
SciPost Phys. Codebases 56 (2025)

Python-JAX-based fast Stokesian dynamics

Kim William Torre1⋆, Raoul D. Schram2† and Joost de Graaf1‡

1 Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena,
Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands

2 Research and Data Management Services, Information and Technology Services,
Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands

⋆ k.w.torre@uu.nl , † r.d.schram@uu.nl , ‡ j.degraaf@uu.nl ,

Abstract

Stokesian Dynamics (SD) is a powerful computational framework for simulating the mo-
tion of particles in a viscous Newtonian fluid under Stokes-flow conditions. Traditional
SD implementations can be computationally expensive as they rely on the inversion of
large mobility matrices to determine hydrodynamic interactions. Recently, however, the
simulation of thermalized systems with large numbers of particles has become feasible
[Fiore and Swan, J. Fluid Mech. 878, 544 (2019)]. Their “fast Stokesian dynamics”
(FSD) method leverages a saddle-point formulation to ensure overall scaling of the al-
gorithm that is linear in the number of particles O(N); performance relies on dedicated
graphics-processing-unit computing. Here, we present a different route toward imple-
menting FSD, which instead leverages the Just-in-Time (JIT) compilation capabilities of
Google JAX. We refer to this implementation as JFSD and perform benchmarks on it
to verify that it has the right scaling and is sufficiently fast by the standards of modern
computational physics. In addition, we provide a series of physical test cases that help
ensure accuracy and robustness, as the code undergoes further development. Thus, JFSD
is ready to facilitate the study of hydrodynamic effects in particle suspensions across the
domains of soft, active, and granular matter.

Copyright K. W. Torre et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

2025-03-12
2025-06-05
2025-06-30

Check for
updates

doi:10.21468/SciPostPhysCodeb.56

This publication is part of a bundle: Please cite both the article and the release you used.

DOI
doi:10.21468/SciPostPhysCodeb.56
doi:10.21468/SciPostPhysCodeb.56-r0.2

Type
Article
Codebase release

Contents

1 Introduction 2

2 Method 3

1

https://scipost.org
https://scipost.org/SciPostPhysCodeb.56
mailto:k.w.torre@uu.nl
mailto:r.d.schram@uu.nl
mailto:j.degraaf@uu.nl
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysCodeb.56&domain=pdf&date_stamp=2025-06-30
https://doi.org/10.21468/SciPostPhysCodeb.56
https://doi.org/10.21468/SciPostPhysCodeb.56
https://doi.org/10.21468/SciPostPhysCodeb.56-r0.2

SciPost Phys. Codebases 56 (2025)

3 Method validations 5
3.1 Sedimenting particles 5
3.2 Hydrodynamic effects under shear flow 6
3.3 Thermal motion 8
3.4 Algorithmic performance and scaling 9

4 Discussion 11

5 Conclusion and outlook 11

References 12

1 Introduction

The study of hydrodynamic interactions in particle suspensions has attracted considerable in-
terest in colloid science and fluid mechanics over the past decades [2–4]. The development of
Stokesian Dynamics (SD) by Brady and Bossis [5] in the late 1980s provided an accurate frame-
work for simulating the many-body hydrodynamic interactions between spherical particles at
zero (low) Reynolds number. That is, in the regime where inertia is completely dominated
by friction. The Stokes equations that describe the fluid dynamics of such systems are linear.
This is leveraged in SD to divide the mobility problem into a far- and near-field component.
The split enables the precise modeling of long-range, many-body hydrodynamic interactions
and short-range, lubrication forces [6–8], both of which can strongly influence the behavior
of colloidal suspensions [9–19].

However, despite its accuracy, SD did not become as widely adopted as other hydrody-
namics methods for particle suspensions [20]. Among these, lattice-based methods for com-
putational fluid dynamics gained considerable traction, including lattice-Boltzmann (LB) [21–
25], multi-particle collision dynamics (MPCD) [26, 27] — or stochastic rotation dynamics
(SRD) [28]— and Fluid Particle Dynamics (FPD) [29].

Contrasting the features of these methods, we see the following advantages for SD. The al-
gorithm relies on multipole expansion and pairwise approximations to compute hydrodynamic
interactions without directly solving for the fluid flow. This means that at low dilution, there
is an intrinsic advantage to using SD. However, LB and MPCD are particularly effective for de-
termining fluid-structure interactions involving complex geometries [21–25]. Yet, achieving
the same level of accuracy in both many-body and lubrication interactions as SD requires the
use of prohibitively fine resolution in LB, leading to higher computational demands [24, 30].
MPCD and SRD operate on similar principles [26–28]; however, they are intrinsically stochas-
tic, with control parameters such as viscosity emerging as collective properties of the system.
SD instead provides explicit control over thermal and athermal motion, like LB. Lastly, FPD, as
introduced by Tanaka and Araki [29], directly solves the Navier-Stokes equation on a lattice.
It treats colloidal particles as regions of higher viscosity fluid with smooth interfacial profiles.
This eliminates the need to explicitly resolve solid-fluid boundaries, but it introduces approx-
imations. These depend on the viscosity ratio between the particles and surrounding fluid, as
well as on the lattice resolution.

The major bottlenecks for the use of SD were: (i) the computational cost involved in prop-
agating the dynamics and (ii) that it is challenging to implement the algorithm correctly. Ad-
vancements following the original implementation [5] have therefore focused on improving

2

https://scipost.org
https://scipost.org/SciPostPhysCodeb.56

SciPost Phys. Codebases 56 (2025)

SD’s computational performance [31–33]. These include the incorporation of iterative solvers
and preconditioning strategies. Fiore and Swan overcame some of the last remaining hurdles
in making SD truly efficient, through their Fast Stokesian Dynamics (FSD) approach [1]. They
combined matrix-free techniques with spectral Ewald methods, which allowed them to further
reduce computational costs, improve the scaling to O(N) overall, and maintain accuracy. They
also made their algorithm widely available through integration in the HOOMD [34] simulation
package. This means that, provided that complex geometries are not critical to the analysis of a
system, FSD provides a competitive alternative to more widely used lattice-based approaches.
However, the efficiency obtained in FSD was limited to NVIDIA® graphics processing units
(GPUs), through an internal reliance on CUDA® programming.

In this paper, we present an alternative route toward making FSD more widely available
and cross-platform compatible. We have ported the FSD algorithm to a Python-based frame-
work that relies on the Google JAX library [35]. We name this version of SD, Python-JAX
Fast Stokesian Dynamics, or Python-JFSD for short. Our implementation ensures compatibil-
ity with contemporary CUDA® and CuDNN® libraries. It also addresses limitations in the origi-
nal code caused by updates to the HOOMD application programming interface (API). Python-
JFSD further offers a user-friendly interface and provides flexibility in choosing between pe-
riodic and open boundary conditions for hydrodynamic interactions. By leveraging Google
JAX’s Just-In-Time (JIT) compilation [35], the framework supports the efficient addition of
new features, ensuring modularity and extensibility.

The remainder of this paper is organized as follows. In Section 2, we first provide a brief
overview of the FSD method. Section 3 contains the results of a set of physical unit test that
probe the implementation accuracy and benchmark its performances. In Section 4, we discuss
the applicability range of JFSD, as well as its strong and weak points. We close with a summary
and outlook in Section 5.

2 Method

Consider a system comprising N spherical particles of diameter σ, suspended in a Newto-
nian solvent with viscosity η. We have a prescribed background flow U∞, which is a 6N -
dimensional vector containing the linear and angular fluid velocities at the position of each
particle. We assume viscous forces dominate inertial ones, such that the Reynolds number
Re≪ 1, and the particles undergo over-damped motion. Under these conditions, the particle
dynamics are prescribed by a linear system of equations that couple the dynamical degrees
of freedom (forces and torques F , and stresses S) to kinematic degrees of freedom (linear
and angular velocities U and strain rates E) via the grand-resistance matrix R. The relation is
given by

�

FH

SH

�

= −R ·
�

U −U∞
−E∞

�

, (1)

where U is a 6N -dimensional vector containing the linear and angular velocities of all parti-
cles, E∞ is the strain rate of the background flow, FH denotes the hydrodynamic drag forces
and torques, and SH is a 5N -dimensional vector of the independent components of the hydro-
dynamic stresslets.

The generalized velocities of all N particles can then be expressed as

U −U∞ = R−1
FU · (F

P +RFE · E∞) +
√

√2kBT
∆t

R−1/2
FU ·ψ+ kBT ∇ ·R−1

FU . (2)

3

https://scipost.org
https://scipost.org/SciPostPhysCodeb.56

SciPost Phys. Codebases 56 (2025)

Here, FP is a 6N -dimensional vector whose first 3N components are the forces applied to
the particles, and the last 3N components are the applied torques. The vector ψ is a 6N -
dimensional vector containing random variables normally distributed with zero mean and unit
variance, and ∆t is the simulation timestep. The term kBT represents the thermal energy; kB
is the Boltzmann constant and T the temperature. The tensor RFU is the upper-left subblock
of R, which maps velocities to forces, while RFE is the upper-right subblock that couples
strain rates to forces in R, respectively. In Eq. (2), the first two terms represent deterministic
contributions to the particle dynamics coming from the applied forces and torques, as well as
the background flow, while the last two terms account for thermal fluctuations.

In SD [5], hydrodynamic interactions are incorporated through a combination of the mo-
bility and resistance frameworks. The construction of the grand resistance matrix R begins
with the far-field mobility matrix Mff. Short-range interactions are resolved in a pairwise
manner by adding near-field resistance contributions Rnf [6, 8]. To avoid double-counting,
the far-field pairwise contributions Rff

2B are subtracted

R= (Mff)−1 +Rnf −Rff
2B . (3)

The FSD method [1] extends the SD framework by formulating the particle dynamics as a
linear system of 17N equations using a saddle-point matrix that integrates near-field (short-
ranged, pairwise additive) and far-field (long-ranged, many-body) interactions. This formula-
tion enables iterative solvers with specialized preconditioners to efficiently handle the resulting
linear systems. The approach avoids the explicit inversion of ill-conditioned hydrodynamic op-
erators and drastically reducing computational costs. Brownian forces are computed by com-
bining the positively-split Ewald method [36] and an iterative Krylov subspace method [37],
both seamlessly integrated into the saddle-point formulation. We refer the interested reader
to Ref. [1] for the full details.

Our implementation of the method, JFSD, is structured as a modular Python package opti-
mized for scalability and high-performance hydrodynamic simulations. In particular, the con-
figuration management module leverages a user-friendly TOML file that specifies simulation
parameters — such as the number of steps, particle count, time step, initialization settings, and
output options — providing a transparent and easily modifiable interface for setting up simu-
lations. The modular design allows for easy extension of pairwise interaction models, enabling
users to implement custom hydrodynamic kernels or introduce ad hoc force laws with minimal
modifications. The framework also provides built-in support for steady and oscillatory shear
flows, with a straightforward pathway toward incorporating more complex shear protocols
by modifying existing velocity gradients. Boundary conditions can be adjusted efficiently by
altering the scalar mobility functions, as demonstrated in the already implemented transition
between open and periodic boundary conditions. Lastly, our neighbor list management was
derived from the one used in JAX-MD [38], a widely used molecular dynamics framework.
Our implementation ensures FSD-compatible handling of particle interactions in both dense
and dilute systems. Full details of our implementation can be found in the documentation
accompanying the JFSD release [39].

A key advantage of JFSD is its integration with Google JAX [35], which enables Just-
In-Time (JIT) compilation and GPU acceleration for significant performance improvements.
JAX compiles entire computation graphs into highly optimized routines that eliminate Python
overhead by fusing multiple operations into a single efficient kernel. Moreover, its vectorized
operations and automatic backend dispatch ensure that computations run optimally on both
GPU and CPU, making the framework highly scalable across diverse hardware configurations.

4

https://scipost.org
https://scipost.org/SciPostPhysCodeb.56

SciPost Phys. Codebases 56 (2025)

a)

b)

Figure 1: Trajectories of three equal spheres sedimenting vertically, starting from ini-
tial positions at r 1 = (−2.5σ, 0, 0) (green), r 2 = (0, 0,0) (red), and r 3 = (3.5σ, 0, 0)
(gray). Results obtained using the JFSD method under (a) open boundary conditions
(circles) and (b) periodic boundary conditions (rhombi), in a box of size L = 25σ.
Both panels include reference data from Ref. [40] (dashed curves), where the origi-
nal data points have been smoothed using spline interpolation.

3 Method validations

Following a general discussion of (F)SD, we now show results obtained using JFSD. These are
contrasted against two-body analytical expressions and/or independently obtained numerical
data. We also showcase the efficiency of the JFSD software by benchmarking the code for the
case of a hard-sphere system across a range of volume fractions φ.

3.1 Sedimenting particles

The deterministic mapping from forces to velocities was validated by simulating the sedimen-
tation of three particles aligned along the x-axis. Our results are compared to the original
Stokesian Dynamics (SD) trajectories by Durlofsky et al. [40] for an unbounded fluid solvent
in Fig. 1. This shows the sedimentation trajectories of the three particles. Here, JFSD demon-
strates excellent agreement with the SD reference result. The trajectories align closely over the
full time interval considered. With JFSD we also considered periodic boundaries, for which
discrepancies become pronounced as time progresses. These deviations are expected and arise
due to interaction with periodic images. Despite these differences, JFSD faithfully reproduces
the initial dynamics. The combined result is sufficient to conclude that JFSD is consistent with
the original SD framework.

5

https://scipost.org
https://scipost.org/SciPostPhysCodeb.56

SciPost Phys. Codebases 56 (2025)

Figure 2: Comparison of sedimenting velocity Us (blue dots) for a simple cubic array
of N = 2,197 particles (insets show examples) as a function of the volume fraction
φ. The sedimentation velocity is normalized by the infinite dilution limit U0. Re-
sults from the JFSD method under periodic boundary conditions are contrasted with
those obtained using Sierou’s accelerated Stokesian dynamics [31] (red rhombi) and
Brady et al.’s original Stokesian dynamics [41] (gray squares). The curves connecting
the two reference data sets, obtained through spline interpolation, serve to guide the
eye.

Next, we computed the sedimentation velocity Us of a periodic cubic array of N = 2,197
hard spheres across a range of φ, see Fig. 2. These results were compared against the bench-
mark data from Sierou and Brady [31], which revealed that JFSD accurately captures the
non-linear decay of Us with increasing φ. Our implementation gives consistent results even
in dense regimes, which implies that it can reliably propagate suspension dynamics across a
wide range of concentrations.

3.2 Hydrodynamic effects under shear flow

Now that we have examined the quality of the force-torque and (angular) velocity coupling,
we turn to shear. We investigated the behavior of particle pairs in simple shear flow to bench-
mark the accuracy of JFSD under these conditions, see Fig. 3, which shows three example
trajectories. The results align closely with analytical predictions [4,42], demonstrating JFSD’s
performance.

In addition to pair interactions, we computed the shear viscosity ηeff of a periodic simple
cubic array of (again) N = 2,197 hard spheres as a function of φ. Figure 4 compares our
result with data from the original FSD implementation by Fiore and Swan [1]. The accurate
agreement shows that both algorithms produce the same results and are capable of computing
rheological properties even at high φ.

Our combined shear results allow us to conclude that this part of the algorithm is correctly
implemented. Of course, additional testing was performed on the behavior of the R matrix,
but we chose only to report on physical observables here.

6

https://scipost.org
https://scipost.org/SciPostPhysCodeb.56

SciPost Phys. Codebases 56 (2025)

Figure 3: Trajectories of a particle pair in simple shear flow under open boundary
conditions. Results from JFSD (symbols) are compared against analytical predic-
tions [4, 42] (dotted lines) for three initial center-to-center separations ∆r. These
trajectories are represented in the distance along the x- and y-axes, respectively, nor-
malized by the particle diameter σ. The insets show three snapshots of a trajectory
for spheres spaced ∆r = 1.01σ apart orthogonal to the shear plane.

Figure 4: Shear viscosity ηeff of a simple cubic array of N = 2,197 particles as a
function of volume fraction φ. The results are normalized by the bare viscosity of
the suspending medium η0. Python-JFSD results (blue circles) are compared with
data from Fiore and Swan [1] (open squares). The dotted connecting curve serves
to guide the eye.

7

https://scipost.org
https://scipost.org/SciPostPhysCodeb.56

SciPost Phys. Codebases 56 (2025)

Figure 5: Mean squared displacement 〈r 2〉 of a single particle as a function of time
t divided by the Brownian time tB. The JFSD data is given by open circles with error
bars representing the standard error of the mean for two box sizes L as labelled. The
data for the L = 25σ (σ is the sphere diameter) box is shifted by the constant offset
+3 in the vertical direction to help aid the presentation. The dotted line shows the
analytic 〈r 2〉 = 6Dt result for an unbounded fluid, while the solid line applies Hasi-
moto’s correction to obtain the appropriate expression for a periodic domain [43].

3.3 Thermal motion

Having verified the deterministic part of the algorithm, we turned our attention to thermal fluc-
tuations. The mean squared displacement (MSD) 〈r 2〉 of a single particle in 3D was computed
under periodic boundary conditions and benchmarked against Hasimoto’s corrected expres-
sion for periodic boundaries [43]. To generate the MSD curves in Fig. 5, we simulated for 100
Brownian times and repeated the process for 10 independent samples for each box size L, av-
eraging the results across these runs. The figure reveals that the simulated MSD aligns closely
with theoretical predictions, confirming the accurate implementation of periodic images and
the validity of thermal diffusion in the JFSD framework.

However, MSD analysis alone is not sufficient to validate the thermal part of the algorithm.
This is because in SD, there is a ‘Brownian drift’ term that is required to ensure stationarity
under the Gibbs-Boltzmann distribution and generate particle configurations with the correct
statistics at equilibrium [1, 44]. To demonstrate that we have correctly implemented this as-
pect, we draw inspiration from a test originally considered by Fiore and Swan [1, 44]. That
is, we simulated a pair of particles, in an unbounded three-dimensional (3D) fluid, interacting
via a linear potential

V (r) = k|r − r0| . (4)

Here, k is the potential strength, r is the radial distance between the sphere centers, and r0 is
the equilibrium distance. Figure 6 compares the average distribution of radial distances p(r)
derived from 5 independent simulations — with duration of 5 Brownian times each — against
the theoretical Boltzmann probability density function [1]. The good agreement demonstrates
Python-JFSD’s ability to reproduce expected equilibrium distributions. Small deviations in
the tail of the distribution arise primarily from the accumulation of numerical errors in long
trajectories, due to the use of a first-order Euler integration scheme [45].

We also considered large particle number systems (N = 2,500) with periodic boundary
conditions. For these, we computed the short-time self-diffusion coefficient Ds as a function of

8

https://scipost.org
https://scipost.org/SciPostPhysCodeb.56

SciPost Phys. Codebases 56 (2025)

Figure 6: Radial distribution p(r)∝ r2 exp(−V (r)/kBT) of a pair of particles inter-
acting via a linear potential (see Eq. (4)) under open boundary conditions, with r the
the center-to-center distance between the two spheres. The JFSD data is shown us-
ing open circles, with the vertical error bars showing the standard error of the mean
(computed from 5 independent samples). The horizontal error bars follow from the
fact that the data was obtained by a binning procedure.

φ for hard-sphere suspensions, see Fig. 7. Our results are compared therein with two indepen-
dently derived datasets. The first is by Ladd [46] and was obtained from a multipole-moment
expansion, combined with pairwise lubrication interactions, that contains a higher number
of moments than conventional SD. The second follows from Sierou’s and Brady’s work [31]
and represents the Accellerated Stokesian Dynamics method. Both datasets were obtained
for open systems, hence we have corrected for the periodicity effects using Hasimoto’s scaling
factor [31, 43, 46]. The close agreement between our results and the (scaled) literature val-
ues confirms JFSD’s ability to resolve thermal fluctuations in systems with many particles in
periodic boundary conditions.

3.4 Algorithmic performance and scaling

We assessed the computational performance of Python-JFSD using an NVIDIA GeForce RTX
4060 Ti with 8GB of VRAM. As a standard performance metric, we define the particle time
steps per second (PTPS) as PTPS = N/Tstep, where Tstep is the clock time in seconds required
to perform a single simulation step as a function of the number of particles N . The setup
consists of N hard spheres arranged in a cubic array, interacting only via excluded-volume
interactions to prevent overlap. The particles undergo thermal motion, and a simple shear
flow is applied in the x y-plane (with vorticity in the z-direction, flow in the x-direction, and
flow gradient in the y-direction). Periodic boundary conditions are imposed. To ensure robust
benchmarking, the system is simulated for 50 steps, and the average Tstep is computed after
excluding the first step, which involves JIT compilation and can take up to 1-2 minutes.

Since computational performance depends on the volume fraction φ, we considered four
representative values, φ ∈ {0.05,0.15, 0.4,0.5}, to assess scaling behavior. This dependence
arises from the iterative solver used in the FSD algorithm [1], where the number of iterations
required for convergence increases due to lubrication interactions, which become more signif-
icant at higher φ as particles are closer together. The results, shown in Fig. 8, present PTPS
as a function of N .

9

https://scipost.org
https://scipost.org/SciPostPhysCodeb.56

SciPost Phys. Codebases 56 (2025)

Figure 7: Short-time self-diffusion coefficient Ds for hard-sphere suspensions under
periodic boundary conditions as a function of volume fraction φ. The diffusion coef-
ficient is normalized by the bulk value D0. Results from Python-JFSD (open circles)
have error bars that show the standard error of the mean. These are compared to
the work by Ladd [46] (open circle) and Sierou [31] (red crosses). Both datasets are
corrected for finite-size effects via the Hasimoto factor [43] and the dashed curves
help guide the eye.

Figure 8: Particle time steps per second (PTPS) as a function of the number of par-
ticles N in a periodic simulation volume. Four volume fractions were considered:
φ ∈ {0.05,0.15, 0.4,0.5}, as labeled. At low φ, PTPS plateaus for large N , while
for high φ, PTPS decreases with N due to system-size dependence. The inset shows
the normalized step time per particle per unit box size, Tstep/(N L), which remains
constant for large φ, confirming that the algorithm maintains linear scaling despite
the decrease in PTPS in the main plot.

10

https://scipost.org
https://scipost.org/SciPostPhysCodeb.56

SciPost Phys. Codebases 56 (2025)

The PTPS trends indicate that at low φ, performance reaches a steady plateau, as expected
for sufficiently large N . Conversely, at higher volume fractions, PTPS continues to decrease
with increasing N . This behavior suggests that system size influences the cost of a single solver
iteration by increasing the number of Fourier grid points required for far-field hydrodynamics.
At high volume fractions, where lubrication slows convergence, this added cost becomes more
pronounced. The inset in Fig. 8 clarifies this effect: for large φ, the normalized time step per
particle per unit box size remains unchanged, verifying that the scaling of the FSD algorithm
is preserved. This shows that although PTPS decreases at high φ, the core computational
efficiency of the method remains intact, consistent with theoretical predictions [1].

4 Discussion

SD is a well-established framework for simulating particle suspensions [1,5,31–33,40], capa-
ble of accurately resolving both many-body hydrodynamic interactions and near-field lubrica-
tion forces. It is particularly effective for systems requiring precise particle-level hydrodynamic
modeling without complicated boundary conditions. SD relies on direct calculations of forces
and torques, which allows for computational efficiency without the need for fine spatial dis-
cretization. Recent applications include sedimentation in colloidal suspensions [13], colloidal
gelation [18], and the dynamics of active matter [47] in confining geometries [48,49]. These
examples showcase SD’s versatility across a broad range of (colloidal) particulate systems.

Implementing SD methods, however, presents significant challenges due to the algorithm’s
reliance on complex mathematical algorithms [50] and the precision required to accurately
model lubrication forces and many-body interactions. Ensuring correctness and robustness
needs meticulous validation. To address this, our JFSD implementation incorporates contin-
uous integration workflows, automatically checking each pull request – originating from Git-
based version control – against an extensive suite of benchmarks [39]. This rigorous testing,
combined with a modular design, allows users to choose between periodic or open bound-
ary conditions and various hydrodynamic models, including FSD, which has been the focus
of this paper. In addition to these features, our software suite is also capable of modeling
hydrodynamic interactions at the Rotne-Prager-Yamakawa level [36,51,52], which is suitable
for capturing pair-wise, far-field coupling. We have further implemented a simple Brownian
Dynamics code, which focuses on the hydrodynamic self-interaction only. However, this last
algorithm has not been optimized to the same degree as is available in dedicated software
packages, as our primary focus has been on realizing a new version of FSD.

JFSD was created to provide greater accessibility to SD by leveraging Python’s simplicity
and interoperability, while maintaining the competitive computational performance of dedi-
cated implementations. Thanks to Google JAX’s JIT compilation and reliance on GPU ac-
celeration, our software achieves speeds comparable to previous CUDA® implementations [1].
Presently, JFSD is capable of simulating approximately 30,000-50,000 particles within the
memory constraints of mid-range GPUs. While this imposes a practical upper limit, ongoing
developments in Google JAX, particularly the support for multi-core CPU and distributed
computing, could further expand the range of the software in the future.

5 Conclusion and outlook

In summary, we have presented a Python-based implementation of fast Stokesian Dynamics
that relies on the Google JAX, which we refer to as JFSD. Our work addresses the use issues
posed by the currently outdated CUDA® code base [1] originally developed by Fiore and Swan.
By utilizing Just-In-Time compilation [35], JFSD achieves identical scaling, while maintaining
performance and offering a user-friendly and modular interface. Our software is capable of

11

https://scipost.org
https://scipost.org/SciPostPhysCodeb.56

SciPost Phys. Codebases 56 (2025)

simulations involving tens of thousands of particles on a modern desktop GPU.
We built upon the extensive literature for SD and hydrodynamic interactions in suspen-

sions to validate the code. Key benchmarks performed in this paper include: sedimentation,
shear rheology, and thermal motion. We found strong agreement with the literature, demon-
strating the quality of our implementation. The inclusion of both open and periodic boundary
conditions, along with alternative hydrodynamic models, ensures flexibility and broad appli-
cability for diverse physical systems. JFSD is thus ready to enable new research into the effect
of hydrodynamic interactions in particle suspensions.

Acknowledgments

We developed JFSD with the aim of giving back to the fluid-dynamics community, whose efforts
and developments [1,34,36,40,44,52,53] helped support our own research [18,54]. We hope
that our implementation of FSD will allow researchers to continue to make use of the excellent
algorithms developed by Fiore and Swan [1] for many years to come. Thank you Jim for the
kindness that you showed us. We are also grateful to Andrew M. Fiore, Zhouyang Ge, and
Gwynn Elfring; Luca Leone and Henri Menke; and Athanasios Machas and Dimos Aslanis for
useful discussions, which helped us significantly improve our understanding of FSD, Google
JAX, and the user/developer perspective, respectively.

Data availability statement An open data package containing the means to reproduce the
results of the simulations is available at: doi:10.24416/UU01-QO36GQ. The specific version
of JFSD used to generate the results in this paper is tagged as v0.2.0, which will aid with
reproducibility.

Author contributions Conceptualization, J.d.G. & K.W.T.; Methodology, K.W.T. & R.S.; Nu-
merical calculations, K.W.T., Validation, K.W.T. & R.S.; Investigation, K.W.T.; Writing — Origi-
nal Draft, K.W.T.; Writing — Review & Editing, J.d.G.; Funding Acquisition, J.d.G.; Resources,
J.d.G.; Supervision, J.d.G.

Funding information The authors acknowledge the Dutch Research Council NWO for fund-
ing through OCENW.KLEIN.354, as well as the International Fine Particle Research Institute
for funding through collaboration grant CRR-118-01.

References

[1] A. M. Fiore and J. W. Swan, Fast Stokesian dynamics, J. Fluid Mech. 878, 544 (2019),
doi:10.1017/jfm.2019.640.

[2] G. K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical
particles, J. Fluid Mech. 83, 97 (1977), doi:10.1017/S0022112077001062.

[3] J. Happel and H. Brenner, Low reynolds number hydrodynamics: With special applications
to particulate media, Springer, Dordrecht, Netherlands, ISBN 9789400983526 (1983),
doi:10.1007/978-94-009-8352-6.

[4] S. Kim and S. J. Karrila, Microhydrodynamics: Principles and selected appli-
cations, Butterworth-Heinemann, Oxford, UK, ISBN 9780750691734 (1991),
doi:10.1016/C2013-0-04644-0.

12

https://scipost.org
https://scipost.org/SciPostPhysCodeb.56
https://doi.org/10.24416/UU01-QO36GQ
https://doi.org/10.1017/jfm.2019.640
https://doi.org/10.1017/S0022112077001062
https://doi.org/10.1007/978-94-009-8352-6
https://doi.org/10.1016/C2013-0-04644-0

SciPost Phys. Codebases 56 (2025)

[5] J. F. Brady and G. Bossis, Stokesian dynamics, Annu. Rev. Fluid Mech. 20, 111 (1988),
doi:10.1146/annurev.fl.20.010188.000551.

[6] D. J. Jeffrey and Y. Onishi, Calculation of the resistance and mobility functions for two
unequal rigid spheres in low-Reynolds-number flow, J. Fluid Mech. 139, 261 (1984),
doi:10.1017/S0022112084000355.

[7] S. Kim and R. T. Mifflin, The resistance and mobility functions of two equal spheres in
low-Reynolds-number flow, Phys. Fluids 28, 2033 (1985), doi:10.1063/1.865384.

[8] D. J. Jeffrey, The calculation of the low Reynolds number resistance functions for two un-
equal spheres, Phys. Fluids A: Fluid Dyn. 4, 16 (1992), doi:10.1063/1.858494.

[9] E. C. Eckstein, D. G. Bailey and A. H. Shapiro, Self-diffusion of particles in shear flow of a
suspension, J. Fluid Mech. 79, 191 (1977), doi:10.1017/S0022112077000111.

[10] A. Furukawa and H. Tanaka, Key role of hydrodynamic interactions in colloidal gelation,
Phys. Rev. Lett. 104, 245702 (2010), doi:10.1103/PhysRevLett.104.245702.

[11] J. K. Whitmer and E. Luijten, Influence of hydrodynamics on cluster formation in colloid-
polymer mixtures, J. Phys. Chem. B 115, 7294 (2011), doi:10.1021/jp111388m.

[12] C. P. Royall, J. Eggers, A. Furukawa and H. Tanaka, Probing colloidal gels at multi-
ple length scales: The role of hydrodynamics, Phys. Rev. Lett. 114, 258302 (2015),
doi:10.1103/PhysRevLett.114.258302.

[13] Z. Varga, J. L. Hofmann and J. W. Swan, Modelling a hydrodynamic instability in freely
settling colloidal gels, J. Fluid Mech. 856, 1014 (2018), doi:10.1017/jfm.2018.725.

[14] K. A. Whitaker, Z. Varga, L. C. Hsiao, M. J. Solomon, J. W. Swan and E. M. Furst, Colloidal
gel elasticity arises from the packing of locally glassy clusters, Nat. Commun. 10, 2237
(2019), doi:10.1038/s41467-019-10039-w.

[15] L. Turetta and M. Lattuada, The role of hydrodynamic interactions on the ag-
gregation kinetics of sedimenting colloidal particles, Soft Matter 18, 1715 (2022),
doi:10.1039/D1SM01637G.

[16] K. W. Torre and J. de Graaf, Structuring colloidal gels via micro-bubble oscillations, Soft
Matter 19, 2771 (2023), doi:10.1039/D2SM01450E.

[17] J. de Graaf, K. W. Torre, W. C. K. Poon and M. Hermes, Hydrodynamic stabil-
ity criterion for colloidal gelation under gravity, Phys. Rev. E 107, 034608 (2023),
doi:10.1103/PhysRevE.107.034608.

[18] K. W. Torre and J. de Graaf, Hydrodynamic lubrication in colloidal gels, Soft Matter 19,
7388 (2023), doi:10.1039/D3SM00784G.

[19] K. W. Torre and J. de Graaf, Delayed gravitational collapse of attractive colloidal suspen-
sions, J. Fluid Mech. 1000, A73 (2024), doi:10.1017/jfm.2024.1076.

[20] D. S. Bolintineanu, G. S. Grest, J. B. Lechman, F. Pierce, S. J. Plimpton and P. R. Schunk,
Particle dynamics modeling methods for colloid suspensions, Comput. Part. Mech. 1, 321
(2014), doi:10.1007/s40571-014-0007-6.

[21] S. Chen and G. D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid
Mech. 30, 329 (1998), doi:10.1146/annurev.fluid.30.1.329.

13

https://scipost.org
https://scipost.org/SciPostPhysCodeb.56
https://doi.org/10.1146/annurev.fl.20.010188.000551
https://doi.org/10.1017/S0022112084000355
https://doi.org/10.1063/1.865384
https://doi.org/10.1063/1.858494
https://doi.org/10.1017/S0022112077000111
https://doi.org/10.1103/PhysRevLett.104.245702
https://doi.org/10.1021/jp111388m
https://doi.org/10.1103/PhysRevLett.114.258302
https://doi.org/10.1017/jfm.2018.725
https://doi.org/10.1038/s41467-019-10039-w
https://doi.org/10.1039/D1SM01637G
https://doi.org/10.1039/D2SM01450E
https://doi.org/10.1103/PhysRevE.107.034608
https://doi.org/10.1039/D3SM00784G
https://doi.org/10.1017/jfm.2024.1076
https://doi.org/10.1007/s40571-014-0007-6
https://doi.org/10.1146/annurev.fluid.30.1.329

SciPost Phys. Codebases 56 (2025)

[22] A. J. C. Ladd and R. Verberg, Lattice-Boltzmann simulations of particle-fluid suspensions,
J. Stat. Phys. 104, 1191 (2001), doi:10.1023/A:1010414013942.

[23] B. Dünweg and A. J. C. Ladd, Lattice Boltzmann simulations of soft matter systems, in Ad-
vanced computer simulation approaches for soft matter sciences III, Springer, Berlin, Hei-
delberg, Germany, ISBN 9783540877059 (2009), doi:10.1007/978-3-540-87706-6_2.

[24] C. K. Aidun and J. R. Clausen, Lattice-Boltzmann method for complex flows, Annu. Rev.
Fluid Mech. 42, 439 (2010), doi:10.1146/annurev-fluid-121108-145519.

[25] D. Roehm and A. Arnold, Lattice Boltzmann simulations on GPUs with ESPResSo, Eur. Phys.
J. Spec. Top. 210, 89 (2012), doi:10.1140/epjst/e2012-01639-6.

[26] G. Gompper, T. Ihle, D. M. Kroll and R. G. Winkler, Multi-particle collision dynamics:
A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids, in
Advanced computer simulation approaches for soft matter sciences III, Springer, Berlin, Hei-
delberg, Germany, ISBN 9783540877059 (2009), doi:10.1007/978-3-540-87706-6_1.

[27] M. P. Howard, A. Z. Panagiotopoulos and A. Nikoubashman, Efficient mesoscale hydrody-
namics: Multiparticle collision dynamics with massively parallel GPU acceleration, Comput.
Phys. Commun. 230, 10 (2018), doi:10.1016/j.cpc.2018.04.009.

[28] A. Malevanets and R. Kapral, Mesoscopic model for solvent dynamics, J. Chem. Phys. 110,
8605 (1999), doi:10.1063/1.478857.

[29] H. Tanaka and T. Araki, Simulation method of colloidal suspensions with hydro-
dynamic interactions: Fluid particle dynamics, Phys. Rev. Lett. 85, 1338 (2000),
doi:10.1103/PhysRevLett.85.1338.

[30] N.-Q. Nguyen and A. J. C. Ladd, Lubrication corrections for lattice-Boltzmann
simulations of particle suspensions, Phys. Rev. E 66, 046708 (2002),
doi:10.1103/PhysRevE.66.046708.

[31] A. Sierou and J. F. Brady, Accelerated Stokesian dynamics simulations, J. Fluid Mech. 448,
115 (2001), doi:10.1017/S0022112001005912.

[32] A. J. Banchio and J. F. Brady, Accelerated Stokesian dynamics: Brownian motion, J. Chem.
Phys. 118, 10323 (2003), doi:10.1063/1.1571819.

[33] M. Wang and J. F. Brady, Spectral Ewald acceleration of Stokesian dynamics for polydisperse
suspensions, J. Comput. Phys. 306, 443 (2016), doi:10.1016/j.jcp.2015.11.042.

[34] J. A. Anderson, J. Glaser and S. C. Glotzer, HOOMD-blue: A Python package for high-
performance molecular dynamics and hard particle Monte Carlo simulations, Comput.
Mater. Sci. 173, 109363 (2020), doi:10.1016/j.commatsci.2019.109363.

[35] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A.
Paszke, J. VanderPlas, S. Wanderman-Milne and Q. Zhang, JAX: Composable transforma-
tions of Python+NumPy programs (2018), http://github.com/google/jax.

[36] A. M. Fiore, F. Balboa Usabiaga, A. Donev and J. W. Swan, Rapid sampling of stochastic
displacements in Brownian dynamics simulations, J. Chem. Phys. 146, 124116 (2017),
doi:10.1063/1.4978242.

[37] E. Chow and Y. Saad, Preconditioned Krylov subspace methods for sampling multivariate
Gaussian distributions, SIAM J. Sci. Comput. 36, A588 (2014), doi:10.1137/130920587.

14

https://scipost.org
https://scipost.org/SciPostPhysCodeb.56
https://doi.org/10.1023/A:1010414013942
https://doi.org/10.1007/978-3-540-87706-6_2
https://doi.org/10.1146/annurev-fluid-121108-145519
https://doi.org/10.1140/epjst/e2012-01639-6
https://doi.org/10.1007/978-3-540-87706-6_1
https://doi.org/10.1016/j.cpc.2018.04.009
https://doi.org/10.1063/1.478857
https://doi.org/10.1103/PhysRevLett.85.1338
https://doi.org/10.1103/PhysRevE.66.046708
https://doi.org/10.1017/S0022112001005912
https://doi.org/10.1063/1.1571819
https://doi.org/10.1016/j.jcp.2015.11.042
https://doi.org/10.1016/j.commatsci.2019.109363
http://github.com/google/jax
https://doi.org/10.1063/1.4978242
https://doi.org/10.1137/130920587

SciPost Phys. Codebases 56 (2025)

[38] S. S. Schoenholz and E. D. Cubuk, JAX, M.D. A framework for differentiable physics, J.
Stat. Mech.: Theory Exp. 124016 (2021), doi:10.1088/1742-5468/ac3ae9.

[39] K. W. Torre, J. De Graaf and R. Schram, Python-JAX-fast-Stokesian-dynamics, https://
github.com/torrewk/Python-Jax-Fast-Stokesian-Dynamics.

[40] L. Durlofsky, J. F. Brady and G. Bossis, Dynamic simulation of hydrodynamically interacting
particles, J. Fluid Mech. 180, 21 (1987), doi:10.1017/S002211208700171X.

[41] J. F. Brady, R. J. Phillips, J. C. Lester and G. Bossis, Dynamic simulation
of hydrodynamically interacting suspensions, J. Fluid Mech. 195, 257 (1988),
doi:10.1017/S0022112088002411.

[42] F. R. Da Cunha and E. J. Hinch, Shear-induced dispersion in a dilute suspension of rough
spheres, J. Fluid Mech. 309, 211 (1996), doi:10.1017/S0022112096001619.

[43] H. Hasimoto, On the periodic fundamental solutions of the Stokes equations and their
application to viscous flow past a cubic array of spheres, J. Fluid Mech. 5, 317 (1959),
doi:10.1017/S0022112059000222.

[44] A. M. Fiore and J. W. Swan, Rapid sampling of stochastic displacements in Brownian
dynamics simulations with stresslet constraints, J. Chem. Phys. 148, 044114 (2018),
doi:10.1063/1.5005887.

[45] D. L. Ermak and J. A. McCammon, Brownian dynamics with hydrodynamic interactions,
J. Chem. Phys. 69, 1352 (1978), doi:10.1063/1.436761.

[46] A. J. C. Ladd, Hydrodynamic transport coefficients of random dispersions of hard spheres,
J. Chem. Phys. 93, 3484 (1990), doi:10.1063/1.458830.

[47] Z. Ge and G. J. Elfring, Hydrodynamic diffusion in apolar active suspensions of squirmers,
J. Fluid Mech. 1003, A17 (2025), doi:10.1017/jfm.2024.1071.

[48] G. J. Elfring and J. F. Brady, Active Stokesian dynamics, J. Fluid Mech. 952, A19 (2022),
doi:10.1017/jfm.2022.909.

[49] V. A. Shaik, Z. Peng, J. F. Brady and G. J. Elfring, Confined active matter in external fields,
Soft Matter 19, 1384 (2023), doi:10.1039/D2SM01135B.

[50] A. K. Townsend, Generating, from scratch, the near-field asymptotic forms of scalar resis-
tance functions for two unequal rigid spheres in low Reynolds number flow, Phys. Fluids
35, 127126 (2023), doi:10.1063/5.0175697.

[51] J. Rotne and S. Prager, Variational treatment of hydrodynamic interaction in polymers, J.
Chem. Phys. 50, 4831 (1969), doi:10.1063/1.1670977.

[52] R. P. Peláez, Complex fluids in the GPU era: Algorithms and simulations, PhD thesis, Uni-
versidad Autónoma de Madrid, Madrid, Spain (2021).

[53] A. K. Townsend, Stokesian dynamics in Python, J. Open Source Softw. 9, 6011 (2024),
doi:10.21105/joss.06011.

[54] J. de Graaf, W. C. K. Poon, M. J. Haughey and M. Hermes, Hydrodynamics strongly af-
fect the dynamics of colloidal gelation but not gel structure, Soft Matter 15, 10 (2019),
doi:10.1039/C8SM01611A.

15

https://scipost.org
https://scipost.org/SciPostPhysCodeb.56
https://doi.org/10.1088/1742-5468/ac3ae9
https://github.com/torrewk/Python-Jax-Fast-Stokesian-Dynamics
https://github.com/torrewk/Python-Jax-Fast-Stokesian-Dynamics
https://doi.org/10.1017/S002211208700171X
https://doi.org/10.1017/S0022112088002411
https://doi.org/10.1017/S0022112096001619
https://doi.org/10.1017/S0022112059000222
https://doi.org/10.1063/1.5005887
https://doi.org/10.1063/1.436761
https://doi.org/10.1063/1.458830
https://doi.org/10.1017/jfm.2024.1071
https://doi.org/10.1017/jfm.2022.909
https://doi.org/10.1039/D2SM01135B
https://doi.org/10.1063/5.0175697
https://doi.org/10.1063/1.1670977
https://doi.org/10.21105/joss.06011
https://doi.org/10.1039/C8SM01611A

	Introduction
	Method
	Method validations
	Sedimenting particles
	Hydrodynamic effects under shear flow
	Thermal motion
	Algorithmic performance and scaling

	Discussion
	Conclusion and outlook
	References

