
SciPost Phys. Codebases 52 (2025)

YASTN: Yet another symmetric tensor networks;
A Python library for Abelian symmetric

tensor network calculations

Marek M. Rams1⋆, Gabriela Wójtowicz1,2†, Aritra Sinha1,3‡ and Juraj Hasik4,5◦

1 Jagiellonian University, Institute of Theoretical Physics,
Łojasiewicza 11, 30-348 Kraków, Poland

2 Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11,
Universität Ulm, D-89081 Ulm, Germany

3 Max Planck Institute for the Physics of Complex Systems,
Nöthnitzer Strasse 38, Dresden 01187, Germany

4 Institute for Theoretical Physics and Delta Institute for Theoretical Physics,
University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

5 Department of Physics, University of Zurich,
Winterthurerstrasse 190, 8057 Zurich, Switzerland

⋆ marek.rams@uj.edu.pl , † gabriela.wojtowicz@uni-ulm.de ,
‡ asinha@pks.mpg.de , ◦ juraj.hasik@physik.uzh.ch

Abstract

We present an open-source tensor network Python library for quantum many-body simu-
lations. At its core is an Abelian-symmetric tensor, implemented as a sparse block struc-
ture managed by a logical layer on top of a dense multidimensional array backend. This
serves as the basis for higher-level tensor network algorithms operating on matrix prod-
uct states and projected entangled pair states. An appropriate backend, such as PyTorch,
gives direct access to automatic differentiation (AD) for cost-function gradient calcula-
tions and execution on GPU and other supported accelerators. We show the library per-
formance in simulations with infinite projected entangled-pair states, such as finding the
ground states with AD and simulating thermal states of the Hubbard model via imagi-
nary time evolution. For these challenging examples, we identify and quantify sources
of the numerical advantage exploited by the symmetric-tensor implementation.

Copyright M. M. Rams et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

2024-06-27
2025-02-03
2025-02-26

Check for
updates

doi:10.21468/SciPostPhysCodeb.52

This publication is part of a bundle: Please cite both the article and the release you used.

DOI
doi:10.21468/SciPostPhysCodeb.52
doi:10.21468/SciPostPhysCodeb.52-r1.2

Type
Article
Codebase release

1

https://scipost.org
https://scipost.org/SciPostPhysCodeb.52
mailto:marek.rams@uj.edu.pl
mailto:gabriela.wojtowicz@uni-ulm.de
mailto:asinha@pks.mpg.de
mailto:juraj.hasik@physik.uzh.ch
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysCodeb.52&domain=pdf&date_stamp=2025-02-26
https://doi.org/10.21468/SciPostPhysCodeb.52
https://doi.org/10.21468/SciPostPhysCodeb.52
https://doi.org/10.21468/SciPostPhysCodeb.52-r1.2

SciPost Phys. Codebases 52 (2025)

Contents

1 Introduction 2

2 Design principles 4
2.1 Abelian-symmetric tensor 4
2.2 Fusion and contractions 6
2.3 Tensor network algorithms 8

3 Examples 8
3.1 Heisenberg antiferromagnet with anisotropy 10
3.2 SU(3) model on Kagome lattice 10
3.3 2D Fermi-Hubbard model on a square lattice 13

4 Conclusion and future outlook 14

References 15

1 Introduction

Full numerical treatment of quantum-mechanical systems is generally prohibitively expensive,
due to the exponential growth of the Hilbert space size with the number of interacting degrees
of freedom. Tensor network (TN) techniques allow efficient representation and manipulation
of the states of such large quantum systems [1–3]. The density matrix renormalization group
(DMRG) introduced by White [4, 5] and its modern reformulation in terms of matrix product
states [6–10] (MPS), a one-dimensional (1D) tensor network, is a prime example of TN capa-
bilities. Since their inception, MPS quickly became a reference method for addressing ground
states in 1D, and were soon followed by extensions to excited states, time evolution, and open
systems, forming a comprehensive framework.

The descriptive power of TNs generalizes to higher-dimensional models. The MPS, despite
its intrinsic 1D geometry, can be readily applied to systems in higher dimensions by imposing
linear ordering of lattice sites. Two-dimensional (2D) systems are often limited to finite cylin-
ders that are mapped to the MPS Ansatz by imposing ordering that winds around the cylinder
circumference; see Fig. 1(c). More natural TN geometry for 2D states is assured by the pro-
jected entangled-pair states (PEPS) [11,12], see Fig. 1(e), and the similar for 3D states [13,14].

The TN ansätze in Fig. 1 provide a state-of-the-art numerical approach to strongly corre-
lated systems of condensed matter. The computational complexity of MPS typically scales as
O(D3), and PEPS algorithms often reach O(D12) scaling, where bond dimension D governs the
size of the tensors and the overall precision of the TN approximations. Although the scaling
of PEPS seems less favorable, it is important to note that the bond dimension encodes correla-
tions between sites. Imposing winding, column-by-column ordering for the MPS on a cylinder
stretches the correlations between columns and leads to long-range correlations across the
MPS. The PEPS, on the other hand, already possesses natural geometry for nearest-neighbor
correlations in 2D. As a result, the PEPS can reach comparable or better precision even at low
bond dimensions once the cylinder width within the MPS approach exceeds a few sites.

The most effective way to mitigate computational complexity is to take advantage of the
symmetries present in physical systems. Two principal types of symmetries to consider are

2

https://scipost.org
https://scipost.org/SciPostPhysCodeb.52

SciPost Phys. Codebases 52 (2025)

Figure 1: Tensor networks. Diagrams depict (a) a rank-3 tensor of the MPS with
left and right virtual spaces V and physical space H, (b) an MPS Ansatz, (c) a MPS
winding on a finite width-6 cylinder, (d) a rank-5 tensor of the PEPS, and (e) an
infinite-PEPS Ansatz.

spatial and internal symmetries. Tensor networks can be formulated directly in the thermody-
namic limit by an infinitely repeated pattern (a unit cell) of tensors, hence realizing translation
symmetry. These are infinite-MPS (iMPS), also known as uniform MPS [15] in 1D and infinite-
PEPS (iPEPS) [16] in 2D. The computational complexity of the iMPS/iPEPS algorithms scales
linearly with the size of the unit cell.

For internal symmetries U |Ψ〉= |Ψ〉, we consider their common form of global symmetries,
i.e., when U = ⊗iui with the same unitaries ui acting on each lattice site. These can be both
Abelian (e.g., particle conservation) or non-Abelian (e.g., SU(2)-spin). Crucially, such global
symmetries can be implemented in TNs locally by requiring individual tensors to transform
covariantly under the action u of the symmetry group [17–21]. These symmetric tensors take
block-spare form, with original dense virtual spaces V of bond dimension D split into a di-
rect sum of blocks V = ⊕r Vr with dimensions {D1, . . . , Dr} each associated with irreducible
representation r of the symmetry group considered. Block sparsity substantially reduces com-
putational complexity, permitting large D simulations, in particular, for (i)PEPS algorithms.

Here, we introduce the Yet Another Symmetric Tensor Network (YASTN) library [22]. YASTN
is an open-source Python library with Abelian-symmetric tensor as a basic type and associated
linear algebra operations on such tensors. The implementation enables automatic differen-
tiation (AD) via appropriate dense linear algebra backends, allowing convenient variational
optimization of TNs. This is particularly important for iPEPS [23–25], where no alternative
direct energy minimization algorithms are known. This is in contrast to (i)MPS where the
DMRG provides efficient and robust optimization. YASTN thus joins a continually growing
collection of tensor network software with various degree of support for symmetries and au-
tomatic differentiation, such as ITensor [26], TenPy [27], Block2 [28], Quantum TEA [29],
TensorNetwork [30], Cytnx [31], TeNes [32], TensorKit [33], Qspace [34], peps-torch [35],
ad-peps [36], variPEPS [37], PEPSKit [38], TenNetLib [39].

In the following sections, we outline the design principles of YASTN and present a set
of benchmarks demonstrating the computational speed-up from Abelian symmetries. We fo-
cus on variational optimization of iPEPS for SU(2)-symmetric spin-1

2 model, SU(3)-symmetric
model, and observables of a Hubbard model at finite temperature simulated via imaginary-
time evolution.

3

https://scipost.org
https://scipost.org/SciPostPhysCodeb.52

SciPost Phys. Codebases 52 (2025)

yastn.Tensor

backend:
NumPy,
PyTorch,
JAX, ...

symmetry:
U(1), Z2,
U(1)×U(1),
...

yastn.tn.mps

TDVP,
DMRG,
...

yastn.tn.fpeps

time evolution,
CTMRG, ...

peps-torch

AD variational
optimization,
...

Figure 2: Schematic design of yastn package. The core element of the pack-
age is yastn.Tensor, which implements block-sparse tensor structure correspond-
ing to a given Abelian symmetry on top of a dense linear algebra backend, such as
NumPy [40] or PyTorch [41]. More complex tensor networks, built on top of symmet-
ric tensor, include standard but versatile MPS toolbox and 2D PEPS implementations
to simulate the time evolution or ground-state variational optimization. The latter
can benefit from automatic differentiation supported by some underlying backends,
such as PyTorch.

2 Design principles

In this section, we give an overview of the structure of YASTN, presented in Fig. 2, and com-
ment on some aspects of implementation. The basic building block of the library is the yastn.
Tensor which is defined by the symmetry structure and the backend. The symmetry structure
determines a set of allowed blocks and how to manipulate them when performing tensor al-
gebra. The backend handles the execution of dense linear algebra operations and storage of
tensor elements. These two are independent of each other. Symmetric tensors are used to
construct TN ansätze, such as MPS and PEPS, and to finally define high-level algorithms that
are applied to specific TN. For a detailed description of the library and all its functionalities,
see the documentation under Ref. [22].

2.1 Abelian-symmetric tensor

Tensors are multilinear maps from products of several vector spaces

T : V 1 ⊗ V 2 ⊗ V 3 ⊗ · · · → C , (1)

where V i is a vector space and ⊗ is a tensor product. In a quantum-mechanical context, we
work with Hilbert spaces H and their duals H∗. By choosing some bases in each of these spaces
the tensors can be written out in components

T =
∑

abc···i jk···
T abc···

i jk··· |i〉| j〉|k〉 · · · 〈a|〈b|〈c| · · · , (2)

where i, j, k, . . . are indices of bases in H spaces, a, b, c, . . . in H∗ spaces, and T abc···
i jk··· is the

corresponding tensor element. The action of the element g of Abelian group G on tensor

4

https://scipost.org
https://scipost.org/SciPostPhysCodeb.52

SciPost Phys. Codebases 52 (2025)

T can be represented in a proper basis by diagonal matrices U i(g) transforming the tensor
elements

(g ◦ T)ab···
i j··· =
∑

a′b′···i′ j′···
T a′b′···

i′ j′··· [U
1(g)]i

′

i [U
2(g)] j′

j · · · [U
m(g)∗]aa′[U

m+1(g)∗]bb′ · · · . (3)

The matrix elements of U i(g) are

[U i(g)]
j
j′ = δ j j′ exp(−iθg t[i]j) , (4)

forming a diagonal matrix of complex phases defined by integer charges t[i]j , with angle
θg ∈ [0,2π) which depends on g ∈ G, and δ j j′ being Kronecker delta. Therefore, under
the action of g ∈ G, each tensor element simply acquires a phase given by the sum of charges

(g ◦ T)ab···
i j··· = T ab···

i j··· exp[−iθg(t
[1]
i + t[2]j + . . .− t[m]a − t[m+1]

b − . . .)] . (5)

This form of the transformation gives a simple selection rule, a charge conservation, on the
elements of symmetric tensors

t[1]i + t[2]j + . . .− t[m]a − t[m+1]
b − . . .= n . (6)

The charge of each non-zero element T ab···
i j··· of a symmetric tensor must be n. In the case of

n = 0, the tensor is invariant (unchanged) under the action of the symmetry. Otherwise, it
transforms covariantly as all its elements are altered by the same complex phase exp(−iθg n).
The charges t[i]j and n and the precise form of their addition depend on the Abelian group.
For elementary Abelian groups such as the cyclic group CN (often denoted ZN) the individual
charges t[i]j are elements of ZN , since in this case the allowed angles θg are integer multiples
of 2π/N , while for the circle group U(1) the charges are elements of Z. For direct products of
Abelian groups, charges become tuples t⃗[i]j in the corresponding product of ZN ’s and Z’s.

By ordering the basis elements in each Hilbert space by their charge, the tensor T ab···
i j···

naturally attains a block-sparse structure, which is central to the computational advantage
offered by Abelian-symmetric tensor network algorithms.

At the core of YASTN is the implementation of the symmetric tensor yastn.Tensor, as
outlined in Refs. [17–19]. It is defined jointly by symmetry (block) structure data and tensor
elements of existing blocks. First, we define a vector space with a charge structure, a yastn
.Leg, determined by a signature s = ±1 (distinguishing between H and dual H∗), its charge
sectors t⃗, and their corresponding dimensions D⃗, now decorated with arrows to denote tuples,

V (s, t⃗, D⃗) = ⊕ρ∈ t⃗CD⃗ρ , (7)

where ρ now enumerates different charges instead of basis.1 This space is a direct sum of
simple spaces CD⃗ρ , dubbed charge sectors. The effective dimension of such space is the sum
of dimensions of individual charge sectors

D =
∑

ρ

D⃗ρ . (8)

In the remainder of the text, we will refer to D as the bond dimension when discussing scal-
ing of computational complexity or memory requirements of TN algorithms with symmetric

1The conjugation of the leg, i.e., mapping space H to its dual space H∗, is equivalent to flip of the signature
and complex conjugation of elements.

5

https://scipost.org
https://scipost.org/SciPostPhysCodeb.52

SciPost Phys. Codebases 52 (2025)

tensors. The Abelian symmetric tensor of rank-N is specified by the product of N such vector
spaces

T : ⊗N
i=1V (s[i], t⃗[i], D⃗[i])→ C . (9)

The following is an example creating a random U(1)-symmetric tensor with total charge
n= 0 with specified legs:2

1 import yastn
2 from yastn.backend import backend_np
3 from yastn.sym import sym_U1
4

5 u1 = yastn.make_config(sym=sym_U1 , backend=backend_np)
6 l = yastn.Leg(u1, s=1, t=(-1,1), D=(1,1))
7 lc = l.conj()
8 H = yastn.rand(u1, legs=[l,l,lc,lc], n=0)

which is, for example, compatible with a Hamiltonian H = S⃗1 · S⃗2 of two spin-1
2 degrees of

freedom. The configuration created by yastn.make_config specifies the symmetry, e.g., yastn
.sym.sym_U1 for the U(1) in the example, and dense linear algebra backend (see below), e.g.,
yastn.backend.backend_np for NumPy.

The covariant transformation property of T is imposed by the charge conservation of non-
zero blocks. Any block of tensor T can be identified by selecting a charge sector ρi ∈ t⃗[i] on
each of the legs, i.e., a N -tuple of charges (ρ0,ρ1, . . . ,ρN). All non-zero blocks must satisfy

N
∑

i=1

s[i]ρi = n , (10)

which is the block-sparse version of the element-wise charge conservation rule of Eq. (6).
Finally, we remark on the storage of tensor elements. In YASTN, the block data is initialized

lazily. The storage is allocated only for the blocks that have been assigned a non-zero value,
i.e., blocks allowed by the charge conservation but not assigned any value are not stored. All
allocated blocks are serialized together in a 1D array of dense linear algebra backend.

2.2 Fusion and contractions

The key operations on symmetric tensors, necessary for manipulating tensor networks, are
tensor reshape and permutation, commonly dubbed fusion in this context, and tensor contrac-
tions. Fusion resolves the tensor product of several spaces as a new space, i.e., the fusion of
legs into a new leg. Unlike reshaping the dense tensor, the shape cannot be freely chosen.
Instead, it is determined by the structure of the fused spaces. In particular, fusion orders and
accumulates tensor products of charge sectors on selected legs into new charge sectors under
the joint leg

V (s[i], t⃗[i], D⃗[i])⊗ V (s[j], t⃗[j], D⃗[j])→ V (s[r], t⃗[r], D⃗[r]) , (11)

with new charge sectors t⃗[r] given by the unique combinations of charges t⃗[i] ⊗ t⃗[j]

t⃗[r] := {ν= s[r](s[i]ρ + s[j]ρ′) : ρ ∈ t⃗[i],ρ′ ∈ t⃗[j]} . (12)

The dimension of new charge sector ν ∈ t⃗[r] is3

D⃗[r]ν =
∑

ρ,ρ′

ν=s[r](s[i]ρ+s[j]ρ′)

D⃗[i]ρ D⃗[j]
ρ′

. (13)

2One can always define tensors with an extra dummy leg V (−1, (n,), (1,)), having a single charge sector of a
unit dimension, making it invariant under symmetry transformations.

3Following a lazy approach adopted in YASTN, a new fused leg contains only charges for which some non-zero
tensor block exists. As such, fusion in YASTN is always done in the context of particular tensor.

6

https://scipost.org
https://scipost.org/SciPostPhysCodeb.52

SciPost Phys. Codebases 52 (2025)

The fusion and un-fusion calls are demonstrated below on previously constructed rank-4 tensor
H, first fusing pairs of legs resulting in a matrix form

1 H_mat = H.fuse_legs(axes =((0 ,1), (2,3)))
2 H = H_mat.unfuse_legs(axes =(0 ,1))

where the axes argument of fuse_legs is a tuple that describes how the legs should be
permuted and fused in the resulting tensor. Following NumPy convention, each leg of the
original tensor is labeled by an integer according to its position starting at 0. The groups of
legs to be fused are specified by nested tuples in axes. Several alternative ways of fusing H
are given below

1 H_long_mat = H.fuse_legs(axes=(0, (1,2,3)))
2 H_thin_mat = H.fuse_legs(axes =((0,1,2), 3))
3 H_thin_mat_transposed = H.fuse_legs(axes=(3, (0,1,2)))
4 H_rank3_permuted = H.fuse_legs(axes=(0, (3,2), 1))

When fusing legs, YASTN first calculates the structure of the resulting tensor with fused leg(s),
i.e., the tuple (s[r], t⃗[r], D⃗[r]) and a set of dense linear algebra jobs (permutes, reshapes, and
copies) to be executed by the backend to populate the new 1D storage array with serialized
blocks. The resulting tensor records the original structure, and hence, the fusion can be re-
verted by unfuse_legs.

1 H_1fusionlevel = H.fuse_legs(axes =(0 ,(1 ,2) ,3))
2 H_2fusionlevels = H_1fusionlevel.fuse_legs(axes =(0 ,(1 ,2))
3 H = H_2fusionlevels.unfuse_legs(axes =1).unfuse_legs(axes =1)

The tensor contraction of symmetric tensors is realized by a commonly adopted workflow.
First, the tensors are fused into block-sparse matrices,4 then matrix-multiplied along the con-
tracted legs, and finally unfused to obtain the desired form:

∑

x0 x1···
Ai0 i1 x0 i2 x1 i3 x2···Bx1 j0 x0 x2 j1···

permute
−→
∑

{x}

A{i}∪{x}B{x}∪{ j}
reshape
−→
∑

X

AIX BX J

multiply
= CI J

unfuse
−→ C{i}{ j} = Ci0 i1 i2··· j0 j1 j2··· ,

(14)

where {x} is a set of common legs that become fused into single leg X , and original uncon-
tracted legs {i} and { j} are restored from the fused I and J to obtain the final tensor. We again
adhere to NumPy convention, where axes argument of tensordot contains two tuples. The
first tuple specifies legs to contract on the first tensor operand A, and the second tuple specifies
legs to contract on the second tensor operand B. The legs in the same position in the two tu-
ples are then contracted, i.e. axes=((2,4,6,...),(2,0,3,...)) for the above example.
The relative order of the remaining uncontracted legs of the first operand {i} and the second
operand { j} is unchanged. The legs of the resulting tensor C are ordered exactly as the uncon-
tracted legs of the two tensor operands. First, we have the uncontracted legs {i} of the first
operand followed by the uncontracted legs of the second operand { j}. Alternative contraction
workflows, which avoid the fusion to the block-sparse matrix form, will be introduced in the
future version.

Here, we first show an example call for pairwise tensor contraction, and second, an equiv-
alent given in terms of explicit operations

1 H2 = yastn.tensordot(H, H, axes =((2 ,3), (0,1)))
2 H2 = (H.fuse_legs(axes =((0 ,1), (2,3))) @
3 H.fuse_legs(axes =((0 ,1), (2,3)))).unfuse_legs(axes =(0 ,1))

4For valid contraction, the structures of the contracted legs must be compatible, including the origins of any
fused leg. YASTN automatically resolves a situation when some charges in the fusion history of a to-be-contracted
fused leg are missing but are present in its contraction partner. This is done by utilizing information on the tensor’s
fusion history stored in each yastn.Tensor object.

7

https://scipost.org
https://scipost.org/SciPostPhysCodeb.52

SciPost Phys. Codebases 52 (2025)

For both fusion and multiplication, the YASTN first precomputes what the non-zero blocks are,
so the backend performs only the relevant operations. Contractions of more general tensor
diagrams are supported through convenience functions, such as einsum and ncon [42] (in our
case differing only by syntax), which are based on the elementary operations discussed above.

2.3 Tensor network algorithms

The symmetric tensor serves as the basis for higher-level tensor network structures and algo-
rithms. Here, YASTN comes with MPS and PEPS modules. The MPS module supports finite-
size MPS with the implementation of a range of standard algorithms, including DMRG for
ground-state optimization, TDVP [43,44] for time evolution,5 and overlap maximization [46]
against a general target, i.e., MPS, sum of MPSs, or sum of MPO-MPS products. This is com-
plemented by a versatile high-level (Hamiltonian) MPO generator. The MPS module provides
subroutines for some PEPS methods; e.g., it was utilized in Ref. [47] for boundary MPS con-
traction and long-range correlations calculation in a finite PEPS defined on a cylinder. At the
same time, it is a versatile computational toolbox on its own. For example, it has been used
in simulations of Lindbladian dynamics in the context of fermionic quantum transport [48],
where the U(1) symmetry reflects a lack of correlations between different particle-number
sectors of a density matrix.

The PEPS module features the implementation of fermionic PEPS, dubbed fPEPS (which
also allows simulations of systems without fermionic statistics). It covers both finite PEPS
defined on a square lattice and its infinite versions for translationally invariant (over a unit
cell) systems in the thermodynamic limit. It supports a range of time evolution algorithms,
starting with neighborhood tensor update (NTU) scheme [49, 50], its refinement to a family
of larger environmental clusters [47], ending on a full-update type of schemes [16, 51]. It
is viable for imaginary-time evolution, e.g., in the context of finite-temperature simulation
of density matrix purification [52] or minimally-entangled typical thermal states [53], and
real-time simulations, e.g., of pure-state quench-dynamics in disordered spin systems [47].

3 Examples

To demonstrate the use and versatility of YASTN, we present three end-to-end numerical ex-
amples6 centered on iPEPS. We provide benchmarks of MPS-type contractions and algorithms
with comparisons to ITensor and TeNPy in a dedicated repository [54].

We show computational speed-up and reduced memory footprint obtained with YASTN by
utilizing Abelian symmetries for the following examples:

1. Sec. 3.1: variational optimization of iPEPS with D ≤ 8 for antiferromagnetic spin-1
2

model on a square lattice using U(1) symmetry,

2. Sec. 3.2: variational optimization of iPEPS with D ≤ 13 for SU(3) model on Kagome
lattice using U(1)×U(1) symmetry,

3. Sec. 3.3: observables of thermal iPEPS of Hubbard model at finite temperature using
Z2, U(1), and U(1)×U(1) symmetry, with D up to 36 for the latter.

5In TDVP, we employ adaptive Krylov subspace exponential integrator of Ref. [45].
6Examples 1 and 2 were run on a single Intel® Xeon® Silver 4110 processor. Example 3 was run on a single

Intel® Xeon® Gold 6416H processor.

8

https://scipost.org
https://scipost.org/SciPostPhysCodeb.52

SciPost Phys. Codebases 52 (2025)

Figure 3: Corner transfer matrix iteration. In (a), CTM approximates parts of
an infinite tensor network by a set of finite environment tensors characterized by
environment bond dimension χ. We depict elements of the CTM algorithm step (it-
eration) that dominate the computational effort shown in Figs. 4–6. Panels (b), (b’),
and (c) depict the construction of an enlarged corner combining CTM environment
tensors (rectangular) with PEPS tensors (circle). Panel (d) shows an SVD decompo-
sition of a product of four enlarged corners that is then used to construct the CTM
projections from enlarged virtual spaces.

In Sec. 3.1 and Sec. 3.2 we optimize iPEPS for SU(2) model on square and SU(3) model on
Kagome lattices, respectively. First, given an iPEPS generated by a set of tensors a⃗ = {a, b, . . .},
we compute an approximate environment tensors E⃗(a⃗) (specified below) with the precision
governed by the environment dimension χ. Then, the environment E⃗ and the tensors a⃗ are
combined to evaluate the energy per site e of the Hamiltonian. Finally, the reverse mode of AD
(i.e., backpropagation) is invoked to calculate the gradient ∂ e/∂ a⃗. The most computationally
intensive stage is the construction of environments, scaling as the cube of D2χ, which assuming
the necessary χ∝ D2 gives the overall complexity O(D12), where D is the bond dimension of
the iPEPS tensors. We use iPEPS optimization implemented in peps-torch [35], here operating
on the YASTN symmetric tensors.

For the examples presented, we employ the corner transfer matrix (CTM) algorithm [55–
57] to compute the environments. CTM approximates environments E⃗ = {C , T} of iPEPS by a
set of χ ×χ corner matrices C and χ ×D2×χ transfer tensors T , as shown in Fig. 3(a). Alter-
natively, one can use the boundary MPS methods [16,46,58]. The computational complexity
of CTM arises from two sources (see Fig. 3), tensor contractions, and singular value decompo-
sition (SVD) when computing low-rank approximations, both scaling as O(D12). In practice,
for simulations without symmetries, the SVD gives a substantially greater contribution due to
a higher scaling prefactor and a poor speed-up offered by multithreading or GPU acceleration
compared to tensor contractions. However, for symmetric iPEPS the situation becomes more
nuanced, as we demonstrate in the following examples.

9

https://scipost.org
https://scipost.org/SciPostPhysCodeb.52

SciPost Phys. Codebases 52 (2025)

In Sec. 3.3, the purification techniques are applied to compute thermal expectation val-
ues for the Fermi-Hubbard model on a 2D square lattice. To effectively transform the thermal
density matrix into a purified wave function, we use the ancilla trick and perform imaginary
time evolution to reach the target temperature. We adopt the NTU algorithm to optimize the
time evolution, with computational cost scaling of O(D8) dominated by tensor contractions.
We focus on the final calculation of the expectation values using CTM with χ = 5D, translat-
ing to O(D9) scaling. We quantify the sources of advantage offered by incorporating various
symmetries.

3.1 Heisenberg antiferromagnet with anisotropy

We revisit the Heisenberg model with anisotropy in the couplings describing a system of cou-
pled spin-1

2 ladders

H = J
∑

R

SR · SR+ x̂ +
∑

R

JRSR · SR+ ŷ , (15)

where SR = (S x
R , S y

R , Sz
R) is the S = 1

2 operator at site R= (x , y) on a square lattice spanned by
the x̂ and ŷ unit vectors. The coupling JR = J for the odd position and JR = αJ for the even
position along the y axis, respectively. For α = 1, the Hamiltonian in Eq. (15) realizes the
Heisenberg model on the square lattice, and for α= 0 it corresponds to a system of decoupled
two-legged ladders. The model was previously addressed with iPEPS in Ref. [59]. We adopt
the same description that uses 2×2 unit cell with four non-equivalent tensors a⃗ = {a, b, c, d}.7

The ground states possess U(1) symmetry corresponding to the conservation of the Sz

component. The symmetry can be exploited by utilizing U(1)-symmetric iPEPS. The results,
summarized in Fig. 4, show a rapidly growing computational advantage of symmetric iPEPS
for bond dimensions D > 4. While at D = 4 the overhead due to block-sparse logic is still
significant, at the largest bond dimension considered, D = 8, a 30-fold speed-up is observed.

In practical terms, the convergence of the CTM towards the desired precision, here mea-
sured by the error on the energy per site becoming lower than ε < 10−8, typically requires
O(10) iterations; thus without U(1) symmetry a single optimization step would already take
hours. Details of the block-sparse structure and its impact on the CTM are visualized in
Fig. 4(b,c). At the largest bond dimension, D = 8, the fusion of the enlarged corner into
a block-diagonal matrix requires processing of approximately O(100) blocks by performing
dense permutes, reshapes, and copies, with the largest block having O(105) elements. The
cost of subsequent SVD is dominated by the largest block(s) of fused enlarged corner, which
are L× L matrices with L = 1,500∼ 2, 000. As a result, computational time contributions are
shared between SVD and tensor contractions with fusions roughly as 3:2, with SVD being the
dominant factor.

3.2 SU(3) model on Kagome lattice

We consider an SU(3)-symmetric model on Kagome lattice, analyzed recently in Ref. [60],
where each site holds a single degree of freedom from the fundamental representation 3 of
the SU(3) group spanned by three states {|α〉, |β〉, |γ〉}. The Hamiltonian reads

H = J
∑

〈i, j〉

Pi j +
∑

△i jk

(KPi jk + h.c.) , (16)

where Pi j is a permutation, Pi j|α〉i|β〉 j = |β〉i|α〉 j , of local states on nearest-neighbour
bonds. Pi jk is a clockwise permutation of local states in nearest-neighbor triangles such that

7A more efficient description might generate all tensors in 2×2 unit cell from a single parent tensor a by use of
unitary −iσ y acting on physical index and/or permutation of virtual indices generated by the reflection along the
x-axis. However, such a parameterization would not change the complexity of the CTM.

10

https://scipost.org
https://scipost.org/SciPostPhysCodeb.52

SciPost Phys. Codebases 52 (2025)

2 3 4 5 6 7 8

10−1

100

101

102

103

iPEPS bond dimension D

ti
m
e
p
er

C
T
M

st
ep

[s
]

no sym.

U(1)

5 6 7 8
1×

10×

100×

sp
ee
d
-u
p

100 101 102 103 104 105
0

20

40

60

80

block size

n
u
m
b
er

of
b
lo
ck
s

D=5 D=6 D=7 D=8

−
1
0

−
8

−
6

−
4

−
2 0 2 4 6 8

1
0

0

500

1000

1500

2000

charge

b
lo
ck

d
im

en
si
on

L

(a)

(b) (c)

106

Figure 4: Use case 1: optimization of U(1)-symmetric iPEPS for model of spin-1
2

coupled ladders. In (a), we show the scaling of the wall time per CTM step (in
seconds) for the entire gradient optimization step of iPEPS. The bond dimension of
the environment is χ = 2D2. The inset shows the relative speed-up compared to an
implementation without symmetry. In (b), we show a distribution of blocks of an
enlarged corner by their size (number of elements) before fusion to a block-diagonal
matrix as shown in Fig. 3(c). In (c), we show the sizes of L×L blocks after the fusion.

Pi jk|α〉i|β〉 j|γ〉k = |γ〉i|α〉 j|β〉k, with fixed choice of orientation of triangles, and J and K are
real and complex-valued couplings, respectively.

In this section, we demonstrate an advantage of U(1)×U(1)-symmetric iPEPS, utilizing
maximal Abelian subgroup of SU(3), over implementation without symmetries.8 To compute
CTM environments on the Kagome lattice, we coarse-grain three sites on each down-pointing
triangle into a single tensor, resulting in an effective square lattice. The local Hilbert space
dimension thus grows to 33 = 27, making the optimizations memory intensive. In Fig. 5, we
demonstrate the dramatic speed-up achieved by utilizing U(1)×U(1) symmetry. For D = 9
iPEPS, a single gradient step is already accelerated by more than a factor of 100. For larger
bond dimensions, the simulations without symmetries become prohibitive, and we estimate
the speed-up based on extrapolation of the scaling at smaller bond dimensions.

In contrast to the example in Sec. 3.1 utilizing the U(1)-symmetry, the speed-up in this case
is not monotonic in D. This happens because of the varying structure of the iPEPS tensors, i.e.,
the allowed symmetry sectors and their sizes. In Fig. 5(b,c) we illustrate the block structure of

8In this example, besides iPEPS, one can also use different ways to construct two-dimensional TN Ansatz on
Kagome lattice, i.e., infinite projected simplex states (iPESS), however, the computational complexity O(D12),
attributable to CTM, remains unchanged.

11

https://scipost.org
https://scipost.org/SciPostPhysCodeb.52

SciPost Phys. Codebases 52 (2025)

3 4 7 9 1213
10−2

10−1

100

101

102

103

104

105

iPEPS bond dimension D

ti
m
e
p
er

C
T
M

st
ep

[s
]

no sym.
no sym. ext.

U(1)×U(1)

4 7 9 1213
1×

10×

100×

1000×

sp
ee
d
-u
p

100 101 102 103 104 105
100

101

102

103

104

block size

n
u
m
b
er

of
b
lo
ck
s

D=7 D=9

D=12 D=13

−
1
0

−
5 0 5

1
0

−10

−5

0

5

10

charge t1

ch
ar
ge

t 2
100 101 102 103

block dimension L

(a)

(b) (c)

106

Figure 5: Use case 2: optimization of U(1)×U(1)-symmetric iPEPS for SU(3)
Kagome model. In (a), scaling of the wall time per CTM step (in seconds) for the
entire gradient optimization step of iPEPS. The bond dimension of the environment
is χ = D2. The inset shows the relative speed-up compared to an implementation
without symmetry, with D = 12 and 13 simulation wall times estimated from the
extrapolation (blue dashed line). In (b), a distribution of blocks of an enlarged corner
by their size (number of elements) before the fusion to a matrix. In (c), L× L blocks
of the block-diagonal enlarged corner after fusion. We plot them as a heatmap, with
different U(1) charges on x- and y-axes.

enlarged corners before and after the fusion to a block-diagonal matrix. Generally, for larger
groups, the number of blocks of enlarged corners before fusion is substantially higher. Even
at D = 7, the total number of blocks is already more than 3, 000 whereas for U(1)-symmetric
enlarged corner in Sec. 3.1 it was below 300. For D = 13 Ansatz, the fusion of the enlarged
corner into a block-diagonal matrix requires processing of more than 16,000 blocks, with
more than half of them being small in size, having roughly O(103) elements or less. This
granularity defines the bottleneck of the simulations. For D = 12 and D = 13 the ratios
between the computational time of SVD and contractions including fusion to block-diagonal
enlarged corners are 3:4 and 1:10, respectively. Overall, the U(1)×U(1) simulations become
dominated by fusion, with SVD being sub-leading. The precise speed-up depends on the sizes
of the blocks, such as here, where D = 12 has a slightly higher proportion of largest blocks
compared to D = 13.

12

https://scipost.org
https://scipost.org/SciPostPhysCodeb.52

SciPost Phys. Codebases 52 (2025)

10 121416 20 2529 36

101

102

103

104

105

ti
m
e
of

C
T
M

st
ep

[s
]

10 121416 20 2529 36

10−1

100

101

102

103

104

M
em

or
y
[G

B
]

no sym. equiv. Z2 U(1) U(1)×U(1)

10 121416 20 2529 36
100

101

102

103

104

n
u
m
b
er

of
b
lo
ck
s

10 121416 20 2529 36
102

103

104

105

iPEPS bond dimension D

m
ax

b
lo
ck

d
im

en
si
on

L

(a) (b)

(c) (d)

in Fig. 3(b) in Fig. 3(d)

Figure 6: Use case 3: expectation values from CTM environments in fermionic
iPEPS for finite-temperature Hubbard model. The bond dimension of the environ-
ment is χ = 5D, which is sufficient here to converge the expectation values. We show,
in (a), the wall time per CTM step and, in (b), the data size (memory requirement)
of the biggest intermediate tensor appearing while building enlarged CTM corners
in Fig. 3(b). Panel (c) shows the number of blocks in an enlarged corner before the
fusion in Fig. 3(c), and panel (d) is the size of the largest L × L block for SVD in
Fig. 3(d).

3.3 2D Fermi-Hubbard model on a square lattice

We consider a two-dimensional Fermi-Hubbard model (FHM) with on-site repulsion as studied
in Ref. [52]. The Hamiltonian reads

H = −t
∑

〈i, j〉,σ

�

c†
iσc jσ + c†

jσciσ

�

+ U
∑

i

�

ni↑ −
1
2

��

ni↓ −
1
2

�

−µ
∑

i

ni , (17)

where c†
iσ and ciσ are the creation and annihilation operators for an electron with spin σ at

site i, niσ = c†
iσciσ is a corresponding number operator, t is the hopping amplitude, U is the

on-site Coulomb repulsion strength, and µ is the chemical potential.
The iPEPS Ansatz employs a checkerboard lattice with a 2-site unit cell. The thermal state

for the inverse temperature β is obtained by evolving the infinite-temperature purification
|ψ(0)〉 under the non-unitary propagator U(β) = e−βH/2. The initial purification is a prod-
uct of maximally entangled pairs between each physical site and its corresponding ancilla,
|ψ(0)〉=
∏

j

∏

m=↑,↓
1p
2

∑

smj
=amj

=0,1 |sm j
am j
〉, translating to local Hilbert spaces of dimension

13

https://scipost.org
https://scipost.org/SciPostPhysCodeb.52

SciPost Phys. Codebases 52 (2025)

42 = 16. In the following examples, we run the imaginary time evolution employing the NTU
scheme targeting β = 2.

In YASTN, the fermionic exchange order is implemented following the scheme of Refs. [61,
62] by projecting the lattice Ansatz onto a plane, imposing a canonical fermionic order, and
applying swap gates on every line crossing; see Fig. 3(b). The swap gate introduces sign
changes for blocks with charges of odd parity on both swapped legs. This makesZ2 the minimal
symmetry needed for fermionic system simulations. The Hamiltonian in Eq. (17) preserves
the number of particles per spin direction, which allows us to implement the model under
U(1)×U(1) symmetry as the highest Abelian symmetry.

The expectation values of the thermal state at β = 2 are calculated using the CTM. Fig. 6
shows an advantage of symmetric tensors by comparing Z2 (parity; minimal requirement for
fermionic statistics), U(1) (total charge conservation) and U(1)×U(1) (total charge conserva-
tion for each spin) symmetries. We also show equivalent values for the corresponding tensors
with no symmetry. We choose the environmental bond dimension χ = 5D, which is sufficient
to converge the expectation values in this example.

Fig. 6(a) presents the computational wall time for a CTM step as a function of the iPEPS
bond dimension for all the symmetries tested, with the systematic improvement offered by
higher symmetries. Fig. 6(b) highlights the memory usage bottleneck, showcasing the size of
the largest object formed during the CTM iteration, i.e., an intermediate step of the contraction
in Fig. 3(b); this tensor has to be later fused, and there are other tensors in the memory, so the
memory peak is roughly two times higher. This illustrates that those simulations are ultimately
memory-limited. Employing U(1)×U(1) symmetry offers a systematic 30-fold memory gain
compared to tensors without symmetries, which ultimately allows for successful simulations
up to D = 36.

Following the previous examples, in Fig. 6(c), we present the number of blocks processed
during the fusion that form enlarged corners in Fig. 3(c). A particular challenge for U(1)×U(1)
case is the number of blocks that can exceed 10,000. However, SVD is a dominant factor that
takes at least half the simulation time for D ≥ 25 in our numerical experiments. In Fig. 6(d),
we show the (sectorial) bond dimension of the largest block decomposed in Fig. 3(d), which
is O(104) for each employed symmetry. Among them, the U(1)×U(1)-symmetry offers here a
15-fold improvement for given D as compared to a setup with no symmetries involved.

4 Conclusion and future outlook

Tensor networks are becoming increasingly popular tools for numerical treatment of quantum
systems, ranging from ground-state simulations of condensed-matter systems to simulations of
quantum circuits. The landscape of associated software is continuously growing. For 1D and
quasi-1D geometries, well-established and mature packages offer a rich set of MPS algorithms
that cover direct energy minimization, (imaginary) time evolution, and much more. For two-
dimensional geometries, predominantly targeted by iPEPS, the field remains nascent.

Here, we have introduced YASTN, a Python-based TN library with a strong emphasis on
simulations of two-dimensional systems by iPEPS, which is motivated by the need for both
Abelian symmetries and automatic differentiation. By design, the dense linear algebra and
the AD engine are provided by different backends, allowing for implementation-specific op-
timizations. YASTN, with its rich set of examples covering ground-state simulations of vari-
ous 2D spin lattice models (through peps-torch) and finite-temperature simulations of the 2D
Hubbard model, thus joins similar efforts by VariPEPS [37], PEPSkit [38], ad-peps [36], and
peps-torch [35] together lowering the barrier for entry.

14

https://scipost.org
https://scipost.org/SciPostPhysCodeb.52

SciPost Phys. Codebases 52 (2025)

The wide separation between the high-level description of iPEPS algorithms and their fast
execution, optimized down to low-level dense linear algebra, especially for symmetric tensors,
remains a challenge. Unlike MPS simulations, iPEPS contraction algorithms for computing
environments and evaluation of observables involve a more diverse set of tensor contractions,
varying in ranks and block sparsity patterns. Furthermore, flexible deployment and the ability
to leverage heterogeneous clusters, which account for the iPEPS-specific block sparsity, is vital
to address the sharp O(D8 ∼ D12) (albeit polynomial) scaling with the bond dimension, which
is the key resource governing the precision of iPEPS. Thus, these challenges call for further
development.

Acknowledgments

We thank Philippe Corboz, Piotr Czarnik, Jacek Dziarmaga, Boris Ponsioen, Yintai Zhang and
Yi Xu for inspiring discussions that were invaluable in the development of this package.

Funding information We acknowledge the funding by the National Science Center (NCN),
Poland, under projects 2019/35/B/ST3/01028 (A.S.), 2020/38/E/ST3/00150 (G.W.), and
project 2021/03/Y/ST2/00184 within the QuantERA II Programme that has received funding
from the European Union Horizon 2020 research and innovation programme under Grant
Agreement No. 101017733 (M.M.R.). J.H. acknowledges support from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 101001604) and from the Swiss National Science Foundation through a
Consolidator Grant (iTQC, TMCG-2_213805).

References

[1] R. Orús, A practical introduction to tensor networks: Matrix product states and projected
entangled pair states, Ann. Phys. 349, 117 (2014), doi:10.1016/j.aop.2014.06.013.

[2] R. Orús, Tensor networks for complex quantum systems, Nat. Rev. Phys. 1, 538 (2019),
doi:10.1038/s42254-019-0086-7.

[3] J. I. Cirac, D. Pérez-García, N. Schuch and F. Verstraete, Matrix product states and pro-
jected entangled pair states: Concepts, symmetries, theorems, Rev. Mod. Phys. 93, 045003
(2021), doi:10.1103/RevModPhys.93.045003.

[4] S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev.
Lett. 69, 2863 (1992), doi:10.1103/PhysRevLett.69.2863.

[5] S. R. White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B
48, 10345 (1993), doi:10.1103/PhysRevB.48.10345.

[6] S. Rommer and S. Östlund, Class of Ansatz wave functions for one-dimensional spin systems
and their relation to the density matrix renormalization group, Phys. Rev. B 55, 2164
(1997), doi:10.1103/PhysRevB.55.2164.

[7] J. Dukelsky, M. A. Martín-Delgado, T. Nishino and G. Sierra, Equivalence of the variational
matrix product method and the density matrix renormalization group applied to spin chains,
Europhys. Lett. 43, 457 (1998), doi:10.1209/epl/i1998-00381-x.

15

https://scipost.org
https://scipost.org/SciPostPhysCodeb.52
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1038/s42254-019-0086-7
https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevB.55.2164
https://doi.org/10.1209/epl/i1998-00381-x

SciPost Phys. Codebases 52 (2025)

[8] G. Vidal, Efficient simulation of one-dimensional quantum many-body systems, Phys. Rev.
Lett. 93, 040502 (2004), doi:10.1103/PhysRevLett.93.040502.

[9] N. Schuch, M. M. Wolf, F. Verstraete and J. I. Cirac, Entropy scaling and
simulability by matrix product states, Phys. Rev. Lett. 100, 030504 (2008),
doi:10.1103/PhysRevLett.100.030504.

[10] U. Schollwöck, The density-matrix renormalization group in the age of matrix product
states, Ann. Phys. 326, 96 (2011), doi:10.1016/j.aop.2010.09.012.

[11] F. Verstraete and J. I. Cirac, Renormalization algorithms for quantum-many body systems
in two and higher dimensions, (arXiv preprint) doi:10.48550/arXiv.cond-mat/0407066.

[12] F. Verstraete, M. M. Wolf, D. Perez-Garcia and J. I. Cirac, Criticality, the area law, and
the computational power of projected entangled pair states, Phys. Rev. Lett. 96, 220601
(2006), doi:10.1103/PhysRevLett.96.220601.

[13] R. Orús, Exploring corner transfer matrices and corner tensors for the classi-
cal simulation of quantum lattice systems, Phys. Rev. B 85, 205117 (2012),
doi:10.1103/PhysRevB.85.205117.

[14] P. C. G. Vlaar and P. Corboz, Simulation of three-dimensional quantum sys-
tems with projected entangled-pair states, Phys. Rev. B 103, 205137 (2021),
doi:10.1103/PhysRevB.103.205137.

[15] G. Vidal, Classical simulation of infinite-size quantum lattice systems in one spatial dimen-
sion, Phys. Rev. Lett. 98, 070201 (2007), doi:10.1103/PhysRevLett.98.070201.

[16] J. Jordan, R. Orús, G. Vidal, F. Verstraete and J. I. Cirac, Classical simulation of infinite-size
quantum lattice systems in two spatial dimensions, Phys. Rev. Lett. 101, 250602 (2008),
doi:10.1103/PhysRevLett.101.250602.

[17] I. P. McCulloch, From density-matrix renormalization group to matrix product states, J.
Stat. Mech.: Theory Exp. P10014 (2007), doi:10.1088/1742-5468/2007/10/P10014.

[18] S. Singh, R. N. C. Pfeifer and G. Vidal, Tensor network decompositions in the presence of a
global symmetry, Phys. Rev. A 82, 050301 (2010), doi:10.1103/PhysRevA.82.050301.

[19] S. Singh, R. N. C. Pfeifer and G. Vidal, Tensor network states and algorithms
in the presence of a global U(1) symmetry, Phys. Rev. B 83, 115125 (2011),
doi:10.1103/PhysRevB.83.115125.

[20] S. Singh and G. Vidal, Tensor network states and algorithms in the presence of a global
SU(2) symmetry, Phys. Rev. B 86, 195114 (2012), doi:10.1103/PhysRevB.86.195114.

[21] P. Silvi, F. Tschirsich, M. Gerster, J. Jünemann, D. Jaschke, M. Rizzi and S. Montangero,
The tensor networks anthology: Simulation techniques for many-body quantum lattice sys-
tems, SciPost Phys. Lect. Notes 8 (2019), doi:10.21468/SciPostPhysLectNotes.8.

[22] M. M. Rams, G. Wójtowicz, A. Sinha and J. Hasik, YASTN: Yet another symmetric tensor
network (2024), https://github.com/yastn/yastn.

[23] P. Corboz, Variational optimization with infinite projected entangled-pair states, Phys. Rev.
B 94, 035133 (2016), doi:10.1103/PhysRevB.94.035133.

16

https://scipost.org
https://scipost.org/SciPostPhysCodeb.52
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.100.030504
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.48550/arXiv.cond-mat/0407066
https://doi.org/10.1103/PhysRevLett.96.220601
https://doi.org/10.1103/PhysRevB.85.205117
https://doi.org/10.1103/PhysRevB.103.205137
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1103/PhysRevLett.101.250602
https://doi.org/10.1088/1742-5468/2007/10/P10014
https://doi.org/10.1103/PhysRevA.82.050301
https://doi.org/10.1103/PhysRevB.83.115125
https://doi.org/10.1103/PhysRevB.86.195114
https://doi.org/10.21468/SciPostPhysLectNotes.8
https://github.com/yastn/yastn
https://doi.org/10.1103/PhysRevB.94.035133

SciPost Phys. Codebases 52 (2025)

[24] L. Vanderstraeten, J. Haegeman, P. Corboz and F. Verstraete, Gradient methods for vari-
ational optimization of projected entangled-pair states, Phys. Rev. B 94, 155123 (2016),
doi:10.1103/PhysRevB.94.155123.

[25] H.-J. Liao, J.-G. Liu, L. Wang and T. Xiang, Differentiable programming tensor networks,
Phys. Rev. X 9, 031041 (2019), doi:10.1103/PhysRevX.9.031041.

[26] M. Fishman, S. White and E. Stoudenmire, The ITensor software library for tensor network
calculations, SciPost Phys. Codebases 4 (2022), doi:10.21468/SciPostPhysCodeb.4.

M. Fishman, S. White and E. Stoudenmire, Codebase release 0.3 for ITensor, SciPost Phys.
Codebases 4-r0.3 (2022), doi:10.21468/SciPostPhysCodeb.4-r0.3.

[27] J. Hauschild and F. Pollmann, Efficient numerical simulations with tensor net-
works: Tensor network Python (TeNPy), SciPost Phys. Lect. Notes 5 (2018),
doi:10.21468/SciPostPhysLectNotes.5.

[28] H. Zhai et al., Block2: A comprehensive open source framework to develop and apply
state-of-the-art DMRG algorithms in electronic structure and beyond, J. Chem. Phys. 159,
234801 (2023), doi:10.1063/5.0180424.

[29] M. Ballarin et al., Quantum tea: Qtealeaves, Zenodo (2024),
doi:10.5281/zenodo.10498929.

[30] C. R. Roberts et al., Tensornetwork: A library for easy and efficient manipulation of tensor
networks (2019), https://github.com/google/TensorNetwork.

[31] K.-H. Wu, C.-T. Lin, K. Hsu, H.-T. Hung, M. Schneider, C.-M. Chung, Y.-J. Kao and P. Chen,
The Cytnx library for tensor networks, (arXiv preprint) doi:10.48550/arXiv.2401.01921.

[32] Y. Motoyama, T. Okubo, K. Yoshimi, S. Morita, T. Kato and N. Kawashima, TeNeS: Tensor
network solver for quantum lattice systems, Comput. Phys. Commun. 279, 108437 (2022),
doi:10.1016/j.cpc.2022.108437.

[33] J. Haegeman et al., TensorKit.jl, Zenodo (2024), doi:10.5281/zenodo.10959683.

[34] A. Weichselbaum, QSpace - An open-source tensor library for Abelian and non-Abelian
symmetries, SciPost Phys. Codebases 40 (2024), doi:10.21468/SciPostPhysCodeb.40.

A. Weichselbaum, Codebase release 4.0 for QSpace, SciPost Phys. Codebases 40-r4.0
(2024), doi:10.21468/SciPostPhysCodeb.40-r4.0.

[35] J. Hasik et al., peps-torch: Solving two-dimensional spin models with tensor networks (pow-
ered by PyTorch) (2020), https://github.com/jurajHasik/peps-torch.

[36] B. Ponsioen, ad-peps: iPEPS ground- and excited-state implementation based on automatic
differentiation (2021)), https://github.com/b1592/ad-peps.

[37] J. Naumann, E. L. Weerda, M. Rizzi, J. Eisert and P. Schmoll, An introduc-
tion to infinite projected entangled-pair state methods for variational ground state
simulations using automatic differentiation, SciPost Phys. Lect. Notes 86 (2024),
doi:10.21468/SciPostPhysLectNotes.86.

[38] P. Brehmer, L. Burgelman and L. Devos, PEPSKit.jl, Zenodo, (2024),
doi:10.5281/zenodo.13938736.

[39] T. Chanda, Tennetlib.jl (2023), https://github.com/titaschanda/TenNetLib.jl.

17

https://scipost.org
https://scipost.org/SciPostPhysCodeb.52
https://doi.org/10.1103/PhysRevB.94.155123
https://doi.org/10.1103/PhysRevX.9.031041
https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.21468/SciPostPhysCodeb.4-r0.3
https://doi.org/10.21468/SciPostPhysLectNotes.5
https://doi.org/10.1063/5.0180424
https://doi.org/10.5281/zenodo.10498929
https://github.com/google/TensorNetwork
https://doi.org/10.48550/arXiv.2401.01921
https://doi.org/10.1016/j.cpc.2022.108437
https://doi.org/10.5281/zenodo.10959683
https://doi.org/10.21468/SciPostPhysCodeb.40
https://doi.org/10.21468/SciPostPhysCodeb.40-r4.0
https://github.com/jurajHasik/peps-torch
https://github.com/b1592/ad-peps
https://doi.org/10.21468/SciPostPhysLectNotes.86
https://doi.org/10.5281/zenodo.13938736
https://github.com/titaschanda/TenNetLib.jl

SciPost Phys. Codebases 52 (2025)

[40] C. R. Harris et al., Array programming with NumPy, Nature 585, 357 (2020),
doi:10.1038/s41586-020-2649-2.

[41] A. Paszke et al., PyTorch: An imperative style, high-performance deep learning library, in
Proceedings of the 33rd international conference on neural information processing systems,
Curran Associates, Red Hook, USA, ISBN 9781713829546 (2019).

[42] R. N. C. Pfeifer, G. Evenbly, S. Singh and G. Vidal, NCON: A tensor network contractor for
MATLAB, (arXiv preprint) doi:10.48550/arXiv.1402.0939.

[43] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde and F. Verstraete, Time-
dependent variational principle for quantum lattices, Phys. Rev. Lett. 107, 070601 (2011),
doi:10.1103/PhysRevLett.107.070601.

[44] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken and F. Verstraete, Unifying time
evolution and optimization with matrix product states, Phys. Rev. B 94, 165116 (2016),
doi:10.1103/PhysRevB.94.165116.

[45] J. Niesen and W. M. Wright, Algorithm 919: A Krylov subspace algorithm for evaluating the
φ-functions appearing in exponential integrators, ACM Trans. Math. Softw. 38, 1 (2012),
doi:10.1145/2168773.2168781.

[46] F. Verstraete, V. Murg and J. I. Cirac, Matrix product states, projected entangled pair states,
and variational renormalization group methods for quantum spin systems, Adv. Phys. 57,
143 (2008), doi:10.1080/14789940801912366.

[47] A. D. King et al., Computational supremacy in quantum simulation, (arXiv preprint)
doi:10.48550/arXiv.2403.00910.

[48] G. Wójtowicz, A. Purkayastha, M. Zwolak and M. M. Rams, Accumulative reservoir con-
struction: Bridging continuously relaxed and periodically refreshed extended reservoirs,
Phys. Rev. B 107, 035150 (2023), doi:10.1103/PhysRevB.107.035150.

[49] J. Dziarmaga, Time evolution of an infinite projected entangled pair state: Neighborhood
tensor update, Phys. Rev. B 104, 094411 (2021), doi:10.1103/PhysRevB.104.094411.

[50] J. Dziarmaga, Simulation of many-body localization and time crystals in two di-
mensions with the neighborhood tensor update, Phys. Rev. B 105, 054203 (2022),
doi:10.1103/PhysRevB.105.054203.

[51] P. Czarnik, J. Dziarmaga and P. Corboz, Time evolution of an infinite projected
entangled pair state: An efficient algorithm, Phys. Rev. B 99, 035115 (2019),
doi:10.1103/PhysRevB.99.035115.

[52] A. Sinha, M. M. Rams, P. Czarnik and J. Dziarmaga, Finite-temperature tensor network
study of the Hubbard model on an infinite square lattice, Phys. Rev. B 106, 195105 (2022),
doi:10.1103/PhysRevB.106.195105.

[53] A. Sinha, M. M. Rams and J. Dziarmaga, Efficient representation of minimally entangled
typical thermal states in two dimensions via projected entangled pair states, Phys. Rev. B
109, 045136 (2024), doi:10.1103/PhysRevB.109.045136.

[54] M. M. Rams et al., yastn_benchmarks (2024), https://github.com/yastn/yastn_
benchmarks.

18

https://scipost.org
https://scipost.org/SciPostPhysCodeb.52
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.48550/arXiv.1402.0939
https://doi.org/10.1103/PhysRevLett.107.070601
https://doi.org/10.1103/PhysRevB.94.165116
https://doi.org/10.1145/2168773.2168781
https://doi.org/10.1080/14789940801912366
https://doi.org/10.48550/arXiv.2403.00910
https://doi.org/10.1103/PhysRevB.107.035150
https://doi.org/10.1103/PhysRevB.104.094411
https://doi.org/10.1103/PhysRevB.105.054203
https://doi.org/10.1103/PhysRevB.99.035115
https://doi.org/10.1103/PhysRevB.106.195105
https://doi.org/10.1103/PhysRevB.109.045136
https://github.com/yastn/yastn_benchmarks
https://github.com/yastn/yastn_benchmarks

SciPost Phys. Codebases 52 (2025)

[55] T. Nishino and K. Okunishi, Corner transfer matrix renormalization group method, J. Phys.
Soc. Jpn. 65, 891 (1996), doi:10.1143/JPSJ.65.891.

[56] R. Orús and G. Vidal, Simulation of two-dimensional quantum systems on an infinite lattice
revisited: Corner transfer matrix for tensor contraction, Phys. Rev. B 80, 094403 (2009),
doi:10.1103/PhysRevB.80.094403.

[57] P. Corboz, T. M. Rice and M. Troyer, Competing states in the t − J model:
Uniform d-wave state versus stripe state, Phys. Rev. Lett. 113, 046402 (2014),
doi:10.1103/PhysRevLett.113.046402.

[58] M. T. Fishman, L. Vanderstraeten, V. Zauner-Stauber, J. Haegeman and F. Verstraete,
Faster methods for contracting infinite two-dimensional tensor networks, Phys. Rev. B 98,
235148 (2018), doi:10.1103/PhysRevB.98.235148.

[59] J. Hasik, G. B. Mbeng, S. Capponi, F. Becca and A. M. Läuchli, Symmetric projected
entangled-pair states analysis of a phase transition in coupled spin-1/2 ladders, Phys. Rev.
B 106, 125154 (2022), doi:10.1103/PhysRevB.106.125154.

[60] Y. Xu, S. Capponi, J.-Y. Chen, L. Vanderstraeten, J. Hasik, A. H. Nevidomskyy, M. Mam-
brini, K. Penc and D. Poilblanc, Phase diagram of the chiral SU(3) antiferromagnet on the
kagome lattice, Phys. Rev. B 108, 195153 (2023), doi:10.1103/PhysRevB.108.195153.

[61] P. Corboz and G. Vidal, Fermionic multiscale entanglement renormalization Ansatz, Phys.
Rev. B 80, 165129 (2009), doi:10.1103/PhysRevB.80.165129.

[62] P. Corboz, R. Orús, B. Bauer and G. Vidal, Simulation of strongly correlated fermions in two
spatial dimensions with fermionic projected entangled-pair states, Phys. Rev. B 81, 165104
(2010), doi:10.1103/PhysRevB.81.165104.

19

https://scipost.org
https://scipost.org/SciPostPhysCodeb.52
https://doi.org/10.1143/JPSJ.65.891
https://doi.org/10.1103/PhysRevB.80.094403
https://doi.org/10.1103/PhysRevLett.113.046402
https://doi.org/10.1103/PhysRevB.98.235148
https://doi.org/10.1103/PhysRevB.106.125154
https://doi.org/10.1103/PhysRevB.108.195153
https://doi.org/10.1103/PhysRevB.80.165129
https://doi.org/10.1103/PhysRevB.81.165104

	Introduction
	Design principles
	Abelian-symmetric tensor
	Fusion and contractions
	Tensor network algorithms

	Examples
	Heisenberg antiferromagnet with anisotropy
	SU(3) model on Kagome lattice
	2D Fermi-Hubbard model on a square lattice

	Conclusion and future outlook
	References

