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Abstract

We present the Julia package PauliStrings.jl for quantum many-body simulations, which
performs fast operations on the Pauli group by encoding Pauli strings in binary. All of
the Pauli string algebra is encoded into low-level logic operations on integers, and is
made efficient by various truncation methods which allow for systematic extrapolation
of the results. We illustrate the effectiveness of our package by (i) performing Heisenberg
time evolution through direct numerical integration and (ii) by constructing a Liouvillian
Krylov space. We benchmark the results against tensor network methods, and we find
our package performs favorably. In addition, we show that this representation allows
for easy encoding of any geometry. We present results for chaotic and integrable spin
systems in 1D as well as some examples in 2D. Currently, the main limitations are the
inefficiency of representing non-trivial pure states (or other low-rank operators), as well
as the need to introduce dissipation to probe long-time dynamics.
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1 Introduction

It is generally difficult to represent quantum objects on a classical computer because they
live in a Hilbert space that is exponential in system size. Hamiltonians of discrete systems
are trivially represented as matrices that take exponential space, and pure states are vectors
on which these matrices can act. It is this basic fact that limits the classical simulability of
quantum systems, one way or another. However, most systems of interest have a lot more
structure, and this structure can often be exploited to devise more meaningful representations
of the problem. Most quantum systems of interest are local, i.e. subsystems with few degrees of
freedom typically interact through few-body interactions on a geometrically local graph. This
locality can be taken advantage of; for example, it has been proven that gapped Hamiltonians
have low energy eigenstates which obey the ‘area law’, that is, their entanglement entropy in
a given region of space scales as the area of the boundary of that region rather than as the
volume, which would be the case generically [1–3]. Thus, the manifold of Hilbert space in
which these states live is very small with respect to the total space, and in addition under time
evolution the amount of Hilbert space explored is exponentially tiny [4].

We can take advantage of this by choosing ansatzes to represent our states which also obey
the area law. Tensor networks such as Matrix Product States (MPS) [5–7] are one such set of
ansatzes which have been shown to be extremely effective at representing quantum states of
local Hamiltonians [8]. Operators can also be represented as tensor networks, such as in the
form of Matrix Product Operators (MPO) [9,10].

In this work we will explore a different representation for efficiently modeling such sys-
tems; for example when we write the Hamiltonian of an Ising chain

H =
∑

i

Zi Zi+1 +
∑

i

X i , (1)

we take advantage of the locality of H to decompose it into local terms: H =
∑

i τi where
the τi ’s are Pauli strings. Each Pauli string is the tensor product of a Pauli matrix {1, X , Y, Z}
at each site. Since these strings form a complete basis, all operators in the Hilbert space can
simply be encoded as linear combinations of Pauli strings.

In this work, we will show that this encoding can be advantageous for numerical simulation
of quantum dynamics. The advantage arises from two key features:

1. The Pauli string algebra is encoded in low-level logic operations on integers, making it
very efficient to numerically store and multiply strings together.

2. Operators can be systematically truncated to some precision by discarding strings with
negligibly small weight. This allows one to keep the number of strings manageable at
the cost of some incurred error.

The second point is particularly powerful when combined with noise. It has recently been
shown that noisy quantum circuits can be simulated in polynomial time [11,12]. The proof is
based on the idea that long Pauli strings decay exponentially in time with an exponent that is
proportional to their length. Because there are only polynomially many short strings, trunca-
tion of the long strings makes simulations more tractable. This can be seen as a truncation of
the very non-local correlations. Note that here ‘non-locality’ refers to many body interactions,
not to ‘geometric non-locality’. Thus, the method does not truncate geometrically non-local
correlations if they are encoded in few body terms. The Pauli string representation is there-
fore the natural way to take advantage of noise to classically simulate quantum many body
systems. To make this practical, we present a user-friendly Julia package that easily encodes
local Hamiltonians and operators, as well as implements important techniques in the study of
quantum many-body systems: PauliStrings.jl.
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The paper is organized as follows. We will first outline the numerical methods. Then,
we will show results obtained with PauliStrings.jl for Heisenberg time evolution and Krylov
subspace expansion (the recursion method) of operators in 1D, 2D, integrable, and chaotic
systems. To benchmark our method, we also present results obtained with tensor network
techniques. Since we are interested in high-temperature dynamics, we find that the Pauli
string algebra outperforms tensor networks in a number of cases. Finally, we discuss ways in
which the Pauli string method can still be improved.

2 Methods

Pauli strings

To encode the algebra of Pauli strings in logic operations on binary strings, we utilize the
method laid out in Ref. [13]. Here, we give an overview of this encoding and show how we
use it to efficiently manipulate quantum operators. First define the following real matrices

τ00 = 12 , (2)

τ01 = X , (3)

τ10 = Z , (4)

τ11 = iY , (5)

where X , Y, Z are the Pauli matrices. Up to a phase α, we can multiply two τ matrices by
performing two XOR operations on their indices:

τv1w1
τv2w2

= ατ(v1⊕v2)(w1⊕w2) . (6)

We can use this property to efficiently multiply Pauli strings. Encode a Pauli string τa in a
tuple of binary integers a = (v, w) such that τa = τv(1)w(1) ⊗ τv(2)w(2) ⊗ τv(3)w(3) ... where v(i) is

the i th bit of integer v. Then the following relation holds:

τa1
τa2
= ατa12

, (7)

where a1 = (v1, w1), a2 = (v2, w2), a12 = (v12, w12) and

v12 = v1 ⊕ v2 , (8)

w12 = w1 ⊕w2 , (9)

α= (−1)pop(v1∧w2) . (10)

Here ⊕ denotes bitwise XOR, ∧ denotes bitwise AND and pop(n) counts the number of set bits
of n (Hamming weight or popcount). A similar relation holds for the commutator of two Pauli
strings:

�

τa1
,τa2

�

= ατa12
, (11)

where (8) and (9) still hold but (10) is replaced by

α= (−1)pop(v1∧w2) − (−1)pop(w1∧v2) . (12)

We can now use this encoding to represent an operator as a list of tuples {ai = (vi , wi)},
together with a list of complex coefficients {hi}. The full operator is simply

H =
∑

i

hiτai
. (13)
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Computing the product or the commutator of two operators in this representation is equivalent
to multiplying the coefficients and the Pauli strings τai

two by two, as shown in algorithm 1.
Algorithm 1 can also be adapted with eq. (12) in order to compute the commutator.

Algorithm 1 Product of two operators A and B in the binary Pauli string representation. Oper-
ators are encoded as dictionaries of complex numbers indexed by tuple of integers (v, w) that
represent a Pauli string. In this algorithm, Av,w denotes the coefficient in front of the string
encoded by v, w in operator A.

C ← empty dictionary
for (vA, wA) in A.keys do

for (vB, wB) in B.keys do
v← vA⊕ vB
w← wA⊕wB
h← AvA,wA

· BvB ,wB
· (−1)pop(vA∧wB)

if (u, v) is in C then
Cv,w ← Cv,w+h

else
Cv,w ← h

end if
end for

end for
return C

In the special case that the operators have translation symmetry, there is an even more
efficient way to encode them. Consider for example the 1D Ising Hamiltonian with periodic
boundary conditions H = −J(

∑

i Zi Zi+1 + g
∑

i X i). In this case, there is no need to store all
the Pauli strings. H is fully specified by the two strings −J Z1Z2 and −J gX1 and the fact that
it has translation symmetry. In general, a 1D translation symmetric operator can be written
as
∑

i Ti(H0) where Ti is the i-site’s translation operator and H0 is the local operator that
generates H. H0 can be chosen so that it’s only composed of Pauli strings that start on the first
site. Algorithm 2 shows how to take the product of two 1D translation symmetric operators.
The main difference from Algorithm 1 is that we need to translate each string back so that
it starts on the first site. In PauliStrings.jl, this is implemented in the OperatorTS1D
structure. Note that Algorithm 2 can easily be adapted to higher dimensions by iterating over
the necessary shifts corresponding to each dimension.

In both cases, (translation symmetric or not), the numerical power of this representation
lies in the possibility to efficiently truncate an operator by only keeping Pauli strings with the
largest weights. When running iterative algorithms like Lanczos, or discrete time evolution, we
truncate the operator at each step by keeping a maximum number of strings or by discarding
long strings.

Tensor networks

We will use tensor networks to benchmark PauliStrings.jl, because as mentioned previously,
they also provide a powerful tool to work around the exponential size of the Hilbert space (for a
review of tensor networks we refer readers to Refs. [14,15]). By constructing a tensor network,
one can compress a state or operator living in the exponentially large Hilbert space into a
polynomial number of chain of tensors, which when contracted, recover the full state/operator.
For this representation to be efficient, the number of tensors should be polynomial in the system
size.
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Algorithm 2 Product of two translation symmetric operators A and B supported on N spins.
Tk is the translation operator by k sites and Shiftleft(v, w) translates the string (v, w) such that
it starts on the first site.

C ← empty operator
for (vA, wA) in A.keys do

for (vB, wB) in B.keys do
for 0≤ k < N do
(v′B, w′B)← Tk(vB, wB)
(v, w)← (vA⊕ v′B, wA⊕w′B)
(v, w)←Shiftleft(v, w)
h← AvA,wA

· BvB ,wB
· (−1)pop(vA∧wB)

if (v, w) is in C then
Cv,w ← Cv,w+h

else
Cv,w ← h

end if
end for

end for
end for
return C

Matrix Product States (MPS) are 1D tensor networks which can be used to represent the
quantum state of N spins by constructing N , 3-dimensional tensors; two of the indices run
over an internal ‘bond-dimension’ (BD) and the third index represents the spin degrees of
freedom. Matrix Product Operators (MPO) are similarly used to represent quantum operators
and consist of N tensors, each with 4-dimensions (two bond-dimensions and two spin degrees
of freedom). When doing calculations a maximum bond-dimension of tensors can be set,
inducing a controlled error in the representation of the state/operator, but at the benefit of
reducing the number of parameters to be just polynomial in the system size.

Using these truncations effectively, tensor networks are highly efficient at performing ma-
trix operations and time evolution with a local and highly sparse Hamiltonian H. In this work,
we will use the ITensors.jl julia package [16] to run all tensor network simulations, and we
refer readers to its documentation for a precise definition of the ‘cutoff’ parameter we use in
our simulations. Heisenberg time evolution is performed with the operator form of the Time
Evolving Block Decimation (TEBD) algorithm [17, 18] as is implemented in ITensors.jl, and
we perform the tensor network recursion method simulations described later by representing
all operators in the algorithm as MPOs.

3 Heisenberg time evolution

Computing time evolution with the Pauli strings is done in the Heisenberg picture. Indeed, a
pure state is a low-rank density matrix, and low-rank matrices cannot be efficiently encoded
as the sum of Pauli strings [19]. It is therefore more efficient to evolve a local operator than a
pure state in the Pauli strings representation. Here this is done by integrating Von Neuman’s
equation

i
dO
d t
= −[H, O] , (14)

using the Runge-Kutta method. To keep the number of strings manageable, we introduce noise
and truncate the operator O at each time step by keeping the strings with the largest weight.
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The noise is modeled by a depolarizing channel that causes long Pauli strings to decay. In
the Heisenberg picture, observables evolve under the adjoint channel. Because a depolarizing
channel is self-adjoint, we can apply it directly to O. The transmission rate associated with a
Pauli string of length w is e−εw where ε is the noise amplitude. Similar approaches have been
recently used in Refs. [11,20–25]. The strategy here is to choose the smallest noise value that
makes the simulations tractable, while not destroying the phenomena of interest.

Results: Next-nearest neighbor XXZ chain

As an example, we discuss the diffusion of a local operator in a XXZ next-nearest-neighbor
spin chain

H =
∑

i

(X iX i+1 + YiYi+1 +∆Zi Zi+1) + γ
∑

i

(X iX i+2 + YiYi+2 +∆Zi Zi+2) , (15)

with γ= 1
2 and ∆= 2. In PauliStrings.jl we can build this Hamiltonian as follows:

� �
function XXZnnn(N::Int)

∆ = 2
γ = 1/2
H = ps.Operator(N)
for j in 1:N

H += "X",j, "X",j%N+1
H += "Y",j, "Y",j%N+1
H += ∆, "Z",j, "Z",j%N+1
H += γ, "X",j, "X",(j+1)%N+1
H += γ, "Y",j, "Y",(j+1)%N+1
H += γ*∆, "Z",j, "Z",(j+1)%N+1

end
return H

end� �
where the modulo ensure periodic boundary conditions.

It is known to be difficult to numerically recover the hydrodynamic diffusive behavior
of strongly coupled spin chains, with some of the best current methods being the truncated
Wigner approximations [26, 27] and TEBD [28]. Diffusion can be observed as a ∼ 1p

t
decay

of the infinite-temperature autocorrelation function:

S(t) =
1

2N
Tr[Z1(t)Z1(0)] . (16)

We recover this behavior with our truncated Pauli string simulations as shown in Fig. 1
for relatively large system size N = 30, where the grey lines indicate ∼ 1

t−1/2 scaling and M
denotes the maximum allowed number of Pauli strings. All results were computed within 1
day maximum runtime.

Our method allows us not only to compute S(t) but also more general two-time correlation
functions between Z1 and other Pauli strings. To illustrate this, in Fig. 2 we plot the two point
correlator:

Si− j(t) =
1

2N
Tr[Zi(t)Z j(0)] . (17)

In the diffusive regime, we’d expect these correlations to decay like a Gaussian with a width
that grows like σ2 ∼ t. As the depolarizing noise ε is increased, the results increasingly
converge in increasing M to the expected diffusive decay. However, for the highest values
of ε, the effects of the breaking of energy and particle-number conservation start to manifest
itself. The system then locally relaxes to equilibrium, resulting in a crossover from diffusion
to exponential decay. By carefully choosing a moderate value of ε and large M , one can see
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good convergence to the expected diffusive decay up to large t (see in particular the plot
for ε = 0.01). In addition, by scaling out the particle loss n(t) =

∑

j Tr[Z0(t)Z j(0)] = e−εt to
correct for the purely dissipative effect that comes from the depolarizing channel, one observes
a broad regime of ε and t over which the results converge, as shown in Fig. 3.

The following is a code example of noisy time evolution implementation in
PauliStrings.jl used to generate Fig. 1:

� �
# heisenberg evolution of the operator O using rk4
# return tr(O(0)*O(t))/tr(O(t)^2)
# M is the number of strings to keep at each step
# noise is the amplitude of depolarizing noise
function evolve(H, O, M, times, noise)

S = []
O0 = deepcopy(O)
dt = times[2]-times[1]
for t in times

push!(S, ps.trace(O*ps.dagger(O0))/ps.trace(O0*O0))
#preform one step of rk4, keep only M strings, do not discard O0
O = ps.rk4(H, O, dt; heisenberg=true, M=M, keep=O0)
#add depolarizing noise
O = ps.add_noise(O, noise*dt)
# keep the M strings with the largest weight. Do not discard O0
O = ps.trim(O, M; keep=O0)

end
return real.(S)

end� �
Achieving time evolution at this system size with dense or sparse matrices would require a

large amount of distributed memory, making it very computationally expensive to run. On the
other hand, using TEBD as shown in Fig. 4 we are able to get converged results with 9 Gb of
memory but only up to t ∼ 1 in 4 days runtime. The PauliStrings.jl result with M = 218 and
ε = 0.01 is shown for comparison and displays the expected decay to an order of magnitude
longer time (t ∼ 10), though it only required 5 Gb of memory and 1 day of runtime. The TEBD
results shown use a truncation cutoff of 10−10; we also performed the same simulation for both
larger and smaller cutoffs, but found 10−10 to be more than sufficiently converged while larger
cutoffs did not improve accessible simulation times without significant loss of accuracy. Thus
PauliStrings.jl performs significantly better than TEBD for Heisenberg time evolution of the
next-nearest neighbor XXZ chain.

4 Krylov subspace expansion

Much recent work has shown that Krylov subspace expansions of the Liouvillian, through the
recursion method, provide valuable insights in quantum many-body dynamics beyond simply
solving the equations of motion (recently reviewed in Ref. [29]). The recursion method has
been used for decades to study quantum many-body systems, and is explained in detail in
Ref. [30]. The method consists of utilizing the Lanczos algorithm to tridiagonalize the Liou-
villian L = [H, ·], which is the superoperator which generates time evolution of operators in
the Heisenberg picture as dO

dt = i[H, O].
Lets introduce Lanczos’ algorithm. The idea is to construct an orthonormal basis of op-

erators generated by recursively applying L to O. First, one defines an inner product, which
here we choose to be the Frobenius inner product (up to normalization): AB = 1

2N Tr[A†B] and
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Figure 1: Diffusive decay of correlator (16) computed by time evolving the XXZ next-
nearest-neighbor spin chain (15) using the Pauli strings method. The grey lines show
the ∼ 1p

t
decay. M denotes the maximum number of strings in the time evolution.

Only M strings with the highest weight are kept at each time step of the RK4 inte-
gration.

norm O = 1
2N Tr[O2]. Then, the first iteration is given by:

O1 = LO0/b1 = [H, O0]/b1 ,

b1 = LO0 . (18)

For n > 2 the algorithm proceeds as follows, up to a maximal dimension n = D2 − D + 1
where D is the Hilbert space dimension [31]:

O′n = LOn−1 − bn−1On−2 ,

On =
O′n
bn

,

bn = O′n . (19)

In the end, one has generated an orthonormal ‘Krylov-basis’ {LO,L2O, ...LnO} and ‘Lanczos
coefficients’ bn which are also uniquely related to the moments of the Hamiltonian [30].

The recursion method was first used in the 1980s to approximate time evolution [32,33],
and has also been used more recently to calculate conductivities [34–39]. However in this
work we will focus on even more recent developments of the recursion method as a probe of
quantum chaos [38, 40–45]. The logic is as follows; evolving in time under the Liouvillian,
an initially local operator becomes increasingly nonlocal and complex, requiring an increasing
number of basis vectors from the Hilbert space to represent it. The Lanczos coefficients gener-
ated by the recursion method are a measure of this complexity. These coefficients are expected

8

https://scipost.org
https://scipost.org/SciPostPhysCodeb.54


SciPost Phys. Codebases 54 (2025)

20 10 0 10 20
10 2

10 1

100

Tr
[Z

i(0
)Z

j(t
) ]

/2
N

model:XXZnnn, N=40, = 0.005

20 10 0 10 20
10 2

10 1

100
model:XXZnnn, N=40, = 0.01

20 10 0 10 20
i j

10 3

10 2

10 1

100

Tr
[Z

i(0
)Z

j(t
) ]

/2
N

model:XXZnnn, N=40, = 0.02

20 10 0 10 20
i j

10 3

10 2

10 1

100
model:XXZnnn, N=40, = 0.04

t=0.05
t=0.10
t=0.25
t=0.65
t=1.45
t=3.40
t=7.95
t=18.45
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t=100.00

Figure 2: Diffusive decay of the two point correlator (17). The two point correlator
takes the form of a Gaussian function in i− j spreading with time. This is characteris-
tic of diffusion. Note that in our Pauli strings representation, extracting this quantity
is not more computationally costly than extracting the correlator (16) from Fig. 1.
The presence of noise makes the correlator decay faster than diffusive at late times,
as also seen on Fig. 1.

to grow as fast as possible in chaotic systems, which has been strictly bounded to be linear,
with a logarithmic correction in one-dimension [38]. However, in integrable systems, due to
the presence of conserved quantities, the dynamics is restricted and the Lanczos coefficients
are generally expected to grow sublinearly (commonly as ∼

p
n), and don’t grow at all for

systems which can be mapped to free fermions [38].
Thus the rate of growth of the Lanczos coefficients can be used as a generic probe of

quantum chaos. In addition, using these ideas it has recently been shown that the knowledge
of a few Lanczos coefficients can be sufficient to estimate long time dynamics [46] and to probe
for hydrodynamics [28,39].

Results: Lanczos coefficients

In this section we show Lanczos coefficients for different systems calculated with both the
truncated Pauli string method and MPOs. In both cases we use a maximum memory of
40 Gb, however, importantly, in the tensor network simulations 4 CPUs are used while in
PauliStrings.jl there is currently no parallelization implemented and only 1 CPU is used. Fig. 5
compares Pauli strings without exploiting translation symmetry to MPO while Fig. 7 shows
Pauli strings results using translation symmetry.
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)Z

j(t
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/n
(t)
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i j

t = 8 t = 16 = 0.005
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Figure 3: Two point correlator (17) (same as in Fig. 2) for some particular times and
different values of dissipation ε. On this figure, the correlator (17) is normalized
by n(t) =
∑

j Tr[Z0(t)Z j(0)] = e−εt in order to correct for the purely dissipative
effect that comes from the depolarizing channel only. At short time (e.g. t = 8), the
correlator is Gaussian while at longer times (e.g. t = 16), the edges of the Gaussian
flatten due to finite size effects.

Integrable models

We first consider two interacting integrable models. The universal behaviors of this class are
not fully understood, however it is known that the Lanczos coefficients have square root growth
bn ∼

p
n in many standard models such as those studied here [30,38,47].

We first consider the XX model with Hamiltonian:

H =
∑

i

(X iX i+1 + YiYi+1) . (20)

To construct this Hamiltonian in PauliStrings.jl with open boundary conditions one writes
the following julia code:

� �
function XX(N)

H = ps.Operator(N)
for j in 1:(N - 1)

H += "X",j,"X",j+1
H += "Y",j,"Y",j+1

end
return H

end� �
We then build the Krylov space from an initial operator O0 =

∑N
i=1 X i . The results for

this model are shown in Fig. 5 (A) for N = 40 up to n = 40 Lanczos iterations. With
PauliStrings.jl the sequence is converged for trim M = 224 strings in 46 minutes while the
equivalent tensor network code is not able to converge much past n = 30. In addition, if
we consider n = 30 where both methods are converged, tensor networks is about 40 times
slower than PauliStrings.jl for equivalent precision (considering BD=500 and trim M = 222).
In addition, the convergence time and memory cost can be improved even more by taking
advantage of the translation symmetry of the model, as explained in the Methods section. Do-
ing this, we can now generate results for N = 50, converged up to n = 50, which are shown
in Fig. 7 (A). Finally, we note that when unconverged the behavior is very different for both
methods. The Pauli strings method tends to underestimate the correct sequence while tensor
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model: XXZnnn,  N=30, cutoff=10 10
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Figure 4: Diffusive decay of the two point correlator (16) computed by time evolving
the XXZ next-nearest-neighbor spin chain (15) using TEBD. The grey lines show the
∼ 1p

t
decay, BD denotes the maximum bond dimension allowed in the time evolution,

and results are shown for a truncation cutoff of 10−10. The Pauli strings result with
M = 218 and ε= 0.01 is shown for comparison.

networks overestimates, and diverges. This allows for a much more controlled extrapolation
of the correct result with increasing trim than for increasing bond dimension, and also reduces
computation time when unconverged. Thus the Pauli strings method is much more efficient
for this model, even without taking advantage of the translational symmetry.

We also consider the interacting XXX Heisenberg model which is integrable by the Bethe
Ansatz [48], and has the following Hamiltonian:

H =
∑

i

(X iX i+1 + YiYi+1 + Zi Zi+1) . (21)

This Hamiltonian is constructed in PauliStrings.jl with the following code:

� �
function XXX(N)

H = ps.Operator(N)
for j in 1:(N - 1)

H += "X",j,"X",j+1
H += "Y",j,"Y",j+1
H += "Z",j,"Z",j+1

end
return H

end� �
We again consider open boundary conditions and use the initial operator

O0 =
N
∑

j

X jYj+1 − YjX j+1 ,

which is shown to give a square root growth in Ref. [38]. The results are shown in Fig. 5 (B). In
this case the methods are more comparable; the Pauli strings method is converged up to n∼ 15
while the tensor network method is converged up to n∼ 17, however, the latter requires more
than an order of magnitude more time to reach this convergence than PauliStrings.jl. Taking
advantage of the translation symmetry we achieve convergence up to n∼ 20, shown in Fig. 7
(B).
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Chaotic model

We now consider a chaotic chain which we call the quantum Ising chain with the following
Hamiltonian:

H =
∑

i

(X iX i+1 − 1.05Zi + hX X i) . (22)

This code builds the Hamiltonian in PauliStrings.jl:

� �
function Quantum_Ising(N, h_X)

H = ps.Operator(N)
for j in 1:(N - 1)

H += "X",j,"X",j+1
end
for j in 1:N

H += -1.05,"Z",j
H += h_X,"X",j

end
return H

end� �
The Lanczos coefficients of generic chaotic systems grow linearly: bn ∼ n (with a logarith-

mic correction in 1D bn ∼
n

log n) [38,49]. Here we use hX = 0.5 which has been shown to be far
away from the integrable point [50]. As an initial operator we use O =

∑

i (1.05X iX i+1 + Zi),
as is also used in Ref. [38].

The results are shown in Fig. 5 (C), where we see the expected growth bn ∼
n

log n . Here
the methods are again comparable, but tensor networks have an edge in convergence, con-
verging up to n = 40 while PauliStrings.jl converges up to n ∼ 33 in similar time. We thus
conclude that the tensor network implementation is more efficient for this model, though the
Pauli strings method is comparable. That being said, if we take advantage of the translational
symmetry, shown in Fig. 7 (C) (and (D) for hX = 0.1) the Pauli strings method now converges
up to n= 40 in approximately half the time as the tensor network method.

2D chaotic models

A significant advantage of PauliStrings.jl is the relative ease of considering higher spatial
dimensions. The Pauli string representation is not tied to any geometry; it allows us to work
with local systems defined on arbitrary graphs. First we give an example of chaotic growth in
2D we using the following 2D XZ+ZX model, with the following Hamiltonian:

H =
∑

x y

�

X x ,y Zx+1,y + Zx ,y X x ,y+1

�

. (23)

We again use open boundary conditions and an initial operator O = Z11. It has been proven
that for this model the Lanczos coefficients grow linearly [38, 51], and we see this clearly in
Fig. 6 (A). With PauliStrings.jl we are able to achieve up to n = 15 coefficients in a small
amount of computation time (26 minutes). This competes with analytical methods used for
computing Lanczos coefficients for other 2D models [37].

We also consider the 2D XXZ model given by the following Hamiltonian:

H =
∑

<i, j>

�

X iX j + YiYj +
1
2

Zi Z j

�

. (24)

The Lanczos coefficients for this model are shown in Fig. 6. Convergence is achieved up to
n= 10 in relatively small computation times.
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Figure 5: Lanczos coefficients calculated with PauliStrings.jl (PS) and Tensor net-
works (TN) for the XX model (A), chaotic chain (B), and XXX model (C) for different
trim and bond dimensions (BD) respectively. The trim value is log2 M where M is
the maximum number of strings kept at each step. Similar results exploiting transla-
tion symmetry are shown in Fig. 7. Results are calculated with a maximum of 40 Gb
memory and 1 CPU or 4 CPUs for PauliStrings.jl and tensor networks respectively.
The insets show the convergence of the coefficients for some values of n.
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Figure 7: Lanczos coefficients calculated with PauliStrings.jl exploiting translation
symmetry. Instead of storing the whole operator at each step, we can take advantage
of translation symmetry by only keeping strings that start on a particular site. This
saves a factor N in memory and allows better convergence for similar memory usage.
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5 Visualizing the algebra

We now turn to a more pedagogical example in which the string representation gives direct
intuitive insight into the system. Consider the XX model (eq. 20). This is an integrable model
and if O is a Majorana Pauli string, then [H, O] is another Majorana string. A Majorana string
is a string of the form Y..Y X1...1 or Y..Y Z1...1. Indeed, these strings anti-commute and can
be interpreted as spin representations of Majorana fermions. Now, if we add a defect to the XX
model, this breaks integrability. Let us visualize this effect using PauliStrings.jl. We already
constructed the XX model below eq. (20). Now define a simple lanczos algorithm that prints
the operator at each step:� �
function lanczos(H::ps.Operator, O::ps.Operator, steps::Int)

O0 = deepcopy(O)
b = ps.norm_lanczos(ps.com(H, O0))
O1 = ps.com(H, O0)/b
for n in 1:steps-1

println("step ",n+1)
println(O1)
A = ps.com(H, O1)-b*O0
b = ps.norm_lanczos(A)
O = A/b
O = ps.cutoff(O, 1e-10)
O0 = deepcopy(O1)
O1 = deepcopy(O)

end
end� �

Then we add a defect (a X field) on site 4 and run the Lanczos algorithm:� �
N = 10 #number of sites
H = XX(N) # construct a XX Hamiltonian
H += "X", 4 # add a defect on site 4
O = ps.Operator(N)
O += "X", 1
println(O)
lanczos(H, O, 7)� �

This yields the following output:� �
(1.0 + 0.0im) X111111111

step 2
(-0.0 + 1.0im) YZ11111111

step 3
(1.0 - 0.0im) YYX1111111

step 4
(-0.0 + 1.0im) YYYZ111111

step 5
(0.7071067812 + 0.0im) YYYY111111
(0.7071067812 + 0.0im) YYYYX11111

step 6
(-0.0 + 0.8164965809im) YYYZX11111
(-0.0 - 0.4082482905im) YYYXZ11111
(0.0 + 0.4082482905im) YYYYYZ1111

step 7
(0.4 - 0.0im) YYX1X11111
(-0.6 + 0.0im) YYY1Y11111
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(-0.2 + 0.0im) YYYXYX1111
(0.2 - 0.0im) YYZ1Z11111
(-0.6 + 0.0im) YYYZYZ1111
(0.2 - 0.0im) YYYYYYX111� �

In the beginning, each Majorana is transformed into a single other Majorana, and the
string grows until it hits the defect at step 5. Then the defect breaks integrability and the
number of strings starts exploding. That’s a simple example of how the Pauli string method
can also be used as a pedagogical and insightful way to visualize physical phenomena such as
integrability-breaking.

6 Conclusion

We have shown that PauliStrings.jl provides a competitive platform for studying quantum
many-body dynamics. Examples of this are presented for Heisenberg time evolution and
Krylov subspace expansion through the recursion method. One of the important strengths
of Pauli strings is that they provide a natural framework to take advantage of noise to make
simulations tractable. In addition, though tensor network methods quickly break down with
increasing long-range entanglement, some systems with this type of entanglement can still be
decomposed into a small number of strings, making Pauli strings more efficient for these kinds
of systems. Furthermore, Pauli string methods are not as limited in spatial dimension and
geometry, and arbitrary geometries are easy to implement. PauliStrings.jl is easily installable
through the Julia language package manager, and more thorough code examples can be found
in the documentation [52].

However, right now the truncation schemes that we use are very basic. In the Lanczos case,
we just discard strings with the smallest weight. In the time evolution case, we first add noise
and then discard strings with smallest weight, effectively discarding long strings that are more
affected by noise. There may be more efficient truncation schemes, and indeed, in certain
cases, long strings do matter. For example, in the X X model, even if the model is integrable,
nested commutators generate a few very long strings, as shown in the previous section. This
suggests that in this model, discarding long strings is not the best strategy. Ideally we would
like to predict what strings matter and what strings don’t. A more refined heuristic truncation
scheme would be able to estimate the impact of discarding a string on the higher-order nested
commutators. One idea would be to use machine learning techniques to predict the importance
of strings.

Also note that our current implementation is not yet parallelized yet beats parallelized
tensor networks codes in many cases. Parallelization would offer a straightforward route to
improvement. In the future, one valuable application of the Pauli String method would be a
technique that lets us probe spectral properties. For example, an interesting quantity to com-

pute is the thermal average Tr(e−βH O)
Tr(e−βH ) . In the large β limit and when O is the Hamiltonian itself,

this converges to the ground-state energy. An approach to computing such a quantity is to ex-
pand it into connected moments [53–56]. Strings are particularly appropriate for computing
moments since they take advantage of the sparsity of the operators. Moreover, computing
the moment Tr Hk does not require storing Hk. For example if H =

∑

i hiτi then the 4th mo-
ment is µ4 =
∑

i jkl hih jhkhl Tr(τiτ jτkτl) and computing µ4 only requires accumulating terms
hih jhkhl such that τiτ jτkτl = 1. From a more foundational point of view, we also have sug-
gested that the moments of local Hamiltonians may give us insight on the decomposition into
subsystems and the quantum to classical transition [57]. An alternative to moment expansion
for estimating ground state expectation values is to imaginary-time-evolve H and O.
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