
SciPost Phys. Codebases 9 (2022)

Efficient and scalable path integral Monte Carlo simulations
with worm-type updates for Bose-Hubbard and X X Z models

Nicolas Sadoune and Lode Pollet?

Arnold Sommerfeld Center for Theoretical Physics, University of Munich,
Theresienstr. 37, 80333 München, Germany

Munich Center for Quantum Science and Technology (MCQST),
Schellingstr. 4, 80799 München, Germany

? Lode.Pollet@lmu.de

Abstract

We present a novel and open-source implementation of the worm algorithm, which
is an algorithm to simulate Bose-Hubbard and sign-positive spin models using a path-
integral representation of the partition function. The code can deal with arbitrary lattice
structures and assumes spin-exchange terms, or bosonic hopping amplitudes, between
nearest-neighbor sites, and local or nearest-neighbor interactions of the density-density
type. We explicitly demonstrate the near-linear scaling of the algorithm with respect to
the system volume and the inverse temperature and analyze the autocorrelation times
in the vicinity of a U(1) second order phase transition. The code is written in such a way
that extensions to other lattice models as well as closely-related sign-positive models can
be done straightforwardly on top of the provided framework.

Copyright N. Sadoune and L. Pollet.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 12-05-2022
Accepted 05-10-2022
Published 29-11-2022

Check for
updates

doi:10.21468/SciPostPhysCodeb.9

This publication is part of a bundle: Please cite both the article and the release you used.

DOI
doi:10.21468/SciPostPhysCodeb.9
doi:10.21468/SciPostPhysCodeb.9-r1.0

Type
Article
Codebase release

Contents

1 Introduction 2

2 Definitions and Models 3

3 Requirements 4

4 Algorithm and Monte Carlo updates 4
4.1 Perturbative expansion 4

1

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9
mailto:Lode.Pollet@lmu.de
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysCodeb.9&domain=pdf&date_stamp=2022-11-29
https://doi.org/10.21468/SciPostPhysCodeb.9
https://doi.org/10.21468/SciPostPhysCodeb.9
https://doi.org/10.21468/SciPostPhysCodeb.9-r1.0

SciPost Phys. Codebases 9 (2022)

4.2 The INSERTWORM-GLUEWORM update pair 5
4.3 The MOVEWORM update 7
4.4 The INSERTKINK-DELETEKINK update pair 9
4.5 Estimators 10
4.6 Scalar observables: The total number of particles, kinetic, potential and total

energy 10
4.7 A diagonal vector observable: The density distribution 10
4.8 The density-density correlation function 10
4.9 Winding numbers 10
4.10 Equal-time density matrix 11
4.11 Green’s function in imaginary time 11

5 Implementation 11
5.1 Data Structure 11
5.2 Continuous time issues 12
5.3 Lattice definitions 12
5.4 Model definitions 13
5.5 Other Simulation parameters 13
5.6 Optional compiler flags 14
5.7 Output of the code 14
5.8 Comparison with previous implementations 15

6 Scaling of autocorrelation times 15
6.1 Scaling of autocorrelation times as a function of system size 15
6.2 Scaling of autocorrelation times as a function of inverse temperature 16
6.3 Scaling of autocorrelation times in the critical regime 16
6.4 Efficiency 17

7 Testing 19

8 Conclusion 19

References 20

1 Introduction

The worm algorithm is one of the most successful algorithms to simulate sign-positive models.
It is based on a path-integral representation of a finite system at finite temperature with Fock
states as basis states and a perturbative expansion in the kinetic energy, i.e. a strong-coupling
expansion with guaranteed series convergence. Unlike diagrammatic techniques formulated
directly in the thermodynamic limit, continuous symmetries are never truly broken although
any correlation function can approach the thermodynamic correlation function exponentially
closely in symmetry-broken phases. We call a worm algorithm an algorithm that provides
local updates for the Green’s function, usually for the single-particle Green’s function.1 For
lattice systems, the imaginary time is treated as a continuous variable [1]. The algorithm was

1Note that some authors call a worm algorithm any Monte Carlo algorithm that deals with a constraint (that
could be global, local or topological) by temporarily breaking it.

2

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9

SciPost Phys. Codebases 9 (2022)

originally introduced almost a quarter century ago by Prokof’ev, Svistunov and Tupitsyn for
the one-dimensional Bose-Hubbard model [2]. Compared to the loop algorithm [3,4] and the
stochastic series expansions with (directed) operator loop updates [5,6] the worm algorithm
has the advantage that it is more versatile and can be applied to a wider variety of systems.
For soft-core bosonic systems, spin systems with sufficiently large S, or systems with average
potential energies that are considerably larger than their average kinetic energies the vast
majority of published path integral Monte Carlo results in the literature were obtained by the
worm algorithm.

The original worm algorithm has been extended to models of classical mechanics [7],
multi-particle systems, and bosonic systems in continuous space [8, 9] such as 4He. There
have been closely related formulations of the worm algorithm to the original one but with
different types of updates in the canonical [10, 11] and grand-canonical ensemble [12, 13].
The implementation provided in this work is close to the one of Ref. [14] but differs and is
easier to extend (see Sec. 5.8).

Let us review the key argument why the worm algorithm is so successful. Worldlines in
a path-integral representation form closed loops in imaginary time due to the properties of
the trace operator. For periodic boundary conditions, a superfluid phase will form worldlines
with a second type of closed loops, namely those with non-zero winding number along spatial
directions. The usual argument is that this topological constraint is overcome in the worm
algorithm by sampling the single particle Green’s function, which is not subject to it. This
can in fact be elaborated, and this is easily illustrated for systems with U(1) symmetry. In the
bosonic language, the superfluid phase has off-diagonal long-range order, implying that the
integral over the equal-time single-particle density matrix is divergent,

lim
V→∞

∫

dDr G(r,τ= 0)→∞ , (1)

where V is the system’s volume. In 3D, this integral is proportional to the system’s vol-
ume and this allows one to define the condensate density as the asymptotic value of
the equal-time single-particle density matrix. In lower dimensions, condensation is not
possible, and the integral is not proportional to V although it diverges in the super-
fluid phase. Since the worm algorithm is devised to sample the single-particle Green’s
function, it must spend most of the simulation time in the regime of large r in the
superfluid phase (also with open boundary conditions) in any dimension, and essen-
tially updates all the particles in one sweep, where one sweep is defined as a sequence
G(r = 0,τ = 0) → . . . → G(r 6= 0,τ 6= 0) → . . . → G(r = 0,τ = 0). As a consequence,
one expects autocorrelation times of order one in the superfluid regime, and this is also seen
in practice. In the spin language, the superfluid phase corresponds to a ferro-magnetic easy-
plane spin ordering.

The emphasis of this paper is on the implementation. Reviews in the literature [15,16] can
give the interested reader a broad overview of the applications and state-of-the art calculations
of the worm alogirthm.

2 Definitions and Models

The code provided here can be used to sample two different types of models. First, the Bose-
Hubbard model can be simulated, wich is defined as

H = −
∑

〈i, j〉

t i, j b
†
i b j + h.c.+

∑

i

Ui

2
ni(ni − 1) +

∑

〈i, j〉

Vi, jnin j −
∑

i

µini . (2)

3

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9

SciPost Phys. Codebases 9 (2022)

Here, the sum over 〈i, j〉 is understood as the sum over all bonds of the lattice between nearest-
neighbor sites. The notation h.c. stands for the Hermitian conjugate. The model parameters
are the bosonic hopping amplitude t i, j > 0, Ui the amplitude of the local density-density in-
teraction on site i, Vi, j a density-density interaction between nearest-neighbor sites i and j,
and µi a local chemical potential on site i. Bosons on site i are created (annihilated) by the
operator b†

i (bi), with the standard bosonic commutation relations [bi , b†
j] = δi j (and zero

otherwise), and ni = b†
i bi is the bosonic density operator.

Second, the XXZ-model for spin-S operators can be simulated, which is defined as

H = −
∑

〈i, j〉

Ji, j

2
(S+i S−j + S−i S+j) +

∑

〈i, j〉

J z
i, jS

z
i Sz

j −
∑

i

hiS
z
i . (3)

Here, Ji, j > 0 corresponds to in-plane ferromagnetic interactions leading to a sign-positive
model, J z

i, j is the amplitude for the SzSz interaction between nearest neighbors, and hi is a
local magnetic field along the z−direction.

For simplicity of notation, the text written below assumes uniform system parameters (i.e.,
constant system parameters such as t, U , V,µ and periodic boundary conditions) even though
the code can deal with general site and bond-dependent interaction terms. The implementa-
tion is however substantially slower when the parameters are not uniform. Algorithmically,
the XXZ and Bose-Hubbard models differ only in the value of the matrix elements of the sys-
tem parameters. We will for simplicity use the bosonic (or particle) language below unless
explicitly written otherwise. Parameters that must be positive are the hopping amplitudes
(corresponding to the in-plane spin exchange amplitudes Ji, j in the spin models, which must
hence be ferromagnetic); the other parameters must only be real.

3 Requirements

The current code builds on the ALPSCore libraries [17,18] for scheduling, checkpointing, file
input and output, and error evaluation. It is therefore required to have ALPSCore installed
with C++-14 compiler options.

4 Algorithm and Monte Carlo updates

4.1 Perturbative expansion

It is convenient to write the Hamiltonian as

H = H0 −H1 , (4)

where H0 is diagonal in the computational basis and H1 causes a transition from one basis to
state to another. Specifically, the computational basis is the basis of Fock states defined as the
set of all occupation numbers on each lattice site, {

�

�n1, . . . nNs

�

}, where Ns is the total number
of sites and n j = 0,1, . . . can take any positive integer value (the user can also impose a sharp
cutoff) on site j. The action of the chemical potential and potential energy terms is diagonal
with respect to this basis, and these terms belong therefore to H0. The action of a hopping
term in H1 is to change one basis state to a definite other one (there is no branching).

4

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9

SciPost Phys. Codebases 9 (2022)

Path Integral Monte Carlo methods are formulated for lattices of finite extension and finite
temperature T = 1/β > 0. The central object is the perturbative time-ordered expansion of
the partition function in continuous imaginary time,

Z = Tr e−βH0

∞
∑

n=0

∫ β

0

dτ1

∫ τ1

0

dτ2 . . .

∫ τn−1

0

dτn H1(τ1) . . . H1(τn) . (5)

Here, the trace is taken with respect to all states in the computational basis. The positivity of
this expansion is necessary and requires t > 0 (the constants in front of the bosonic hopping
operators must be negative on non-bipartite lattices).

The Heisenberg operators are defined as

H1(τ j) = eτ j H0 H1e−τ j H0 . (6)

The central quantity of interest in the worm algorithm is the single-particle Green’s function
G(A,τA; B,τB) defined as the thermal average G(A,τA; B,τB) =

1
Z

T [bA(τA)b
†
B(τB)]

�

, where
T is the time-ordering operator. These extra operators in the Green’s function sector are re-
ferred to as worm operators. The average describes the thermal properties of the propagation
of a particle created at site B at time τB and annihilated again at site A at time τA when
τA > τB. The other time ordering implies the propagation of a particle that is first removed
from the equilibrium state and reinserted at a later time.

In order to compute this quantity we sample an extended space ZMC with

ZMC = Z + CW ZG , (7)

ZG =
∑

A,B

∫

dτA

∫

dτB G(A,τA; B,τB) , (8)

where CW is a constant controlling the relative statistics between the partition function sec-
tor Z and the Green’s function sector ZG , for which we also use a perturbative time-ordered
expansion in continuous imaginary time,

Tr
∑

A,B

e−βH0

∞
∑

n=0

∫ β

0

dτ1 . . .

∫ β

0

dτn

∫ β

0

dτA

∫ β

0

dτB
1
n!
T
�

H1(τ1) . . . H1(τn)bA(τA)b
†
B(τB)

�

.

(9)
Inserting complete sets of computational basis states before and after every non-diagonal op-
erator yields configurations as illustrated in Fig. 1.

The algorithm proposes to change the configurations in the partition function sector by per-
forming local updates in the Green’s function sector, and switching between the two sectors —
i.e., between the two terms on the right hand side of Eq. 7 — when the worm operators are at
the same time and place. The latter is done by the update pair INSERTWORM-GLUEWORM.
Updates in the Green’s function sector leave one of the worm operators stationary and move the
other one around, thereby providing an unbiased sampling of the single particle Green’s func-
tion. In the update MOVEWORM one of the worm operators can move forward or backward
in imaginary time, whereas in the update-pair INSERTKINK-DELETEKINK the worm operator
can jump to a neighboring site by creating (removing) a hopping term.

These updates are discussed in more detail below, followed by the Monte Carlo estimators
for common observables.

4.2 The INSERTWORM-GLUEWORM update pair

Switching between the partition function sector and the Green’s function sector is accom-
plished by inserting or removing a worm pair. These updates are each other’s complement
and illustrated in Fig. 2.

5

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9

SciPost Phys. Codebases 9 (2022)

Figure 1: Graphical representation of a typical configuration in the Green’s function
sector. Imaginary time goes from left to right in the figure and there are five sites.
World lines are denoted by single lines (site is once occupied), double lines (site has
occupancy two) or dashed lines (site is not occupied). Interactions (hopping of a
particle) are denoted by vertical lines. The two circles mark a discontinuity in the
world lines and correspond to the worm operators. One of them creates an extra
particle, the other one annihilates it. As a consequence of the U(1) symmetry, the
total number of particles is conserved at every interaction.

Figure 2: Graphical illustration of the insertion (or deletion) of a worm pair. An
arbitrary site A and an arbitrary time τA are chosen. We have shown here the case
that the occupation between the worm operators is increased by one.

INSERTWORM can only be called in the partition function sector. The weights before and
after the updates are

W (X) = 〈nL|nL〉= 1 ,

W (Y) = C ′W 〈nL| bA |nM 〉 〈nM | b
†
A |nL〉 dτ , (10)

where C ′W is a constant controlling the relative statistics between the partition and Green’s
function sectors. A worm pair is inserted by uniformly choosing a random time τA and a
random site A. For a homogeneous system this is a natural choice. It is straightforward to
implement other rules for non-homogeneous systems. The occupation nM differs from the
existing occupation nL by± 1 depending on the chronological order of the bA and b†

A operators,
which differ in time by an infinitesimal amount. We pick with equal probability between these
two choices, and reject the update in case the occupancy nM is outside the allowed occupancy
bounds (say when a negative value would arise for a soft-core Bose-Hubbard model).

Thus

P(X → Y) =
dτ

2βV
δA,Bδ(τA−τB) . (11)

For the reverse update, we choose to always glue a worm pair together when possible (i.e.,
when they are infinitesimally close to each other in time, on the same site, and the exterior

6

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9

SciPost Phys. Codebases 9 (2022)

occupancy nL is the same),

P(Y → X) = δA,Bδ(τA−τB) . (12)

It follows that if we choose

C ′W =
CW

βV
, (13)

we have cancelled all extensive factors and have the correct normalization for the single par-
ticle Green’s function (see Sec. 4.5). The acceptance factor r for the INSERTWORM update is
hence

r =
W (Y)P(Y → X)
W (X)P(X → Y)

= 2CW 〈nL| bA |nM 〉 〈nM | b
†
A |nL〉 , (14)

and the update is accepted with probability min(1, r) according to the Metropolis-Hastings al-
gorithm [19,20]. The acceptance factor for GLUEWORM is then naturally 1/r. The parameter
CW can be set by the user in order to optimize the acceptance factors for both updates based
on typical values for the matrixelements (〈nL| bA |nM 〉)2.

4.3 The MOVEWORM update

During the worm updates, we make the choice, with equal probability, to move only one of the
worm operators around in space and time, and call this operator the worm head, the other one
is called the worm tail. The efficiency objective of the MOVEWORM update is to cancel the
exponential factors found in the configuration weights — which are of the form exp(−E∆τ)
obtained by plugging Eq. 6 into Eq. 5 — through drawing random numbers∆τ from an expo-
nential distribution, pexp(∆τ)dτ= E exp(−E∆τ)dτ (with E > 0). The MOVEWORM update,
which is its own reverse, proceeds as follows. First, we select with probability 1/2 whether
the worm head moves forward or backward in imaginary time and determine the imaginary
time interval over which the local potential energy stays constant. The boundary of this inter-
val is found by comparing the times of the next (or, previous, in case the worm head moves
backward) ’element’ on the site of the worm head and its neighbors and choosing the smallest
time interval τintv among them. Possible ’elements’ are a hopping term, measuring vertices,
the worm tail, e.t.c. If the variable W± is set (it is the variable that resolves ambiguities in the
time ordering when the worm time coincides with the one of a physical operator. We refer to
Sec. 5.2 for more details. The variable can take three values: W± = 0 if the worm is exactly at
the time of a physical operator, W± = 1 indicates that the worm is located at an infinitesimal
time later than the one of a physical operator, and W± = −1 indicates an infinitesimal time
prior to the time of a physical operator), we reject the update if the proposed movement is
in the direction of the existing element. Let us assume that the forward direction is chosen
to keep the notation simple. Second, we determine the local potential energies just prior to
(EL) and just later than (ER) the worm head (according to Fig. 1 this would be just to the
left(L) and to the right(R) of the worm head). To compute the acceptance factor r = rN

rD
, we

stress that it is important to understand that ending the worm movement on a time coinciding
with the one from an element is radically different from ending on a free time (and, likewise,
starting the worm movement from a time coinciding with an existing element is different from
starting the movement from a free time). Namely, if the final time is free (i.e., there is no other
element there) then it can be reached in only one way, but if the final time coincides with the
one of an existing element then all proposed final times going beyond this time would result in
the same final configuration. One must hence integrate over all these equivalent possibilities.
The update in case of two free ends is illustrated in Fig. 3. With this in mind, we can now
distinguish between two cases:

7

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9

SciPost Phys. Codebases 9 (2022)

• Case forward in time, ER > EL . This means that the movement of the worm reduces the
potential energy. We draw an exponential deviate, p = − ln(u)/Eoff, where u is uniformly
distributed over the interval u ∈ [0, 1[, and Eoff 6= 0 is an offset energy which should be
different from 0 for ergodicity reasons (cf. Ref. [14]) . It is an optimization parameter
that the user can set with default value 1. If τintv > p then rD = Eoff otherwise rD = 1.
If W± is set, then rN = 1, otherwise rN = ER − EL + Eoff.

• Case forward in time, EL > ER. This means that the movement of the worm increases
the potential energy. We draw an exponential deviate, p = − ln(u)/(EL − ER + Eoff),
where u is again uniformly distributed over the interval u ∈ [0, 1[. If τintv > p then
rD = EL − ER + Eoff, otherwise rD = 1. If W± is set, then rN = 1, otherwise rN = Eoff.

To prevent the roundoff errors (which are inherent to the double precision format of the con-
tinuous time variable) we reject updates in which p is too small or would result in the worm
being too close to an existing element. In the code the meaning of too close corresponds to
10−15 in units of β , which results in an inevitable but very small discretization error. If the
update is accepted according to the Metropolis-Hastings algorithm [19, 20], then the worm
head moves forward by an amount p if p < τintv, with W± set to zero, and the time of the
worm head is set equal to the time of the next interaction if p ≥ τintv with W± set to −1.
Moving backward in imaginary time is the reverse update from moving forward in time. The
numerator and denominator of the acceptance factor can be computed as follows:

• Case backward in time, ER > EL : We draw an exponential deviate,
p = − ln(u)/(ER+EL−Eoff), where u is uniformly distributed over the interval u ∈ [0, 1[.
If τintv > p then rD = ER + EL − Eoff, otherwise rD = 1. If W± is nonzero, then rN = 1,
otherwise rN = Eoff.

• Case backward in time, EL > ER : We draw an exponential deviate, p = − ln(u)/Eoff,
where u is uniformly distributed over the interval u ∈ [0, 1[. If τintv > p then rD = Eoff,
otherwise rD = 1. If W± is nonzero, then rN = 1, otherwise rN = EL − ER + Eoff.

It can be checked that the acceptance factors provided above satisfy detailed balance. As
absolute energies cannot matter physically, we worked directly with the energy differences
(ER − EL) to which we added Eoff in order to avoid zero when ER = EL . Note that the way in
which a new time is proposed in the MOVEWORM update is similar to the one in Ref. [14],
where it was worked out in more detail.

Figure 3: Graphical illustration of the MOVEWORM update. The worm, originally at
time τ is proposed to jump to a later time τ+τintv. The state to the left of the worm
is |nL〉, with energy EL . The state to the right of the worm is |nR〉, with energy ER.

8

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9

SciPost Phys. Codebases 9 (2022)

4.4 The INSERTKINK-DELETEKINK update pair

The INSERTKINK update is the one in which a hopping term is inserted and the worm jumps to
an adjacent site. It proceeds as follows. Note that the update is immediately rejected if W± is
nonzero. A neighboring site B of the worm head site A is chosen with uniform probability, and
we must determine the occupation on site B at the time of the worm head. We determine with
probability 1/2 whether the worm should be placed just to the left (infinitesimally prior) or just
to the right (infinitesimally later) the newly formed hopping term in imaginary time. Since
we consider only models with particle number conservation, the change in particle number
on A and B must be opposite, thus the specification of the hopping matrix element is unique.
Whenever any of the final occupancies is unphysical we reject the update.
For the reverse update, DELETEKINK, we simply propose to remove the hopping term and let
the worm jump to the site linked by the hopping term. This is only possible if W± is nonzero,
say −1, and the occupancy to the left of the worm is the same as the one to the right of the
hopping term on the worm site.

Example for INSERTKINK (see Fig. 4). Let the site on which the worm resides have z
neighbors, and we choose one of them with probability 1/z. The occupation number to the
left of the worm head is n, to the right of the worm it is n+1, and the occupation number on the
chosen neighboring site is m. Let us place the worm in the new configuration an infinitesimal
time later than the newly formed hopping term. Then, for a uniform Bose-Hubbard model,
the acceptance factor is

r =
2zt

p

m(n+ 1)Wm−1,m

Wn,n+1

pdel

pins
, (15)

where the worm weights are in the standard choice Wm−1,m =
p

m and Wn,n+1 =
p

n+ 1.
The probabilities pins and pdel are the probabilities with which INSERTKINK and DELETEKINK
are picked, respectively.

Figure 4: Graphical illustration of the INSERTKINK (or DELETEKINK) update. The
worm, originally at time τ and site A, jumps from site A to site B, thereby inserting
a hopping term between A and B. Afterwards the worm moves to an infinitesimally
close time τ + ε. Between times τ and τ + ε a new state with occupation number
m− 1 is created. This update is only possible if the occupation number m on site B
is larger than zero. Note that in this example m= n.

A situation may occur in which hopping terms cannot be deleted: if, in case the worm
is moving from left to right, the occupation to the left of the worm is n and the occupation
number to the right of the hopping term is n ± 2 (and n ± 1 is then the occupation number
between the worm head and the hopping term), then the interaction cannot be deleted. It can

9

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9

SciPost Phys. Codebases 9 (2022)

however be passed by the worm with probability 1 if the standard worm weights are used.
This is called PASSINTERACTION in the code.
These few updates guarantee ergodicity and are in practice also efficient enough.

4.5 Estimators

Having discussed the set of updates, we now mention the common observables that are im-
plemented.

In the code we introduce on every site measuring elements (called dummies) where we
can immediately read off the occupation numbers. Those are conveniently placed at a time
β . In case the user needs to add more diagonal observables, calling the occupation numbers
from the dummy iterators is straightforward.

4.6 Scalar observables: The total number of particles, kinetic, potential and
total energy

The measurement of such observables is cheap. For the kinetic energy, the number of hopping
terms P is proportional to the total kinetic energy Ek = −

〈P〉
β . In other words, we count on

the fly the number of hopping terms in the simulation, and the measurement is then an O(1)
operation. In practice, the total particle number 〈N〉 =

∑

r 〈n(r)〉 and the potential energy
Ep = 〈H0〉+µ 〈N〉 are also updated on the fly and the measurement of these scalar quantities
is then also an O(1) operation. Note that the estimators in the code for the potential and total
energy contain the contributions from the chemical potential.

4.7 A diagonal vector observable: The density distribution

The density distribution 〈n(r)〉 is a vector observable with length corresponding to the total
number of sites. It can be determined from knowledge of the occupation numbers at the
dummy vertices. It is always implemented as a vector observable in our implementation, also
for a system with translational invariance.

4.8 The density-density correlation function

The density-density correlation

n(r)n(r′)
�

function can likewise be computed from knowledge
of the occupation numbers at the dummy vertices. The cost of this measurement is however
a factor Ns higher than the density distribution and should therefore be called less frequently.
Note that such matrix observables are turned off in the code when the system is not uniform.
For a translationally invariant system such a matrix observable can be stored as a cheaper
vector observable, and this is also done so in our implementation. The option to measure such
diagonal matrix observables less frequently is left to the user via the parameter interface (see
Sec. 5.5).

4.9 Winding numbers

The superfluid density can be related to fluctuations in winding numbers when periodic bound-
ary conditions are used [21]. The code provides an estimator for

W 2
�

= 1
d

∑d
j=1

¬

W 2
j

¶

where
d is the dimension of the system. The winding number Wj in direction j is updated on the
fly during the worm propagation. It is left to the user to relate this quantity to the superfluid
density; e.g. for a d−dimensional cubic lattice the factor L2−d/β is not provided in the code.

10

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9

SciPost Phys. Codebases 9 (2022)

4.10 Equal-time density matrix

The equal-time density matrix G(r, 0) is histogrammed during the worm updates. Every time
the worm head attempts to move across the time of the worm tail, irrespective of its site, we
force the worm head to stop at that time. We determine then the distance r between the sites
of the worm head and tail, and have a Monte Carlo estimator 1/CW for r = 0. When the
worm head and tail reside on the same time, care must be taken with the non-commutativity
of the operators such that a correct density measurement is performed. The equal time density
matrix is naturally normalized in our implementation thanks to the detailed balance condition
in the INSERTWORM-GLUEWORM updates. Note that the first element of the equal-time
density matrix, corresponding to the entry between nearest neighboring sites, is an equivalent
measurement of the kinetic energy, up to a minus sign, the total number of bonds, and the
value of t for a translationally invariant system.

4.11 Green’s function in imaginary time

In the canonical framework we provide an implementation of the Green’s function at zero
momentum as a function of imaginary time, G(p = 0,τ), whose histogram can be updated
whenever W± = 0 with the value 1/CW at the entry τ which is the discretized fractional par-
ticle number difference between the situation with and without worms, i.e. positive when the
worm head is adding particles to the system and negative when the worm head is removing par-
ticles. For gapped systems, this quantity will asymptotically behave as G(p = 0,τ) ∼ e−Ep/h|τ|

for |τ| → ∞, projecting out the energies of a quasi-particle (quasi-hole) excitation for posi-
tive (negative) imaginary times, from which the respective dispersions can be obtained. For
systems with (emergent low energy) Lorentz symmetry, the (asymptotic) spatial decay of the
Green’s function must be the same as the temporal decay. This can be another setting where
this quantity is useful.

5 Implementation

A configuration is completely specified if we know at every site the evolution of the occu-
pancy numbers over imaginary time. For every site we opt to store the information when the
occupancy numbers change (note that other implementations work with constant intervals).

5.1 Data Structure

The ’element’ is the basic building block of the data structure. The data structure on every
site must contain all elements in chronological order for which we have chosen the list of
the C++standard library. The full configuration then additionally consists of a C++vector over
such lists. A hopping term affects the occupancies on two sites and will therefore be encoded
as two different elements on two different sites with equal time. The worm operators also
induce changes in occupancy, but are local and are also stored as elements on a single site.
As mentioned before, we also insert dummy iterators at time β where nothing changes but
which are used for the Monte Carlo measurement of diagonal observables. The information
stored per element are its time, the occupation number to the left and right, the site to which
it is linked in case of a hopping term (for measuring elements and the worm operators we link
the site to itself for convenience), and the type of event called its color in the code (which is
1 for a hopping term, 0 for a dummy, and -1 for the worm head or tail). Finally, an element
contains C++iterators to its so-called associations, which is explained in the next paragraph.

In the Bose-Hubbard model the terms in U and µ are local, whereas the ones in t and V
couple nearest-neighbor sites. In the X X Z model the terms in the magnetic field are on-site
and all other ones couple only nearest-neigbor sites. In such cases, one only needs to keep

11

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9

SciPost Phys. Codebases 9 (2022)

track of the changes in the configuration in the vicinity of the worm head. In order to compute
any matrix element between nearest-neighbor sites, it is important that one can quickly lookup
the occupation number on the current and its adjacent sites. To ensure that this lookup is an
O(1) operation (ie, not scaling with inverse temperature or system size), which is essential
if one wants to simulate large lattices in higher dimensions, we store at every element in the
configuration a connection (C++iterator) to the next element in the configuration on the nearest
neighbors. These iterators are called associations in the code. The meaning of "next element"
requires further specification: it is the element on the adjacent site with the earliest time that
is equal (eg, as in case of a hopping term) or greater than the current one. This structure
needs to be continuously updated during the worm propagation and is the most cumbersome
technicality in the code.

We have implemented a few other data structures instead of the list of the C++standard
library such as a self-implemented AVL tree, or a self-implemented stack-list, as introduced by
J. Greitemann et al in Ref. [22].2 We found however that these structures offer no advantages
over the list of the C++standard library.

5.2 Continuous time issues

For completeness, we repeat here the functioning of two parameters in the code that allow us
to deal with continuous time variables.

First, since the times are stored in double precision format errors due to the roundoff of
floating point numbers can arise. We therefore make sure that hopping terms cannot get closer
in imaginary time than a certain value chosen as 10−15β . This introduces a tiny discretization
error in the simulation that is for all practical circumstances negligible compared with the
statistical uncertainties. Quantities such as the potential energy which are updated on the fly
must for the same reason also be recomputed from scratch from time to time.

Second, note that the worm head can move arbitrary close to an element in the list (a
hopping term, or a measuring vertex). To ensure the correct chronological order we give the
worm then the same time as the element in the list and make use of the variable W±, which can
take three different values: +1(−1), indicating that the worm is at a time infinitesimally later
than (prior to) the element, or 0 indicating that the time of the worm is not infinitesimally close
to any element. When W± is set, the INSERTKINK update is impossible, and MOVEWORM is
only possible in the opposite direction.

5.3 Lattice definitions

We provide two equivalent lattice implementations, called static and XML. Depending on re-
quirements, the user might choose one or the other. In both implementations the size of the
selected lattice is set during runtime by the parameters Lx,Ly,Lz in the initialization file.
Depending on the dimension d of the lattice only the first d length parameters are considered
and others ignored. For instance, in case of a square lattice, Lx,Ly are relevant and Lz is ig-
nored. Boundary conditions of the lattice are specified in a similar fashion, that is by providing
parameters pbcx,pbcy,pbcz. These correspond to using periodic boundary conditions if the
relevant parameter evaluates to true, and open boundary conditions otherwise.

The static lattice implementation is similar to the one of Refs. [23–26]. Lattice selection
happens at compile time by specifying the flag LATTICE=<lattice>, thus switching lattice
structure requires recompilation (changing the size of the lattice doesn’t). If not specified,

2Note that the AVL tree implementation still uses associations, which is not compatible with a proper tree
concept.

12

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9

SciPost Phys. Codebases 9 (2022)

lattice defaults to chain. All types of lattices are supported in the sense that they can eas-
ily be implemented. Currently implemented are chain, square, cubic, honeycomb,
triangular, ladder.

The advantage of the XML lattice implementation [27] is that new lattices can be defined
without altering the source code. Any types of lattices can be conveniently defined in XML
files by specifying basis and unit-cell. Three additional parameters are required in the initial-
ization file: latticefile indicating the path to the XML file containing lattice definitions,
basis_name denoting the name of the basis, and cell_name denoting the name of the unit-
cell. Winding number computation is currently not available in the XML implementation.

5.4 Model definitions

To specify which model to use, the user has to provide a parameter "model" in the initial-
ization file. Currently available are "BoseHubbard" (default) and "XXZ", both with uniform
bond and site weights. The uniform parameters of the Bose-Hubbard model in eq. 2 are set by

t i, j = t : t_hop ,

Ui = U : U_on ,

Vi, j = V : V_nn ,

µi = µ : mu ,

(16)

while the XXZ-model in eq. 3 is determined as

Ji, j = J : Jpm ,

J z
i, j = J z : Jzz ,

hi = h : h .

(17)

Additionally the spin of the X X Z-model is controled by 2S ≡ nmax.

5.5 Other Simulation parameters

There are a number of other simulation parameters that the user can set:

1. From the Monte Carlo framework in ALPSCore [17, 18] we inherit the variables
runtimelimit, sweeps, and thermalization. They mean the total runtime in
seconds, the number of Monte Carlo sweeps performed during the measuring stage, and
the number of thermalization sweeps, respectively.

2. The variable E_off was discussed in the MOVEWORM update. It can take any strictly
positive value and controls the size of the time jump in the MOVEWORM update. A
sensible choice is an estimate of U 〈n〉 for a uniform system with on-site interactions
only.

3. The variable seed is the seed of the random number generator. It can be any unsigned
integer.

4. The variable Ntest performs a number of tests on the validity of the configuration after
the indicated number of sweeps. After Nsave sweeps the current state of the simulation
is checkpointed. These two variables should be large enough such that their computa-
tional cost is negligible in comparison with the time spent on sampling.

13

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9

SciPost Phys. Codebases 9 (2022)

5. The variable C_worm is the parameter CW that we previously discussed in the
INSERTWORM-GLUEWORM update pair. A value of the order 1 is recommendable for
default settings of the code.

6. The variables Nmeasure and Nmeasure2 determine after how many sweeps diagonal
observables with cost O(1) and cost O(Ns) are measured, respectively. These numbers
should be large enough such that enough statistics is acquired but small enough such
that that their computational cost remains negligible. The first one can be set roughly
equal to the autocorrelation time, the second one should typically be a factor Ns (total
number of sites) smaller.

7. The user also has the option to modify the probabilities with which the updates are
called. The variable names p_moveworm, p_insertkink, p_removekink, and p_glue
are self-explanatory and correspond to the possible updates that can be called in the
Green’s function sector. These numbers are normalized to one and in practice one al-
ways takes the same probabilities for inserting and removing a kink. In the partition
function we have only one update and the corresponding variable p_insertworm is
therefore set to one.

5.6 Optional compiler flags

The user has the possibility to compile the code with a number of flags:

1. The flag DEBUG is used when debugging the code and provides a lot of testing and output
to the screen. It should certainly be turned off in any production mode.

2. The flag UNIFORM assumes constant system parameters in the Hamiltonian. It leads to
a significant speed-up for large system sizes due to a significant reduction in memory
usage.

3. The user has the option to modify the data structure with the flag DSTRUC The default
option is the C++list, but one can also choose an AVL tree or the LIST_STACK from
Ref. [22].

4. The flag CWINDOW effectively constrains the simulation to a canonical simulation in the
partition function sector. The simulation is initialized with the number of particles spec-
ified by the parameter variable canonical. Updates in the Green’s function sector re-
strict the separation in imaginary time (but not in space!) between the worm head and
the worm tail to a time window specified by the variable can_window. This is a hard
cutoff in imaginary time without making use of reweighting techniques, i.e., the maxi-
mum separation in imaginary time between the worm head and tail in absolute value
is this variable times the inverse temperature β . Note that the proper usage of this flag
still requires that the user has set the chemical potential correctly.

Calling the executable with arguments can be done in a number of ways but is inherited
from the ALPSCore framework. We refer to the ALPSCore documentation [17,18].

5.7 Output of the code

When the simulation is finished, the serial code provides two hdf5 files. One hdf5 file is
used for checkpointing (the filename contains the word "clone" in it), i.e., if the simulation
has not completed all sweeps yet then it can be continued by adding this file as argument
to the executable on the command line, as provided by the ALPSCore framework. The other
hdf5 file contains the output of the simulation (the filename contains the word "out" in it).

14

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9

SciPost Phys. Codebases 9 (2022)

We further provide a number of tools in order to easily extract such information from the
hdf5 files as the system parameters, the update statistics, and the mean value and error of
correlation functions.

5.8 Comparison with previous implementations

The present implementation takes over a number of similar ideas from previous implemen-
tations of the worm algorithm but differs in some other aspects. Here, we briefly want to
mention these similarities and differences.

1. The data structure, the update pair INSERTWORM-GLUEWORM, and the use of expo-
nential deviates (including the variable Eoff) are (nearly) identical as in Ref. [14] and
differ from Ref. [2].

2. Ref. [14] employed the idea of "directed loops", in which the direction of the worm prop-
agation in MOVEWORM is always determined by the previous update. In the current
implementation, and in Ref. [2], there is no such notion. With directed loops, detailed
balance was broken after the MOVEWORM update and only restored when the worm
was halted as, for instance, when inserting or removing a hopping element. Although
the acceptance factors for MOVEWORM and INSERTKINK-DELETEKINK are always 1 in
Ref. [14] this is not the case in the present implementation (but it is not a disadvantage
for the autocorrelation times).

3. In the present implementation, the worm head is an actual element in the configuration
list. It is physically removed and inserted when inserting and deleting a hopping matrix
element or when moving the worm around. This was not the case in Ref. [14]. Whereas it
may look that the current implementation does more (unnecessary) work, this is actually
not true since there are gains when updating the associations in the code that more than
compensate the cost, resulting in an overall small gain.

The additional advantages of the current design is that it is simpler to extend the algorithm to
multi-species systems, and it also leads to a simpler measurement of the single particle Green
function in imaginary time, G(r,τ).

6 Scaling of autocorrelation times

In this section we examine the scaling of autocorrelation times in, for simplicity, the Bose-
Hubbard model. The unit for the autocorrelation time is one sweep, i.e. one completed worm
update from INSERTWORM to GLUEWORM. We start with determining the scaling of the
autocorrelation times deep in the superfluid and critical regimes. Below we separately examine
the scaling with the total number of sites and inverse temperature. Our observable of choice
is the winding number squared along the x− direction because this quantity corresponds to
an ’order parameter’ for the superfluid phase and is hence expected to couple to the slowest
modes in the system.

6.1 Scaling of autocorrelation times as a function of system size

We take system parameters such that we are in superfluid regime and increase the system
size at fixed temperature. Specifically, we take a Bose-Hubbard model on a square lattice
with thop = 1, Uon = 12, µ = 4.8 and fixed β = 10, which is at the boundary of where
the Bogoliubov approximation remains applicable. The result is shown in Fig. 5. The total
number of updates in the Green’s function sector scales with the total number of sites, and the
converged autocorrelation times are nearly constant, too.

15

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9

SciPost Phys. Codebases 9 (2022)

20 40 60 80 100 120
Lx = Ly

0.80

0.85

0.90

0.95

1.00

W
2 x
[

W
2 x
(L

=
8)

],
L x

L y
I Z I G

[6
4I Z

(L
=

8)
I G

(L
=

8)
]

W2
x

LxLy
IZ
IG

Figure 5: Integrated autocorrelation time of the winding number squared along the
x−direction (blue line) and the ratio of the number of updates in the partition func-
tion to the number of updates in the Green’s function sector IZ

IG
multiplied with the

system size Lx L y (red line) as a function of linear system size Lx = L y for a 2D
Bose-Hubbard model in the superfluid regime with parameters thop = 1, Uon = 12,
µ = 4.8 and fixed inverse temperature β = 10. The autocorrelation time and the
red full line show nearly constant behavior. Similar scaling behavior is seen for the
kinetic energy. The results are normalized to the values found for the smallest system
size Lx = L y = 8, for which τW 2

x
≈ 55(1) and IZ

IG
≈ 4.574(4)×10−5. Error bars have

been determined based on 20 independent runs with different seeds.

6.2 Scaling of autocorrelation times as a function of inverse temperature

We take system parameters such that we are in superfluid regime and increase β such that we
approach the ground state.

As in the previous paragraph, we take a Bose-Hubbard model on a square lattice with
thop = 1, Uon = 12, µ = 4.8 but now we choose a fixed systems size Lx = L y = 64. The result
is shown in Fig. 6. In accordance with the previous paragraph, we see that the total number
of updates in the Green’s function sector scales with the inverse temperature, and that the
autocorrelation times remain nearly constant, too.

6.3 Scaling of autocorrelation times in the critical regime

We take system parameters such that we are in the critical regime of the superfluid to Mott
insulator regime at constant density. We take a Bose-Hubbard model on a square lattice with
thop = 1, Uon = 16.7424, µ = 6.22 and vary Lx = L y = 2β at constant aspect ratio. The
growth in the system volume is hence cubic. Note that the quantum critical regime has an
emergent conformal theory, hence correlations along spatial and time axes are expected to
spread equally. Nevertheless, the reader is warned that thermalizing such a critical system for
the biggest system sizes requires a lot of time, and we found it necessary to reset the statistics
after 8 CPU hours several times in order to make sure that the statistics are adequate. The result
for the autocorrelation time as a function of linear system size is shown in Fig. 7. It clearly
grows sublinearly, but the exact behavior is difficult to establish. For wom-type simulations of
the classical 3D X Y model, a logarithmic growth of the integrated autcorrelation time could
be established [7].

16

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9

SciPost Phys. Codebases 9 (2022)

0 20 40 60 80 100 120
[1/thop]

0.70

0.75

0.80

0.85

0.90

0.95

1.00

W
2 x
[

W
2 x
(

=
1)

],
I Z I G

[I Z
(

=
1)

I G
(

=
1)

] W2
x

IZ
IG

Figure 6: Integrated autocorrelation time of the winding number squared along the
x−direction (blue line) and the ratio of the number of updates in the partition func-
tion to the number of updates in the Green’s function sector IZ

IG
multiplied with the

inverse temperature β (red line) as a function of inverse temperature β for a 2D
Bose-Hubbard model in the superfluid regime with parameters thop = 1, Uon = 12,
µ = 4.8 and fixed system sizes Lx = L y = 64. The autocorrelation time and the red
line show nearly constant behavior. Similar scaling behavior is seen for the kinetic
energy. The results are normalized to the values found for the smallest inverse tem-
perature β = 1, for which we found τW 2

x
≈ 59(1) and IZ

IG
≈ 7.54(1) × 10−6. Error

bars have been determined based on 20 independent runs with different seeds.

6.4 Efficiency

Finally, we examine the memory usage and efficiency of our implementation when we go over
from a small system to a rather large system. We see in Fig. 8 for a critical 2D Bose-Hubbard
model that the kinetic energy per site approaches a constant as a function of linear system
size. Since the code stores the hopping events in memory, total memory usage to store the
configuration is proportional to the number of hopping events P, and thus proportional to
two times |Ek|β ∼ Lx L yβ . The total average memory consumption can be estimated from
the basic data structure which contains 4 integers (which the user can specify), 1 double, and
2d (the coordination number, more generally) C++ iterators. How much memory is required
for this data structure is hence lattice, user, compiler, and hardware dependent. Note that
the C++ operator sizeof(Element) can provide this information. Assuming 4 bytes for an
integer, 8 bytes for a double, and 8 bytes for the iterator, then the size of an element is 72
bytes for a cubic lattice and 56 bytes for a square lattice. For the linear system size L = 96
in Fig, 8 the average memory usage for storing the configuration is then slightly less than
70 megabytes. Doubling this number to account for fluctuations in kinetic energy gives a
realistic estimate for the required memory resources for storing the configuration, excluding
the Monte Carlo measurements and smaller overheads. We observe no loss in performance
when increasing the system volume, the total number of updates per second is slightly above
2× 107 for a thermalized system obtained on a single node of an iMac with a 3.1 GHz Intel
Core i5 processor with 24 GB 1667 MHz DDR4 memory.

17

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9

SciPost Phys. Codebases 9 (2022)

20 40 60 80 100 120
Lx = Ly = 2 [1/thop]

2.5

5.0

7.5

10.0

12.5

15.0

17.5

W
2 x
[

W
2 x
(L

=
8)

],
L x

L y
I Z I G

[2
56

I Z
(L

=
8)

I G
(L

=
8)

]

W2
x

LxLy
IZ
IG

Figure 7: Integrated autocorrelation time of the winding number squared along the
x−direction (blue line) and the ratio of the number of updates in the partition func-
tion to the number of updates in the Green’s function sector IZ

IG
multiplied with the

system volume Lx L yβ (red line) as a function of linear system size for a 2D Bose-
Hubbard model in the critical regime with parameters thop = 1, Uon = 16.7424,
µ = 6.22 and system sizes Lx = L y = 2β . The results are normalized to the
values found for the smallest system size, for which we found τW 2

x
≈ 133(2) and

IZ
IG
≈ 0.000717(1). Error bars have been determined based on 20 independent runs

with different seeds.

20 40 60 80 100 120
Lx = Ly = 2

1.41

1.40

1.39

1.38

1.37

1.36

1.35

1.34

E k L x
L y

Figure 8: Kinetic Energy per site as a function of linear system size for a a 2D
translationally-invariant Bose-Hubbard model on the square lattice with periodic
boundary conditions, t = 1, U = 16.7424, and µ = 6.22 (i.e., at the tip of the
Mott lobe with density n= 1). The total memory usage is proportional to the kinetic
energy via its estimator, 〈Ek〉= −

〈P〉
β , where P is the number of hopping elements in

the configuration.

18

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9

SciPost Phys. Codebases 9 (2022)

7 Testing

Automated tests for the grand-canonical Bose-Hubbard model as well as the X X Z model with
spin values S = 1/2 and S = 1 are provided within the directory test_mpi. To build and
run a specific test case, the user can simply execute the provided shell-script test.sh for an
embarrassingly parallel computation or alternatively test_serial.sh for the test to run
serial. These scripts take the name of a predefined parameter file from the sub-directory
parameter_files as argument (without the extension ".ini"). Once completed, the worm-
algorithm results can be compared to the appropriate results from exact diagonalization by
executing the python script compare.py with the same argument as before.
A possible test run might look as follows:

>> cd test_mpi/BoseHubbard_GrandCanonical
>> zsh test.sh chain
>> python3 compare.py chain

8 Conclusion

In conclusion, we provided a novel open-source implementation of the worm algorithm. The
code only relies on a C++-14 compliant compiler and the ALPSCore libraries [17, 18]. The
reason for this minimal use of libraries is that we want to keep maintaining the code light and
as independent from other software as possible. Our implementation can simulate the Bose-
Hubbard model and sign-positive XXZ models on arbitrary lattices with local and nearest-
neighbor interactions. Our main data structure is a C++ vector (over the sites) where each
vector element contains a C++ list which stores the chronological order implied by the time-
ordering operator from many-body field theory.

Our standard lattice implementation is based on Ref. [26] and in our approach the user
should construct a different executable for a different lattice type. We have provided instances
of a chain, a ladder, a simple square, a triangular and a honeycomb lattice, and a simple cubic
lattice. Other types of lattices can straightforwardly be added to the code. Alternatively, lat-
tices based on XML input files can be used following the library [27]. The current implementa-
tion scales well with system size and inverse temperature and can be used on high-performant
supercomputers through the ALPSCore libraries.

Acknowledgements

We wish to thank the ALPS community for many years of scientific collaboration. Our im-
plementation is based on the ALPSCore library [17, 18] and takes two data structures from
Ref. [22]. The static lattice implementation is similar to the one of the TK-SVM library [23–26],
whereas the XML lattice implementation originates from [27].

The code is available under the GPL license 3.0 at https://github.com/LodePollet/worm.

Funding information NS and LP acknowledge support from FP7/ERC Consolidator Grant
QSIMCORR, No. 771891, and the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – EXC-2111 – 390814868.

19

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9
https://github.com/LodePollet/worm

SciPost Phys. Codebases 9 (2022)

References

[1] B. B. Beard and U.-J. Wiese, Simulations of discrete quantum systems in continuous Eu-
clidean time, Phys. Rev. Lett. 77, 5130 (1996), doi:10.1103/PhysRevLett.77.5130.

[2] N. V. Prokof’ev, B. V. Svistunov and I. S. Tupitsyn, Exact, complete, and universal
continuous-time worldline Monte Carlo approach to the statistics of discrete quantum sys-
tems, J. Exp. Theor. Phys. 87, 310 (1998), doi:10.1134/1.558661.

[3] H. G. Evertz, G. Lana and M. Marcu, Cluster algorithm for vertex models, Phys. Rev. Lett.
70, 875 (1993), doi:10.1103/PhysRevLett.70.875.

[4] H. G. Evertz, The loop algorithm, Adv. Phys. 52, 1 (2003),
doi:10.1080/0001873021000049195.

[5] A. W. Sandvik, Stochastic series expansion method with operator-loop update, Phys. Rev. B
59, R14157 (1999), doi:10.1103/PhysRevB.59.R14157.

[6] O. F. Syljuåsen and A. W. Sandvik, Quantum Monte Carlo with directed loops, Phys. Rev. E
66, 046701 (2002), doi:10.1103/PhysRevE.66.046701.

[7] N. Prokof’ev and B. Svistunov, Worm algorithms for classical statistical models, Phys. Rev.
Lett. 87, 160601 (2001), doi:10.1103/PhysRevLett.87.160601.

[8] M. Boninsegni, N. Prokof’ev and B. Svistunov, Worm algorithm for continuous-
space path integral Monte Carlo simulations, Phys. Rev. Lett. 96, 070601 (2006),
doi:10.1103/PhysRevLett.96.070601.

[9] M. Boninsegni, N. V. Prokof’ev and B. V. Svistunov, Worm algorithm and diagrammatic
Monte Carlo: A new approach to continuous-space path integral Monte Carlo simulations,
Phys. Rev. E 74, 036701 (2006), doi:10.1103/PhysRevE.74.036701.

[10] S. M. A. Rombouts, K. Van Houcke and L. Pollet, Loop updates for quantum Monte
Carlo simulations in the canonical ensemble, Phys. Rev. Lett. 96, 180603 (2006),
doi:10.1103/PhysRevLett.96.180603.

[11] K. van Houcke, S. M. A. Rombouts and L. Pollet, Quantum Monte Carlo simula-
tion in the canonical ensemble at finite temperature, Phys. Rev. E 73, 056703 (2006),
doi:10.1103/PhysRevE.73.056703.

[12] V. G. Rousseau, Stochastic Green function algorithm, Phys. Rev. E 77, 056705 (2008),
doi:10.1103/PhysRevE.77.056705.

[13] V. G. Rousseau, Directed update for the stochastic Green function algorithm, Phys. Rev. E
78, 056707 (2008), doi:10.1103/PhysRevE.78.056707.

[14] L. Pollet, K. Van Houcke and S. M. A. Rombouts, Engineering local optimal-
ity in quantum Monte Carlo algorithms, J. Comput. Phys. 225, 2249 (2007),
doi:10.1016/j.jcp.2007.03.013.

[15] N. Kawashima and K. Harada, Recent developments of world-line Monte Carlo methods, J.
Phys. Soc. Jpn. 73, 1379 (2004), doi:10.1143/JPSJ.73.1379.

[16] L. Pollet, Recent developments in quantum Monte Carlo simulations with applications for
cold gases, Rep. Prog. Phys. 75, 094501 (2012), doi:10.1088/0034-4885/75/9/094501.

20

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9
https://doi.org/10.1103/PhysRevLett.77.5130
https://doi.org/10.1134/1.558661
https://doi.org/10.1103/PhysRevLett.70.875
https://doi.org/10.1080/0001873021000049195
https://doi.org/10.1103/PhysRevB.59.R14157
https://doi.org/10.1103/PhysRevE.66.046701
https://doi.org/10.1103/PhysRevLett.87.160601
https://doi.org/10.1103/PhysRevLett.96.070601
https://doi.org/10.1103/PhysRevE.74.036701
https://doi.org/10.1103/PhysRevLett.96.180603
https://doi.org/10.1103/PhysRevE.73.056703
https://doi.org/10.1103/PhysRevE.77.056705
https://doi.org/10.1103/PhysRevE.78.056707
https://doi.org/10.1016/j.jcp.2007.03.013
https://doi.org/10.1143/JPSJ.73.1379
https://doi.org/10.1088/0034-4885/75/9/094501

SciPost Phys. Codebases 9 (2022)

[17] A. Gaenko et al., Updated core libraries of the ALPS project, Comput. Phys. Commun. 213,
235 (2017), doi:10.1016/j.cpc.2016.12.009.

[18] M. Wallerberger et al., Updated core libraries of the ALPS project, arXiv:1811.08331.

[19] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equa-
tion of state calculations by fast computing machines, J. Chem. Phys. 21, 1087 (1953),
doi:10.1063/1.1699114.

[20] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications,
Biometrika 57, 97 (1970), doi:10.1093/biomet/57.1.97.

[21] E. L. Pollock and D. M. Ceperley, Path-integral computation of superfluid densities, Phys.
Rev. B 36, 8343 (1987), doi:10.1103/PhysRevB.36.8343.

[22] J. Greitemann and L. Pollet, Lecture notes on diagrammatic Monte Carlo for the Fröhlich
polaron, SciPost Phys. Lect. Notes 2 (2018), doi:10.21468/SciPostPhysLectNotes.2.

[23] K. Liu, J. Greitemann and L. Pollet, Learning multiple order parameters with interpretable
machines, Phys. Rev. B 99, 104410 (2019), doi:10.1103/PhysRevB.99.104410.

[24] J. Greitemann, K. Liu and L. Pollet, Probing hidden spin order with interpretable machine
learning, Phys. Rev. B 99, 060404 (2019), doi:10.1103/PhysRevB.99.060404.

[25] J. Greitemann, Investigation of hidden multipolar spin order in frustrated magnets using
interpretable machine learning techniques, dissertation, Ludwig-Maximilians-Universität
München, Germany (2019), doi:10.5282/edoc.25057.

[26] J. Greitemann, K. Liu and L. Pollet, Tensorial-kernel SVM library, GitLab (2018),
https://gitlab.physik.uni-muenchen.de/tk-svm/tksvm-op.

[27] S. Todo, Lattice library, GitHub (2019), https://github.com/todo-group/lattice.

21

https://scipost.org
https://scipost.org/SciPostPhysCodeb.9
https://doi.org/10.1016/j.cpc.2016.12.009
https://arxiv.org/abs/1811.08331
https://doi.org/10.1063/1.1699114
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1103/PhysRevB.36.8343
https://doi.org/10.21468/SciPostPhysLectNotes.2
https://doi.org/10.1103/PhysRevB.99.104410
https://doi.org/10.1103/PhysRevB.99.060404
https://doi.org/10.5282/edoc.25057
https://gitlab.physik.uni-muenchen.de/tk-svm/tksvm-op
https://github.com/todo-group/lattice

	Introduction
	Definitions and Models
	Requirements
	Algorithm and Monte Carlo updates
	Perturbative expansion
	The INSERTWORM-GLUEWORM update pair
	The MOVEWORM update
	The INSERTKINK-DELETEKINK update pair
	Estimators
	Scalar observables: The total number of particles, kinetic, potential and total energy
	A diagonal vector observable: The density distribution
	The density-density correlation function
	Winding numbers
	Equal-time density matrix
	Green's function in imaginary time

	Implementation
	Data Structure
	Continuous time issues
	Lattice definitions
	Model definitions
	Other Simulation parameters
	Optional compiler flags
	Output of the code
	Comparison with previous implementations

	Scaling of autocorrelation times
	Scaling of autocorrelation times as a function of system size
	Scaling of autocorrelation times as a function of inverse temperature
	Scaling of autocorrelation times in the critical regime
	Efficiency

	Testing
	Conclusion
	References

