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Abstract

This white paper summarizes recent progress in the cosmological bootstrap, an approach
to the study of the statistics of primordial fluctuations from consistency with unitarity,
locality and symmetry assumptions. We review the key ideas of the bootstrap method,
with an eye towards future directions and ambitions of the program. Focusing on recent
progress involving de Sitter and quasi-de Sitter backgrounds, we highlight the role of
singularities and unitarity in constraining the form of the correlators. We also discuss
nonperturbative formulations of the bootstrap, connections to anti-de Sitter space, and
potential implications for holography.
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1 Introduction

The statistics of the primordial density fluctuations offer a unique opportunity to probe the
earliest moments of the Universe [1–3]. The seeds of all structure are believed to have been
created in a phase of cosmic inflation [4–6], an era where both quantum mechanics and grav-
ity play an essential role.1 During the inflationary period, small quantum fluctuations were
stretched to cosmological distances, rippling the fabric of spacetime in an apparently random,
but correlated fashion [8–12]. These correlations retain a memory of their genesis, providing
us a rare glimpse of the Universe in its infancy.

An intriguing feature of inflation is that our view of this epoch is frozen in time. We
can only make inferences about the inflationary era from spatial correlations in the initial
conditions for the post-inflationary Universe. These primordial correlations live on the future
boundary of the inflationary spacetime or, equivalently, the past boundary of the hot Big Bang
Universe. The detailed structure of these boundary correlations encodes information both
about the dynamics and particle content of inflation. Time does not appear explicitly in the
observed correlations, but is instead encoded in their scale dependence, because modes of
different wavelength freeze out at different times during inflation. By measuring this shape
dependence of the late-time cosmological correlations, we hope to infer the physics of the
inflationary era.

The standard approach to make predictions for the inflationary correlations is to follow
the evolution of these correlations through the entirety of the spacetime—from their origin as
quantum fluctuations until they imprint themselves at reheating [13–17]. This approach has
the desirable feature that it makes certain aspects of the physics—such as locality, causality and
unitarity—completely manifest. However, this comes at a price: ensuring these properties at
every moment in time requires us to perform difficult time integrals over all of the inflationary

1See the Snowmass white paper [7] for a summary of the current theoretical and observational status of infla-
tion.
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evolution. Despite these challenges, many heroic computations have been carried out [16–30],
and by now a rich spectrum of inflationary phenomenology is known [31–52].

The cosmological bootstrap is a complementary strategy that is motivated by two important
features of inflationary cosmology: First, as described above, we can’t observe the time evolu-
tion during inflation directly, but instead have to infer it from the static boundary correlations.
Second, inflation is likely to have occurred at energies far exceeding those probed by particle
experiments, where our knowledge of the correct theory of particle physics is highly uncertain.
A conservative approach to both of these challenges is to directly reconstruct (bootstrap) the
cosmological correlations on the late-time reheating surface, using cherished physical princi-
ples like locality, unitarity, and symmetries as consistency requirements [53–80]. The bootstrap
method then asks what space of correlations is consistent with these basic physical conditions.
In many cases, these combined requirements are so constraining as to uniquely define the an-
swer, reproducing the results of detailed bulk calculations and enabling even more complex
ones. This strategy of focusing directly on observables and their consistency has yielded nu-
merous insights into the structure of anti-de Sitter space (conformal field theories) [81, 82]
and flat space (scattering amplitudes) [83, 84], which provided inspirational success stories.
Here, we will review recent progress in applying these ideas to cosmology.

Ideally, one would like to classify all possible patterns of primordial fluctuations based
on general principles. However, as a practical starting point, it is useful to assume that the
near scale invariance [85] and Gaussianity [86] of the observed fluctuations are tied to more
fundamental principles.2 This means that we take the observed scale invariance to imply an
approximate symmetry of the dynamics and focus on low-order correlation functions beyond
the Gaussian approximation. For simple processes involving three- and four-point functions
of the light particles sourced during inflation—adiabatic density fluctuations and primordial
gravitational waves—these correlation functions can be calculated using standard perturbative
methods adapted to the cosmological setting. However, for even slightly more complicated
physical processes, standard calculations are often intractable, motivating the search for new
calculational approaches.

The cosmological bootstrap program aims to further illuminate both conceptual and obser-
vational questions about the very early Universe. We only observe one Universe and therefore
we depend on theory to connect individual signatures to deeper characteristics of the inflation-
ary era. The cosmological bootstrap provides a precise map between the spectrum of particles,
their interactions, and their (quantum) state, to the analytic structure of the correlators. These
very properties of the correlators can also be crucial in the search of primordial non-Gaussianity
observationally [19, 89, 90]. In addition, the self-consistency of the correlators with unitarity
and locality can also limit the range of parameter space beyond what is naively allowed within
effective field theory [91] (e.g. through positivity bounds on EFT coefficients [92,93]). A nat-
ural hope of the bootstrap program is that it will continue to unearth new and unexpected
connections between fundamental principles and correlators, theory and data.

Understanding the perturbative structure of correlators from first principles is also an im-
portant step toward answering a number of conceptual questions about inflation and/or de
Sitter space. Infrared divergences have long plagued loop calculations in cosmology and cast
doubt on our understanding of the inflationary epoch [94–121]. Recent progress has been
made in understanding aspects and, in some cases, resolve these divergences [122–128].
These results must ultimately connect to the bootstrap, and offer both a test of these direct
calculations, while inspiring new insights into the structure of these correlators.

In this white paper, we review recent developments in the cosmological bootstrap in a
number of directions. In Section 2, we summarize the basic properties of cosmological corre-
lators in perturbation theory, including their definition, singularity structure, and symmetries.

2See e.g. [87,88] for discussions of models of inflation that violate these assumptions.
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We then review how these properties can be used to bootstrap inflationary observables both
when interactions preserve and violate de Sitter boost symmetry. In Section 3, we describe
the constraints imposed by unitarity on cosmological correlations, both perturbatively, where
it manifests itself in the form of cutting rules, and nonperturbatively as in the positivity of
spectral densities. In Section 4, we summarize how insights from the physics of anti-de Sitter
space can be imported into the de Sitter context and comment on the obstacles to formulate de
Sitter holography. Finally, in Section 5, we list some important challenges and opportunities
for the future.

2 Symmetries and singularities

To construct a cosmological bootstrap, we need to understand how the physical inputs of lo-
cality, unitarity, and symmetry constrain the observable outputs of inflation. We first review
the definition of the boundary objects of interest—the cosmological wavefunction and bound-
ary correlators. We then describe how symmetries and locality constrain these objects, and
describe their structure of singularities. (We discuss constraints from unitarity in Section 3.)
We then summarize some examples of how one can use these inputs to bootstrap inflationary
correlators both in situations where de Sitter symmetries control the dynamics, and in cases
where interactions are sensitive to the departure from exact de Sitter space.

2.1 Correlators in an inflationary Universe

Under relatively mild assumptions the fluctuations in the matter density of the late Universe
can be traced back in time to the beginning of the hot Big Bang. Moreover, if inflation is correct,
then the initial surface of the hot Big Bang is identified with the final surface of an approximate
de Sitter spacetime and correlations on this surface are the fundamental cosmological observ-
ables. As typically only the light fields survive until the end of inflation, our main interest is
the correlations of these degrees of freedom (possibly sourced by the interactions with mas-
sive degrees of freedom in the bulk spacetime).3 Every inflationary model has two compulsory
massless degrees of freedom: the Goldstone boson of broken time translations [35, 36] and
the graviton. The former sources density fluctuations in the late Universe and is also called the
adiabatic mode. In the following, we will define the inflationary boundary correlators more
precisely and then show how they can be bootstrap using knowledge of their symmetries and
singularities.

2.1.1 Back to the future

The natural observables in cosmology are different from those in flat space (or even in anti-de
Sitter space). In flat space, we are interested in the (squares of) transition amplitudes between
asymptotic states: the S-matrix. In the cosmological context, we don’t have the luxury of
specifying the states of interest in both the far past and future. Instead, we can only specify the
initial conditions, which are then evolved forward in time. As a consequence, the observables
in cosmology are correlation functions evaluated in this initial state [16,17]

〈O1(η1,x1) · · ·On(ηn,xn)〉= 〈in|O1(η1,x1) · · ·On(ηn,xn)|in〉 , (1)

which are called in-in correlators. It is the late-time value of these correlation functions, eval-
uated on the future boundary η→ 0, that is of interest for the subsequent cosmological evo-

3From a more abstract viewpoint, understanding the properties of general correlation functions in cosmological
spacetimes is important, as it provides valuable insights into the structure of QFT in curved spacetimes, which still
holds many deep mysteries.
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Figure 1: The pattern of correlations measured after inflation traces the dynamics
and retains a memory of the physics during inflation. Because fluctuations of dif-
ferent wavelength freeze out at different times, the scale/shape dependence of late-
time correlations encodes the time-dependant inflationary physics in a purely static
object. An aspect of this remarkable connection is that we can learn about the par-
ticle content present during inflation by measuring subtle correlations imprinted in
correlations on the reheating surface.

lution of the Universe. The homogeneity of spatial slices in cosmology makes it convenient to
consider correlation functions in Fourier space, which we will do in the following.

The cosmological wavefunction

The fact that we are not able to specify both |in〉 and |out〉 states in cosmology motivates us to
try to describe the |in〉 state more explicitly, as it, in principle, contains the same information
as all possible correlation functions evaluated in this state (though rearranged in a nontrivial
way). The wavefunctional is not directly observable, but its somewhat more primitive nature
makes it a simpler object than correlation functions.4

The state of interest is the (interacting) vacuum state processed by cosmological evolu-
tion. It can be represented in the basis of (Heisenberg picture) eigenstates of fields in the
theory, |ϕ〉, as Ψ[ϕ,η] = 〈ϕ|in〉, where the field eigenstates satisfy φ(η,x)|ϕ〉= ϕ(x)|ϕ〉. The
wavefunctional provides a probability distribution for spatial field configurations at time η.

In perturbation theory, it is convenient to parameterize the wavefunctional as

logΨ[ϕ,η] =
∑

n=2

1
n!

∫

dd k1 · · · dd kn

(2π)3n
ϕk1
· · ·ϕkn

(2π)3δ(k1 + · · ·+ kn)ψn(kN ) , (2)

where ψn(kN ) are the wavefunction coefficients expressed in Fourier space, with
kN ≡ {k1, . . . ,kn}. The late-time wavefunctional has a path integral representation

Ψ[ϕ,η] =

∫

φ(η)=ϕ
φ(−∞)=0

Dφ eiS[φ] , (3)

where the early time boundary condition is implicitly defined with an iε prescription and the
path integral is done over all field configurations that connect to ϕ(x) at time η. This path

4In this respect, it is somewhat like the S-matrix, which itself is not directly observable, but from which physical
observables are relatively easy to extract.
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integral representation is useful because it helps organize the perturbative computation of the
wavefunction coefficients. The calculation of wavefunction coefficients is quite similar to that
of scattering amplitudes (for details see e.g. [73,118,129,130]). The primary difference is that
there are now two kinds of propagators: a bulk-to-boundary propagator K(k,η) that connects
vertices to the late-time boundary, and a bulk-to-bulk propagator Gk(η1,η2) that connects bulk
vertices and which vanishes when one of the times is taken to the boundary. The other main
differences is that we only Fourier transform in the spatial directions and integrate over all
possible insertion times for interaction vertices. It is these time integrals that are actually the
main source of computational difficulty in perturbative bulk calculations.

Boundary correlators

Given the wavefunction (2), we obtain equal-time correlators via the usual quantum mechanics
procedure of squaring and integrating

〈ϕ(x1) · · ·ϕ(xn)〉=

∫

Dϕϕ(x1) · · ·ϕ(xn) |Ψ[ϕ]|
2

∫

Dϕ |Ψ[ϕ]|2
. (4)

If one’s interest is directly in these in-in correlation functions, the detour we have taken through
the wavefunction is not necessary. Instead one can apply the so-called in-in formalism to di-
rectly construct these correlators (see, e.g. [17, 103, 131, 132]). This formalism introduces
several complications compared to conventional in-out quantum field theory. Operators are
ordered along a multi-branch contour that time-evolves the in vacuum forward in time to the
moment of interest for computing the correlation function (the + branch) and then reverse
time-evolves back into the infinite past (the − branch). There are then four different propaga-
tors G±±̂ (η, η̄) used to connect operators inserted on the different branches, where ± and ±̂
refer, respectively, to the branch of η and η̄.5 Given these propagators, one can define Feynman
rules as usual to compute in-in correlation functions directly.

2.1.2 Symmetries

A recurring theme in modern physics is that some of the deepest and most structural insights
that we can gain into systems are consequences of symmetry. It is therefore natural to examine
the symmetries of the early Universe. The correlations generated by inflationary dynamics
must reflect these underlying symmetries and so they can be used to construct and constrain
inflationary observables.

Observations suggest that the background spacetime during the inflationary epoch was
very close to being de Sitter space:

ds2 =
1

H2η2

�

−dη2 + dx2
�

, (5)

which is a maximally symmetric space with the following Killing vectors:

Pi = ∂i , D = −η∂η − x i∂i ,

Ji j = x i∂ j − x j∂i , Ki = 2x iη∂η +
�

2x j x i + (η
2 − x2)δ j

i

�

∂ j .
(6)

The symmetries generated by Pi and Ji j are the familiar translational and rotational symmetries
of the Rd spatial slices. In addition, de Sitter space possesses a dilation symmetry, generated

5This formalism can be implemented via a path integral with doubled field content [133].
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by D and d boost-like symmetries generated by Ki , which act like special conformal transfor-
mations on the boundary. All together, the algebra of isometries for (d + 1)-dimensional de
Sitter space dSd+1 is so(d+1, 1), which coincides with the conformal algebra of d-dimensional
Euclidean space Rd .

Fields in de Sitter space behave especially simply at late times. For example, a scalar field,
φ, of mass m scales as

φ(x,η→ 0) =O+(x)η∆+ +O−(x)η∆− , (7)

where its two fall-offs are fixed in terms of its mass as

∆± =
d
2
± iµ , where iµ=

√

√d2

4
−

m2

H2
, (8)

which is the analytic continuation of the familiar AdS/CFT relation. From (7), we infer that
the coefficients O± transform kinematically like primary operators of weight ∆± under the
action of the conformal group.6 This leads to substantial constraints on the structure of cor-
relation functions of the field φ in exact de Sitter space. In order to diagonalize the action of
translations, it is natural to Fourier transform and treat correlators in momentum space, which
if is often done in cosmology. In de Sitter, it is further natural to also diagonalize dilations by
going to Mellin space [69]. This simplifies many aspects of perturbative bulk calculations, and
can be thought of as an analogue of a Fourier transform in the temporal direction, putting the
bulk and boundary on somewhat of an equal footing by passing to harmonic space.7

Since de Sitter space is maximally symmetric it does not describe an evolving Universe.
The energy density is constant and all spatial slices are equivalent. An important aspect of
any inflationary model is therefore the breaking of the de Sitter symmetries, which lead to
the Goldstone mode, π(η,x), and the associated curvature perturbation, ζ = −Hπ [35, 36].
All current observations are reproduced by a nearly scale-invariant two-point function for ζ,
and various upper bonds exist on higher-point functions. This suggests that the correlations
of ζ is invariant under spatial rotations and translations, and approximately invariant under
scale transformations—which can be realized as a diagonal combination of an internal shift
symmetry and the (nonlinearly realized) dilation transformation generated by D.8

On the other hand, we have no evidence whether or not de Sitter boosts (generated by Ki)
are good approximate symmetries of cosmological correlators because the other symmetries
already completely fix the only observable we have so far, namely the two-point function. In
the language of cosmological model building, we can say that while the breaking of scale-
invariance must be slow-roll suppressed, in principle de Sitter boosts can be arbitrarily badly
broken. Depending on the physics of interest, we can therefore proceed via two paths. We can
either assume that de Sitter boosts are also only weakly broken and leverage the full power
of de Sitter symmetries, or we can can consider the case where de Sitter boosts are not even
approximate linear symmetries (and instead are nonlinearly realized [146–149]), which is the
regime where phenomenological signals are larger. Both situations are of interest and have
complementary strengths. It is worthwhile to summarize in a bit more detail these synergies:

• de Sitter bootstrap: In situations where both the background and the dynamics are
approximately invariant under the full de Sitter group (including slow-roll inflation),

6This fact lies at the heart of the proposed dS/CFT correspondence [16,134–143]. Our discussion does not rely
on any detailed microscopic correspondence per se, rather the constraints we discuss are kinematic in nature.

7In the same way that spatial integrals of plane waves generate delta functions, Mellin space simplifies integrals
over conformal time, which is often the most challenging aspect of bulk perturbation theory. Depending on the
physics of interest, many properties of the final correlator can be read off directly in Mellin space, without having
to perform the inverse Mellin transform [69,70].

8Strictly speaking, none of these assumptions is compulsory given current observations. See [47,87,144,145]
for examples where rotations, translations and/or dilations are broken. Typically these models have internal sym-
metries that compensate the breaking by some diagonal transformation.
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we can leverage these symmetries in several ways. Firstly, we can organize observ-
ables into representations of the de Sitter group, which highly constrains their form and
properties. In addition, we can utilize the isomorphism between the de Sitter group
and the Euclidean conformal group to import insights from the study of conformal
field theory and of perturbation theory in Anti-de Sitter space into the cosmological
setting [70, 74, 78–80, 150–155] (see Section 4). It is worth noting that there are sev-
eral cases of phenomenological interest where full de Sitter symmetries are approximate
symmetries of the dynamics. In addition to correlators of the inflaton in slow-roll infla-
tion (where, for example, three point functions can be obtained from a deformation of a
de Sitter-invariant four-point function [62,64,67,68]), correlation functions of spectator
fields (including the graviton) are invariant under de Sitter symmetries at leading or-
der in slow-roll [53,156–158]. Beyond these phenomenological motivations, this highly
symmetric situation enables computations that otherwise would be intractable. From
these computations, we can abstract lessons that can be applied to more phenomeno-
logically relevant setups.9

• Boostless bootstrap: In order to generate large enough interactions to be phenomeno-
logically interesting (at least in the single-field context) it is typically necessary for de
Sitter boosts to be strongly violated by interactions of the scalar fluctuations. This is
both interesting—because these interactions are less constrained and so more signals are
possible—and a challenge, because the symmetries of the problem are reduced. How-
ever, there are still many general constraints on the structure of cosmological correlation
functions that can be leveraged to bootstrap observables in this setting. (In many cases
first seen in more symmetric situations and then abstracted.) For example, features
of the singularity structure, or consequences of unitarity continue to hold in these less
symmetric settings and can be applied to construct correlators of the inflaton in these
models [72, 77, 173–175]. One advantage of this approach is that the motivations are
primarily phenomenological, so one can exploit additional constraints satisfied by the
massless particles of interest [76, 173, 176, 177]. Utilizing these insights, it is possible
to compute predictions that capture most realistic models, including single-field models
with sizable interactions (non-Gaussianities) in the scalar and tensor sector.

2.1.3 Singularities

An inspirational insight from the study of flat-space scattering amplitudes is that the S-matrix
is often either completely or mostly fixed by its singularities [178]. For example, the tree level
S-matrix can only have pole-like singularities when intermediate particles go on-shell, and the
residues of these singularities are products of lower-point amplitudes with positive coefficients
(as mandated by unitarity). In many cases this is enough information to completely reconstruct
the entire amplitude and can be systematized through powerful recursion relations [179–181].
Another inspirational success story is provided by generalized unitarity [182], where at one-
loop the discontinuities of amplitudes are expressible in terms of tree-level information and in
many cases serves to uniquely specify the full answer.

Our understanding of the properties of the wavefunction and correlators is comparatively
more primitive, but much recent progress has been made in the study of their singularities [66,
67, 73, 76, 183, 184]. Much as in the case of scattering amplitudes, this information is in
many cases sufficient to uniquely reconstruct the entire correlator [73,76,184]. In other cases
additional information must be supplied. This can be done systematically, and so singularities
serve as useful anchors where the properties of correlators are known.

9Beyond cosmological motivations, there are natural connections to the study of CFTs in momentum space, a
subject where there has been much recent activity [60,61,159–172].
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We now describe the (tree-level) singularities of the cosmological wavefunction. The wave-
function is somewhat simpler than correlation functions, so its singularities are easier to char-
acterize. There is no loss of generality because the singularities of correlators can be inferred
from this information, at least in perturbation theory (see e.g. [130]). The singularities of the
tree-level wavefunction naturally occur at certain locations in energy space, where by ener-
gies we mean the magnitudes |k| of the three-momenta that wavefunction coefficients depend
on.10

A ubiquitous singularity occurs when the total energy involved in the process vanishes,
E ≡

∑

kn → 0. The physical origin of this singularity is the unbounded region of time inte-
gration that gives the wavefunction coefficient. Normally, this infinite domain is regulated by
oscillatory factors, which vanish exactly when these sums of energies vanish, so the wavefunc-
tion diverges. The coefficient of this total energy singularity is the corresponding flat-space
scattering amplitude [53,54]

lim
E→0

ψn =
iAn

Eα
. (9)

This fact—that cosmological correlation functions (or the wavefunction) have within them a
singularity whose residue is a scattering amplitude—provides a beautiful connection between
the study of cosmological correlators and that of the S-matrix. The precise order of the singu-
larity, α, and even its nature depends on the details of fields and interactions, but the existence
of some singularity is robust.11

More generally, wavefunction coefficients have singularities whenever the energies Eγ
flowing into a connected subdiagram γ vanish. These partial energy singularities are a charac-
teristic feature of particle exchange. The residues of these singularities are related to lower-
point scattering amplitudes and wavefunction coefficients. For example, for an n-point wave-
function coefficient, the singularity where the partial energy Eγ vanishes (splitting the graph
into two sub-graphs γ and γ′) is of the following schematic form:

lim
Eγ→0

ψn =
iAγ × eψγ′

Eβγ
. (10)

Here eψγ′ is a shifted version of the (m-point) wavefunction associated to the subgraph γ′:

eψγ′(k1, · · · , km, kI)≡ P(kI)
�

ψγ′(k1, · · · , km,−kI)−ψγ′(k1, · · · , km, kI)
�

, (11)

where the factor P(kI) is the power spectrum of the exchange field connecting the two graphs,
a structure whose origin will become clear in Section 3.1. In flat space, the singularities are
always simple poles, 1/Eγ. Conversely, in general FLRW spacetime and in dS higher-order
poles arise. The order β of the pole in (10) can be fixed using dimensional analysis and scale
invariance. For example, for the case of massless scalars and gravitons, it is given by [72,177]

β ≤ 1+
∑

V∈γ

�

dimV − (d + 1)
�

, (12)

where the sum runs over all vertices V in the (sub)diagram and dimV denotes the mass di-
mension of the vertex V . The inequality allows for the possibility that the residues of the
highest-order pole vanishes, which can happen in various interesting cases because of symme-
try [72, 185]. Finally, when β vanishes there can be branch point singularities whose coeffi-
cients are fixed by the cosmological optical theorem (see Section 3).

10This is a slight abuse of terminology, as energy is not strictly well-defined in cosmology. Nevertheless, the
momentum magnitudes play a similar role in mode functions that energies do in flat space.

11In flat space, all singularities are simple poles, but in cosmological backgrounds both higher-order poles and
branch point singularities can occur, depending on the situation.
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Analytic continuation Physical region

Figure 2: Schematic of the singularities of the cosmological wavefunction. The wave-
function has singularities when (partial) energies are conserved. The coefficients of
these singularities can be written in terms of scattering amplitudes and lower-point
wavefunctions. Even though these singularities lie at analytically continued momen-
tum configurations, they nevertheless partially control the behavior of the wavefunc-
tion for physical kinematics. Extending away from these singularities to general mo-
mentum configurations is a boundary version of the challenge of time evolution in
the bulk.

Importantly, none of these singularities are physical, in the sense that they cannot be probed
by any physical process with real momenta. Nevertheless, they can be accessed by extending
momenta into the complex plane, and remarkably, they control the form of correlation func-
tions even in the physical region (see Fig. 2). Indeed, one way to phrase the challenge of
constructing the boundary wavefunction is: given knowledge of its form in the vicinity of its
singularities, how do we extend away from these special loci to general kinematics (in partic-
ular into the physical region). We now review several approaches to meet this challenge.

2.1.4 Manifest locality

Locality already played a role in the previous discussion by ensuring that the only poles that
appear are at vanishing partial energies. However, in the special case of massless scalars and
spin-2 fields (gravitons), there is another manifestation of locality, which provides a powerful
bootstrap tool. The key observation is that the massless de Sitter mode function, K(η, k),
corresponding to the conformal dimension ∆= d, and all of its time derivatives, satisfy

∂

∂ k

�

dN

dηN
K(η, k)

��

�

�

�

k=0
= 0 . (13)

If interactions are manifestly local, meaning that they are products of fields and their deriva-
tives at the same spacetime point, this property is inherited by the wavefunction coefficients
in perturbation theory and goes under the name of Manifestly Local Test (MLT) [173]

∂

∂ kc
ψn(k1, · · · , kn; {p}; {k})

�

�

�

kc=0
= 0 , (14)

where the notation indicates that the derivative with respect of an external energy kc should be
taken while keeping fix all energies {p} running along internal lines and all vector contractions
ka · kb, if present. The result in (14) can be equivalently derived demanding the absence of
non-partial energy singularities. As we review in Section 2.2.2, with this simple condition
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one can derive all boost-breaking tree-level three- and four-point functions [173,174], which
are the main target of cosmological observations. Furthermore, the MLT can also be used in
combination with partial-energy recursion relations (see Section 3.2) to fix terms that are not
constrained by unitarity.

2.2 Bootstrapping inflationary correlators

In many cases the structure of tree-level wavefunctions and correlators is sufficiently rigid that
they can be completely reconstructed from information about their singularities and symme-
tries [66–68,72,73,76,173,174,176,184,186,187]. In this section, we outline the logic and
present some success stories of this reasoning. We first describe how the symmetries of de
Sitter space can be used to control the structure of perturbative cosmological correlation func-
tions, which captures the physics of slow-roll inflation. We then review how boost-breaking
interactions can also be computed from their singularities, locality and unitarity.

2.2.1 de Sitter four-point functions

When the de Sitter symmetry is only softly broken by interactions, the correlation functions of
both spectator fields and the inflaton must be compatible with the symmetries (6). This places
strong constraints on their form (which are essentially the same kinematic requirements that
constrain correlation functions in a conformal field theory). Translation and rotation invari-
ance are easy to satisfy in momentum space: correlation functions that transform covariantly
under rotations and which satisfy momentum conservation are compatible with these con-
straints. The nontrivial consequence of de Sitter symmetry are therefore the kinematic confor-
mal Ward identities associated to dilations and de Sitter boosts:

�

−d +
n
∑

a=1

Da

�

〈O1 · · ·Oa · · ·On〉= 0 ,

n
∑

a=1

K i
a 〈O1 · · ·Oa · · ·On〉= 0 ,

(15)

where we have introduced the shorthand notation Oa ≡Oka
. The operators Da and K i

a in (15)
are the Fourier space representation of the dilation and de Sitter boost generators (6), so that
the correlators obey differential equations in the momentum variables [53,60,67,73,146,149].
(The equations satisfied by the wavefunction coefficients are essentially identical.) Note that
these differential equations are the same as those satisfied by correlation functions in a CFTd
as a consequence of kinematic conformal invariance. This connection allows for an fruitful
exchange of ideas between the two subjects.

Correlators or wavefunction coefficients involving massless particles with spin are further
constrained beyond these kinematic requirements. This is essentially because massless parti-
cles correspond to conserved currents from the boundary point of view, and their correlations
must be compatible with this conservation. These additional constraints are a boundary man-
ifestation of bulk gauge invariance and require that spinning correlators additionally satisfy
current conservation Ward–Takahashi (WT) identities. For example, for a massless spin-1 field
these take the form [53,60,73]

ki
1〈J

i
k1
Ok2
· · ·Okn

〉= −
n
∑

a=2

ea〈Ok2
· · ·Oka+k1

· · ·Okn
〉 , (16)

where ea are the charges of the various operators appearing in the correlator. Notice that this
fixes the longitudinal part of the correlator in terms of a lower-point function, demonstrating
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that it is constrained in terms of other data.12

To bootstrap the boundary correlators directly, we must therefore solve the differential
equations implied by the conformal Ward identities (15) (along with the WT identities in
situations with spin). In order for this task to be tractable, we need some principles to select
the physical solutions of interest from the infinite number of solutions to these equations. In
this regard singularities play an important role. First, we can restrict the space of possible
solutions by restricting to functions that only have the singularities associated to tree-level
exchange (for example). Further, to select the physical solution within this class, we forbid
the presence of unphysical singularities, and further require that the physical singularities are
normalized correctly. In the following, we will give a concrete example of this logic.

A simple seed: Conformal scalars

Three-point functions in de Sitter space are highly constrained by the boundary conformal
symmetry, being essentially unique up to a finite number of constants depending on the field
content [53,60,157,188–190]. Consequently, the first nontrivial dynamical information about
a theory arises at four points. As a simple example of the bootstrap procedure, we derive the
four-point correlation function of conformally coupled scalars in exact de Sitter space [64,67,
68]. Despite its simplicity, this solution is important, as it can be transformed into correlation
functions of more physical interest. For conformal scalars, ϕ, the differential equations (15)
can be combined and the rescaled correlator F ≡ |k1 + k2| 〈ϕ1ϕ2ϕ3ϕ4〉 satisfies [64,67]

(∆u −∆v) F(u, v) = 0 , (17)

where we have introduced the differential operator

∆u ≡ u2(1− u2)∂ 2
u − 2u3∂u , (18)

with u ≡ |k1 + k2|/(k1 + k2). The operator ∆v is defined similarly in terms of
v ≡ |k3 + k4|/(k3 + k4).

Any possible bulk process will generate a boundary correlation function that solves the
partial differential equation (17). Specializing to tree-level particle exchange, however, this
equation can be split into a pair of ordinary differential equations [64,67]

�

∆u +M2
�

F = Cn ,
�

∆v +M2
�

F = Cn ,
(19)

where Cn is a solution to (17) that has only a total energy singularity and hence corresponds to
a contact interaction in the bulk. The simplest contact solution is C0 = uv/(u+ v) and higher-
order contact solutions Cn>0 are obtained by repeated application of ∆u. It is straightforward
to check that any solution to the pair of equations in (19) will also solve (17). However, the
structure of these ODEs restricts the singularity structure of solutions to be that arising from
bulk tree exchange, where M2 is set by the mass of the exchanged particle. These are second-
order differential equations, so we require two boundary conditions to solve them. A generic
solution will not only have the expected total and partial energy singularities—at u→−v and
u→−1, respectively—but will also have a folded singularity at u→ +1. The latter corresponds
to a momentum configuration where the quadrilateral formed by the momenta in Fourier space
degenerates to a triangle because two of the momentum becomes colinear (here, k1 and k2).

12The fact that conserved operators have additional requirements beyond kinematic de Sitter invariance in order
for their longitudinal modes to decouple reflects that they are not phrased in terms of completely unconstrained
kinematic variables. This suggest that a more elegant treatment of spinning correlation functions in de Sitter space
exists, and finding it is an interesting challenge for the future.
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In Bunch–Davies initial conditions, folded singularities are unphysical and should therefore be
absent [67,71]. One boundary condition is therefore to forbid the presence of folded singular-
ities. A second boundary condition is provided by normalizing one of the physical singularities
correctly. The other physical singularities then become consistency checks.

In [67], the equations (19) were solved for arbitrary values of M2. The explicit form of the
solution isn’t very illuminating and therefore won’t be displayed here. Let us just remark that
the solution has a piece corresponding to the EFT expansion of the bulk interactions (arising
from integrating out the massive particles) and a piece describing the production and decay
of massive particles in the expanding spacetime. The latter is a consequence of the time-
dependence of the background, which is reproduced without any explicit reference to the bulk
time evolution. In this sense, the bootstrap procedure has realized the goal of describing “time
without time”.

To illustrate the physical principles that select the solution more explicitly, it is useful to
consider the particular case where M2 = 0. This corresponds to conformally coupled scalars
exchanging a conformal scalar in the bulk. In this case, the most general solution to (19) with
C0 as a source is

F =
1
2

Li2

�

u(1− v)
u+ v

�

+
1
2

Li2

�

v(1− u)
u+ v

�

+
1
2

log
�

u(1+ v)
u+ v

�

log
�

v(1+ u)
u+ v

�

+
π2

6

+ c1 + c2 log
�

1− u
1+ u

�

log
�

1− v
1+ v

�

,
(20)

where Li2(x) is the dilogarithm and c1 and c2 are arbitrary constants. We now need to impose
boundary conditions: the absence of folded singularities requires us to set c2 = 0 and the
normalization of the partial energy singularity u→−1 sets c1 = 0, leaving the first line of (20)
as the physical solution [64,67].13

Massive exchanges and weight-shifting

The equations (19) can be solved for arbitrary values of M2, which produces the boundary
correlation function for four conformally coupled scalars that arises from the exchange of a
massive scalar. Though the detailed form is complex, it admits a rapidly-convergent power
series representation so for practical purposes it is very efficient [67]. We will denote this
solution abstractly as F(M). The situation that we have considered may seem somewhat ar-
tificial and unphysical, but remarkably the solution F(M) can be efficiently transformed into
other solutions of interest by utilizing so-called weight-shifting operators [68] which were first
constructed in the study of conformal field theory [192, 193]. Conceptually, these operators
map solutions of the kinematic Ward identities (15) to new solutions with different values of
masses and spins for both external and internal operators. This allows us to generate a wide
menu of physical processes from F(M), which acts as a simple seed object [67, 68, 73]. This
technique is also readily applied to situations beyond the four-point function. The fact that
all of these different physical solutions can be mapped to each other by differential operations
reveals a unity of perturbative de Sitter physics that is completely invisible in the standard
Lagrangian approaches.

Inflationary three-point functions

In the slow-roll limit, where de Sitter symmetries are softly broken by the interactions of the
inflaton, the three-point correlator of ζ can be obtained as a deformation of an exactly de Sitter

13Note that the four-point wavefunction and correlator differ by a constant factor, accounting for the difference
in the factorization limits of the two objects. See [191] for an explicit expression for the wavefunction.
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m2 = 0

J ̸= 0

m2 = 2H2

J = 0

= W · S

Figure 3: The inflationary three-point function due to the exchange of a massive spin-
ning particle inherits the analytic structure of the four-point function of conformally
coupled scalars exchanging a massive scalar. To obtain the inflationary correlator, we
apply a spin-raising operator S (changing the spin of the exchanged particle) and a
weight-shifting operator W (converting the external particles from conformally cou-
pled to massless). Finally, taking one of the legs to be soft gives the inflationary
three-point function in the slow-roll limit.

invariant four-point function, evaluated in the soft limit [62, 64, 67, 68]. Combined with the
weight-shifting procedure, this makes it possible to efficiently generate inflationary three-point
functions arising from the exchange of particles of arbitrary mass and spin [67,68]

〈ζk1
ζk2
ζk3
〉(M ,J) = −ε k3

3 PJ (α)U
(J ,0)
12 F (J)(M)(u, 1) + perms. , (21)

where “perms” denotes symmetrization over the external momenta, PJ (α) is a Legendre poly-
nomial with α ≡ (k1 − k2)/k3, and J denotes the spin of the exchanged particle. Here, F (J)(M)
is the solution to the conformal kinematic Ward identities for conformal scalars exchanging
a particle of mass M and spin-J , which can be obtained by weight-shifting the scalar solu-
tion F(M). The operator U (J ,0)

12 is another weight-shifting operator that changes the mass of
the external scalar field to be that of the inflaton ζ. Notice that this bispectrum is propor-
tional to ε ≡ −Ḣ/H2, which is the slow-roll parameter that measures the deviation of the
background from de Sitter space. From a phenomenological point of view, these bispectra
are interesting because they display a characteristic oscillatory feature in the squeezed limit
(where k1≪ k2,k3) that scales as [27,64]

lim
k1→0
〈ζk1

ζk2
ζk3
〉(M ,J) ∼

�

k1

k2

�
3
2+iµ

+ c.c. , (22)

where the exponent is set by the mass of the exchanged field via iµ ≡
p

d2/4−M2/H2 [27,
64, 194, 195]. In addition, the angular structure of the correlator is determined by the spin
of the exchanged particle [64]. In principle, these characteristic features of particle exchange
would allow us to do “cosmic spectroscopy” and use the inflationary epoch as a sort of particle
collider if these features are present. This has motivated a large measure of interest in the
area of cosmological collider physics [27,64,129,147,194–221].

Spinning correlators

All inflationary models have two compulsory light degrees of freedom: the Goldstone of spon-
taneously broken time translations, π, and the graviton, γi j . It is therefore important to un-
derstand the properties of correlation functions involving particles with spin in inflationary
spacetimes. In addition to the kinematic constraints of conformal symmetry (which are sub-
stantially more complex in the spinning case), correlation functions with massless fields with
spin must satisfy WT identities (16). This means that massless spinning fields are more con-
strained than their scalar counterparts. This is to be expected, indeed it is well known in
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the scattering context that space of allowed interactions is extremely limited, with theories
like Yang–Mills and General Relativity being essentially unique consistent theories. Similarly,
in the cosmological context, it is not always possible to simultaneously solve the constraints
of kinematic conformal invariance and current conservation [73, 75]. Indeed, requiring that
correlation functions solve both equations at the same time reproduces, from the boundary
perspective, the relations between couplings required by consistent gauge theories [73, 75].
Moving forward, it will be interesting to fully map out the space of consistent theories in-
volving massless particles in cosmology. For instance, there exist interesting types of gauge
fields in de Sitter space (partially massless particles) that do not have any direct flat-space
counterparts [222–224]. Progress has been made in the study of their correlation functions in
the presence of matter [75], ruling out certain matter couplings, and an interesting question
is whether a theory with a finite number of such particles can be consistent (given the exis-
tence of some no-go results [225–229]). Such a question can reasonably be answered from
the bootstrap perspective.

2.2.2 Boostless three-point functions

To generate any sizable non-Gaussian n-point function in single-field inflation requires that the
de Sitter boost symmetry is strongly broken by the interactions of ζ [230]. It is highly desirable,
therefore, to be able to apply the bootstrap methodology to compute correlation functions in
these less symmetric theories. Since we no longer have the constraints of de Sitter boosts,
one might expect that this situation is too unconstrained to make progress. However, the
singularities of consistent correlators along with information about locality and the remaining
symmetries can still be used to reconstruct the boundary correlators [72,76,77,173–175,177,
185]. It is somewhat remarkable that inflationary correlators can be bootstrapped with such
minimal input. In the following, we briefly review some success stories of this approach.

Bispectrum of the EFT of inflation

We can construct the bispectrum in the EFT of inflation by first writing down the most generic
ansatz compatible with a small set of “boostless bootstrap rules” that enforce symmetries and
basic physical principles such as locality and then using the MLT (discussed in Section 2.1.4)
to fix all remaining coefficients [72,173]. The result is the most general tree-level bispectrum
to all orders in the derivative expansion. For simplicity, we discuss here only scalars, but a
similar approach has been used to bootstrap also all graviton bispectra [175]. The bootstrap
rules are: (i) invariance under translations rotations and dilations (but no assumption about
boosts) fixes the kinematic variables, (ii) massless fields at tree-level in dS ensures that the
result is a rational function, (iii) Bose symmetry enforces permutation invariance and finally
(iv) locality and the choice of the Bunch–Davies vacuum imply that the only singularity is
at vanishing total energy, kT ≡ k1 + k2 + k3. Under these assumptions, the most general
bispectrum must take the form [72,173]

〈ζk1
ζk2
ζk3
〉=

1
(k1k2k3)3

∑

p

Polyp+3(k1, k2, k3)

kp
T

, (23)

where Polyp+3(k1, k2, k3) is a polynomial with mass dimension p + 3 that is symmetric in its
arguments and can therefore be written uniquely in terms of elementary symmetric polyno-
mials. The order p of the pole is fixed by (12) and is found to coincide with the total number
of derivatives in the corresponding interaction. Terms with larger p are higher order in the
EFT derivative expansion. The set of all possible polynomials Polyp+3 is given by all possible
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solutions of the MLT [173], which requires

∂k1

�

k3
1〈ζk1

ζk2
ζk3
〉
�

�

�

�

�

k1=0
= 0 . (24)

This ensures that the bispectrum arose from a local bulk interaction involving massless infla-
tons. Taking account of all of these constraints, the number of free parameters in (23) can be
shown to exactly match the free parameters in the EFT of inflation Lagrangian, order by order
in p [72]. The result satisfies some general properties: the leasing residue of the kT → 0 pole is
determined by a corresponding flat-space scattering amplitude, which needs not be invariant
under Lorentz boosts [231], and it satisfies the single-field soft limit that are a consequence of
the nonlinearly realized symmetries of ζ [146–149,232–235].

A similar derivation to the one above was carried out for the contact four-point function
in [174]. To describe boostless exchange diagrams, we need unitarity in the form of the cos-
mological optical theorem to be discussed in Section 3.1.

Graviton correlators

In addition to the inflationary scalar correlators, techniques that don’t rely on de Sitter boost
symmetries can also be applied in the construction of graviton correlators. In the simplest
and most studied inflationary setup of the EFT of inflation, graviton interactions are de Sitter
invariant to leading order in the slow-roll expansion. Hence, there are only a finite number
of possibilities at three points (three possible wavefunction coefficients producing only two
cubic correlators in D = 4) [53]. However, in more general models of inflation such as Solid
Inflation [47, 236, 237], gravitons can also be sensitive to the departure of the background
from pure de Sitter space, leading to a larger menu of possible shapes and non-Gaussianities
that can be large enough to be detected by cosmological surveys (see [238–241] for related
discussions). Here, we wish to focus on one interesting feature that arises for parity-odd
graviton bispectra at tree-level. Such a signal cannot arise in the presence of de Sitter boost
symmetry. Instead, for general boost breaking theories one naively expects infinitely many
possible shapes corresponding to the infinitely many cubic Lagrangian operators with an ever
increasing number of derivatives. Remarkably unitarity dictates that only three shapes are
allowed, as we will now see.

We can write any n-point correlator from a single contact interaction in terms of the wave-
function coefficients as [175]

Bcontact
n ({k}; {k}) = −

ψn({k}; {k}) +ψ∗n({k};−{k})
∏n

a=1 2 Re ψ2(ka)
. (25)

The crucial point is that unitarity in the form of the cosmological optical theorem (see Sec-
tion 3.1) implies that ψn({k}; {k}) + ψ∗n({−k};−{k}) = 0. Hence, if ψn(k) happens to be
even under flipping the sign of its arguments, then the corresponding contact correlators will
vanish. Focusing on the bispectrum and writing down a generic ansatz compatible with the
boostless bootstrap rules, analogous to (23), one discovers that only terms without any total
energy pole have this property.14 This implies that (i) parity-odd correlators from contact in-
teractions are actually regular at vanishing total energy and (ii) there are only a handful of
possibles shapes because the degree of the arbitrary polynomial is fixed by scale invariance.
For three gravitons there are only three allowed shaped, for graviton-scalar-scalar also three,
and only a single shape for graviton-scalar-scalar. Explicit expressions for these shapes are

14There is an infinite number of possible nonzero wavefunction coefficients, but all but three drop out of the
bispectrum. In particular, the single parity-odd interaction compatible with de Sitter boost symmetry in D = 4
cannot contribute to the bispectrum [242,243].
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given in [175] and provide important targets for non-Gaussian searches in the graviton sector
in the case of a detection of primordial tensor modes.

This example is a poster child of the bootstrap approach because it displays the stark juxta-
position between the Lagrangian description and the actual observables: there are an infinite
number of EFT vertices that cannot be removed by field redefinitions, but nevertheless they do
not contribute to the parity-odd graviton three-point function. Conversely, from the bootstrap
perspective it is immediate to see that only a handful of possible observables are allowed.

Building to higher points

The techniques discussed in this section are more widely applicable beyond the examples that
we have outlined. In particular, these boostless approaches are well-suited to construct cor-
relations/wavefunctions of massless particles, which are typically rational functions. As such,
these tools can be adapted to also study correlation functions of massless spin-1 and spin-2
fields in the de Sitter setting [73, 130]. In addition, these techniques readily generalize to
higher points [174], and can be combined with recursive techniques in order to construct a
wide variety of rational correlators [76,77,173,177].

2.3 Cosmological polytopes and beyond

The disappearance of bulk time and its encoding in the momentum dependence of boundary
observables is inspiring, and it emboldens us to consider the more ambitious task of removing
the entire spacetime from the picture, to have it reemerge as a derived concept. Indeed, similar
attitudes have been remarkably powerful in the study of scattering amplitudes, where many
deep structures have been uncovered by phrasing constructions in auxiliary or dual spaces.

In the cosmological context, one notable development in this direction is the study of
cosmological polytopes. These are geometrical objects whose volumes compute the (rational)
wavefunction coefficients of a conformally coupled scalar [66]. These rational wavefunctions
can then naturally be integrated to construct the wavefunction of a conformal scalar in more
general FLRW spaces. It is interesting and intriguing that an object describing cosmology (the
wavefunction) arises from a purely geometric question that does not obviously have anything
to do with physics.

Aside from being of intrinsic interest as an example of spacetime physics arising from
an auxiliary structure, the study of cosmological polytopes—or more generally of simplified
models of the wavefunction—has been of great utility in revealing an underlying simplicity in
cosmological perturbative dynamics [66,176,183,184,191,244]. In these simplified models it
is often possible to compute to high multiplicity and prove general statements about the struc-
ture of the theory. For example, these models were instrumental in elucidating the structure
of singularities of the cosmological wavefunction, which was then abstracted to more general
settings [66, 183, 184]. Another example involves the transformation of flat-space wavefunc-
tions to their de Sitter or FLRW counterparts [176], which can also be applied to more general
theories [76, 177]. Cosmological polytopes have also enabled the construction of powerful
recursion relations for conformally coupled scalars [66, 191] and have been important in the
study of how locality and unitarity manifest at the level of the wavefunction [244].

Looking forward, we expect these investigations to yield further insights. Interesting ques-
tions to explore include searching for analogues of these geometric structures for spinning
wavefunctions and further elucidating how aspects of unitarity manifest themselves geomet-
rically. An important challenge is to understand how these geometric structures (which are
defined diagram-by-diagram in perturbation theory) fit together into a larger structure in the-
ories that require diagrams to be combined in observables, like in gauge theories and theories
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of Goldstones. This would provide an illuminating step toward moving “beyond Feynman
diagrams” in cosmology.

3 Unitarity in cosmology

In this section, we summarize recent progress on deriving the consequences of unitarity for
cosmological correlators. The discussion is organized into two parts. First, we discuss a cos-
mological equivalent of the optical theorem [130] and the associated cosmological cutting
rules [76,186,245] (see [246,247] for an AdS version). This is a genuinely perturbative result
that is valid to all orders in perturbation theory, including any number of loops. It applies
to fields of any mass and spin with arbitrary local interaction on any FLRW spacetime (in-
cluding de Sitter) that admit a Bunch–Davies vacuum. A generalization to other choices of
vacuum was proposed in [248]. The underlying principles is that time evolution in the bulk
is implemented by a unitary transformation. Second, we review consequences of unitarity
that leverage representation theory and are therefore specific to de Sitter spacetime and non-
perturbative in nature. The simplest example is the de Sitter analog of the Källén–Lehmann
representation of the two-point function (early discussions appeared in [249–251], and more
recently in [78, 79]). A more powerful result is the positivity of the spectral density appear-
ing in the conformal partial wave decomposition of the four-point function, whose derivation
borrows heavily from recent progress in the AdS/CFT literature.

3.1 Cosmological optical theorem and cutting rules

Consider QFT in a generic FLRW spacetime, which we assume to be spatially flat for simplicity.
Let’s assume that an initial state is chosen at past infinity and that time evolution is generated
by a unitary operator. In perturbation theory, the analytic structure of the initial state is pre-
served by time evolution. More concretely, consider a scalar field that at linear order obeys
the equation of motion

φ′′ +
2a′

a
φ′ +

�

c2
s (η)k

2 + a2(η)m2(η)
�

φ = 0 , (26)

where we allowed for a generic time-dependent mass m(η) and speed of sound cs(η) as long
as they become approximately constant in the asymptotic past. The most relevant and best
studied case is that in which one chooses the Bunch–Davies vacuum, which corresponds to
selecting the positive-frequency solution of this differential equation in the asymptotic past,
φ+ ∼ eicskη. This initial condition is “Hermitian analytic” for complex k, namely

(eics(−k∗)η)∗ = eicskη . (27)

Since the equation of motion is real, it can be proven that this property is maintained in the
full solution [245]

φ+(k,η) = φ+(−k∗,η)∗ =⇒ Disc[φ]≡ φ(k)−φ∗(−k∗) = 0 . (28)

The calculation of wavefunction coefficients ψn in (2) in perturbation theory is organized in
terms of Feynman diagrams that consist of a series of nested time integrals over bulk-to-bulk G
and bulk-to-boundary K propagators. These are fixed by the mode functions above and hence
inherit the property of Hermitian analyticity

K(−k∗,η)∗ = K(k,η) ,

G(−k∗,η)∗ = G(k,η) .
(29)
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Figure 4: Graphical summary of the cosmological cutting rules for wavefunction co-
efficients [186]. The discontinuity of a given diagram in perturbation theory with
all internal energy kept fixed is equal to the product of the discontinuities of all dis-
connected diagrams obtained by summing over all possible ways to cut one or more
internal legs and substituting them with a pair of external legs. For each cut leg,
one should multiply by the associated power spectrum and integrate over the cut
momentum.

As proven in [186], this leads to infinite set of propagator identities that relate the imaginary
part of products of K ’s and G’s to other products of K ’s and fewer G’s. Assuming that all cou-
pling constants in theory are real—as required by unitarity—and that all interactions are local,
and hence Hermitian analytic, these propagator identities can be commuted with the time in-
tegrals over the local of interactions. This leads to infinitely many identities relating different
combinations of wavefunction coefficients, which are called cosmological cutting rules. There
is one such cosmological cutting rule per diagram to all orders in the perturbative expansion.

In words, the cosmological cutting rules say that the sum over all possible “cuts” of a
diagram must vanish. It is often helpful to isolate the term in this sum with zero cuts, in which
case one finds the schematic relation

i Disc
internal

lines

�

iψ(D)
�

=
∑

cuts





∏

cut
momenta

∫

P





∏

subdiagrams

(−i) Disc
internal &
cut lines

�

iψ(subdiagram)
�

, (30)

where D represents a diagram that is divided into subdiagrams by all possible cuts of one or
more internal lines. An integral must be performed over every cut line including a factor of the
associated power spectrum P. The Disc acts as in (28) and analytically continues the energies
of all lines except those indicated in its subscript argument and with a minus sign on all spatial
momenta

Disc
k1···k j

f (k1, · · · , kn; {p}; {k})

≡ f (k1, · · · , kn; {p}; {k})− f ∗(k1, · · · , k j ,−k j+1, · · · ,−kn; {p};−{k}) . (31)

In Fig. 4 we provide a graphical summary of these cutting rules. They can be summarized as
follows. Consider a given diagram representing a specific contribution to an n-point wave-
function coefficient at some order in the perturbative expansion in coupling constants. We
parameterize the kinematics by the n external energies {k1, k2, · · · , kn}, all the energies of in-
ternal lines, and finally all rotation invariant products of momenta, such as ka · kb. Then,
sum over all possible ways to cut any number of internal lines. A “cut” means substituting an
internal line (bulk-to-bulk propagator) connecting two vertices with a pair of external lines
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(bulk-to-boundary propagators) attached to each of the vertices and a factor of the power
spectrum of the cut momentum. This in general breaks up a diagram into a number of discon-
nected components. Take the discontinuity of each of these components separately keeping
constant the energies of all internal lines and all cut lines. Finally, integrate over the momenta
of all cut lines. The cutting rules dictate that the sum over all these terms must vanish. No-
tice that one can isolate the term with zero cut as in (30) and interpret the cutting rules as
fixing the discontinuity of a given diagram in terms of that of other diagrams with fewer loops
and/or fewer external legs. Relations of this type—between different orders in perturbation
theory—are typical of unitarity.

The above derivation is reminiscent of that of Cutkosky’s cutting rules for amplitudes [252],
and in fact those relations should emerge on on the residue of the total energy pole, E → 0,
where wavefunction coefficients are related to Espace amplitudes [247]. In that case, one
can think of cutting rules and encoding the content of the optical theorem to each order in
perturbation theory. Analogously, we can refer to the collective constraints coming from the
cosmological cutting rules as a cosmological optical theorem (COT). An open problem is that of
finding a non-perturbative formulation of such a result in terms of the full wavefunction.

The COT is a powerful bootstrapping tool. To elucidate the cosmological cutting rules
summarized above and to show how they can be used in practice to bootstrap new results
we discuss below two examples: partial-energy recursion relations for tree-level exchange
diagrams and the reconstruction of loop diagrams from their discontinuity.

3.2 Partial-energy recursion relations

The cosmological optical theorem is a powerful tool to bootstrap tree-level exchange diagrams
without any assumption about dS boosts [173]. The general idea is to use the knowledge of
the analytical structure of wavefunction coefficients to compute them via Cauchy’s integral
formula. Recall from Section 2.1 that tree-level wavefunction coefficients have a very simple
analytic structure: the only singularities are poles where partial energies vanish. In Minkowski,
these are all simple poles so the amplitude limit in (9) is sufficient to fix all relevant residues
[66]. Conversely, in general FLRW spacetimes and in dS poles can have any order as in (12).
The crucial insight is that the cosmological optical theorem fixes the residues of all partial
energy singularities of a given diagram in terms of lower-order diagrams [173], in a way
analogous to factorization theorems for amplitudes. What is left is fixing the terms that are
regular in all partial energies, which appear as boundary terms in Cauchy’s integral formula.
This can be achieved by imposing the MLT (see Section 2.1.4).

A good example of this procedure is the tree-level four-point function of four identical
scalars ψ4 from a single exchange, which we take here to be in the s-channel with the other
channels simply obtained by permutations. Interactions are allowed to contain any number of
time derivatives and local, rotation invariant contraction of spatial derivatives. The kinematic
variables are the four external energies {k1, k2, k3, k4} plus the exchanged energy kI ≡ |k1+k2|
and are conveniently arranged into the two partial energies EL,R and the total energy E:

EL = k1 + k2 + kI , ER = k3 + k4 + kI , E = k1 + k2 + k3 + k4 . (32)

Inspired by recursion relations for amplitudes, the idea is now to extend ψ4 to a function of
a single complex variable ψ̃4(z) such that (i) ψ̃4(0) = ψ4, (ii) ψ̃4(z) is analytic in z except
for poles and (iii) the residues of all the poles are fixed by unitarity. Such a function can be
constructed with the following partial energy shift [173,184]15

ψ4(EL , ER, kI)→ ψ̃4(z) =ψ4(EL + z, ER − z, kI) , (33)

15We omit the kinematical variables k1k2 and k3k4, as they don’t change when applying the optical theorem.
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which is carefully crafted to avoid total energy poles, kT = 0, whose residues are not fixed by
unitarity. The cosmological optical theorem for the tree-level ψ4 dictates

ψ4(EL , ER, kI) +ψ
∗
4(−EL + 2kI ,−ER + 2kI , kI)

= P(kI)
�

ψ3(EL , kI)−ψ3(EL − 2kI ,−kI)
��

ψ3(ER, kI)−ψ3(ER − 2kI ,−kI)
�

. (34)

Notice that on the left-hand side onlyψ4 is singular at EL,R→ 0 and so in that limit the residues
of all partial-energy poles are fixed by the right-hand side. We can now use Cauchy’s integral
formula to computeψ4 as a complex integral of ψ̃4(z)/z which is given by a sum over residues
fixed by (34) plus a boundary term that can be fixed by locality in the form of the MLT [173].
For some given cubic interactions, this procedure was shown to give aψ4 that differs from that
obtained from an in-in calculation only by contact interactions, as expected from the fact that
these have vanishing discontinuity. More generally, this can be used to bootstrap all tree-level
diagrams from lower-orders ones using only unitarity and locality, without any assumption
about de Sitter boosts.

3.3 Nonperturbative implications of unitarity

In the discussion of Section 3.1, unitarity served to constrain the analytic structure of pertur-
bative observables, essentially requiring that the structure present in the initial conditions was
conserved as time evolves. We now wish to discuss a different—but related—manifestation
of unitarity: the positivity of the Hilbert space norm. Assuming invariance under the full dS
isometry group, it is possible to derive a cosmological Källén–Lehmann (KL) representation of
the two-point function and a conformal partial wave decomposition of the four-point function.
In both cases unitarity implies the positivity of the corresponding spectral densities.

Cosmological KL representation

To begin with, we consider the two-point function 〈φ(x,η)φ(x′,η)〉 in de Sitter space, where
we takeφ to be a scalar for simplicity. This can only depend on the de Sitter invariant distance,
ξ, between the points {x,η} and {x′,η′}, which in planar coordinates (5) takes the form

ξ≡
4ηη′

|x− x′|2 − (η−η′)2
. (35)

We can insert a resolution of the identity between the two fields by summing over all possible
unitary irreducible representations of the dS group. The two-point function then becomes a
sum of terms with coefficients related to the norms of the intermediate states in each repre-
sentation, which are required to be positive by unitarity. Putting this together, one finds [250]

〈φ(x,η)φ(x′,η)〉=
∫

d
2+i∞

d
2−i∞

d∆ρ(∆)G(ξ,∆) , (36)

where ρ(∆) ≥ 0 is the spectral density, while G(ξ,∆) is the two-point function for a free
scalar of mass m with the Bunch–Davies vacuum choice. This can be written in terms of a
hypergeometric function 2F1, where ∆= d

2 + iµ:

G(ξ;∆) =
Γ ( d

2 + iµ)Γ ( d
2 − iµ)

H1−d(4π)
d+1

2 Γ ( d+1
2 )

2F1

�

d
2
+ iµ,

d
2
− iµ;

d + 1
2

; 1−
1
ξ

�

. (37)

In (36), we have only included the contribution from states in the principal series, but more
generally the complementary and discrete series can contribute as well. This result is con-
ceptually similar to the KL representation of the two-point function in Minkowski space: a
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general, two-point function can be written as an integral over free two-point functions with a
positive spectral density. Upon taking the late-time limit this expression can be used to derive
an inversion formula that computes the coefficient in a boundary operator expansion [78].

Conformal partial wave expansion

In perturbation theory, boundary correlators in de Sitter space, evaluated in the Bunch–Davies
vacuum, share the same singularity structure as in Euclidean anti-de Sitter space (EAdS) [74,
79, 80]. This can be used to import insights from the EAdS setting into de Sitter space. (See
Section 4 for a discussion.) Boundary correlators in EAdS are single-valued functions of con-
formally invariant cross-ratios which, in turn, implies that they admit an expansion in terms of
a special set of functions, F∆,J , known as conformal partial waves. These form an orthogonal
basis of single-valued eigenfunctions of the Casimir equation of the euclidean conformal group
SO (d + 1,1).

Harmonic analysis on SO (d + 1,1) [253] implies that the partial-wave expansion of a
single-valued conformally invariant four-point function of operators, O, in d-dimensional eu-
clidean space takes the form (say, in the (12)(34) channel):

〈O(x1)O(x2)O(x3)O(x4)〉= 112134 +
∞
∑

J=0

∫
d
2+i∞

d
2−i∞

d∆ρJ (∆)F12,34
∆,J (x1,x2,x3,x4) , (38)

where the first term is the contribution from the identity operator. For boundary correlators in
EAdS the spectral density ρJ (∆) is meromorphic as a function of∆, which is a consequence of
the fact that the operator product expansion converges. In perturbation theory, dS boundary
correlators can be written as a linear combination of EAdS Witten diagrams, which implies
that ρJ (∆) is also meromorphic in dS space.

If the four-point function of interest continues to be single-valued at the nonperturbative
level, then the expansion (38) will continue to hold nonperturbatively. This has been explored
recently in [78, 79]. In terms of the conformal partial wave expansion (38), unitarity in the
SO (d + 1,1) sense implies positivity of the spectral density for dS boundary correlators [78,
79]:

ρJ (∆)≥ 0 . (39)

The consequences of the positivity of this spectral density have not been fully explored, and
such studies are interesting for the future. A particularly interesting open question is whether
an analogue of the numerical conformal bootstrap can be formulated to constrain theories in
de Sitter space. (See [78] for some preliminary work in this direction.)

4 From anti-de Sitter to de Sitter

The structural similarities between de Sitter and anti-de Sitter space suggest that insights from
the AdS setting can be imported into dS. This notion is buoyed by the fact that the natural
questions to ask in AdS are also essentially holographic. Indeed, it has long been known that
perturbative calculations in the two spaces are closely related. In this section, we summarize
recent progress in utilizing this connection to develop new cosmological insights, and comment
on the challenges to developing a holographic description of cosmology at the same level of
refinement as that in AdS.
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4.1 Holography and quantum gravity

In the search of a complete description of quantum mechanical and gravitational phenomena,
we are inevitably led to consider observables on boundaries at infinity. On the one hand,
only with an infinitely large apparatus are we free from errors due to quantum mechanical
fluctuations of the apparatus itself. On the other hand, to avoid gravitational collapse the
apparatus must be placed at the boundary of space-time. This is the common mantra that
in quantum gravity there are no local observables and is closely related to the holographic
principle, which suggests the existence of a purely boundary—or holographic—description of
the physics in the interior.

The AdS/CFT correspondence [254–256] provides an important working example of these
ideas. It conjectures that quantum gravity in asymptotic anti-de Sitter space can be regarded
as equivalent to a non-gravitational conformal field theory living on the boundary, which is flat
Minkowski space. Lorentzian CFTs are, in particular, examples of theories where the rules are
well understood. This is exemplified by the tremendous success of the conformal bootstrap
program [82], which aims to carve out the space of CFTs simply by requiring basic quantum
mechanical consistency. Remarkably, the requirements of conformal symmetry, unitarity and
a consistent operator product expansion (crossing symmetry) has led to nontrivial bounds in
the space of CFTs and the determination of critical exponents in the Ising and O(N) models
in three dimensions to record breaking accuracy [257]. In AdS, experiments that start and
end at infinity are then computed by correlation functions of operators in the dual CFT de-
scription, meaning that the enigma of observables in quantum gravity in asymptotic anti-de
Sitter space can be translated to sharp questions about the consistency of correlation functions
in Lorentzian CFTs. This in turn has led to a wide range of powerful techniques to compute
boundary correlators in AdS space which place consistency of the dual CFT description at the
centre.

It would be desirable to have a similar level of understanding for the Universe we actu-
ally live in. To this end, a number of conceptual challenges need to be overcome. It should be
noted that the success story of holography in AdS space largely stems from its causal structure.
See Fig. 5. In AdS, the boundary lies at spatial infinity, meaning that the boundary theory is
an ordinary quantum mechanical system with a standard notion of locality and time. Unitarity
and causality of the bulk quantum gravity theory are therefore intimately related to unitarity
and causality of the boundary quantum mechanics. This is to be contrasted with the situation
in de Sitter space, where the role of time and space get interchanged: In dS, the boundaries
are instead purely spatial and located at past/future infinity, which obscures how boundary
correlators encode unitary time evolution in the interior of de Sitter space. In this type of sce-
nario, dubbed “time without time”, quantum mechanics itself should be an emergent concept
hidden in some way in the structure of boundary observables.

Under this map, inflationary backgrounds correspond in AdS holography to a class of slow-
RG flows [258]. The symmetries characteristic of the boostless bootstrap for inflationary cor-
relators correspond in (quasi)-AdS to a unitary, approximately scale-but-not-conformal field
theory dual [259]. These analogues of inflationary background are consistent with known
results about scale and conformal invariance in QFT [260], but shows that natural questions
about the nature of inflation can also spark new questions about AdS holography.

The larger challenge for de Sitter holography (and the nonperturbative bootstrap more
generally) is the lack of rigorously defined nonperturbative observables in de Sitter space in
the presence of dynamical gravity [261,262]. As the metric fluctuates at the future boundary of
de Sitter, one cannot define local boundary observables. Calculations of the wavefunction can
circumvent this problem because the boundary metric is fixed. This motivates the dS/CFT ap-
proach to holography [16,134–143] which shares some features with the bootstrap approach
to the wavefunction. Unfortunately, the wavefunction approach only delays the problem, as
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η
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dSd+1

Rdz
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,d
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Figure 5: Penrose diagrams showing the asymptotic boundaries of AdS (left) and
dS (right). An important difference between the two cases is that the boundary in
AdS is timelike, so that there is a boundary notion of causality and unitarity. On the
other hand, the boundary of dS is spacelike, so the only natural notions of this kind
are the ones inherited from the bulk spacetime, casting into relief the challenge of
holography in this space.

the cosmological correlators of interest arise from integrating over the boundary metric. The
full challenge of de Sitter holography includes dynamical gravity and remains an open prob-
lem in the cosmological slicing of de Sitter. Approaches like dS/dS holography [263–266]
reflect this fundamental challenge, but are less directly connected to traditional cosmological
observables.

4.2 From AdS to dS and back

To bridge the gap between boundary correlators in AdS and dS, a natural starting point would
be to try to understand the extent to which we can import our intuition from the AdS case. In
both AdS and dS, the isometry group acts as the conformal group on the boundary: In AdSd+1,
this group is SO(d, 2) acting on the boundary R1,d−1, while, in dSd+1, it is SO(d +1,1) acting
on Rd (see Fig. 5). These can be placed on a similar footing by Wick rotating AdSd+1 to
(d + 1)-dimensional Euclidean anti-de Sitter space (EAdSd+1), which also has isometry group
SO(d +1, 1) acting on the Euclidean boundary Rd . Boundary correlators in (A)dS thus satisfy
the same conformal Ward identities (reviewed in Section 2) and any differences in the way
they encode consistent physics lies in the freedom left over after they are imposed.

As we have seen in Section 2.2, the freedom remaining after imposing the conformal Ward
identities is in the singularity structure: Unphysical singularities must be absent, while physi-
cal singularities must be normalised correctly. In the Bunch–Davies vacuum, what is regarded
as an unphysical singularity is actually the same both in AdS and dS. In both cases folded
singularities must be absent. In this case the difference between perturbative boundary corre-
lators in EAdS and dS therefore solely lies in the physical singularities and their normalisation,
which must be consistent with factorisation and unitarity in the respective space-times.

The above suggests that, at least perturbatively, dS boundary correlators in the Bunch–
Davies vacuum can be recast as boundary correlators in EAdS. Since unitarity manifests iself
differently in dS and AdS, a priori the theory generating dS boundary correlators in EAdS is
not necessarily the analytic continuation of a unitary theory in AdS. In the following we shall
show this explicitly by using the fact that dS and EAdS are related by a double Wick rotation, to
reduce the computation of dS boundary correlators in the in-in formalism to the computation
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of Witten diagrams in EAdS. In the next section this is revisited from a bootstrap perspective.
It will be useful to work in Poincaré coordinates, where the metric of EAdS reads

ds2 = R2
AdS

dz2 + dx2

z2
. (40)

This is related to the flat slicing of the de Sitter metric in (5) via the following double Wick
rotation:

z = ±i(−η) , RAdS = ±iRdS , (41)

where RdS ≡ 1/H. At the level of correlation functions, the direction of the Wick rotation
in z should be specified to ensure the correct treatment of branch cuts. In particular, taking
z = +i(−η) has been shown to map AdS boundary correlators to wavefunction coefficients of
the same theory in dS [16] and has been used to relate dS boundary correlators in the Bunch–
Davies vacuum to their AdS counterparts [267–269] at the level of three-point functions.

One can also consider dS boundary correlators directly by relating the in-in formalism (see
Section 2.1.1) to the computation of boundary correlators in EAdS [74,80]. The ± branch of
the in-in contour is obtained by the Wick rotation:

±branch : z = (−η) e±
πi
2 , (42)

where the different branches are obtained by Wick rotating in opposite directions. Under
(42), bulk-to-bulk propagators G∆± in EAdS with Dirichlet

�

∆+
�

and Neumann
�

∆−
�

bound-
ary conditions map to dS in-in propagators G±±̂ for the ∆+ and ∆− modes.16 Solutions in
the Bunch–Davies vacuum propagate the linear combination of ∆+ and ∆− modes symmetric
under ∆+↔∆−. Combined with (42), it follows that they can be expressed as the following
linear combination of propagators G∆± in EAdS:17

GdS
±±̂(η; η̄) = c∆+ e∓

iπ∆+
2 e∓̂

iπ∆+
2 GAdS

∆+ (z; z̄) + c∆− e∓
iπ∆−

2 e∓̂
iπ∆−

2 GAdS
∆− (z; z̄) , (43)

where ± and ±̂ refer, respectively, to the in-in contour branch of η and η̄. From (44) we see
that taking a particle with scaling dimension∆ in EAdS to the ± branch of the in-in contour in
dS entails multiplying by the phase e∓

iπ∆
2 while the coefficient c∆ accounts for the difference

in normalisation of the boundary two-point functions in (A)dS and can be found explicitly
in [80], equation (2.15). Similarly, bulk-to-boundary propagators KdS

± on the ± branch are
related to their EAdS counterpart KAdS

∆ via

KdS
± (η) = c∆ e∓

iπ∆
2 KAdS

∆ (z) . (44)

The relations (43) and (44) between dS in-in propagators and their EAdS counterparts make
clear that, perturbatively, any boundary correlator in the Bunch–Davies vacuum of dS can be
expressed in terms of corresponding Witten diagrams in EAdS.

This mapping between AdS and dS correlators is simplest to illustrate at the level of contact
diagrams, where the relation (44) between bulk-to-boundary propagators in (EA)dS implies
that contact diagrams generated by the same vertex in dS and EAdS are proportional to each

16Note the ± on ∆± are unrelated to the ± branch of the in-in contour.
17For a detailed derivation of this identity, see Appendix A.2 of [80].
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other. For example, for general 4-point contact diagram, we have

= λ∆1∆2∆3∆4
. (45)

The proportionality constant λ∆1∆2∆3,∆4
itself can be determined using the analytic contin-

uation (42) and the relation (44). For the n-point contact diagram generated by the non-
derivative interaction φ1φ2 . . .φn of scalar fields φi , by summing the contributions from the
± branches of the in-in contour one obtains [69]:

λ∆1∆2 ...∆n
= 2

 

n
∏

j=1

c∆ j

!

sin





 

d(n− 2)
4

+ 1
2

n
∑

j=1

�

∆ j −
d
2

�

!

π



 . (46)

Note that the above relations between theories in dS and EAdS hold for arbitrary scaling
dimension∆, i.e. arbitrary masses of the corresponding bulk fields. However, as is well known,
unitarity places restrictions on the values that the scaling dimensions can take. For theories in
AdS, although we have Wick rotated to EAdS, we consider particles that are unitary irreducible
representations (UIRs) of SO (d, 2), while in dS we consider UIRs of SO (d + 1,1). Crucially,
these do not coincide! See Fig. 6. This implies that using the above relations to import from
EAdS to dS may require input from a non-unitary theory in AdS.

d
2 + iR

0 d
Re∆

Im∆

d
2 + iR

0 12− J d− 1 J + d− 2
Re∆

Im∆

0 d
2
− 1

Re∆

Im∆

0
Re∆

Im∆

J + d− 2

Figure 6: Plot of the unitary representations in de Sitter and anti-de Sitter space. Top:
Unitary irreducible representations of the de Sitter group SO(d + 1, 1) for scalars
(left) and for spin-J fields (right). Bottom: Unitary irreducible representations of
the anti-de Sitter group SO(d, 2) for scalars (left) and spin-J fields (right). Notice
that the allowed representations are quite different in the two spaces, and are not
simple analytic continuations of one another. For a more detailed discussion of (A)dS
representations—and the differences between them—see e.g. [253,270,271].
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From the relations (43) and (44) between dS and EAdS propagators it follows that it is
possible to write down a Lagrangian in EAdS whose perturbative expansion matches that of
the theory in dS [79]. Consider a theory of a scalar field φ in dS,

LdS = −
1
2
∂µφ∂

µφ −
1
2

m2φ2 − V dS (φ) . (47)

The fact that dS propagators can be replaced by a linear combination of propagators for fields
subject to the ∆± boundary conditions in AdS tells us that the (perturbative) boundary corre-
lators of this theory are equivalently reproduced by the following theory of two scalar fields
Φ∆± in EAdS subject to the ∆± boundary conditions:

LAdS (Φ∆+ ,Φ∆−) = sin
�

π(∆+ − d
2 )
� �

∂µΦ∆+∂
µΦ∆+ −m2Φ∆+Φ∆+

�

+
�

∆+→∆−
�

− e−iπ( d−1
2 ) V dS

�

ei π2∆
+
Φ∆+ + ei π2∆

−
Φ∆−

�

− e+iπ( d−1
2 ) V dS

�

e−i π2∆
+
Φ∆+ + e−i π2∆

−
Φ∆−

�

. (48)

Note that the kinetic terms of the theory in EAdS are of incorrect sign, for all values of ∆±,
which is another manifestation of the non-unitarity of an EAdS theory whose perturbative
expansion generates dS boundary correlators. At the level of boundary correlators, this differ-
ence manifests itself in the relative coefficient (46) between dS and EAdS contact diagrams.
The latter in particular implies that contact diagrams in dS vanish for certain collections of
particles in certain dimensions, which also follows from the cosmological optical theorem (see
Section 3.1 and the corresponding result below equation (25)).

4.3 Bootstrapping perturbative correlators

In the previous section, we showed how boundary correlators in dS can perturbatively be
expressed as a linear combination of Witten diagrams in EAdS. Formally, the precise relative
coefficients of the EAdS Witten diagrams follow either from the in-in formalism or the non-
unitary Lagrangian (48). In practice, however, it can be quite cumbersome to evaluate them
beyond the simplest of diagrams and, moreover, since they require us to take various auxiliary
steps (which individually are unphysical) they obscure the properties of the final result.

To align with the bootstrap philosophy, we seek an approach to fix the dS boundary correla-
tors that places their consistency at the centre. From this perspective, the fact that perturbative
boundary correlators in the Bunch–Davies vacuum in dS can be expressed as a linear combi-
nation of corresponding EAdS Witten diagrams follows as a consequence of:

1. Symmetries: In both cases, the boundary correlators must obey conformal symmetry, and
in particular must obey the conformal Ward identities reviewed in Section 2.

2. Initial conditions: Throughout we have considered boundary correlators in the Bunch–
Davies vacuum, which requires the absence of folded singularities [21, 38, 272–274].
Folded singularities are also absent in AdS boundary correlators owing their single-
valuedness in the Euclidean region.

Like for the bootstrap of perturbative dS correlation functions presented in Section 2.2, the
remaining freedom is fixed by on-shell factorisation and the requirement that particles cor-
respond to UIRs of the appropriate isometry group. Factorisation implies that the relative
coefficients of the EAdS Witten diagrams appearing in a given dS boundary correlator are
given by the product of coefficients (46) that relate each contact subdiagram in dS to their
EAdS counterpart [80]. For example, the tree-exchange diagram of a particle mass (8) in dS
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can be written as a sum of the two tree-exchange diagrams in EAdS for the ∆± modes [74]:

m2

=
∑

I=±

λ2
∆I

c∆I
∆I

. (49)

The coefficients λ∆± convert the two three-point contact subdiagrams for each ∆± mode in
the AdS exchange to their dS counterpart as in (46).

More generally, starting from a given Witten diagram in EAdS with definite boundary con-
ditions imposed on any exchanged particle, one can obtain the corresponding boundary cor-
relator in dS in the Bunch–Davies vacuum as follows [80]: (i) For each contact subdiagram,
multiply by the factor (46) which converts it to its dS counterpart; (ii) For each internal line
with mode, say∆, divide by c∆ accounting for the change in two-point function normalisation
from AdS to dS. (iii) Symmetrise under the interchange of ∆+ and ∆− boundary conditions
for each internal line.

To summarise, in the case that the Universe at early times was in the Bunch–Davies vac-
uum there is the potential to make significant progress in closing the gap between boundary
correlators in AdS and dS. We have seen that, perturbatively, dS boundary correlators in the
Bunch–Davies vacuum can be expressed as a linear combination of Witten diagrams generated
by the same collection of particles and couplings in EAdS. The relative coefficients of the Witten
diagrams encode perturbative unitarity in dS and ensure consistent on-shell factorisation.

Let us note that this result implies that in the Bunch–Davies vacuum boundary correlators
in dS and EAdS have the same singularity/analytic structure. This opens up the possibility
to leverage a variety of powerful techniques that were originally developed in the context of
the conformal bootstrap approach to boundary correlators in EAdS (see e.g. [275] for a recent
review) to study dS boundary correlators—at least those which do not rely on unitarity in AdS.
An example was presented in Section 3.3 when considering the conformal partial wave expan-
sion of dS boundary correlators, which assumes that they are single-valued. Since boundary
correlators in AdS are single-valued in the Euclidean region, the above results establish that—
at least perturbatively—the same is true in dS [74,79,80].

5 Conclusions and outlook

The bootstrap approach to cosmological correlations is still nascent. There is an irony to the
fact that the spacetimes most similar to our own—asymptotically de Sitter—are still the most
mysterious (see Fig. 7). In recent years, progress has been made in many directions, some of
which we have reviewed. Nevertheless, there are still many puzzles to decipher and challenges
to overcome. These challenges provide opportunities for further progress, and we close by
listing some important open directions to pursue in the coming years.

• Beyond Feynman diagrams: The current guise of the cosmological bootstrap still
somewhat mirrors bulk perturbation theory, proceeding diagram by diagram. However,
the most dramatic manifestations of the simplifying power of the S-matrix bootstrap re-
veals themselves in situations where observables cannot be meaningfully split into vari-
ous diagrammatic contributions, for example in gauge theories and gravity. Indeed, one
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could view the discovery of the Parke–Taylor formula [276]—a dramatic simplification
of tens of thousands of Feynman diagrams—as marking the beginning of the modern
amplitudes revolution. Similar simplifications have not yet been achieved in the cos-
mological setting. However, given that scattering amplitudes live within cosmological
correlators, it is natural to expect that these structures exist, and finding them is an im-
portant goal. Whenever cosmology’s Parke–Taylor moment does arrive, we expect that
it will catalyze a number of new discoveries.

• From trees to loops: Most of the explicit results in the cosmological bootstrap have
been derived for tree-level correlators. It is important both conceptually and practi-
cally to push our understanding further in perturbation theory. As we reviewed in Sec-
tion 2, we now have a reasonably complete understanding of the singularity structure
at tree level. However, aside from isolated examples, at loop level little is known in
a systematic fashion. Developing a similar understanding at one-loop to what is cur-
rently know at tree level presents a concrete challenge that can serve as a gateway to
better understanding the analytic structure of correlation functions more generally in
perturbation theory. Beyond this, there are a number of situations where loop correc-
tions are practically important. For example, from the phenomenology side, the leading
couplings of the inflaton to fermions (including Standard Model fields) only arise at
one-loop [277–280]. Moreover, there has been much recent work exploring both the
stability of de Sitter space [281] (and the consistency of perturbation theory in cosmo-
logical spacetimes [94–128]) and the dynamics of eternal inflation [26,282–290], which
are both situations where loops become important, and further developing the bootstrap
to approach these cases will also provide opportunities to make connections with this
work.

• Uncovering hidden structures: The deepest and most far-reaching insights arising
from the S-matrix bootstrap have involved the discovery of completely unexpected phys-
ical and mathematical structures [178]. In many cases these structures were uncovered

under-
standing

Rd,1dSd+1 AdSd+1

nonperturbativetree level
(some loops)

(tree level)

Figure 7: Remarkably, the closer we get to spacetimes that describe the Universe
we live in (de Sitter space), the less we understand about how to rigorously define
a theory in that space. In contrast, we have a perfect nonperturbative definition of
quantum gravity in AdS spacetimes in terms of a boundary CFT. In flat space, we have
some understanding of the perturbative structure of QFT and partial understanding
of some nonperturbative effects. On the other hand, we are just beginning to scratch
the surface of the rules underlying consistent theories in dS, where our understanding
is not even complete at tree level.
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through the change in perspective provided by the on-shell philosophy. Of course, it is
difficult to plan to discover similar such hidden structures in cosmology. Fortunately, we
can leverage the successes of the S-matrix and conformal bootstrap for some clues of
where to look. As an example, one of the more surprising structures lurking inside scat-
tering amplitudes are double copy relations. First noticed within string theory [291],
they are now known to be much more far-reaching in field theory, not only allowing
gravity amplitudes to be expressed as suitably-understood squares of Yang–Mills ampli-
tudes [292], but more generally connecting a web of theories [293]. An interesting con-
crete challenge is to develop a similar understanding in the cosmological context. Some
progress has been made recently [294–304], but the fate of the cosmological double
copy remains somewhat mysterious. We expect that resolving this mystery will reveal
that the double copy is just the tip of the iceberg, and that there are other beautiful
structures within cosmological correlators waiting to be mined.

• Pushing the limits of EFT: The majority of developments thus far have focused on sit-
uations where the inflationary background is close to de Sitter space (though allowing
for sizeable breaking of de Sitter symmetries in interactions) and low-order correlation
functions are the dominant signature [52]. However, large deviations from these im-
plicit assumptions are not excluded by observations, and suggest novel observables like
oscillatory features [87, 305]. These situations are less symmetric and thus present a
novel challenge for the bootstrap approach. For similar reasons, the signatures them-
selves vary significantly from model to model and thus finding an organizing princi-
ple for these less symmetric cases is of broad interest. The tail of the distribution of
density fluctuations [306–309] and/or higher N-point functions [310] are areas where
novel theoretical insights could have important observational consequences. Enhanced
information at large multiplicity can arise in models of cosmological particle produc-
tion [311], but may be better understood as a feature in a map rather than a change
to the statistics [90, 312]. There has been much recent interest in flat space at large-
multiplicity perturbation theory and non-trivial classical saddles (e.g. [313, 314]). It
will be very interesting to understand these features more systematically and their cos-
mological implications. Often we learn about a formalism by pushing it to its limits, and
trying to approach these situations where the EFT naively breaks down will doubtless
be illuminating.

• From IR to UV: In the inflationary paradigm, the largest-scale structures we see today
originated as quantum-mechanical fluctuations in the very early Universe. This strik-
ing bridge between large and small is a remarkable feature of inflation, and a unique
opportunity to learn about physics at very short distances. To maximally leverage this
connection, it is critical to make the link between infrared observables and ultraviolet
physics completely precise. In the context of scattering amplitudes, our understanding
of the structure of the S-matrix is mature enough that we can connect the IR physics
that we observe, and the UV physics that we want to know about, by means of powerful
dispersion relations and positivity bounds [91]. Deriving analogous relations in cosmol-
ogy requires two main ingredients: 1) an improved (nonperturbative) understanding of
the consequences of unitarity for cosmological correlators and 2) further insights into
their analytic structure. Fortunately, these developments are already underway. As a
concrete first step, it will be important to connect our understanding of perturbative
and nonperturbative unitarity in de Sitter space. Further development of perturbative
techniques at loop level and beyond will provide insights necessary to characterize the
analytic structure more fully. Another important direction to pursue is to elucidate the
consequences of de Sitter causality for cosmological correlators, which has not been ex-
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tensively studied. These insights can then be synthesized into dispersion relations that
will constrain cosmological EFTs, which will be an important milestone in the develop-
ment of the cosmological bootstrap.

• Carving out theory space: An important goal of the cosmological bootstrap is to clas-
sify the space of consistent cosmological field theories. There are two aspects to this
broad theme. One is to understand in a fixed cosmological background what QFTs can
consistently be defined. The second and more ambitious goal is to go one step further
and classify the full space of models that can give rise to inflation in the first place. In the
perturbative context, some consistency requirements are already known, and it is impor-
tant to fully map out the space of consistent theories. It is also critical to further develop
nonperturbative bootstrap tools that constrain the space of possible inflationary models.
An important question is whether “single field” inflation can occur in a consistent model
of quantum gravity. That is, can the inflaton be an isolated degree of freedom, with a
parametric gap to other states? Or are there necessarily other fields that are important
to the inflationary dynamics? A famous fact about de Sitter space is that it does not ad-
mit linearly realized supersymmetry [315–317]. Hence, one might speculate that it will
be difficult or impossible to find de Sitter solutions in string theory with a parametric
gap to the string scale if indeed supersymmetry plays a fundamental role. Fortunately,
this is a question that can be approached systematically utilizing tools developed in the
context of the conformal bootstrap [82], which have already begun to be imported into
the cosmological setting [74,78,79].

• Towards the Veneziano correlator: The inception of string theory traces its way back
to the discovery of the Veneziano amplitude. From this remarkable structure, innumer-
able marvels have emerged. In de Sitter space, one can place sharp requirements on
the properties of the analogous “Veneziano correlator”. Such a UV-complete correlator
would not have the field-theoretic energy singularities described in Section 2.1.3 and
would posses a Regge-like spectrum of resonances with corresponding oscillatory fac-
tors analogous to (22). If such an object exists, it would provide a glimpse into string
theory in de Sitter space in the regime where there is no separation between the string
scale and the Hubble scale. Such a scenario would be extremely interesting because
these string states would be excited during inflation leading to striking signatures.

• de Sitter holography: One of the deepest goals of cosmology as a discipline is to un-
cover what really happened at the initial singularity in the early Universe. This is a ques-
tion for quantum gravity in cosmological spacetimes. Given our experiences in AdS—
and with quantum gravity more generally—it stands to reason that this is a question best
addressed holographically. However, holography in de Sitter space is underdeveloped
compared to AdS. Conceptually, the difficulty compared to anti-de Sitter space is that
the holographic direction in the de Sitter context is time, and so our familiar notions of
unitarity and causality must be emergent in this setting. A further challenge is that in the
presence of dynamical gravity, the future boundary itself fluctuates, making it harder to
sharply define observables. Notably, none of the developments described in this paper
posit the actual existence of a holographic dual to inflation or cosmology (though there
is much interesting work in this direction, e.g., [16, 134–143]), instead they are rely-
ing on kinematic properties of boundary correlators, or on other consequences of bulk
dynamics. Nevertheless, these perturbative results serve as a sort of theoretical data,
which any putative holographic dual must reproduce, and also help us understand the
rules that such a boundary theory must obey. There is evidence that it should share some
properties with a Euclidean CFT, though it is unclear what the allowed spectrum of such
a theory is or should be. Despite the obvious challenges, we view this as an essential
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open problem in cosmological physics, and it provides an opportunity for connection
with other efforts in the Theory Frontier [82,305,318,319].

• New observational strategies: A central objective of the cosmological bootstrap is to
understand how fundamental physical principles are encoded in cosmological observ-
ables. This more refined understanding of the signatures of fundamental physics will
suggest observational targets to look for in data, or protected observables that cannot be
mimicked by late-Universe effects. There are already several success stories of this phi-
losophy [71,90,320] and further developing this line of inquiry is extremely important
to be able to fully utilize the inflationary epoch as a tool for discovery, and to decode the
physics of inflation itself.

The question of the origin of the Universe is one that has captured human imagination for
centuries. We are lucky enough to live in a time where this is a scientific question that can be
approached systematically. Nevertheless, information about the Universe’s earliest moments
is scant—we cannot directly image this epoch, instead we must reconstruct its history from
subtle correlations frozen on its boundary. This difficulty is an opportunity in disguise, as it
challenges us to make sense of the time evolution of the Universe from this static vista. To
guide ourselves, we fall back on cherished fundamental principles in order to understand how
to reconstruct observables directly on this late-time surface. The hope is that this will further
illuminate the path forward. In this white paper, we have summarized some recent progress
in this direction. These are only the first steps and it is clear there is a long journey ahead, but
one where many new discoveries surely await us.
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