle that encompasses both matrices before being
added. This behavior is inherited from and natural for the OperatorMatrix implementation
in the sparse format. To demonstrate this feature, we create two matrices of size 3 × 3 and
5× 2 from our initial 4× 4 matrix using displacements and then add them to obtain a matrix
of size 5× 3:

matrix3_3 = matrix.displace(-1, -1)
print_matrix(matrix3_3)

[[1.25 -1. 0.]
[-1. 1. -1.]
[0. -1. 1.75]]

27

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

matrix5_2 = matrix.displace(1, -2)
print_matrix(matrix5_2)

[[0. 0.]
[0. 1.]
[-1. 0.]
[1. -1.]
[-1. 1.75]]

print_matrix(
matrix3_3 + matrix5_2

)

[[1.25 -1. 0.]
[-1. 2. -1.]
[-1. -1. 1.75]
[1. -1. 0.]
[-1. 1.75 0.]]

Later in this work we will use the introduced manipulations for efficient computations with
operator matrices.

2.5.5 Equality of OperatorMatrix objects

As also the other SOLAX classes containing real or complex numbers, the OperatorMatrix
class does not directly support the equality relation and the == operator. The user can check
closeness of non-zero elements in two OperatorMatrix objects by

a) subtracting them;

b) using the chop method with respect to a small threshold;

c) ensuring that the num_nonzeros property returns zero.

Note that due to the specific OperatorMatrix implementation, this procedure disregards
completely the matrix dimensions and only checks closeness of non-zero elements having the
same position in the matrices. For example, consider the following matrices m1 and m2:

m1 = matrix.window((0, 0), (2, 2))
print_matrix(m1)

[[1. 1. 0. 0.]
[1. 1.25 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

28

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

m2 = matrix.shrink_basis(basis, basis[:2])
print_matrix(m2)

[[1. 1.]
[1. 1.25]]

The outlined procedure gives

print(
(m1 - m2).chop(1e-14).num_nonzero == 0

)

True

That is, all non-zero matrix elements having the same position are equal (within the chosen
accuracy), but still the dimensions may differ, as in the considered case. The latter can be
additionally compared as

print(m1.size == m2.size)

False

2.6 Demonstration computation for SIAM

After the introduction of the foundational components of the SOLAX package, we now demon-
strate its application to the Single Impurity Anderson Model (SIAM). This example illustrates
how SOLAX can be used to construct and analyze finite size quantum systems by efficiently
handling basis sets, states, and operators, specifically to find the ground state of a complex
quantum many-body model.

2.6.1 Introduction to SIAM

The SIAM is a cornerstone model in the study of strongly correlated electron systems. Initially
introduced by Anderson [37], the model describes a single localized level (the “impurity”)
with onsite interaction U coupled to a continuum of noninteracting conduction electrons (the
“bath”). It was proposed to capture essential physics relevant to magnetic impurities in metals,
such as those found in dilute alloys like gold doped with iron. Notably, it describes the Kondo
effect, a phenomenon in which the impurity spin is screened by the surrounding conduction
electrons at low temperatures, resulting in a highly correlated many-body ground state. In
addition to being a paradigm in its own right, the SIAM also serves as an auxiliary model for
the dynamical mean-field (DMFT) solution of the Hubbard and related models [38–40].

Today, the most frequently used SIAM solvers are Quantum Monte Carlo methods which
usually work on the imaginary Matsubara time domain, see e.g. Refs. [41, 42]. While they
allow for continuous baths, they often struggle with the fermionic sign problem at low tem-
peratures [43]. Complementary diagonalization solvers like our approach do not suffer from
any sign problem but require a discretized bath, which is represented by a finite number of
single particle energy levels, each coupled to the impurity through hybridization terms. This
introduces a computational challenge: the number of bath sites Nbath controls the resolution
of the bath representation, and pushing Nbath to larger values is crucial to accurately capture

29

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

Bath E

Impurity

0
U

...

...

Figure 1: Schematic illustration of SIAM with Nbath = 5 bath sites. The model is
considered in the “star geometry”, in which the correlated impurity (orange circle)
hybridizes with the non-interacting and uncorrelated bath sites (blue circles). The
impurity onsite energy is set to zero. The onsite impurity interaction is given by U .
The bath site energies are ϵb and the hybridization strengths are Vb.

the continuous nature of the bath, especially at low temperatures. Our SOLAX package is well-
suited to this task, as it can efficiently handle large fermionic clusters. In turn, the possibility
of incrementally enlarging the discretized SIAM model makes it an ideal and flexible test case
for our code.

2.6.2 Model description

In Fig. 1 we sketch the SIAM which consists of an impurity with an effective onsite interac-
tion U , coupled to a set of Nbath non-interacting bath sites with energies ϵb and hybridization
strengths Vb. The SIAM Hamiltonian reads

ĤSIAM = Ĥimp + Ĥbath + Ĥhyb , (5)

Ĥimp = U
�

n̂imp↑ −
1
2

��

n̂imp↓ −
1
2

�

, (6)

Ĥbath =
∑

σ∈{↑,↓}

Nbath
∑

b=1

ϵb n̂bσ , (7)

Ĥhyb =
∑

σ∈{↑,↓}

Nbath
∑

b=1

Vb

�

â†
impσ âbσ + h.c.
�

, (8)

where â†
ασ and âασ are fermionic creation and annihilation operators with α labeling the

respective (impurity or bath) site, and n̂ασ ≡ â†
ασ âασ are the corresponding occupation oper-

ators. Note that we assumed here the onsite impurity energy to be zero. The parameters of
the model are the number of non-interacting bath sites Nbath, the onsite energies of the bath
sites ϵb, the hybridization amplitudes Vb, and the particle-hole symmetric interaction on the
impurity site U .

We follow Ref. [16] and choose the parameters ϵb and Vb such that our star geometry maps
directly to a 1D chain i.e., an impurity site coupled to the first site of a 1D bath chain with
hybridization V with constant nearest neighbor hopping t [44]. To this end, we set

ϵb = −2t cos
�

bπ
Nbath + 1

�

,

Vb = V

√

√ 2
Nbath + 1

√

√

1−
�ϵb

2t

�2
,

(9)

30

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

2
1
0
1
2

b

1 3 5 7 9 11 13 15 17 19 21
Bath site

0.00
0.25
0.50
0.75
1.00

V b

Figure 2: The bath site energies ϵb and the hybridization strengths Vb for Nbath = 21.

with the bath site index b running from 1 to Nbath. In the present work, we choose V =
p

10
eV and t = 1.0 eV, and give all energies in units of t. Moreover, we restrict our calculations to
an odd number of bath sites (such that there is always a bath site at ϵb = 0) and half-filling,
i.e. Ne = Nbath + 1.

To set up the parameters for our bath we use the build_bath function:

def build_bath(N_bath):
ii = np.arange(N_bath) + 1
xx = ii * np.pi / (N_bath + 1)
e_bath = -2 * np.cos(xx)

V0 = np.sqrt(20 / (N_bath + 1))
V_bath = V0 * np.sqrt(1 - (e_bath / 2)**2)

return e_bath, V_bath

In Fig. 2 we show ϵb and Vb for the case of Nbath = 21 as constructed using this function.

2.6.3 Eigenvalue problem and solution procedure

We aim to compute the energy of the ground state, which is known to belong to the Sz = 0
sector. An exact solution would require the construction and partial diagonalization of the
Hamiltonian matrix over the basis set of all possible Slater determinants with Sz = 0. However,
even with a few tens of bath sites, the complete basis becomes combinatorially large and
numerically intractable. Therefore, it is common to perform these computations iteratively
on a growing partial basis. Starting with an initial set of Slater determinants, the following
iterations are performed:

• construction and partial diagonalization of the Hamiltonian matrix on the current basis
set;

• extension of the basis set by acting on it with an extension operator Ô (here we choose
Ô = Ĥ).

The energies obtained in each iteration at the diagonalization stage are monitored in order to
stop the computation once convergence is achieved.

31

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

We mention in passing, that the choice of the initial set of Slater determinants, as well
as the choice of the extension operator, can affect the convergence of the procedure [16]. A
natural choice for the initial set is the mean-field solution which consists of a single or a few
degenerate Slater determinants. Below, we chose the twofold spin degenerate Sz = 0 solution
of the zero-hybridization limit (in the particle-hole symmetric case considered here) as our
initial set of Slater determinants.

2.6.4 Representation of Slater determinants

In order to represent Slater determinants as strings of 0s and 1s, we group together the spin-
orbital pairs corresponding to the same orbital but having the opposite spins ↑↓. The leftmost
pair in the string is attributed to the impurity and the further pairs correspond to the bath sites
with growing energies from left to right. The content of a determinantal string is illustrated
as

↑↓
︸︷︷︸

imp.

ϵb<0
︷ ︸︸ ︷

↑↓ . . . ↑↓

ϵb=0
︷︸︸︷

↑↓

ϵb>0
︷ ︸︸ ︷

↑↓ . . . ↑↓
︸ ︷︷ ︸

bath

(10)

As mentioned above, we take the two degenerate determinants with Sz = 0 and the lowest net
one-particle energy in the zero-hybridization limit as our initial basis:

10 11 . . . 11 01 00 . . . 00 , (11)

01 11 . . . 11 10 00 . . . 00 . (12)

For given Nbath, Python strings for these determinants can be build using the function

def build_start_dets(N_bath):
det1 = "01" + "1" * (N_bath - 1) + "10" + "0" * (N_bath - 1)
det2 = "10" + "1" * (N_bath - 1) + "01" + "0" * (N_bath - 1)
return det1, det2

2.6.5 Starting basis object

The impurity onsite interaction strength is in all examples U = 10. For the start, we stick
to the simplest non-degenerate case of Nbath = 3 bath sites and increase later Nbath for more
advanced demonstrations.

U = 10
N_bath = 3
e_bath, V_bath = build_bath(N_bath)
start_dets = build_start_dets(N_bath)

We follow the standard procedures described in the previous sections to construct necessary
objects of the SOLAX classes. In particular, a Basis object containing the two starting Slater
determinants (11, 12) is created as

basis_start = sx.Basis(start_dets)
print(basis_start)

01111000
10110100

32

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

2.6.6 Operator object for Hamiltonian

Here we encode the Hamiltonian in parts represented by Eqs. (5)—(8). Note that for demon-
stration purposes, we switch the NumPy module to the regime in which up to 3 digits after the
decimal point are printed (this does not influence the computational precision).

Impurity term. We represent the impurity onsite interaction operator as

Ĥimp = U â†
imp↑ âimp↑â

†
imp↓ âimp↓

︸ ︷︷ ︸

Ĥ(2)imp

−
U
2

�

â†
imp↑ âimp↑ + â†

imp↓ âimp↓

�

︸ ︷︷ ︸

Ĥ(1)imp

+
U
4

, (13)

by expanding Eq. (6) and build up our Operator object term by term:

H_imp2 = sx.Operator(
(1, 0, 1, 0),
np.array([

[0, 0, 1, 1]
]),
np.array([U])

)

H_imp1 = sx.Operator(
(1, 0),
np.array([

[0, 0],
[1, 1]

]),
np.array([-U / 2, -U / 2])

)

H_imp = H_imp2 + H_imp1 + U / 4
print(H_imp)

Operator({
(1, 0): OperatorTerm(

daggers=(1, 0),
posits=array([[0, 0],

[1, 1]]),
coeffs=array([-5., -5.])

),
(1, 0, 1, 0): OperatorTerm(

daggers=(1, 0, 1, 0),
posits=array([[0, 0, 1, 1]]),
coeffs=array([10.])

),
scalar: 2.5

})

Bath term. Taking into account that in each bath site both spin-orbitals have the same energy,
the bath Hamiltonian term Ĥbath is encoded as

33

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

H_bath = sx.Operator(
(1, 0),
np.arange(2, 2 * N_bath + 2).repeat(2).reshape(-1, 2),
e_bath.repeat(2)

)
print(H_bath)

Operator({
(1, 0): OperatorTerm(

daggers=(1, 0),
posits=array([[2, 2],

[3, 3],
[4, 4],
[5, 5],
[6, 6],
[7, 7]]),

coeffs=array([-1.414e+0, -1.414e+00, -1.225e-16,
-1.225e-16, 1.414e+00, 1.414e+00])

)
})

Hybridization term. Hybridization as described by the Ĥhyb term takes place between spin-
orbitals with the same spin. An Operator object for Ĥhyb without h.c. is then built as

H_hyb_posits = np.vstack([
np.array([0, 1] * N_bath),
np.arange(2, 2 * N_bath + 2)

]).T

H_hyb_nohc = sx.Operator(
(1, 0),
H_hyb_posits,
V_bath.repeat(2)

)
print(H_hyb_nohc)

Operator({
(1, 0): OperatorTerm(

daggers=(1, 0),
posits=array([[0, 2],

[1, 3],
[0, 4],
[1, 5],
[0, 6],
[1, 7]]),

coeffs=array([1.581, 1.581, 2.236, 2.236, 1.581, 1.581])
)

})

34

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

Full Hamiltonian. Finally we obtain an Operator object for the full SIAM Hamiltonian
(which we don’t print here):

H = H_imp + H_bath + H_hyb_nohc + H_hyb_nohc.hconj

2.6.7 Hamiltonian matrix and state energy

We can now obtain the Hamiltonian matrix on the basis of the 2 “starting” Slater determinants
as

matrix_start = H.build_matrix(basis_start)

For this demonstration example, the obtained OperatorMatrix object can be converted to
the NumPy dense format and printed:

matrix_dense_start = matrix_start.to_scipy().todense()
print(matrix_dense_start)

[[-5.328 0.]
[0. -5.328]]

This matrix is diagonal, and contains directly the state energy corresponding to the Hartree-
Fock approximation:

energy_start = matrix_dense_start[0, 0]
print(energy_start)

-5.32842712474619

2.6.8 Basis extension

The state energy obtained above is the roughest approximation and must be refined by ex-
tending the basis to span a larger subspace of the Hilbert space of the considered many-body
system. This can be achieved by generating new determinants via acting with an extension
operator on the initial basis. Usually, extension operators are chosen which promote electrons
from occupied to unoccupied orbitals via single or double excitation, see e.g. Ref. [45]. In our
example, we use the Hamilton operator itself (which in this case includes only single excita-
tions). The advantage of this choice is that the excitation procedure automatically respects the
symmetry of the problem. Specifically, extension with the spin-conserving Hamiltonian ĤSIAM
from the two initial determinants with the total spin projection Sz = 0, yields only determi-
nants with Sz = 0. In this way, we automatically generate only determinants with non-zero
contribution to the ground state.

35

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

To this end, we extend the basis by acting on basis_start with the extension operator
(i.e. the Hamiltonian) as

basis = H(basis_start)
print(len(basis))

8

The matrix built on this basis is not diagonal anymore:

matrix = H.build_matrix(basis)

matrix_dense = matrix.to_scipy().todense()
print(matrix_dense)

[[-5.328 -1.581 -2.236 -2.236 -1.581 0. 0. 0.]
[-1.581 1.086 0. 0. 0. 0. 0. 0.]
[-2.236 0. -0.328 0. 0. 2.236 0. 0.]
[-2.236 0. 0. -0.328 0. 2.236 0. 0.]
[-1.581 0. 0. 0. 1.086 0. 0. 0.]
[0. 0. 2.236 2.236 0. -5.328 -1.581 -1.581]
[0. 0. 0. 0. 0. -1.581 1.086 0.]
[0. 0. 0. 0. 0. -1.581 0. 1.086]]

Therefore, in order to obtain the state energy, the lowest eigenvalue has to be computed using
the SciPy means (we use NumPy in this demonstration example):

energy = np.linalg.eigvals(matrix_dense).min()

basis_size = len(basis)
print(f"Basis size = {basis_size}\tEnergy = {energy}")

Basis size = 8 Energy = -8.351171437060554

The iterations of basis extension and Hamiltonian matrix evaluation should be now repeated
until the state energy converges. We switch now to a more advanced example with larger Nbath
for demonstration of these iterations.

2.6.9 An example of full computation

We now consider the SIAM with Nbath = 21 bath sites and iteratively evaluate the state energy
using the described approach. The reconstruction of the Basis and Operator objects can be
performed directly by rerunning the code above after assigning the new value to the N_bath
variable. We omit this part and show the loop with the iterations directly.

36

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

import scipy as sp

num_iterations = 4

basis = basis_start

for i in range(num_iterations):
matrix = H.build_matrix(basis)
energy = sp.sparse.linalg.eigsh(

matrix.to_scipy(), k=1, which="SA"
)[0][0]

basis_size = len(basis)
print(

f"Iteration: {i+1:<8d}"
f"Basis size = {basis_size:<12d}"
f"Energy = {energy}"

)

if i < num_iterations - 1:
basis = H(basis)

Iteration: 1 Basis size = 2 Energy = -28.463653910211487
Iteration: 2 Basis size = 44 Energy = -30.19530217404953
Iteration: 3 Basis size = 684 Energy = -31.242891311317756
Iteration: 4 Basis size = 7084 Energy = -31.70729257122757

To find the ground state in each iteration, we used the SciPy diagonalization routine
sp.sparse.linalg.eigsh for Hermitian sparse matrices. We pass the Hamiltonian ma-
trix and request the first smallest (k=1, which="SA") eigenvalue. We note that the basis is
not extended in the last iteration since the computation terminates immediately thereafter. It
is seen that the energy is converging with the iterations, which should be stopped once the
desired precision is achieved.

2.6.10 Optimization of matrix construction

In the iterations above we rebuilt the Hamiltonian matrix each time. Using the
OperatorMatrix tools demonstrated in the previous section, it is possible to avoid re-
evaluation of the matrix elements which have already been calculated in the previous iteration.

To demonstrate this, we start from the OperatorMatrix object constructed in the last
performed iteration. In Python, variables remain available after the loop is finished. Therefore,
we access basis and matrix directly, and use different variable names corresponding to the
analytical notations below:

basis_small = basis
M_small = matrix
print(M_small.size)

(7084, 7084)

37

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

In the following, we will use the analytical notation Msmall corresponding to the
OperatorMatrix object M_small. Now we extend the basis another time and build the
Hamiltonian matrix Mdirect

big directly on the resulting basis (thus computing all matrix elements
from scratch as before):

basis_big = H(basis_small)
M_big_direct = H.build_matrix(basis_big)
print(M_big_direct.size)

(58984, 58984)

However, the set of Slater determinants basis_small is a subset of basis_big; this can be
checked e.g. as follows:

print(len(basis_small % basis_big) == 0)

True

Therefore, all matrix elements of Msmall enter also Mdirect
big allowing to avoid unnecessary re-

computations. We implement here a possible scenario of such optimized matrix construction.
Note, however, that Msmall is in general not a rectangular submatrix in Mdirect

big . Instead, the

matrix elements of Msmall are spread in Mdirect
big according to the positions of the Slater de-

terminants from basis_small in basis_big. In the following we construct a matrix Mbig

which does contain Msmall as a true submatrix. Though Mbig and Mdirect
big are in general not

exactly equal, they are equivalent up to permutation of the basis determinants irrelevant for
our applications.

Evaluation of the missing submatrix. The target matrix Mbig is a Hermitian block matrix

Mbig =

�

Msmall A
A† B

�

, (14)

with unknown blocks A and B, where B is Hermitian. Given Msmall is known, we need to
additionally evaluate only the block matrix

C =

�

A
B

�

(15)

in order to construct Mbig. The rectangular matrix C is built on the following Basis objects:

basis_cols = basis_big % basis_small
basis_rows = basis_small + basis_cols

As mentioned in the section on the OperatorMatrix class, this can be achieved by passing
both Basis objects to the build_matrix method:

C = H.build_matrix(basis_rows, basis_cols)
print(C.size)

(58984, 51900)

38

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

Constructing the matrix from its parts. We use now the methods supported by the
OperatorMatrix class to build up Mbig from Msmall and C . First of all, we bring C to its
right place in Mbig by displacing it along the column axis, and obtain the matrix

Cdispl =

�

0 A
0 B

�

. (16)

C_displ = C.displace(0, len(basis_small))

Then the following sum corresponds to the block matrix

Mwith2B =

�

Msmall A
A† 2B

�

. (17)

M_with2B = M_small + C_displ + C_displ.hconj

Now we need to subtract B displaced to the proper position:

Bdispl =

�

0 0
0 B

�

. (18)

This matrix can be obtained directly from Cdispl using the window method:

left_top = (len(basis_small), len(basis_small))
right_bottom = (None, None)

B_displ = C_displ.window(left_top, right_bottom)

Then finally the targeted Mbig matrix is obtained as

M_big = M_with2B - B_displ

Comparison of the results. We ensure now the equality of the state energies obtained using
the direct and the optimized approaches to the matrix construction:

energy_big_direct = sp.sparse.linalg.eigsh(
M_big_direct.to_scipy(), k=1, which="SA"

)[0][0]
print(energy_big_direct)

-31.819018639483936

energy_big = sp.sparse.linalg.eigsh(
M_big.to_scipy(), k=1, which="SA"

)[0][0]
print(energy_big)

-31.819018639483833

39

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

It is evident that the obtained results agree within a very small error, which can be attributed
to randomization in the SciPy eigensolver.

In applications involving particularly large Hermitian operators, such as the Hamiltonian
in the computations for the N2 molecule performed in Ref. [19], working directly with full
operators is disadvantageous. Instead, it is possible to represent a Hermitian operator Â as the
sum Â= B̂+ B̂† and use only the part B̂ for computations. In particular, this greatly simplifies
the construction of the operator matrix. Once an OperatorMatrix is built for B̂, adding its
Hermitian conjugate creates an OperatorMatrix for the full operator Â.

3 Neural network support for tackling big basis sets

We have presented the basic functionality of SOLAX as a solver for fermionic quantum systems
and now switch to the built-in neural network (NN) support for managing large sets of Slater
determinants. While the iterative solution procedure demonstrated for the SIAM in the previ-
ous section allows energy refinement to arbitrary precision, the practical implementation of the
basis extension approach leads to exponential growth in the basis size, making computations
increasingly infeasible. In this section, we demonstrate the NN-based tools available in SOLAX
to control basis growth and converge the results with reduced computational resources.

To this end, we follow the algorithm developed in Ref. [16] for managing exponentially
growing bases as exemplified for SIAM. We stress that the NN support in SOLAX is not a
simple function containing the entire algorithm from Ref. [16]. Instead, we provide modular
building blocks that users can easily customize and adapt to their specific research needs. We
also demonstrate how these building blocks can be used to reconstruct the algorithm from
Ref. [16]. To assist users with little or no prior experience in NNs, the chapter begins with an
introduction into the basic NN concepts relevant to understand the code examples.

3.1 Introduction to neural networks

3.1.1 Regression with dense neural networks

Although in the present work a NN is used for solution of the classification task, we start this
introduction from considering the regression problem. This path is typically taken in literature
since it allows to introduce many important concepts in a clear and intuitive way. On the other
hand, as will be discussed below, NN-supported regression can be turned into NN-supported
classification by a few modifications.

The regression task consists in approximating a multidimensional function f : RN → RM

given its values ỹ1, . . . , ỹP on P points x1, . . . , xP . In this dataset, some noise may be present
and each ỹ may slightly differ from the corresponding value f (x). We start from NNs of the
feedforward dense architecture which are the most general and conceptually simplest approx-
imators for continuous functions. Such a NN consists of L layers i = 1, . . . , L each representing
the most general linear transformation z(i) =W (i)x (i)+ b(i) of the input vector x (i) with some
matrix W (i) (kernel) and vector b(i) (bias). The output z(i) of each intermediate layer i < L
is additionally transformed with a non-linear function h(i) (e.g. the so called rectified linear
unit, ReLU) and passed as input to the next layer: x (i+1) = h(i)

�

z(i)
�

. In the case of regression,
we take y(L) = z(L) for the last layer. With an appropriate selection of kernels and biases for
the layers of the NN, the entire network serves as a transformation y(x), mapping the input
of the first layer x = x (1) to the output of the last layer y = y(L), thereby approximating the
continuous functional relationship f (x) based on the provided dataset.

It is convenient to view the NN layers as consisting of nodes (neurons) each corresponding
to one component of the output vector z(i). In Fig. 3(a) we show a schematic illustration of

40

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

Figure 3: (a) An example of a dense feedforward NN with L = 3 kernel-bias pairs,
and thus 2 hidden layers. (b) An example of a convolutional layer with C = 2 color
input channels, kernel length D = 2, and T = 4 output feature maps.

a dense feedforward NN with L = 3. The kernel matrix W (i) is represented as connections
between the layers i and i − 1, whereas the bias vector b(i) is associated with the neurons in
each layer. In NNs of the usual dense architecture, each neuron is connected with all neurons of
the previous layer. Note that the input x = x (1) to the whole NN is usually called “input layer”
which, however, is not associated with any data transformation. The L − 1 layers enclosed
between the input and output layers are referred to as hidden layers.

3.1.2 Neural network training

Training of a NN is a process of iterative improvement of the unknown parameters W (i) and
b(i) also referred to as trainable parameters. The NN performance is characterized by a loss
function l(y, ỹ) which for a given x from the training dataset quantifies the mismatch be-
tween the NN-predicted value y and the corresponding “correct” value ỹ . Training is usually
performed not on individual data entries (x , ỹ), but on batches (x1, ỹ1), . . . , (xB, ỹB) of a fixed
size B. The loss on a batch is then the average over its entries:

L =
1
B

B
∑

j=1

l(y j , ỹ j) . (19)

In the case of regression, the typically used loss function is the square deviation:

l2(y, ỹ) =
1
2
(y − ỹ)2 . (20)

A training iteration on a data batch can be performed using the gradient descent approach
as follows. First, the values x j with j = 1, . . . , B are sent to the NN which predicts the values
y j . The loss L on the batch is then computed as described above. In order to improve each
NN trainable parameter which we denote here generically θ , the gradients of the loss ∂ L

∂ θ are
evaluated. Each parameter θ is then improved towards the loss minimization as

θnew = θold −η
∂ L
∂ θ

, (21)

where η is the so called learning rate common for all trainable parameters. Note that η is
a hyperparameter, i.e. a parameter fixed by the user and not following from the training
procedure. In practice, more advanced gradient-based update rules are often applied in order
to stabilize and speed up convergence to the optimal values for the trainable parameters,
e.g. the adaptive moment estimation (Adam) algorithm [46] used also in the present work.

41

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

One key feature of this algorithm is that it uses adaptive learning rates for each parameter,
based on the first moment (mean) and the second moment (variance) of the gradients.

Usually, NN training requires going batch by batch through the whole dataset multiple
times (epochs). As convergence is achieved and no further improvement is observed, the
training can be stopped. Such “early stopping” does not only speedup the training process, but
also helps to avoid overfitting, which occurs when the NN learns the training data “by heart”,
leading to significantly worse performance on new, unseen data compared to the training data.
To prevent overfitting, it is crucial to monitor the loss after each epoch not on the training set,
but on a separate validation set held out from the dataset before training.

3.1.3 Neural network as a classifier

In the recent decades, the classification problem has been successfully tackled with NNs, in
particular, in the domain of image recognition [47]. In the present work we demonstrate
an algorithm which uses a NN classifier in an analogous way to iteratively select the most
important Slater determinants. Here we show the modifications which turn the introduced
NN regressor into a classifier used in this work.

In the classification problem, the training dataset must contain for each x a discrete value
ỹ indicating the correct class for x . We use here the one-hot encoding approach: If there are
K distinct classes, the k-th class is encoded by a vector (0, . . . , 1, . . . , 0) of length K where only
the k-th component is non-zero and equal to 1. Each vector ỹ in one-hot encoding can be also
interpreted as a set of probabilities for the corresponding x to belong to each class. Since we
have the full confidence about the correct class for each x from the dataset, the probability
distribution ỹ is degenerate. The corresponding approximative distribution y(x) as predicted
by the NN is, however, generally speaking non-degenerate. In this way, the inherently discrete-
valued classification problem reduces to a problem with continuous values enabling us to use
NNs similarly to the case of regression.

Whereas the hidden layers for a NN classifier can be constructed in the same way as in
the case of a NN regressor, the output layer needs modification in order to ensure that the NN
prediction y(x) is a valid probability distribution. For the softmax-classifier considered here,
the output vector z = z(L) of the last NN layer (see Section 3.1.1) is sent through the softmax
nonlinearity performed in two steps. Firstly, the NN output is made positive by element-wise
exponentiation:

u=
�

ez[1], . . . , ez[K]
�

, (22)

where z[k] denotes the k-th component of the vector z. Secondly, the resulting vector is
normalized ensuring additionally that the NN output sums to 1:

y =
u
∑K

k=1 u[k]
. (23)

Note that in contrast to e.g. ReLU which acts on the components of the vector argument
independently (locally), the softmax operation is non-local due to the normalization step.

The natural measure quantifying the difference between the NN output probability distri-
bution y and the corresponding “correct” degenerate distribution ỹ is cross-entropy

s(y, ỹ) = −
K
∑

k=1

ỹ[k] log y[k] , (24)

which is always non-negative and becomes zero for the targeted case y = ỹ . Training for
minimization of the cross-entropy loss is performed in a similar manner as in the case of re-
gression with the square loss. After each training epoch, the classification accuracy (i.e. the
fraction of the dataset entries classified by the NN correctly) can be additionally evaluated on
a validation set and used for early stopping.

42

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

3.1.4 Convolutional neural networks

Among other classification tasks, the image classification problem possesses a special property
of translational invariance. For example the type of a vehicle shown in an image does not
depend on where exactly it is placed with respect to the image frame. This symmetry can be
accounted for directly in the NN architecture by using convolutional layers prior to a dense
feedforward classifier. We formulate here at the general level the concepts from convolutional
NNs relevant to our work.

Whereas image recognition deals usually with 2D images, we concentrate here on 1D
“images” (which in the present work encode Slater determinants). A convolutional layer
[see Fig. 3(b)] applies a linear transformation to small “windows” of the input pixels
x[d], . . . , x[d + D − 1] of a fixed length D and different starting positions d. For each d,
the transformation returns a scalar value

z[d] =
D
∑

j=1

W [j] · x[j + d − 1] + b , (25)

where the kernel vector W of length D and the bias scalar b are trainable parameters. As d is
varied and the window is moved within the image, the transformation results in a converted
image typically referred to as a feature map. Note that for D > 1 the obtained feature map
is smaller than the original image. In the image recognition domain, the same size for the
feature map and the original image is often enforced by padding the latter with corresponding
number of zeros beyond its frame. In the present work, only the actual data are used and no
padding is performed.

If a few color channels indexed by c = 1, . . . , C are present, a feature map is constructed
as

z[d] =
C
∑

c=1

D
∑

j=1

W [c, j] · x[c, j + d − 1] + b . (26)

Usually dozens of feature maps are constructed at the same time as

z[t, d] =
C
∑

c=1

D
∑

j=1

W [t, c, j] · x[c, j + d − 1] + b[t] , (27)

where the new index t = 1, . . . , T labels the feature maps. The layer output y[t, d], which is
obtained from z[t, d] by additionally applying a non-linear transformation (e.g. ReLU), can
serve as input with T “color” channels to the next convolutional layer, or can be flattened an
forwarded to a dense NN classifier.

We stress that convolutional NNs actually used for image recognition usually contain fur-
ther transformations (e.g. pooling and upsampling) and additional variations of the architec-
ture, see e.g. Ref. [27]. We only provided here the necessary information for demonstration
of the algorithm from Ref. [16] for managing large sets of Slater determinants.

3.2 Algorithm description

Following this introductory section on machine learning, we will now outline the core concept
of the algorithm introduced in Ref. [16], designed to handle large basis sets employing a
NN classifier. A schematic illustration of the algorithm is provided in Fig. 4. When a basis
extension generates an excessive number of new Slater determinants, not all of these new
“candidates” are included in the calculation, but only a fraction of the most important ones. The
importance of a determinant is quantified by its weight, which corresponds to the magnitude
of its expansion coefficient in the quantum state. The fraction α of determinants to be included
is a parameter chosen by the user.

43

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

(A) (B) (C)

Candidates

Random

cu
to
ff

+ -

+
-

Figure 4: Schematic illustration of the method developed in Ref. [16]. Only the core
part of the algorithm is shown. See text for details.

To fulfill the user’s request, the following steps are performed. First, as illustrated in panel
(A) of Fig. 4, a random selection is drawn from the set of candidate determinants and added
to the existing basis used in the computation (the existing basis is not shown in Fig. 4). A di-
agonalization is then performed, providing the expansion coefficients for the randomly added
determinants. Note that the size of the random selection is determined by the user.

Next, as illustrated in panel (B), a cutoff is chosen to divide the random selection into
two classes: determinants with weights above the cutoff (“important”) and those below it
(“unimportant”). Based on the known weights of the randomly selected determinants, the
cutoff is automatically adjusted such that the important class comprises a fraction α of the
random selection. If the algorithm is well applicable to the case at hand, this cutoff divides
also the full set of candidates in a similar proportion (note that the algorithm performance
should be investigated for each specific case e.g. as we demonstrate in Section 3.4.4). It
remains unknown which determinants outside the random selection belong to each class, and
this is where a NN is useful.

At this stage, as shown in panel (C), a NN classifier is employed to categorize the remaining
determinants into the importance classes. The random selection serves as the training data.
For each determinant in the training set, the spin-orbital occupations are used as input features
for the NN, while the determinant class serves as the “correct answer”. Once trained, the NN is
applied to the rest of the candidates to predict their importance class. This process sorts out the
entire set of candidates, allowing only the important ones to be retained for diagonalization.
We focus here on demonstrating this core procedure. Using the presented SOLAX tools, the
algorithm can be further modified (e.g., in Ref. [16], some determinants outside the set of
candidates were also used for NN training).

In SOLAX, we implemented a custom machine learning package based on the FLAX li-
brary [33] from the JAX ecosystem. This package is primarily intended for development pur-
poses and is not exposed to the user at the general SOLAX interface level. We employed these
machine learning tools to provide the necessary functionality for implementing algorithms
such as the one described. This functionality is encapsulated in two classes available at the
SOLAX interface level: BasisClassifier and BigBasisManager. The former encapsulates
a NN setting, while the latter contains methods that reflect parts of the described algorithm.
For demonstration, we continue with the SIAM example computation of Section 2.6.

3.3 BasisClassifier

We now turn to a discussion of the BasisClassifier class, which integrates a NN and an
optimizer to facilitate necessary machine learning operations. The user is expected to create
a NN architecture using FLAX building blocks, while an optimizer is selected from the Optax
package available alongside JAX. First, we make the necessary imports:

44

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

from flax import linen as nn
import optax

Here, the flax.linen API is imported via the conventional name nn. A NN architecture can
be now defined using the standard FLAX approach, i.e. via writing a Python function describing
how a single data entry propagates towards the classification output. In this function, the FLAX
building blocks as well as general JAX transformations can be used. We implement here the
convolutional architecture employed in the work [16], which was at the time implemented
based on the TensorFlow library [17].

def nn_call_on_bits(x):
x = x.reshape(-1, 2)
x = nn.Conv(features=64, kernel_size=(2,), padding="valid")(x)
x = nn.relu(x)
x = nn.Conv(features=4, kernel_size=(1,), padding="valid")(x)
x = nn.relu(x)
x = x.reshape(-1)

x = nn.Dense(features=dense_size)(x)
x = nn.relu(x)
x = nn.Dense(features=dense_size//2)(x)
x = nn.relu(x)
x = nn.Dense(features=dense_size//4)(x)
x = nn.relu(x)
x = nn.Dense(features=2)(x)
return x

Figure 5: Architecture of the convolutional NN as implemented in the function
nn_call_on_bits. A candidate Slater determinant is encoded as spin-orbital pop-
ulations distributed into two spin-channels (A). This input is processed by a convo-
lutional kernel (B) of size 2 into 64 feature maps (C), and then by a convolutional
kernel of size 1 (now shown in the plot) into 4 feature maps (D). Both convolutional
layers have ReLU activation. The output is flattened and sent to the dense block
(E)—(F) which ends with two classification logits (F) classifying the determinant as
important/unimportant. Note that nn_call_on_bits does not contain the softmax
activation, since SOLAX automatically applies softmax to the output logits (F).

45

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

We depict this function schematically in Fig. 5 labeling the relevant parts using capital letters
(A)—(F). The input x is an array of bits (0 and 1) representing the spin-orbital populations of
the incoming Slater determinant. The input data are distributed into the spin-up (↑) and spin-
down (↓) channels (A) using reshape. This representation is processed by a convolutional
kernel (B) of size 2 into 64 feature maps (C), and then by a convolutional kernel of size
1 (now shown in the plot) into 4 feature maps (D). Both convolutional layers have ReLU
activation. The argument padding="valid" indicates that there is no additional padding
with zeros, see Section 3.1.4. The output of the convolutional block (A)—(D) is flattened
using reshape(-1) and passed to the dense block (E)—(F), which ends with two neurons
(F) containing the classification logits. Note that in the code calling this function, the output
logits are automatically passed through the softmax activation function to convert them into
probabilities summing to 1. Hence, there is no need to explicitly apply the softmax function
within the NN definition.

In the function body above, the size of the layers in the dense block is determined by the
global variable dense_size initialized as follows:

dense_size = int(7 * np.sqrt(2 * N_bath + 2))
print(dense_size)

46

Here, we provided the generic expression for arbitrary Nbath used in Ref. [16]. Empirically, this
turned out to be a good choice in the case of SIAM. Also for other models it could serve as a
reasonable starting point for further search and fine-tuning. An object of BasisClassifier
is now instantiated as

classifier = sx.BasisClassifier(nn_call_on_bits)

We note that so far no NN has been actually initialized in memory. The latter needs to be
performed explicitly using the initialize method which requires the following additional
arguments: (1) an input Basis prototype, (2) an optimizer, and (3) a JAX random key.

The input Basis prototype required by the BasisClassifier initialize method is
needed to find out the size of the input x of the function defining the NN. This determines also
the concrete structure of the NN as created in memory. We use here the variable basis_start
from the SIAM example in Section 2.6. We choose the standard Adam optimizer [46] which
can be created using Optax as

optimizer = optax.adam(learning_rate=0.005)

3.3.1 RandomKeys

In JAX, randomization is performed in a deterministic and reproducible manner. Each function
generating random numbers receives a JAX random key which determines the randomization.
These keys can be created from each other, whereas the very first one is created from an integer
seed. We wrapped this mechanism in a convenience class RandomKeys which implements the
Python iterator interface. A RandomKeys instance is created as

rand_keys = sx.RandomKeys(seed=1234)

46

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

where seed is a keyword-only argument. Now, each time when a new JAX random key needs
to be generated, the Python next keyword can be used on rand_keys:

key_for_nn = next(rand_keys)

The obtained key is passed to the initialize method in order to randomly initialize the NN
weights.

Using the needed components, we initialize the NN in memory as

classifier.initialize(key_for_nn, basis_start, optimizer)

Note that once initialized, the NN summary can be printed out using the print_summary
method (we skip this step here due to the output size). This exhausts the knowledge about the
BasisClassifier class needed to proceed with implementation of the sketched algorithm
using BigBasisManager.

3.4 BigBasisManager

The central SOLAX tool for implementing algorithms as the one described above, is the
BigBasisManager class. Its objects are created from:

• a set of candidate Slater determinants represented as an object of the SOLAX class
Basis;

• a NN setting represented as an object of the just shown SOLAX class BasisClassifier.

In order to demonstrate the functions provided with BigBasisManager, we turn back to the
SIAM example with Nbath = 21 bath sites considered in Section 2.6.9. In the iterative solution
shown there, we achieved the basis size of 7084 Slater determinants. Another extension yields

basis_small = basis

basis_big = H(basis_small)
print(len(basis_big))

58984

Here we stick to the notations adopted also in Section 2.6.10. The obtained basis poses no
computational challenge and was tackled directly in Section 2.6.10. Still, for demonstration,
we sort it out using the NN-supported algorithm and compare the resulting state energy with
the one obtained directly. The set of new “candidates” generated at the last extension step is
obtained as

candidates = basis_big % basis_small
print(len(candidates))

51900

47

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

Using also the classifier object built above, we create now a BigBasisManager instance:

bbm = sx.BigBasisManager(candidates, classifier)

Instead of including all 51900 candidates in the computation, we follow Ref. [16] and target
inclusion of the following number of the most important determinants:

target_num = int(np.sqrt(len(basis_big)) * 50)
print(target_num)

12143

We provided here the empirical generic expression used in Ref. [16] for SIAM, which for other
systems can be used as a reasonable starting point for further search. In the following we
implement the sketched NN-based approach with the help of the created bbm object.

3.4.1 Random selection

For the random selection size, we follow again the empirical choice from Ref. [16] for SIAM,
and use the following expression for the size of the random selection shown in Fig. 4(A):

random_num = int(target_num / 1.5)
print(random_num)

8095

The selection can be drawn from candidates using the bbm object via the sample_subbasis
method:

random_sel = bbm.sample_subbasis(next(rand_keys), random_num)

Here we generated another JAX random key from the rand_keys object and passed it directly
to the sample_subbasis function. The returned random_sel object is of type Basis. In
order to obtain the weights for the picked determinants as required by the algorithm, we add
the random selection on top of the old basis:

basis_diag = basis_small + random_sel
print(len(basis_diag))

15179

and perform diagonalization as shown in Section 2.6.9:

matrix = H.build_matrix(basis_diag)
result = sp.sparse.linalg.eigsh(matrix.to_scipy(), k=1, which="SA")

energy = result[0][0]
print(f"Intermediate energy:\t{energy}")

Intermediate energy: -31.720920015599123

48

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

Finally, we use the obtained eigenvector to create a State:

eigenvec = result[1][:, 0]
state_diag = sx.State(basis_diag, eigenvec)

from which we strip basis_small obtaining the randomly selected determinants together
with their coefficients encapsulated in a State object:

state_train = state_diag % basis_small

Note that the latter object serves only for convenient storing the random selection coefficient
and does not actually represent the searched quantum state. The variable name state_train
reflects that this State instance contains the data which will be used for the NN training.

As expected, the intermediate energy obtained above lies between the energy on
basis_small computed in Section 2.6.9 and the energy on basis_big from Section 2.6.10.
The corresponding separations are approx. 0.0136 and 0.0981. In this way, inclusion of the
random selection in the computation does not considerably promote the energy towards the
value on the larger basis. In contrast, as we will see in the following sections, inclusion of
NN-selected determinants pushes the energy close to the value on basis_big.

3.4.2 Deriving the cutoff

We switch now to splitting the random selection with a cutoff as discussed in Section 3.2
and illustrated in Fig. 4(B). The cutoff can be obtained using the BigBasisManager method
derive_abs_coeff_cut:

abs_coeff_cut = bbm.derive_abs_coeff_cut(target_num, state_train)
print(f"Cutoff:\t{abs_coeff_cut}")

Cutoff: 0.00020762079204639022

This cutoff splits the random selection into two importance classes of determinants with larger
and smaller weights. We point out again that under weight we understand here the absolute
value of the determinant coefficient (not its square). The “important” class as represented by
a State object is obtained by chopping:

state_train_impt = state_train.chop(abs_coeff_cut)
print(len(state_train_impt))

1893

The cutoff is automatically chosen such that the fraction of the important class in the random
selection

print(len(state_train_impt) / len(state_train))

0.23384805435453984

49

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

equals the ratio of the targeted number of the most important determinants to be included to
the full number of the candidates:

print(target_num / len(candidates))

0.23396917148362234

3.4.3 Using the neural network

In the following, we employ the NN in order to distribute the determinants outside the random
selection into the importance classes as illustrated in Fig. 4(C). The NN is already created,
initialized and incorporated in the bbm object of the BigBasisManager class. The latter
provides high-level functions for the NN usage in the considered context. We train the NN
similarly to Ref. [16] as follows:

early_stopped = bbm.train_classifier(
next(rand_keys),
state_train,
abs_coeff_cut,
batch_size=256,
epochs=200,
early_stop=True,
early_stop_params={"patience": 3}

)

Started: accuracy=2.472703e-01
Epoch 0: accuracy=8.015612e-01
Epoch 1: accuracy=8.385798e-01
Epoch 2: accuracy=8.525778e-01
Epoch 3: accuracy=8.595095e-01
Epoch 4: accuracy=8.705761e-01
Epoch 5: accuracy=8.619702e-01
Epoch 6: accuracy=9.055037e-01
Epoch 7: accuracy=8.985720e-01
Epoch 8: accuracy=9.237778e-01
Epoch 9: accuracy=9.326122e-01
Epoch 10: accuracy=9.412651e-01
Epoch 11: accuracy=9.312204e-01
Epoch 12: accuracy=9.491246e-01
Epoch 13: accuracy=9.461933e-01
Epoch 14: accuracy=9.596332e-01
Epoch 15: accuracy=9.524729e-01
Epoch 16: accuracy=9.450301e-01
Epoch 17: accuracy=9.506576e-01
Epoch 18: accuracy=9.534478e-01

Here, a new JAX random key is generated from rand_keys and passed directly to the
train_classifier call. It is needed for reshuffling to avoid any ordering bias in the
training data. The latter are provided as the state_train object of the State class.
Whereas state_train contains only the Slater determinants with their coefficients, the

50

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

train_classifier method takes care of converting this to classification data based on the
cutoff abs_coeff_cut also provided to the method.

The rest of the parameters are keyword-only arguments controlling the NN training,
which is performed in batches of size 256 until the best performance is achieved and then
early-stopped. After the epoch in which the NN failed to improve, we give it a chance to
try 3 more times by indicating patience=3. The early stopping parameters passed as the
early_stop_params dictionary are forwarded directly to the underlying EarlyStopping
FLAX class and can be looked up in the FLAX documentation [33]. Note that the NN is reset
to its best state achieved in the training process. The output value early_stopped is True
if the training was early-stopped, and False if it went through all 200 epochs (provided with
the epochs argument) without reaching the best performance.

The printed NN training information contains the NN classification accuracy evaluated be-
fore the training and after each epoch on a data part held out from the training set. The fraction
of the data used for the performance evaluation can be controlled via the keyword-only argu-
ment val_frac of the train_classifier method (the default value is val_frac=0.2).
We note that if an NVIDIA GPU is available and a GPU-capable version of JAX is installed on
the machine, it will be automatically used for the NN training usually leading to a significant
speedup.

The trained NN can be now used for classification of all candidates:

nn_selected = bbm.predict_impt_subbasis(batch_size=256)
nn_selected = nn_selected % state_train.basis
print(len(nn_selected))

9834

The method predict_impt_subbasis returns a Basis object nn_selected containing the
Slater determinants classified by the NN as important. Note that the NN is applied here to the
full set of candidates including the training subset present in the State object state_train.
Therefore, we strip the latter from nn_selected. The NN prediction operation runs auto-
matically on a GPU if available. In this case, the keyword-only batch_size argument can be
passed to the predict_impt_subbasis method for controlling the GPU memory usage.

The final subset of candidates to be included in the computation as the result of the NN-
supported procedure is build as

basis_impt = nn_selected + state_train_impt.basis
print(len(basis_impt))
print(abs(len(basis_impt) - target_num) / target_num)

11727
0.034258420489170716

Here we printed the size of the obtained important subset and its relative deviation from the
targeted size target_num. We see that the user’s request has been satisfied in this demon-
stration example.

3.4.4 Checking and processing of the results

We construct now the full basis and evaluate the state energy:

51

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

basis = basis_small + basis_impt

matrix = H.build_matrix(basis)
result = sp.sparse.linalg.eigsh(matrix.to_scipy(), k=1, which="SA")

energy = result[0][0]
print(f"Basis:\t{len(basis)}")
print(f"Energy:\t{energy}")

Basis: 18811
Energy: -31.817043901573747

The obtained energy is separated from the energy computed on basis_small in Section 2.6.9
and the energy on basis_big from Section 2.6.10 by 0.1100 and 0.0017, respectively. In this
way, by using the NN support provided in SOLAX we were able to almost reach the same state
energy on 19462 Slater determinants instead of 58984.

We use now the obtained eigenvector to check how many determinants out of those sug-
gested by the NN indeed possess weights higher that abs_coeff_cut. First we construct a
State object corresponding to the NN suggestion:

eigenvec = result[1][:, 0]
state = sx.State(basis, eigenvec)

nn_selected_state = state % basis_small % state_train.basis
print(nn_selected_state.basis == nn_selected)

True

The State instance nn_selected_state contains a basis set equal to nn_selected and
additionally the evaluated coefficients. Now we chop off the misclassified determinants:

nn_selected_right = nn_selected_state.chop(abs_coeff_cut).basis
print(len(nn_selected_right))
print(len(nn_selected_right) / len(nn_selected))

8648
0.8793980069147854

The printed fraction of the Slater determinants classified correctly is smaller that the NN ac-
curacy achieved in the training procedure. We attribute this to the drift of the determinant
coefficients upon the inclusion in the computation of other determinants. We stress again
that the NN performance should be investigated individually for each application case e.g.
following the outlined procedure.

If the obtained basis is involved in further computations (e.g. as the starting point of the
next NN-supported iteration), it is advantageous to exclude from it the misclassified determi-
nants:

52

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

nn_selected_wrong = nn_selected % nn_selected_right
basis_final = basis % nn_selected_wrong
print(len(basis_final))

17625

If needed, the energy and the coefficients can be evaluated on basis_final via the cor-
responding Hamiltonian matrix. Note, however, that it is inefficient to compute the latter
from scratch using the H.build_matrix call. Instead, as demonstrated in the section on the
OperatorMatrix class, the shrink_basis method of the matrix object can be used to ex-
tract the matrix on basis_final directly from the OperatorMatrix instance matrix built
on basis. This shortcut is possible since basis_final represents a subset of basis, and
therefore all the needed matrix elements have been already evaluated.

We point out that each BigBasisManager instance is bound to a particular Basis object
with candidates to be sorted out. Therefore, it is necessary to create a new BigBasisManager
object for each new big basis to be optimized (e.g. if further NN-supported iterations follow).
At the same time, the same BasisClassifier object can be reused as a component in dif-
ferent BigBasisManager instances transferring in this way the NN experience from case to
case.

To summarize, using the NN support tools provided in SOLAX, we could reach the same
accuracy level for the SIAM ground state energy on a much smaller basis. Further iterations of
the described algorithm would profit strongly from the reduced basis size as the starting point.
In Ref. [16], this algorithm was implemented using the TensorFlow library [17] and the Quanty
code [18] for working with fermionic quantum systems. It was applied to SIAM with up to
Nbath = 299 bath sites to sort out many millions of Slater determinants and helped to reduce the
necessary basis set sizes by orders of magnitude. As implemented in SOLAX, this approach was
applied for the first time in Ref. [19] for computations of the ground state of the N2 molecule.
Note that whereas we prefer NNs due to their scalability, flexibility and availability of powerful
frameworks like JAX and TensorFlow, also other classifier types could be potentially employed
in the described algorithm, as demonstrated in Refs [48, 49] for similar computations. The
limitation of the presented method can be considered in a two-fold way. From the conceptual
perspective, its applicability to a particular problem is itself a research question, which can
be addressed with the SOLAX tools we provide. From the technical perspective, i.e. in the
context of the needed computational resources, it is important to address the computational
time needed by different parts of the algorithm. In the following section we provide such
benchmarks for larger NN-supported SIAM computations with GPU acceleration and purely
on CPU.

3.4.5 Computation time benchmarks

In this section, we show comparisons of computation times spent in different parts of the
described algorithm. These comparisons cannot be performed in a representative way for such
small examples as presented above. Therefore, we turn here to more extensive computations
for the SIAM with 149 bath sites and perform five NN-supported iterations. One iteration of the
NN-supported algorithm can be divided into five main components listed below. Note that we
follow here exactly Ref. [16] where a slightly modified algorithm was employed. Whereas the
first NN-supported iteration is identical with the algorithm version described above, in further
iterations modifications are included which are specified below for the individual algorithm
components.

53

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

A) Basis extension: This step involves applying an extension operator to basis_small
to generate new candidate Slater determinants. Starting from the second iteration, we
form the new set of candidates not by directly acting with the extension operator on
the set of determinants currently present in the computation, but by acting only on
the determinants included in the last iteration, and combining the result with the set
of candidates from the last iteration. Whereas the obtained set is the same, the latter
procedure is less costly, see Ref. [16].

B) Training data generation: This process selects random_num determinants randomly,
performs a partial diagonalization of the Hamiltonian represented on
basis_small + random_sel, and computes the cutoff coefficient to label the deter-
minants in random_sel. Beyond the first iteration, the Slater determinants included
in the previous NN-supported iterations are additionally used for the NN training, see
Ref. [16].

C) Neural network training: The NN classifier is trained using the generated training data.

D) Neural network prediction: The trained NN predicts which of the candidate determi-
nants are important, resulting in the basis set nn_selected.

E) Selection correction: To complete the iteration, a second partial diagonalization is per-
formed on basis_small + nn_selected along with the training determinants la-
beled as important.

In Fig. 6, we present the time spent in these five algorithm parts with single-GPU acceleration
and purely on CPU. It is seen that the strongest GPU speedup is achieved in parts C) and D),
i.e. the NN training and prediction. The full computation on a cluster with a GPU took 0.7
hours, and on a CPU cluster 1.7 hours. The same computation performed in Ref. [16] on a CPU
cluster took about 35 hours dominated by the inefficient communication between the Quanty
CI code and the Python code with a NN.

We note that for more complex Hamiltonians, e.g. for atoms and molecules including
inter-orbital interactions, the ratio between the execution times for the algorithm parts can
further shift towards the non-NN parts. For example, in computations performed for the N2
molecule in Ref. [19], we observed that steps B) and E) involving the construction of an
OperatorMatrix were significantly more expensive than the rest of the algorithm. At the
same time, however, the observed GPU acceleration was here more pronounced than for the
considered SIAM example.

4 Saving/loading SOLAX objects and reproducing computations

In this section, we focus on the crucial functionality of saving and loading objects of the SOLAX
classes. This feature enables checkpointing computations and restoring them in a flexible and
efficient way. SOLAX provides a convenient and unified mechanism for this purpose through
the global functions save and load, which are compatible with objects of the Basis, State,
OperatorTerm, Operator, OperatorMatrix, and RandomKeys classes. It is important to
note that RandomKeys objects are saved in their current iteration state, rather than JAX ran-
dom keys generated by them. The BasisClassifier class employs its own approach, which
is based on the Orbax library [34] from the JAX ecosystem.

54

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

Figure 6: Comparison of time spent on different parts of our algorithm for SIAM
with Nbath = 149 as performed with single-GPU acceleration (left panel) and purely
on CPU (right panel). The categories A)—E) are explained in the text.

4.1 Standard mechanism

We start from the standard mechanism based on the save and load functions. Using this
approach, it is possible to save and load objects of the SOLAX classes listed above. For instance,
we can save the basis_final object containing the basis set of Slater determinants built using
the NN-supported algorithm in the previous sections:

sx.save(basis_final, "solax_basis_")

and load it again as

basis_loaded = sx.load("solax_basis_")
print(basis_loaded == basis_final)

True

Here we ensured that the loaded Basis object is indeed equal to the saved one. The string
"solax_basis_" indicates the name of the directory we save to and load from.

Important note! The directory is created prior to saving. If the directory already exists,
it will be first erased together with its current content. Note that this applies also to the
BasisClassifier class which has its own saving/loading mechanism (see below).

Instead of saving and loading standalone SOLAX objects, it is possible to first bundle many
objects in one Python dictionary. The user provides here a string label to each object as the
key in a key-value pair, whereas the object itself is the value. For instance, for the objects
basis_final and H from the previous section we use the string labels "basis_from_nn"
and "hamiltonian", respectively:

55

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

dict_to_save = dict(
basis_from_nn=basis_final,
hamiltonian=H

)

sx.save(dict_to_save, "solax_basis_ham_")

loaded_dict = sx.load("solax_basis_ham_")

for key, value in loaded_dict.items():
print(f"{key} has type {type(value).__name__}")

basis_from_nn has type Basis
hamiltonian has type Operator

We printed here only the types of the loaded objects. The used key strings are employed in
internal addressing of the saved objects and must satisfy the following rule: A key string is valid
if it could be used as a Python variable name. Therefore, we recommend to create dictionaries
for saving using the dict constructor rather than the literal {...}. Then, the formulated rule
is satisfied automatically, since the key strings actually are used as variable names.

It is possible to nest such dictionaries as above, and add variables of many standard Python
types or NumPy arrays. This allows to perform a unified saving in a comprehensive way. For
example, the following dictionary can be saved using directly the save function:

dict_to_save = dict(
info="This computation is a demonstration of SOLAX",
params=dict(N_bath=N_bath, U_impurity=U),
basis_from_nn=basis_final,
last_epochs=dict(

epochs=np.array([14, 15, 16, 17, 18]),
accuracies=np.array([9.596332e-01, 9.524729e-01,

9.450301e-01, 9.506576e-01, 9.534478e-01])
),
random_keys_after=rand_keys

)

sx.save(dict_to_save, "solax_big_save_")

At the technical level, the save and load functions process SOLAX objects in the following
way:

• the standard Python types are converted to the JSON format [50] which is saved and
loaded using the standard Python json module;

• the underlying NumPy arrays are saved and loaded using the NumPy means (the
RandomKeys class needs additionally conversion of JAX arrays to and from NumPy).

We deliberately refrained from using the well known pickle module from the Python stan-
dard library, since it has been shown to have safety flaws [51].

56

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

4.2 Saving/loading BasisClassifier objects

The BasisClassifier class does not follow the standard saving/loading mechanism de-
scribed above. Instead, it implements its own methods save_state and load_state based
on the Orbax library [34]. Saving is performed in a straightforward way:

classifier.save_state("solax_nn_")

Important note! As in the case of the global save function, the shown method creates the
directory before the BasisClassifier object is saved there. If the directory already exists,
it will be first erased together with its current content.

In order to reconstruct the saved BasisClassifier object, the user needs first to cre-
ate and initialize a new BasisClassifier instance following the procedure described in
Section 3.3:

loaded_nn = sx.BasisClassifier(nn_call_on_bits)

fake_key = sx.RandomKeys.fake_key()
loaded_nn.initialize(fake_key, basis_start, optimizer)

Here we reused the nn_call_on_bits function defining the NN architecture, basis_start
as a prototype Basis instance, and the optimizer object. Instead of using a properly con-
structed JAX random key, we obtained a “fake” key directly from the RandomKeys class (i.e.
without creating an instance and making an iteration step). Such fake keys should not be
applied in true randomization, but can be used e.g. to initialize a NN whose neuron weights
and biases will be anyway overwritten by loading. The saved NN state can be now restored
as

loaded_nn.load_state("solax_nn_")

The presented tools are complete to provide the user with the possibility to conveniently and
efficiently save and load SOLAX computations.

4.3 A note on randomization under GPU acceleration

The JAX library and its derivatives like FLAX used here for the NN implementation, treat ran-
domness in a deterministic way based on random keys. However, in GPU-accelerated compu-
tations some non-deterministic effects have been observed, see e.g. the discussion [52]. In
our computations, we observed deviations of the NN training accuracies when rerunning the
script from scratch. This could be avoided by adding the following lines immediately after the
imports:

import os
os.environ['XLA_FLAGS']='--xla_gpu_deterministic_ops=true'

In subsequent JAX versions a different approach might be needed or the problem might be
completely resolved.

57

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

5 Conclusions and outlook

In this work, we have demonstrated the foundational capabilities of the SOLAX library for
tackling complex fermionic many-body quantum systems. The core components of SOLAX im-
plemented as the Basis, State, OperatorTerm, Operator and OperatorMatrix classes,
provide a robust framework for encoding and manipulating bases of Slater determinants, con-
structing quantum states, and handling operators within the second quantization formalism.
Through a detailed application to the Single Impurity Anderson Model (SIAM), we illustrated
how the iterative extension of the basis set combined with diagonalization can be efficiently
implemented using SOLAX.

When the basis set grows too large to handle using available computational resources,
the SOLAX built-in neural network (NN) support offers a practical solution. This approach
allows for an efficient approximation of quantum states by identifying and selecting the most
significant Slater determinants, thereby reducing the computational burden. The presented
SIAM results, together with the SOLAX-based computations for the paradigmatic N2 molecule
performed in Ref. [19], underscore the flexibility and power of SOLAX in dealing with large
basis sets. The modular integration of state-of-the-art machine learning techniques into the
SOLAX framework opens up new avenues for addressing larger and more complex quantum
systems that were previously beyond reach with alternative methods.

Looking forward, the development of additional toolboxes within the SOLAX package will
be closely aligned with advancing research projects in quantum many-body physics and quan-
tum chemistry. This requires enabling seamless interfacing between SOLAX and existing com-
putational codes for, e.g., density functional theory (DFT) and Hartree-Fock computations.
For instance, in our N2 study [19], SOLAX was successfully interfaced with the Python-based
GPAW [53] code, which demonstrates the potential for straightforward integration with other
Python-compatible packages in future research.

Furthermore, a planned enhancement to SOLAX is the inclusion of a comprehensive li-
brary of predefined operators to facilitate the construction of effective Hamiltonians. Many
quantum many-body problems require models built from standard elements, such as hopping
and approximative interaction operators. The former will be defined based on lattice geom-
etry, hopping range, and the symmetry of the involved orbital degrees of freedom, while the
(typically onsite) interaction operator will be parametrized using physical quantities like the
Hubbard U and Hund’s coupling J . By incorporating such fundamental building blocks into
an operator library, SOLAX aims to simplify and standardize Hamiltonian construction for a
wide range of applications in condensed matter, quantum chemistry, and even for pedagogical
purposes in lectures on these advanced topics.

A major feature which is currently under development is the computation of spectral func-
tions. Spectral functions are not only essential for studying the excitation spectra of cluster
models, but will also enable SOLAX to serve as an impurity solver within the framework of
dynamical mean-field theory (DMFT) [38–40]. Conceptually closely related to DMFT applica-
tions, we plan to implement predefined functionalities tailored for so called embedding schemes.
These schemes aim to partition the full problem into a subset of orbitals which will be treated
with full many-body rigor, while the rest is maintained at a static mean-field level.

All of the proposed features will be implemented in a modular way within Python, en-
suring flexibility and ease of use. Through these developments, we hope to create a vibrant
user/developer community which brings together expertise from a wide range of fields and
reflecting the wide spectrum of potential applications for SOLAX.

58

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51

SciPost Phys. Codebases 51 (2025)

Acknowledgments

PB thanks Fred Baptiste for his valuable Python lessons. We gratefully acknowledge the group
of Hannes Jónsson at the University of Iceland for their collaboration on the N2 molecule [19]
which was the first application of SOLAX. We further thank Henri Menke, Paul Fadler and Max
Kroesbergen for useful discussions.

Funding information The authors gratefully acknowledge the scientific support and HPC re-
sources provided by the Erlangen National High Performance Computing Center (NHR@FAU)
of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). PB gratefully acknowledges
the ARTEMIS funding via the QuantERA program of the European Union.

References

[1] C. F. Fischer, M. Godefroid, T. Brage, P. Jönsson and G. Gaigalas, Advanced multiconfig-
uration methods for complex atoms: I. Energies and wave functions, J. Phys. B: At. Mol.
Opt. Phys. 49, 182004 (2016), doi:10.1088/0953-4075/49/18/182004.

[2] M. G. Kozlov, M. S. Safronova, J. R. C. López-Urrutia and P. O. Schmidt, Highly charged
ions: Optical clocks and applications in fundamental physics, Rev. Mod. Phys. 90, 045005
(2018), doi:10.1103/RevModPhys.90.045005.

[3] E. Rossi, G. L. Bendazzoli, S. Evangelisti and D. Maynau, A full-configuration bench-
mark for the N2 molecule, Chem. Phys. Lett. 310, 530 (1999), doi:10.1016/S0009-
2614(99)00791-5.

[4] B. Huron, J. P. Malrieu and P. Rancurel, Iterative perturbation calculations of ground and
excited state energies from multiconfigurational zeroth-order wavefunctions, J. Chem. Phys.
58, 5745 (1973), doi:10.1063/1.1679199.

[5] J. C. Greer, Monte Carlo configuration interaction, J. Comput. Phys. 146, 181 (1998),
doi:10.1006/jcph.1998.5953.

[6] Y. Garniron, A. Scemama, E. Giner, M. Caffarel and P.-F. Loos, Selected config-
uration interaction dressed by perturbation, J. Chem. Phys. 149, 064103 (2018),
doi:10.1063/1.5044503.

[7] N. M. Tubman, C. D. Freeman, D. S. Levine, D. Hait, M. Head-Gordon and K. B. Wha-
ley, Modern approaches to exact diagonalization and selected configuration interaction
with the adaptive sampling CI method, J. Chem. Theory Comput. 16, 2139 (2020),
doi:10.1021/acs.jctc.8b00536.

[8] T. Schäfer et al., Tracking the footprints of spin fluctuations: A multimethod, multimes-
senger study of the two-dimensional Hubbard model, Phys. Rev. X 11, 011058 (2021),
doi:10.1103/PhysRevX.11.011058.

[9] P. A. Lee, N. Nagaosa and X.-G. Wen, Doping a Mott insulator: Physics of high-temperature
superconductivity, Rev. Mod. Phys. 78, 17 (2006), doi:10.1103/RevModPhys.78.17.

[10] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida and J. Zaanen, From quantum
matter to high-temperature superconductivity in copper oxides, Nature 518, 179 (2015),
doi:10.1038/nature14165.

59

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51
https://doi.org/10.1088/0953-4075/49/18/182004
https://doi.org/10.1103/RevModPhys.90.045005
https://doi.org/10.1016/S0009-2614(99)00791-5
https://doi.org/10.1016/S0009-2614(99)00791-5
https://doi.org/10.1063/1.1679199
https://doi.org/10.1006/jcph.1998.5953
https://doi.org/10.1063/1.5044503
https://doi.org/10.1021/acs.jctc.8b00536
https://doi.org/10.1103/PhysRevX.11.011058
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1038/nature14165

SciPost Phys. Codebases 51 (2025)

[11] D. C. Johnston, The puzzle of high temperature superconductivity in layered iron pnictides
and chalcogenides, Adv. Phys. 59, 803 (2010), doi:10.1080/00018732.2010.513480.

[12] D. Li, K. Lee, B. Y. Wang, M. Osada, S. Crossley, H. R. Lee, Y. Cui, Y. Hikita and
H. Y. Hwang, Superconductivity in an infinite-layer nickelate, Nature 572, 624 (2019),
doi:10.1038/s41586-019-1496-5.

[13] M. Hepting et al., Electronic structure of the parent compound of superconducting infinite-
layer nickelates, Nat. Mater. 19, 381 (2020), doi:10.1038/s41563-019-0585-z.

[14] P. Bilous, A. Pálffy and F. Marquardt, Deep-learning approach for the atomic configu-
ration interaction problem on large basis sets, Phys. Rev. Lett. 131, 133002 (2023),
doi:10.1103/PhysRevLett.131.133002.

[15] P. Bilous, C. Cheung and M. Safronova, A neural network approach to run-
ning high-precision atomic computations, Phys. Rev. A 110, 042818 (2024),
doi:10.1103/PhysRevA.110.042818.

[16] P. Bilous, L. Thirion, H. Menke, M. W. Haverkort, A. Pálffy and P. Hansmann, Neural-
network-supported basis optimizer for the configuration interaction problem in quantum
many-body clusters: Feasibility study and numerical proof, Phys. Rev. B 111, 035124
(2024), doi:10.1103/PhysRevB.111.035124.

[17] M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems
(2015), https://www.tensorflow.org/.

[18] Y. Lu, M. Höppner, O. Gunnarsson and M. W. Haverkort, Efficient real-frequency
solver for dynamical mean-field theory, Phys. Rev. B 90, 085102 (2014),
doi:10.1103/PhysRevB.90.085102.

[19] Y. L. A. Schmerwitz, L. Thirion, G. Levi, E. Ö. Jónsson, P. Bilous, H. Jónsson
and P. Hansmann, Revisiting N2 with neural-network-supported CI, (arXiv preprint)
doi:10.48550/arXiv.2406.08154.

[20] Y. Garniron et al., Quantum package 2.0: An open-source determinant-driven suite of pro-
grams, J. Chem. Theory Comput. 15, 3591 (2019), doi:10.1021/acs.jctc.9b00176.

[21] J. Bradbury et al., JAX: Composable transformations of Python+NumPy programs (2018),
http://github.com/jax-ml/jax.

[22] C. R. Harris et al., Array programming with NumPy, Nature 585, 357 (2020),
doi:10.1038/s41586-020-2649-2.

[23] F. Vicentini et al., NetKet 3: Machine learning toolbox for many-body quantum systems,
SciPost Phys. Codebases 7 (2022), doi:10.21468/SciPostPhysCodeb.7.

[24] F. Vicentini et al., Codebase release 3.4 for NetKet, SciPost Phys. Codebases 7-r3.4 (2022),
doi:10.21468/SciPostPhysCodeb.7-r3.4.

[25] G. Carleo and M. Troyer, Solving the quantum many-body problem with artificial neural
networks, Science 355, 602 (2017), doi:10.1126/science.aag2302.

[26] P. Virtanen et al., SciPy 1.0: Fundamental algorithms for scientific computing in Python,
Nat. Methods 17, 261 (2020), doi:10.1038/s41592-019-0686-2.

[27] I. Goodfellow, Y. Bengio and A. Courville, Deep learning, MIT Press, Cambridge, USA
(2016).

60

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51
https://doi.org/10.1080/00018732.2010.513480
https://doi.org/10.1038/s41586-019-1496-5
https://doi.org/10.1038/s41563-019-0585-z
https://doi.org/10.1103/PhysRevLett.131.133002
https://doi.org/10.1103/PhysRevA.110.042818
https://doi.org/10.1103/PhysRevB.111.035124
https://www.tensorflow.org/
https://doi.org/10.1103/PhysRevB.90.085102
https://doi.org/10.48550/arXiv.2406.08154
https://doi.org/10.1021/acs.jctc.9b00176
http://github.com/jax-ml/jax
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.21468/SciPostPhysCodeb.7
https://doi.org/10.21468/SciPostPhysCodeb.7-r3.4
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1038/s41592-019-0686-2

SciPost Phys. Codebases 51 (2025)

[28] K. P. Murphy, Probabilistic machine learning: An introduction, MIT Press, Cambridge, USA
(2022).

[29] K. P. Murphy, Probabilistic machine learning: Advanced topics, MIT Press, Cambridge, USA
(2023).

[30] A. Geron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts,
tools, and techniques to build intelligent systems, O’Reilly Media, Sebastopol, USA, ISBN
9781492032649 (2019).

[31] SOLAX, https://github.com/pavlobilous/SOLAX.

[32] Pandas development team, Pandas-dev/pandas: Pandas, Zenodo (2020),
doi:10.5281/zenodo.3509134.

[33] J. Heek, A. Levskaya, A. Oliver, M. Ritter, B. Rondepierre, A. Steiner and M. van Zee, Flax:
A neural network library and ecosystem for JAX (2023), https://github.com/google/flax.

[34] C. Gaffney, D. Li, J. Zhang, R. Sang, A. Jain and H. Hu, Orbax (2024), https://orbax.
readthedocs.io/en/latest/.

[35] Jax installation (2024), https://jax.readthedocs.io/en/latest/installation.html.

[36] W. McKinney, Python for data analysis: Data wrangling with Pandas, Numpy, and Jupyter,
O’Reilly Media, Sebastopol, USA, ISBN 9781098104030 (2022).

[37] P. W. Anderson, Localized magnetic states in metals, Phys. Rev. 124, 41 (1961),
doi:10.1103/PhysRev.124.41.

[38] W. Metzner and D. Vollhardt, Correlated lattice fermions in d =∞ dimensions, Phys. Rev.
Lett. 62, 324 (1989), doi:10.1103/PhysRevLett.62.324.

[39] A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Dynamical mean-field theory of
strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys.
68, 13 (1996), doi:10.1103/RevModPhys.68.13.

[40] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet and C. A. Marianetti,
Electronic structure calculations with dynamical mean-field theory, Rev. Mod. Phys. 78,
865 (2006), doi:10.1103/RevModPhys.78.865.

[41] J. E. Hirsch and R. M. Fye, Monte Carlo method for magnetic impurities in metals, Phys.
Rev. Lett. 56, 2521 (1986), doi:10.1103/PhysRevLett.56.2521.

[42] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer and P. Werner, Continuous-
time Monte Carlo methods for quantum impurity models, Rev. Mod. Phys. 83, 349 (2011),
doi:10.1103/RevModPhys.83.349.

[43] G. Pan and Z. Y. Meng, The sign problem in quantum Monte Carlo simulations, in Encyclope-
dia of condensed matter physics, Elsevier, Amsterdam, Netherlands, ISBN 9780323914086
(2024), doi:10.1016/B978-0-323-90800-9.00095-0.

[44] M. Nuss, E. Arrigoni, M. Aichhorn and W. von der Linden, Variational cluster ap-
proach to the single-impurity Anderson model, Phys. Rev. B 85, 235107 (2012),
doi:10.1103/PhysRevB.85.235107.

[45] T. Helgaker, P. Jørgensen and J. Olsen, Molecular electronic-structure theory, Wiley, Chich-
ester, UK, ISBN 9780471967552 (2000), doi:10.1002/9781119019572.

61

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51
https://github.com/pavlobilous/SOLAX
https://doi.org/10.5281/zenodo.3509134
https://github.com/google/flax
https://orbax.readthedocs.io/en/latest/
https://orbax.readthedocs.io/en/latest/
https://jax.readthedocs.io/en/latest/installation.html
https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/PhysRevLett.56.2521
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1016/B978-0-323-90800-9.00095-0
https://doi.org/10.1103/PhysRevB.85.235107
https://doi.org/10.1002/9781119019572

SciPost Phys. Codebases 51 (2025)

[46] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, (arXiv preprint)
doi:10.48550/arXiv.1412.6980.

[47] A. Krizhevsky, I. Sutskever and G. E. Hinton, Imagenet classification with deep convo-
lutional neural networks, Curran Associates, Red Hook, USA, ISBN 9781627480031
(2012).

[48] W. Jeong, C. A. Gaggioli and L. Gagliardi, Active learning configuration interaction for
excited-state calculations of polycyclic aromatic hydrocarbons, J. Chem. Theory Comput.
17, 7518 (2021), doi:10.1021/acs.jctc.1c00769.

[49] S. D. P. Flores, Chembot: A machine learning approach to selective configuration interaction,
J. Chem. Theory Comput. 17, 4028 (2021), doi:10.1021/acs.jctc.1c00196.

[50] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte and D. Vrgoč, Foundations of JSON schema, in
Proceedings of the 25th international conference on world wide web, Geneva, Switzerland,
ISBN 9781450341431 (2016), doi:10.1145/2872427.2883029.

[51] Pickle – Python object serialization, https://docs.python.org/3/library/pickle.html.

[52] S. Ainsworth, Question #10674: “Write your model in jax they said. It’ll be deterministic
they said.” (2022), https://github.com/jax-ml/jax/discussions/10674.

[53] J. J. Mortensen et al., GPAW: An open Python package for electronic structure calculations,
J. Chem. Phys. 160, 092503 (2024), doi:10.1063/5.0182685.

62

https://scipost.org
https://scipost.org/SciPostPhysCodeb.51
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1021/acs.jctc.1c00769
https://doi.org/10.1021/acs.jctc.1c00196
https://doi.org/10.1145/2872427.2883029
https://docs.python.org/3/library/pickle.html
https://github.com/jax-ml/jax/discussions/10674
https://doi.org/10.1063/5.0182685

	Introduction
	Code availability and dependencies

	Solver for fermionic quantum systems
	Basis
	Object construction
	Conversion to a Python string and printing
	Length, indexing, and slicing
	Set operations

	State
	Fundamentals
	Hilbert space operations
	Chopping and equality of states

	OperatorTerm
	Object construction
	Similarities with the State class
	Hermitian conjugate
	Acting on states and bases
	GPU acceleration and batches

	Operator
	Construction of simple operators
	Addition as a way to build operators
	Similarities with the OperatorTerm class
	Manipulations with Operator objects

	OperatorMatrix
	Obtaining an OperatorMatrix
	Conversion to SciPy and NumPy
	Manipulations with OperatorMatrix objects
	Linear operations and Hermitian conjugate
	Equality of OperatorMatrix objects

	Demonstration Computation for SIAM
	Introduction to SIAM
	Model description
	Eigenvalue problem and solution procedure
	Representation of Slater determinants
	Starting basis object
	Operator object for Hamiltonian
	Hamiltonian matrix and state energy
	Basis extension
	An example of full computation
	Optimization of matrix construction

	Neural network support for tackling big basis sets
	Introduction to neural networks
	Regression with dense neural networks
	Neural network training
	Neural network as a classifier
	Convolutional neural networks

	Algorithm description
	BasisClassifier
	RandomKeys

	BigBasisManager
	Random selection
	Deriving the cutoff
	Using the neural network
	Checking and processing of the results
	Computation time benchmarks

	Saving/loading SOLAX objects and reproducing computations
	Standard mechanism
	Saving/loading BasisClassifier objects
	A note on randomization under GPU acceleration

	Conclusions and outlook
	References

