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Abstract

An Andreev molecule is a system of closely spaced superconducting weak links accom-
modating overlapping Andreev Bound States. Recent theoretical proposals have consid-
ered one-dimensional Andreev molecules with a single conduction channel. Here we
apply the scattering formalism and extend the analysis to multiple conduction chan-
nels, a situation encountered in epitaxial superconductor/semiconductor weak links.
We obtain the multi-channel bound state energy spectrum and quantify the contribution
of the microscopic non-local transport processes leading to the formation of Andreev
molecules.
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1 Introduction

The physical properties of Josephson junctions, both isolated and in ensembles, are well un-
derstood and exploited in various fields such as magnetometry and metrology [1]. Due to their
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quantum coherence and potential for integration in large-scale circuits, Josephson junctions
also serve as superconducting qubits for quantum information and computation [2].

Recently we elucidated an unconventional coupling mechanism, historically referred to as
the “order-parameter” interaction [3] or quartets [4], between two closely spaced Josephson
junctions [5]. For two weak links separated on the order of the superconducting coherence
length ξ0, this coupling arises from the hybridization of quasiparticles to form a molecular, or
multi-weak link, Andreev Bound State (ABS). The results were obtained from an analysis of the
Bogolubiov-de Gennes (BdG) equations describing an inhomogeneous superconductor in one
dimension, with the “Andreev molecule” comprised of two δ-potential weak links separated
by a finite superconductor of length l. Although the BdG approach is sufficient to develop
an intuitive understanding of the phenomenon, it is unwieldy when applied to complicated
structures or to weak links with multiple conduction channels.

In an isolated Josephson junction with multiple conduction channels, each channel hosts
independent ABS. The total supercurrent is given by the sum of the contributions from each
channel, a function of the overall superconducting phase difference and the individual channel
transmissions [6]. However, when two multi-channel junctions are placed close to each other,
each ABS at the left junction can potentially couple to every ABS at the right junction to form
complex Andreev molecules. This situation is relevant since many quantum conductors used
in weak links have lateral dimensions comparable to or larger than the Fermi wavelength
and thus host multiple channels. For example, in epitaxial superconductor/semiconductor
nanowires [7] or 2D electron gases [8], one can readily tune the number of channels with a
local gate electrode [9,10].

Here we apply the scattering matrix formalism to describe Andreev molecules with multi-
ple channels. First we formulate the problem for the case of two weak links connected to three
superconductors, introducing new terms accounting for partial Andreev reflection at the finite
central superconductor. We identify the microscopic scattering processes, elastic cotunneling
and crossed Andreev reflection, which give rise to ABS hybridization. After verifying that the
results are consistent with the BdG treatment of a single-channel molecule, we calculate the
energy spectra of a twenty-channel Andreev molecule. Finally we depict the extended quasi-
particle trajectories arising in an Andreev molecule and plot their probabilities as a function
of the size of the finite superconductor.

2 Scattering Formalism

A convenient approach to treat conduction through mesoscopic systems is the Landauer-
Büttiker scattering formalism [11]. Matrices describe the scattering of propagating electrons
or holes on three different types of elements: weak links, semi-infinite superconductors, and a
superconductor of finite length, Fig. 1(a). In this approach, electrons and holes (e and h) are
described by an ensemble of waves propagating to the left or the right (← or →), which are
connected to each other by normal scattering processes at the left or right (L or R) weak link
or Andreev processes on the three superconductors.

These waves can be labeled with two sets of eight coefficients

A=
�

a→Le, a←Le, a→Re, a←Re, a→Lh, a←Lh, a→Rh, a←Rh

�T
,

B =
�

b←Le, b→Le, b←Re, b→Re, b←Lh, b→Lh, b←Rh, b→Rh

�T
,

(1)

where A describes waves propagating towards weak links with amplitudes a and B describes
outgoing waves with amplitudes b.
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Figure 1: Scattering description of multi-channel Andreev molecules. (a) Plane
waves corresponding to electrons (black arrows) and holes (gray arrows) scatter
on superconductors (blue, red and magenta) and weak links. The left (right) su-
perconductor has phase ϕL,R and the central superconductor of length l is grounded
with phase zero. The ground connection allows applying the phase differences ϕL,R
independently by flowing different currents through each junction. The matrix SS
describes Andreev scattering processes on the superconductors while SL,R describes
normal scattering at the weak links. Only one channel is sketched. (b) For l ® ξ0,
an electron incident on the central superconductor with energy E less than the su-
perconducting gap ∆ can transmit across (elastic co-tunneling, EC) with probability
amplitude tS or be Andreev reflected as a hole with amplitude rS . (c) In the presence
of scattering, such that the left channel’s transmission probability is τ < 1, the elec-
tron may also be backscattered (BS) or undergo crossed Andreev reflection (CAR),
which converts it into an outgoing hole. (d) The probabilities of Andreev reflec-
tion, transmission, and their product, which factors into the probability for CAR, is
plotted as a function of l/ξ0 for fixed energy E = 0.1∆. In a long superconductor,
l � ξ0, only Andreev reflection occurs whereas for a short one, l � ξ0, only elastic
co-tunneling occurs. At intermediate values l ≈ ξ0 and in the presence of scattering
there is a peak in the CAR probability which goes to zero elsewhere.
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The scattering equation for the weak links is given by B = SNA with

SN =







SL 0 0 0
0 SR 0 0
0 0 S∗L 0
0 0 0 S∗R






. (2)

The individual normal scattering matrices at the left and right weak links are SL,R for electrons
and S∗L,R for holes. The specific form of SL,R and S∗L,R will depend on the weak links. For example
the scattering matrix corresponding to a Dirac δ-potential as used in the BdG analysis of the
Andreev molecule [5] is given by

S =

� −iu
1+iu

1
1+iu

1
1+iu

−iu
1+iu

�

, (3)

where the constant u is related to the strength of the δ-potential, U0, and the Fermi velocity,
vF , by u = U0/ħhvF . For simplicity, in the following analysis for a multi-channel weak link we
use random symmetric unitary matrices for SL and SR. These matrices can in principle include
additional scattering at the superconductor-weak link interface. Other classes of scattering
matrices corresponding to breaking time-reversal symmetry or spin-rotation symmetry can be
used to model the effect of a magnetic field or spin-orbit interaction [12–14]. The dimensions
of SN is 8N × 8N where N is the number of channels.

It remains to determine scattering on the superconductors. In contrast to scattering at the
normal weak links, which need not preserve momentum, scattering on the superconductors
occur through Andreev processes which are momentum-conserving when the Fermi energy is
much larger than the superconducting gap.

For the semi-infinite superconducting electrodes to the left and right, for energies smaller
than the superconducting gap (|E|<∆), the only scattering process possible is Andreev reflec-
tion, in which an incident electron is retroreflected as a hole and an incident hole is retrore-
flected as an electron. This Andreev reflection amplitude is rA = e−i(α±ϕL,R), where ϕL,R is the
superconducting phase of the left (right) superconductor and α= cos−1 ε with ε= E/∆ [15].
Since the Andreev reflection probability, |rA|2, is unity the semi-infinite electrodes act as perfect
phase-conjugating mirrors for electrons and holes [16]. The phase shift acquired in reflection
is the sum of α, which is energy dependent, and the superconducting phases ϕL,R.

As shown in Fig. 1(b), the situation is different for a superconductor of finite length, in
which an electron or hole can also propagate across and emerge on the other side without being
retroreflected. For example in Fig. 1(b) an electron incident on the central superconductor
from the left with amplitude b→Le and momentum +kF may either be retroreflected as a left
propagating hole of amplitude a←Lh or transmitted as a right propagating electron of amplitude
a→Re, both particles having momentum +kF .

When there is normal scattering in addition to a finite superconductor, such as in Fig. 1(c)
where the weak link has transmission probability τ < 1, electrons and holes can also be
backscattered (BS) and crossed-Andreev reflected (CAR), which consists of tunneling through
the superconductor and conversion from electron to hole or vice-versa [17]. As depicted the
CAR process for an electron incident from the left corresponds to first an Andreev reflection
and then backscattering of the retroreflected hole, which then traverses the finite supercon-
ductor and exits toward the right. This mechanism can also be seen as the formation, in the
central slab, of a Cooper pair comprised of electrons from both left and right electrodes. The
time-reversed equivalent is known as Cooper-pair splitting. The CAR process, which does not
conserve momentum, requires backscattering in the normal weak links.

The probability amplitude associated with the process of partial Andreev reflection,
Fig. 1(d), can be found using the continuity of wavefunctions at each interface. These wave-
functions are built from the electron and hole eigenstates of an infinite superconductor (η= e
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or h),

ψ
ϕ
η± (x) =

�

uϕη , vϕη
�T

e±ikηx , (4)

where the coherence factors are given by

uϕe,h =
e−iϕ/2

p
2

�

1±
p

1− ε−2
�1/2

,

vϕe,h = sgn(ε)
eiϕ/2

p
2

�

1∓
p

1− ε−2
�1/2

,

and ke,h are complex to account for bound states. If the superconducting gap is much smaller
than the Fermi energy ∆ � EF , they can be approximated as ke,h ≈ kF ± i/ξ where kF is
the Fermi momentum in the normal state and the coherence length is a function of energy
ξ−1 = ξ−1

0

p
1− ε2� kF . Here ξ0 = ħhvF/∆ is the bare superconducting coherence length, vF

is the Fermi velocity and ε= E/∆ is the normalized energy.
If we focus on the subspace of waves with positive momentum the wavefunction is given

by

ψ(x) =











b→LeeikF(x+ l
2)(1, 0)T + a←LheikF(x+ l

2)(0, 1)T , x < −l/2,

c+e eike x(u0
e , v0

e )
T + c+h eikh x(u0

h, v0
h )

T , |x | ≤ l/2,

a→ReeikF(x− l
2)(1, 0)T + b←RheikF(x− l

2)(0,1)T , x > l/2,

where the three regions are the finite superconducting slab (|x | ≤ l/2) and the normal con-
ductors to the left (x < −l/2) and right (x > l/2) of the slab. The superconducting phase on
the central superconductor is fixed at zero and serves as the reference for the phase differences
ϕL,R on the left and right superconductors. Each junction can be shorted by a superconduct-
ing loop which allows tuning ϕL,R independently with external magnetic fields. In addition
this ground connection allows an additional path for current flow such that the supercurrents
through the two weak links may be different.

In the normal regions (x < −l/2 or x > l/2) only electron or hole plane waves are possible,
with wavevectors ±kF and coherence factors either (1,0) (electrons) or (0,1) (holes). In the
superconducting slab the wavefunctions mix electrons and holes and may have an exponential,
energy-dependent envelope as a result of the complex wavevectors ke,h.

Imposing boundary conditions at the slab edges x = ±l/2 to preserve continuity we have
�

b→Le
a←Lh

�

= e−
ikF l

2

�

u0
e el/2ξ u0

he−l/2ξ

v0
e el/2ξ v0

h e−l/2ξ

��

c+e
c+h

�

,

�

a→Re
b←Rh

�

= e+
ikF l

2

�

u0
e e−l/2ξ u0

hel/2ξ

v0
e e−l/2ξ v0

h el/2ξ

��

c+e
c+h

�

.

By eliminating the coefficients c+e,h we can relate incoming and outgoing waves with a scattering
matrix,

�

a←Lh
a→Re

�

=

�

rS t−S
t+S rS

��

b→Le
b←Rh

�

,

where we define the Andreev transmission amplitude,

tS =
e−l/ξ

�

1− e−2iα
�

1− e−2l/ξe−2iα
, (5)

with t±S = tSe±ikF l , and the partial Andreev reflection amplitude,

rS =
e−iα

�

1− e−2l/ξ
�

1− e−2l/ξe−2iα
. (6)
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For the negative momentum wavefunction the substitution kF → −kF yields the same
scattering matrix with t+S and t−S swapped.

These amplitude satisfy |rS|2 + |t±S |
2 = 1 as expected from quasiparticle conservation.

In a realistic system with a three-dimensional central superconductor, the wavefunctions ψ
(Eq. (4)) will be spherical, the longitudinal part of the wavevector can take any value between
0 and kF , and the geometric factors e−l/ξ describing the envelope of the probability amplitudes
tS , rS (Eqs. (5) and (6)) will be different. In general the envelope will decay faster and acquire
additional dependence on the Fermi wavelength or the mean free path [18–20]. This reduc-
tion can be understood from the increase in scattering angle as the number of dimensions is
increased.

The following analysis is limited to the one-dimensional case. For convenience and visibil-
ity we set kF l to constant values in the scattering coefficients while maintaining kF l � 1. In
principle each channel may have a different phase factor resulting from interference but such
offsets are already included via the random unitary scattering matrices SL,R and do not change
the results qualitatively. In addition we have assumed that the energy gap of the supercon-
ducting slab is the same as that of the superconducting electrodes, effectively ignoring any
inverse proximity effect which is reasonable given that we consider typical semiconducting
weak links.

In Fig. 1(d) we plot the Andreev reflection probability |rS|2 and transmission probability
|tS|2 for fixed energy ε = 0.1 as a function of l/ξ0. The likelihood of elastic co-tunneling
(EC), Fig. 1(b), in the absence of scattering at the weak links (τ = 1) is quantified by |tS|2.
As the superconductor thickness goes to zero, l/ξ0 → 0, Andreev reflections are suppressed
and all quasiparticles tunnel across, tS → 1. Andreev processes are equally probable when
l/ξ0 ≈ 1. As we extend the length of the central superconductor, l/ξ0→∞, one recovers the
Andreev reflection amplitude of a semi-infinite superconductor, rS → rA = e−iα, and transmis-
sion is quashed, tS → 0. The Andreev phase-conjugating mirror is only perfect if it is much
thicker than ξ0, the characteristic length scale for Andreev reflection.

Scattering at the weak links will also reduce elastic co-tunneling. If the single-channel
transmissions of the weak links are τL,R, the first order EC probability will be reduced to
τLτR|tS|2. For τ < 1, there will be higher order processes involving multiple reflections at the
barriers which will also transmit a particle across the superconductor.

Also plotted in Fig. 1(d) is the probability |rS tS|2, which is the Andreev scattering contri-
bution to the first-order CAR process depicted in Fig. 1(c). If the left interface has transmission
probability τ < 1, this CAR process requires normal barrier transmission (τ), an Andreev re-
flection (|rS|2), a normal reflection (1−τ), and an Andreev transmission (|tS|2). The Andreev
contribution, |tS rS|2, is maximal at 0.25 for a separation l/ξ0 such that |tS| = |rS| = 0.5 and
the maximum of the normal part, τ(1− τ), is also 0.25 for τ = 0.5. Therefore the maximum
likelihood of the first-order CAR process is 6.25%, with higher order processes contributing
little as they scale as τn(1− τ)n. Ignoring higher order processes the likelihood of EC in the
presence of scattering at the left weak link, τ|tS|2, is approximately four times that of CAR for
τ= 0.5 and at a comparable separation l/ξ0 ® 1 such that |tS|2 ≈ 0.5. The optimal separation
l/ξ0 to maximize CAR and EC depends on the energy ε but the relative likelihood for CAR over
EC remains (1− τ)/2. In a symmetric situation where both weak links have transmission τ,
the first-order expressions above are reduced by a factor τ.

In a similar fashion to the derivation of SN , we use these results for scattering from the
three superconductors to define a matrix SS which relates waves incident on the slab (B) to
the outgoing waves, A= SSB,

SS =

�

See Sehe−iΦ

SeheiΦ Shh

�

⊗ IN ,
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with blocks Seh on the anti-diagonal for Andreev reflections,

Seh =







rA 0 0 0
0 rS 0 0
0 0 rS 0
0 0 0 rA






,

and blocks See and Shh on the diagonal for tunneling through the central superconducting slab,

See =







0 0 0 0
0 0 t+S 0
0 t+S 0 0
0 0 0 0






.

Shh is obtained from See with the transformation t+S → t−S . The superconducting phases are
contained in the diagonal matrix Φ = diag (ϕL , 0, 0,ϕR) and IN is the N × N identity matrix.
The total size of SS , like SN , is 8N × 8N , accounting for N conduction channels.

We combine the scattering equation for weak links, B = SNA, and for superconductors,
A= SSB, in order to obtain the master equation,

B = SN SSB. (7)

The scattering product SN SS depends on energy ε, the scattering properties of the weak links
(SL,R), and the superconducting phases ϕL,R. Eq. (7) is a unity eigenvalue problem in which
solutions of the characteristic equation,

det (I8N − SN SS) = 0, (8)

gives the energy spectrum ε, the scattering amplitudes a and b, and the corresponding wave-
functions of the Andreev molecule [21].

To verify correctness we numerically solved Eq. (8) for the spectra in the case of a single
channel Andreev molecule with symmetric δ-function barriers, i.e. SL and SR given by Eq. (3),
and compared for agreement with the Bogolubiov-de-Gennes solution for the same parame-
ters [5].

3 Energy Spectra

In Fig. 2 we show the evolution in the energy spectra of a multi-channel Andreev molecule as
the size of the central superconductor is reduced. Spectra are obtained by numerically solving
the characteristic equation Eq. (8) for fixed 20-channel random scattering matrices SL,R and
fixed phase ϕR = 3π/5. Each channel of each weak link will have an effective transmission τ
which can be extracted from the scattering matrices SL,R. The spectra are plotted as a function
of the left phase ϕL for four values of the separation l/ξ0. Each conduction channel of each
junction hosts one pair of ABS and as a consequence there are 4N = 80 lines, some of which
are close to the gap edge and difficult to distinguish.

For large separation, l/ξ0� 1, there is no coupling between the two weak links, and the
spectral lines follow the standard ABS energy dispersion,

E±Ln,Rn = ±∆
Ç

1−τLn,Rn sin2
�

ϕL,R/2
�

,

where τLn,Rn corresponds to the transmission of the n-th channel in the left or right weak
link. Since the right phase is fixed, ϕR = 3π/5, ABS corresponding to the right weak link

7

https://scipost.org
https://scipost.org/SciPostPhysCore.2.2.009


SciPost Phys. Core 2, 009 (2020)

(red) do not disperse with ϕL , whereas those of the left junction (blue) dip towards zero as
ϕL approaches π. There is no hybridization between ABS at the right and left junctions and
the spectral lines cross without forming gaps.

As the junctions are brought closer, for l/ξ0 = 1, 0.5,0.1, multiple avoided crossings ma-
terialize, signaling the formation of Andreev molecules. Similarly to the one-channel case [5],
the amplitude of the avoided crossings increases as the separation is reduced and some discrete
states are gradually pushed out into the continuum.

At separation l = 0.1ξ0, where the Andreev molecule fuses into a single weak link, only
approximately half of the ABS remain in the gap and the states have shifted in phase to the
right by ϕR = 3π/5.

Overall the spectra of Fig. 2 for the multi-channel case show qualitatively the same behavior
as for the Andreev molecule in the single channel case [5]. The most obvious global sign of
hybridization remains the breaking of symmetry about the phaseϕL = π. Since there are often
phase offsets in experiments it is difficult to verify that ϕL = π. One could instead check for
symmetry about the more easily identifiable point, ϕL = ϕ0

L , where the ABS are closest to zero
in energy at a fixed phase ϕR. The multi-channel spectra indicate that the symmetry point ϕ0

L
shifts from π to π+ϕR as the separation l/ξ0 goes from infinity to zero and that symmetry is
broken for l ® ξ0. Even though the spectra will become more dense as the number of channels
is increased, this symmetry breaking will be relevant experimentally as long as l ® ξ0.

4 Molecular Bound States

An eigenvector B0 which solves Eq. (7) corresponds to a closed trajectory or bound state of the
Andreev molecule, formed due to interference between propagating and counterpropagating
waves. There are three different types of closed cycles, or orbits, with two non-trivial ones
which can be built from the EC and CAR processes shown in Fig. 1.

The trivial cycle is a conventional Andreev bound state at one of the weak links and is
represented in Fig. 3(a) where the central superconductor is large, l � ξ0. The closed orbit
consists of two Andreev reflections at the right weak link, with the left moving hole of ampli-
tude b←Rh being completely transformed into a right moving electron of amplitude b→Re at the
central superconductor (purple). Since the Andreev transmission probability tS vanishes for
large l/ξ0, Fig. 1(d), the incident hole cannot be transmitted through the central superconduc-
tor. Likewise at the infinite left (blue) and right (red) superconductors, only Andreev reflection
is possible. A conventional ABS does not connect particles on all three superconductors and
therefore the supercurrent associated with it only flows between two superconductors.

With a shorter central superconductor, Fig. 3(b), one has the first non-trivial or “molecular”
Andreev bound state: the loop passing through all three superconductors. This orbit consists
of two simultaneous EC processes, one shown in Fig. 1(b), and the other its particle-conjugate
dual in which a hole propagates from right to left. Such a double elastic cotunneling (dEC)
process transports two electrons from the left to right superconductor. Since the phases are
fixed and all voltages are zero, this charge transfer corresponds to a unidirectional supercurrent
flowing across the device. dEC-type bound states are probable when the normal scattering
matrices have high channel transmissions and the phases ϕL,R have opposing signs and values
which result in an energy degeneracy in the limit l/ξ0 → ∞. In the case of a symmetric
single-channel Andreev molecule [5], dEC is maximal when the phases satisfy ϕL = −ϕR.

Fig. 3(c) shows the dEC bound state probability as a function of l/ξ0 determined by nu-
merically solving the eigenvalue problem, Eq. (7), for the lowest positive energy state of a
symmetric, single-channel Andreev molecule of transmission τ ≈ 0.94. In red we plot the
probabilities |b→Re|

2 and |b←Rh|
2 corresponding to the orbit shown in Fig. 3(a) or the right part
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Figure 2: Energy spectra of a multi-channel Andreev molecules as a function of sep-
aration l/ξ0. Scattering for twenty-channel left and right weak links is described by
randomly generated symmetric unitary matrices SL and SR which are the same for
each value of l/ξ0. The superconducting phase on the right weak link is fixed at
ϕR = 3π/5 and the left phase, ϕL , is varied. For l � ξ0, the red lines in the spec-
trum corresponds to Andreev Bound States (ABS) localized at the right weak link
and independent of ϕL , whereas the blue lines correspond to ABS localized on the
left weak link. The spectral lines are distinct because the effective transmission of
each channel, determined by SL,R, is random. As the separation l/ξ0 is reduced, the
red and blue lines, now purple, form avoided crossings indicating the hybridization
of Andreev states and the formation of an Andreev molecule. For small separation
l � ξ0 the spectrum transforms into that of a single twenty-channel weak link shifted
by ϕR. Note that SL 6= SR and for convenience the momentum is chosen such that
kF l = 0 (mod 2π), with kF l � 1.
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of Fig. 3(b). In blue we plot |b→Le|
2 and |b←Lh|

2 which corresponds to the complementary orbit
passing through the left weak link in Fig. 3(b). The eigenvectors are normalized so that the
probabilities sum to 1 and the amplitudes a are related to the b’s by the scattering matrix SN .
To maximize dEC, the phases are fixed at ϕR = 0.5π and ϕL = −0.48π. The slight detuning of
ϕL from −0.5π allows being sufficiently far from degeneracy such that there is no mixing be-
tween left and right eigenstates at l/ξ0 = 10. In principle at exact degeneracy and arbitrarily
large l/ξ0 a viable eigenstate can consist of equal weights at the left and right weak links.

At large separation, l/ξ0 ≈ 10, both probabilities at the right weak link (red) are approx-
imately 0.5 whereas those at the red weak link (blue) are almost zero, indicating that the
eigenstate is a conventional ABS as in Fig. 3(a).

As the separation is reduced, the weights at the left weak link (blue) start to increase and
those at the left weak link (red) decrease, indicating the formation of a dEC state. The position
of the step will depend on the detuning of ϕL from −ϕR. Near l/ξ0 ≈ 1, the orbit is approx-
imately equally distributed between the left and right weak links. The decomposition of dEC
into two simultaneous EC processes leads to the qualitatively similar form of the probabilities
in blue with the EC probability |tS|2 of Fig. 1(d).

For even smaller separation both the red and blue probabilities decrease and are com-
pensated by an increase in the amplitudes |b←Le,Re|

2 and |b→Lh,Rh|
2 (not shown) of the counter-

propagating orbit given by reversing the directions of the arrows in Fig. 3(b). The relative
weight of these two trajectories will be determined by the value of the phase difference ϕR.
This can be understood by considering the complementary time-reversed ABS trajectory to
the one shown in Fig. 3(a). When the phase ϕR is zero or π, such that the supercurrent is
zero, these two trajectories have equal weights and compensate each other. At extrema of the
supercurrent one trajectory will dominate. This is why with our choice of ϕR = π/2 the red
probabilities in Fig. 3(c) approach 0.5 for large l/ξ0, near a supercurrent maximum for the
right weak link. The situation is similar for a dEC orbit and when the separation approaches
zero, the total phase drop across the device is ϕR − ϕL ≈ π, so the dEC supercurrent van-
ishes and both trajectories coexist. This is why all probabilities approach 1/8 near l/ξ0 = 0
in Fig. 3(c), resulting in approximately equal clockwise and counter-clockwise orbits. The
additional splitting of the blue lines results from normal scattering and is absent when τ= 1.

The second molecular bound state, dCAR, is shown in Fig. 3(d), and with respect to the
dEC orbit involves two additional quasiparticle conversions in the central superconductor and
a reversal of current direction at the left weak link. During the conversion an incident electron
of energy E is reflected as a hole of energy −E which results in the crossing of trajectories at
the central superconductor and the twist relative to the dEC diagram Fig. 3(b). dCAR describes
supercurrent flowing from the central superconductor to the outer ones and cannot occur for
a floating central island, or without a connection to ground.

The dCAR probability is plotted in Fig. 3(d) for the same ϕR = π/2 but with
ϕL = 0.52π ≈ ϕR in order to maximize the effect while maintaining a detuning to avoid a
trivial degeneracy. Note that although the probabilities in red are identical to those for dEC,
Fig. 3(c), the probabilities in blue are |b←Le|

2 and |b→Lh|
2 to take into account the reversal of

the trajectory on the left weak link. There is a non-physical numerical instability at exactly
l/ξ0 = 0 so the x-axis extends from l/ξ0 = 0.05 to 10. As expected at large separation
l/ξ0 = 10 the eigenstate is an ABS localized at the right weak link.

As the separation is reduced the probability shifts to the left weak link, much as with dEC.
The increase in probability at the left weak link (blue lines) occurs at smaller l/ξ0 than for dEC,
most likely a result of the high value of transmission which leads to weak dCAR hybridization.
After reaching a maximum at l/ξ0 ≈ 1 the blue lines take a sharp downturn and approach zero
as the separation is further reduced. The probability for dCAR follows the Andreev reflection
probability which vanishes as l/ξ0→ 0. As with dEC the probabilities describing propagation
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Figure 3: Bound states of an Andreev molecule. (a) At large separation l � ξ0
the only eigenstate is a conventional Andreev Bound State (ABS), shown here local-
ized at the right weak link by Andreev reflections at the central (purple) and right
(red) superconductor. (b) At small separation l ® ξ0 and for superconducting phases
ϕL ≈ −ϕR there is an additional trajectory, double Elastic Co-tunneling (dEC), which
extends across all three superconductors. (c) The likelihood of dEC (blue lines) and
ABS (red lines) trajectories are plotted as a function of separation l/ξ0 forϕR = 0.5π,
ϕL = −0.48π, τ ≈ 0.94 and kF l � 1, kF l = 0 (mod 2π). The dEC probability in-
creases as the separation is reduced. (d) A second “molecular” trajectory extending
across all superconductors is possible at small separation l ® ξ0 but for supercon-
ducting phases ϕL ≈ ϕR. This is called double Crossed Andreev Reflection (dCAR)
and differs from dEC by additional Andreev reflections in the central superconductor.
(e) The likelihood of dCAR and ABS trajectories are plotted as a function of l/ξ0. Pa-
rameters are the same except for ϕL = 0.52π and kF l = π/2 (mod 2π). The dCAR
probability vanishes for large and small separation and is maximal at l ≈ ξ0. Results
are obtained by numerically solving the eigenvalue equation, Eq. (7).
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through the right weak link, including the time-reversed ones not shown, approach approx-
imately the same value as l/ξ0 → 0. However since the probability of all trajectories at the
left weak link must vanish, the red lines approach a value of 1/4 instead of 1/8 as with dEC.
The additional splitting of the probabilities for l/ξ0 ® 1 is also due to imperfect transmission.
Unsurprisingly, the overall shape of the dCAR probabilities (blue lines) are similar to that of
the CAR probability plotted in Fig. 1(d).

In the general multi-channel, non-symmetric case and as a function of the separation the
eigenstates will be mixtures of conventional ABS and molecular ABS. The phase configuration
necessary for molecular orbits will coincide with the position of level crossings in the large
separation ABS energy spectrum such as in Fig. 2 for l = 10ξ0.

5 Conclusion

Andreev molecules, or in general, arbitrary mesoscopic systems with superconducting regions
of size comparable to the coherence length can be effectively modeled with the scattering
approach incorporating the partial Andreev reflection and transmission coefficients (rS , tS).
We validated this formalism by checking for agreement with the Bogolubiov-de-Gennes re-
sults for a single-channel Andreev molecule [5]. We then calculated the energy spectrum of a
multi-channel Andreev molecule, modeling the experimentally relevant system of an epitaxial
superconductor/semiconductor nanowire with nanoscale weak links. The calculations show
that Andreev Bound State hybridization is robust and leads to observable consequences even
in multi-channel mesoscopic systems. In addition we have shown how to interpret the forma-
tion of Andreev molecules in terms of the microscopic non-local scattering processes of double
elastic co-tunneling and double crossed Andreev reflection. We quantified the probability for
these processes and determined the conditions to maximize them.

Although the formalism presented here has the advantage of simplicity, it has several limi-
tations. Our one-dimensional treatment ignores the lateral extension of the central supercon-
ductor which, as mentioned above, results in a larger overlap between ABS than expected in
three dimensions. A smaller overlap will lead to a reduction in the size of the avoided crossings
in Fig. 2 as well as reducing the probabilities for dEC or dCAR states in Fig. 3. However an
analysis for a 3D finite superconductor has shown that the energy gaps due to hybridization
will remain measurably large, if not a significant fraction of∆ [20]. We have also confined our
treatment to short weak links in which there is no additional accumulated phase. A sophis-
ticated treatment incorporating the quality of the nanowire-superconductor contact as well
as the lead resistance has attacked some of these shortcomings and elucidated in detail the
impact of the central lead on ABS hybridization [22].

The scattering formalism can easily be extended to more complicated structures and take
into account additional mechanisms such as spin-orbit interactions or a magnetic field, relevant
for Majorana bound states. It would also be possible to model superconducting weak links with
multi-junction nanowires [23], where a quasiparticle incident on a short superconductor could
be Andreev transmitted in multiple directions. Yet another topology is Andreev polymers,
systems with chains or networks of short superconducting segments connected by weak links,
which would allow ABS hybridization across several sites.
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