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Abstract

We compare the efficiency of different matrix product state (MPS) based methods for the
calculation of two-time correlation functions in open quantum systems. The methods are
the purification approach [1] and two approaches [2,3] based on the Monte-Carlo wave
function (MCWF) sampling of stochastic quantum trajectories using MPS techniques.
We consider a XXZ spin chain either exposed to dephasing noise or to a dissipative local
spin flip. We find that the preference for one of the approaches in terms of numerical
efficiency depends strongly on the specific form of dissipation.
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1 Introduction

The investigation of open quantum many-body systems has been a very active field of research
over the past decades. One motivation is the understanding of destructive effects of envi-
ronments on quantum processes which are used in quantum technologies, e.g in quantum
computing or quantum communication. More recently, another point of view has been taken.
Environments are particularly tailored in order to stabilize and control quantum many-body
states [4–8].

However, it has been shown that the dynamic properties of such states can have very dis-
tinct behavior from their Hamiltonian counterparts [9]. In particular the response of open
quantum systems to external perturbations is very different to the Hamiltonian evolution.

Quantities which are of particular importance in this respect are two-time correlation
functions 〈B(t2)A(t1)〉. Here A and B are operators, t1 and t2 are two different times, and
〈. . . 〉 = tr(ρ . . . ) is the expectation value over the density matrix ρ of a given system. In iso-
lated systems, such two-time correlation functions are powerful tools to give information on
the response of the system to a small perturbation. Many experimental techniques are based on
such processes and the observation of the subsequent response is described by these two-time
functions. Examples include neutron scattering [10], ARPES [11], conductivity and magneti-
zation measurements in solids [12] and spectroscopic measurement as radio-frequency [13],
Raman, Bragg [14] or modulation spectroscopy [15] in the field of quantum gases.

Two-time correlations have been studied extensively in isolated many-body quantum sys-
tems both in and out of equilibrium. However, in many-body quantum systems coupled to en-
vironments their determination is very challenging and only few studies are available mostly
using approximate approaches or small systems [9, 16–20]. In particular, a change of the be-
havior of dynamic correlations has been demonstrated in the presence of dissipation (see for
example [21–26]).

In this work we present a comprehensive study on the application of matrix product state
(MPS) algorithms to the determination of two-time correlation functions in open systems. We
compare an extension of the purification approach [27–34] to two-time correlations and two
different stochastic approaches based on the unraveling of the quantum evolution [2, 3, 36–
39,71]. The first approach has been proposed by Breuer et al. [2] and the second approach by
Mølmer et al. [3]. The comparison is performed using an XXZ spin model with two different
couplings to the environment. The first coupling is a dephasing noise applied globally to the
system and the second a local loss of magnetization. In section 2 we describe the models used.
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Figure 1: The sketch of the spin models with (a) bulk dephasing where all spins are
coupled to the bath and (b) local demagnetization where the central spin is disspa-
tive.

In section 3 we give an introduction to matrix product state based methods for open quantum
systems. In section 4, we introduce the three different methods in order to calculate two-time
correlation functions and in section 5 we present a comprehensive comparison between the
methods.

2 Model

We consider spin-1/2 chains, with coupling between spins on adjacent sites, as a paradigmatic
model for interacting one-dimensional systems. In addition, the system is subjected to an
environment which introduces dissipative processes to the system dynamics. Assuming that
retroactive influences of earlier dissipation effects on the current dynamics can be neglected,
the system dynamics can be described by the Lindblad master equation [39]

∂

∂ t
ρ(t) = Lρ(t) = − i

~
[HXXZ,ρ(t)] +D[ρ(t)] (1)

with the superoperator L and the system density matrix ρ. The first term on the right hand
side represents the unitary contribution generated by the Hamiltonian. Here we consider the
XXZ spin-1/2 Hamiltonian

HXXZ =
L−1
∑

l=1

�

Jx

�

S x
l S x

l+1 + S y
l S y

l+1

�

+ JzSz
l Sz

l+1

�

, (2)

describing a chain of L spins, where Jx and Jz are exchange couplings according to different
spin directions and Sαl is the spin operator in direction α at site l. In equilibrium this model
is well understood and exhibits in the ground state, three phases for different ratios of the
interaction strengths [40, 41]: For −1 ≤ Jz/Jx ≤ 1 a gapless Tomonaga-Luttinger liquid is
formed, whereas Jz/Jx < −1 and Jz/Jx > 1 present gapped phases showing ferromagnetic
and antiferromagnetic nature, respectively. The second term on the right hand side of Eq. 1
represents dissipative noise. We use the Lindblad form of the dissipator which is given by

D[ρ] =
∑

l

Γl

�

LlρL†
l −

1
2

L†
l Llρ −

1
2
ρL†

l Ll

�

. (3)

Here Γl is the effective dissipation strength corresponding to the Lindblad jump operator Ll . For
the comparison of methods presented here, two different types of dissipation are considered.
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As will be shown, each of them have different impacts on various aspects of the performance
of the methods.

First we study systems exposed to bulk dephasing (see Fig. 1(a)), where the jump operators
Ll are given by the set of local Sz

l operators controlled by the dissipation strength Γl = γ

D1(ρ) = γ
L
∑

l=1

�

Sz
l ρSz

l −
1
4
ρ

�

. (4)

Here the jump operators Sz
l are Hermitian, which implies that the infinite temperature state is

a steady state of the model. One can show that this is the unique steady state. The dissipative
dynamics arising in this and related models has been studied previously and interesting critical
dynamics and aging dynamics have been pointed out to occur [1,18,42–44].

Furthermore, we investigate the case in which the coupling to the environment results in
a local defect that is represented by the single Lindblad operator S−c which only acts on the
central site as shown in Fig. 1(b). Here c is the index of the central site for a chain with an
odd number of sites and the center-left site otherwise. The dissipation strength is Γc = γ and
Γl 6=c = 0 which results in the dissipator

D2(ρ) = γ
�

S−c ρS+c −
1
2

S+c S−c ρ −
1
2
ρS+c S−c

�

. (5)

The steady state of this system is the ferromagnetic state with all spins pointing down. Using
the mapping to interacting fermions or hard core bosons, the jump operator corresponds to
a local particle loss process. Similar ’lossy’ defects have been studied in a variety of models
previously and interesting transport effects and meta-stable states have been identified [45–
55].

3 Matrix product state approaches for open quantum system dy-
namics

A variety of tensor network based algorithms has been successfully used to simulate the dy-
namics of open one-dimensional quantum systems with a focus on equilibrium or equal time
properties. This section is structured such that we start by giving a short overview of the es-
tablished concepts of MPS in closed quantum systems in Sec. 3.1, which are essential for the
extension to open systems. Subsequently, we describe two prominent approaches for comput-
ing the dissipative dynamics of open quantum systems. We describe first the full evolution of
the purified density matrix in Sec. 3.2 and second the Monte-Carlo wave function (MCWF)
sampling of stochastic quantum trajectories in Sec. 3.3.

3.1 Matrix product state formalism for closed systems

The description of quantum states in MPS form has become a standard method for the simu-
lation of one-dimensional many-body quantum systems. It has been used for a wide range of
models, since it is very efficient and well-controlled approximation [56,57]. In this section and
the following on open systems, we describe the basics and key concepts of this technique [56]
such that in the following we can detail the particularities of the approach to the determination
of two-time functions in open quantum systems.

3.1.1 MPS representation of quantum many-body states

The idea relies on the approximate representation of the quantum many-body wave function
for a one-dimensional lattice system of L sites as a set of local tensors/matrices. In order to
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achieve this, a singular value decomposition (SVD) is applied to the amplitude matrix of a
bipartite system whose subparts A and B are connected by a bond between site l and l + 1

|ψ〉=
∑

m,n

ψm,n |m〉A⊗ |n〉B
SV D
=

∑

m,n,al

Umal
sal

V †
al n
|m〉A⊗ |n〉B . (6)

Here |m〉A/B are basis states in subsystem A/B and U , s, V are obtained by the singular value
decomposition of the amplitude matrixψm,n. Iterating this procedure on all bonds then yields
the expression of the quantum state by single site tensors

|ψ〉=
∑

σ1,...,σL

∑

a1,...,aL−1

Mσ1
1,a1

Mσ2
a1,a2

. . . MσL
aL−1,1 |~σ〉 , (7)

where we use |~σ〉= |σ1σ2 . . .σL〉 andσl labels the local basis states at the site l ∈ {1,2, . . . , L}.
The number of local basis states is called the physical dimension d, where for the considered
spin-1/2 model d = 2 and σl ∈ {↑,↓}. The representation 7 is still exact. The singular values
sal

are the coefficients of the Schmidt decomposition and are thus directly linked to the von
Neumann entropy

SvN = −
∑

al

s2
al

log
�

s2
al

�

. (8)

The von Neumann entropy is a measure for the entanglement between the two subsystems
connected by the considered bond. If the entanglement is not too strong, this corresponds to
a sufficiently fast decay of the descendingly sorted squared singular values s2

al
. In this case,

the dimension of the matrices for the representation of the state can be cut at a maximal
value D, resulting in a compressed state which is a very good approximation of the exact
state. A weak von Neumann entanglement is for example found for ground states of short-
ranged one-dimensional Hamiltonians [56]. As the value D limits the extend of the indices
{a1, a2, . . . , aL−1}, connecting two adjacent site tensors, this parameter is known as the bond
dimension. The approximation is controlled by the sum of the discarded squared singular
values, the so-called truncation weight

ε =
∑

al>D

s2
al

, (9)

and reduces the computational complexity from exponential to polynomial.
In the following we will use the established graphical notation for tensor networks [56]

Ti jk ≡
i

j k

, (10)

where a tensor is portrayed by a shape (here circle) with sticking out lines representing the
indices. Connecting two lines depicts a tensor contraction with regard to this pair of indices.
Using this notation, a MPS is depicted by

|ψ〉=
∑

~σ

σ1 σ2 σ3 . . . σL

a1 a2 a3 aL−1 |~σ〉 . (11)

3.1.2 Time-dependent matrix product state algorithm

Time-dependent matrix product state (tMPS) algorithms are well-established tools for the
efficient computation of the dynamics of closed many-body quantum systems at zero [56–60]
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and finite temperature [61–64]. In particular, it is possible to calculate the time evolution of
a MPS for the considered spin-1/2 model with γ = 0, using a Suzuki-Trotter decomposition
[65,66] of the time evolution operator for small time steps ∆t. Here we use the second order
Suzuki-Trotter decomposition given by

e−iH∆t/~ = e−iHodd∆t/(2~)e−iHeven∆t/~e−iHodd∆t/(2~) +O(∆t3). (12)

Here Hodd (Heven) only contains parts of the Hamiltonian covering the odd (even) numbered
bonds of the lattice, so that all contributing terms are commuting, but [Hodd, Heven] 6= 0. In
the diagram formalism, this corresponds to a successive application of two-site gate operations
and compressions

|ψ(t +∆t)〉=
∑

~σ

σ1σ2 . . . σL

|~σ〉 +O(∆t3), (13)

where the application order is indicated by the dotted arrow and the different colors distinguish
gates and subsequent compressions of Hodd and Heven. By contracting these gates with the MPS
tensors, the bond dimension also increases from D to d2D, so that a subsequent compression
via SVD is necessary.

A large reduction of the computational effort can be achieved by including conservation
laws. In the present case, the total magnetization Mtot =

∑

j Sz
j is preserved by the closed

system evolution under the Hamiltonian HXXZ. This leads to a block-diagonal form of matrices,
and thus, tensor operations, such as SVDs or tensor contractions, can be performed much more
efficiently.

3.2 Purification approach for the evolution of the density matrix of an open
quantum system

3.2.1 Purification of the density matrix

One way to transfer the techniques from the previous section to dissipative systems with finite
dissipation strength γ, is to rewrite the density matrix acting on the physical Hilbert space
Hphys as a state in a doubled space Hphys ⊗Hphys [27–33,56]

ρ =
∑

~σ,~σ′
ρ~σ,~σ′ |σ1σ2 . . .σL〉 〈σ′1σ

′
2 . . .σ′L|

−−→ |ρ〉〉=
∑

~σ,~σ′
ρ~σ,~σ′ |σ1σ

′
1σ2σ

′
2 . . .σLσ

′
L〉〉 , (14)

where |ρ〉〉 ∈ Hphys ⊗Hphys. Thus, the density matrix acting on the physical space becomes a
pure state in the ’doubled’ space, giving the procedure the name purification. The order of the
resorting is in principle arbitrary. We use here the given resorting of the state, since this has the
advantage that the time-evolution only acts on four ’neighboring sites’. In this representation
of the density matrix in the super space Hphys ⊗Hphys, the Lindblad master equation (Eq. 1)
is written as,

∂

∂ t
|ρ(t)〉〉= L|ρ(t)〉〉 ≡

�

−
i
~

H ⊗ I +
i
~

I ⊗HT +D
�

|ρ(t)〉〉 (15)

with the new representation of the dissipator D in the super space,

D≡
∑

l

Γl

�

Ll ⊗ (L
†
l )

T −
1
2

L†
l Ll ⊗ I −

1
2

I ⊗ (L†
l Ll)

T
�

. (16)
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Here I is the identity matrix in the Hilbert space Hphys and T denotes the transpose of an
operator.

3.2.2 Representation of an initial state in the purified form

Often we are confronted with the situation that we start a Lindblad evolution from a pure state
represented in the MPS formalism, for example this can be the ground state of a Hamiltonian
obtained by the MPS ground state search. For this purpose we present the steps of purifying
a state |ψ〉 that is given in MPS form [Eq. 11]. Since the density matrix of this pure state is
given by |ψ〉 〈ψ|, first a copy of the state is created which represents the bra contribution. Then
the tensors stemming from the ket and the bra corresponding to the same site are contracted,
which results in a set of tensors with six indices

σl

al−1 al ·

σ′l
a′l−1 a′l =

σl σ′l
al−1

a′l−1

al

a′l
. (17)

In order to obtain single-site tensors for the ket and the bra part, the bond indices are com-
bined, i.e. (al−1, a′l−1) → λ′l−1 and (al , a′l) → λ′l , before the tensor are separated into the
respective single-site parts using a singular value decomposition with regard to the indices
(λ′l−1,σl )× (σ

′
l ,λ
′
l). The new bond index, created by the SVD, is denoted by λl , so that the

MPS representation of a purified state reads

|ρ〉〉=
∑

~σ,~σ′

∑

λ1,...,λL
λ′1,...,λ′L−1

Mσ1

1,λ1

M
σ′1

λ1,λ′1
. . . MσL

λ′L−1,λL
M
σ′L

λL ,1
|σ1σ

′
1 . . .σLσ

′
L〉〉. (18)

This translates to the following diagrammatic expression

|ρ〉〉=
∑

σ1...σL
σ′1...σ′L

σ1
σ′1 σ2

σ′2 σ3
σ′3

. . . σL σ
′
L

λ1
λ′1 λ2

λ′2 λ3
λ′3 λ′L−1 λL

|σ1σ
′
1 . . .σLσ

′
L〉〉 . (19)

It is important to notice that this approach affects the bond dimension drastically. Assuming
the bond dimension of the state to purify is given by D, the combining of bond indices results in
a dimension D2 for the index set {λ′l} and the SVD without compression causes an increase to
dD2 for the indices {λl}. In order to keep the original specified bond dimension D, the state to
purify needs to be compressed to a bond dimension

p
D and the spectrum of SVD in the second

step needs to be truncated after the D largest values. This poses a very strong constraint, so that
particularly strongly entangled states are difficult to purify. Either the need for computational
resources increases quadratically or the accuracy, measured by the truncation weight, becomes
significantly worse.

3.2.3 Time-evolution of the purified density matrix

In analogy to the unitary closed system evolution (Eq. 13), it is also possible to split the Lind-
bladian into two contributions

L= Lodd +Leven, (20)

where Lodd (Leven) covers the ket and bra sites connected by the odd (even) bonds. Again, the
terms within Lodd/even commute, but [Lodd,Leven] 6= 0. Consequently, the dissipative evolution
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|ρ(t +∆t)〉〉= eL∆t |ρ(t)〉〉= eLodd∆t/2eLeven∆teLodd∆t/2|ρ(t)〉〉+O(∆t3)

=
∑

σ1...σL
σ′1...σ′L

σ1 σ′1 σ2 σ′2 σ3 σ′3 σ4 σ′4 σ5 σ′5 σ6 σ′6

× |σ1σ
′
1 . . .σLσ

′
L〉〉+O(∆t3)

Figure 2: Dissipative evolution of the purified density matrix in MPS form by a single
time step ∆t using a second order Suzuki-Trotter decomposition for the evolution
operator represented by a consecutive application of four-site gates. The two colors
mark the affiliation to one of the two parts of the Lindbladian, i.e. either Lodd or
Leven, and the arrow indicates the order of application.

can also be approximated by the second order Suzuki-Trotter decomposition, which in this case
results in a sequence of applications of four-site gates as shown in Fig. 2. This fact raises the
challenge, that a gate application causes a stronger increase of the bond dimension

σl
σ′l σl+1

σ′l+1

D D D D D

d d d d

d d d d

SV D
−→

σl
σ′l σl+1

σ′l+1

D d2D d4D d2D D

d d d d . (21)

The dimension of the individual indices is marked in blue color, revealing that the bond di-
mension of a purified state grows from D to up to d4D by applying a time evolution gate. This
requires a stronger truncation to compress the bond dimension to the original size.

Another important feature is that the use of quantum number conserving codes for the
computation of the dissipative evolution is only possible if the Lindbladian is subject to a strong
symmetry [68,69], i.e. not only the Hamilton operator but also every single jump operator of
the model respects the conservation law. In the cases considered here, this only applies to D1
(Eq.4), as the jump operator S−c in D2 (Eq.5) does not conserve the total magnetization.

3.2.4 Calculating expectation values within the purification approach

Provided with the time evolved purified density matrix, we are left with the task to calculate
expectation values of observables to extract information about the system. The trace relation
for the expectation value of an operator A translates to a scalar product

〈A〉= tr(ρA) = 〈〈1|A⊗ I |ρ〉〉, with |1〉〉=
L
⊗

l=1

∑

σ

|σσ〉l =
L
⊗

l=1

(|↑↑〉l + |↓↓〉l) . (22)

Here the first and second spin in |σσ〉l denote the spin at site l for the ket and the bra part
in the purified notation respectively. The state |1〉〉 is the purification of the unnormalized
infinite temperature state [70]. Unfortunately, the possibility to be able to encode this state
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as a product state as shown in Eq. 22 gets lost, when using good quantum numbers, where
the vector of the purified density matrix cannot be separated into contributions of single sites
anymore. As a result, this state can exhibit a potentially large bond dimension. Another
obstacle becomes apparent when exploiting good quantum numbers in the algorithm is that
|1〉〉 spans over all symmetry blocks, so that a restriction to a certain quantum number sector
makes a manual selection of basis states fulfilling this condition very cumbersome. Here it is
helpful to realize, that the purification procedure is subject to a gauge degree of freedom. The
measured expectation value is invariant under local unitary transformations of the states [56].
This fact can be used to construct a favorable representation of the bra space of the constituents
of |1〉〉, defined by

|σσ〉l −→ (I ⊗ U) |σσ〉l . (23)

To this end, the transformation U is chosen such, that the quantum number of the full initial
state is equally distributed over local pairs of ket and bra states. For example, if we consider
the Mtot = 0 symmetry sector in the Lindblad model using the dissipator D1, one possible
transformation is the Pauli matrix in x-direction U = σx on the bra sites, so that we can
rewrite the state |1〉〉 as a product of local spin pairs

|1〉〉 −→
L
⊗

l=1

∑

σ

|σσ̄〉l =
L
⊗

l=1

(|↑↓〉l + |↓↑〉l) (24)

where σ̄ = −σ. This transformation automatically guarantees the restriction of the trace
generating state |1〉〉 to the symmetry sector selected by the initial state. With this, the prob-
lems of selecting basis states respecting the quantum number conservation as well as the
large bond dimension of an MPS representation of |1〉 are both solved. Also the initial state
and the Lindbladian gates need to be adapted to be consistent with this gauge choice. With
U=

⊗L
l=1 (I ⊗ U), the transformation relations are

L −→ U†LU

|ρ(t = 0)〉〉 −→ U|ρ(t = 0)〉〉. (25)

Supposing that the observable can be brought to an efficient tensor representation, we can
then proceed to calculate the expectation value. In the exemplary and important case of a lo-
cal observable the measurement is carried out by the tensor contractions outlined in Fig.3. As
explained before only the case with dissipator D1 conserves the total magnetization. Thus we
use this transformation in order to consider the good quantum numbers in the simulation. Ap-
plying this transformation to the Lindbladian leaves the Hamiltonian contribution unchanged
and only changes the sign of the first part of the dissipator D1. The observables are calculated
in the transformed basis (see Fig. 3).

3.3 Monte-Carlo wave function method

Instead of evolving the full density matrix, an alternative way is to compute the evolution of
wave function trajectories in the original Hilbert space [3, 36, 37]. This is at the expense of
the need for a sampling over many realizations due to the presence of stochastic processes,
originating from the action of the environment on the system. This approach, known as the
unraveling of the master equation, can be realized by piece-wise deterministic jump processes,
where the deterministic time evolution of a state is interrupted by the application of jump
operators. The deterministic evolution is performed with regard to an effective Hamiltonian

Heff = HXXZ −
i~
2

∑

l

Γl L
†
l Ll , (26)
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〈Al〉= 〈〈1|Al |ρ(t)〉〉= . . . . . .

σ1 σ′1 σl−1 σ
′
l−1
σl σ′l σl+1 σ

′
l+1

σL σ′L

∑

|σσ̄〉1
∑

|σσ̄〉l−1

∑

|σσ̄〉l
∑

|σσ̄〉l+1

∑

|σσ̄〉L

Al

Figure 3: Visualization of the computation of local expectation values using the con-
traction of the MPS with a local operator Al and the trace generating state |1〉 in the
transformed basis (see Eq. 24) represented by a product of spin pairs

∑

σ |σσ̄〉l cov-
ering associated sites corresponding to the ket and bra part of the density matrix at
site l. The density matrix is also calculated in the transformed basis as Eq. 25. Note
that the observable Al does not change with this transformation.

where {Ll} are the the jump operators of the respective model, i.e. {Ll}= {Sz
j , j = 1,2, . . . , L}

for D1 and {Ll}= {S−c , c = central site} for D2. As this effective Hamiltonian is not Hermitian,
the corresponding evolution is non-unitary, resulting in a decay of the norm of the state over
time. The creation of a single time-evolved trajectory sample can be summarized as follows:

1. Define the initial state, which is either a pure state or is selected according to the prob-
ability weights in a mixture of states.

2. Draw a random number η ∈ [0,1).

3. Evolve the state under Heff by a sequence of small time steps ∆t until 〈ψ(t) |ψ(t)〉 ≤ η.

4. (a) Draw a jump operator Ll ′ according to the probability distribution pl′
∑

l pl
, with

pl = Γl 〈ψ(t)| L
†
l Ll |ψ(t)〉 , (27)

(b) apply the selected operator Ll ′ to the state and renormalize it

|ψ(t)〉=
Ll ′ |ψ(t)〉

Ç

〈ψ(t)| L†
l ′ Ll ′ |ψ(t)〉

. (28)

5. Iterate from 2 until the final time is reached.

Performing the average over many trajectories generated by this scheme ultimately yields an
estimate of the density matrix that is accurate up to the first order in the time step. The
density matrix can be approximated by a Monte-Carlo (MC) average over a finite number R of
trajectory samples |ψr(t)〉

ρ ≈
1
R

R
∑

r=1

|ψr(t)〉 〈ψr(t)| (29)

giving the technique name of Monte-Carlo wave function (MCWF) method. Similarly, the
expectation values of observables can also be evaluated as

〈〈Ô(t)〉〉 ≈
1
R

R
∑

r=1

〈ψr(t)| Ô |ψr(t)〉 , (30)
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Figure 4: Probability distribution for two or more jump events happening in the same
time step to estimate the necessary time step for the model with dissipator D1 and
different system sizes and dissipation strengths. The vertical dashed lines mark the
time-steps typically chosen in the calculations and the horizontal dotted lines are the
corresponding probability for L = 16.

where 〈〈. . .〉〉 denotes the MC average and the stochastic accuracy of the independent sampling
approach is given by the time-dependent standard deviation of the mean

σmean(Ô(t)) =

√

√

√

√

1
R(R− 1)

R
∑

r=1

�

〈ψr(t)| Ô |ψr(t)〉 − 〈〈Ô(t)〉〉
�2

. (31)

The random sampling of an application time in steps 2 and 3 of the algorithm is equivalent
to drawing a waiting time τ until the next jump occurs according to the distribution

P(t,τ) = 1− 〈ψ(t)|eiHeffτ/~e−iHeffτ/~|ψ(t)〉. (32)

This quantity is important for the convergence of the method as it can be used to determine
a sufficiently small time step when simulating the non-unitary evolution under the effective
Hamiltonian. It is important to choose a time step small enough so that the probability of
more than one jump event happening in the span of a time step is negligible. For the sys-
tem with dissipator D1 the imaginary part of the effective Hamiltonian (Eq. 26) is equal to
−γ2

∑

l Sz
l Sz

l = −
γL
8 . Thus the waiting time distribution (Eq. 32) simplifies to

P(t,τ) = 1− e−γLτ/4. (33)

The waiting time distribution is the probability of having a jump in the interval [t, t+τ)which
is independent of the initial time t here.

The probability to have two or more jumps in this interval is
Pn>2(τ) = 1− e−γLτ/4 − γLτ

4 e−γLτ/4. In Fig. 4 we show the probability of two or more jumps
taking place in one time step for the model with dissipator D1. When a good value for ∆t has
been found for one parameter configuration, the dissipation strength and the system size are
crucial for estimating a suitable time step for another set-up.

For the determination of a single trajectory applying the introduced tMPS algorithm Eq. 13
offers a promising solution for computing the deterministic part of the evolution (see [71]
and references therein). Using this procedure, we can access the dissipative time evolution
of a spin-1/2 chain under the action of the Lindbladian. It is noteworthy that here the use
of symmetries to reduce the computational complexity only requires the conservation of the
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Figure 5: Dissipative evolution of local equal-time correlation functions Cd(t) (top)
and the von Neumann entropy SvN (bottom) of a spin-1/2 chain initially prepared in
the Neel state under the effect of bulk dephasing D1. We show both, the Monte-Carlo
average with statistical error bars (not visible, since they are below the line width)
and the measured values for a selection of stochastically sampled trajectories for a
chain of length L = 32, dissipation strength ~γ/Jx = 1, spin anisotropy Jz/Jx = 1, a
time step ~∆t/Jx = 0.05, a truncation goal ε = 10−12, a maximal bond dimension
D = 100 and 104 samples for the MC average.

associated quantum numbers by the effective Hamiltonian. Consequently, in contrast to the
purification approach, quantum number conserving codes can be used for the simulation of
both dissipators D1 and D2. In Fig. 5 we present for the example of the dissipator D1 the
evolution of the local equal-time correlation function

Cd(t) = 〈Sz
L/2Sz

L/2+d〉(t), (34)

and the von Neumann entropy SvN starting from an alternating spin configuration
|ψNeel〉= |↑↓↑↓ . . .〉, known as the classical Neel state. For both quantities we show the Monte-
Carlo average as well as a selection of measurements of individual trajectory samples. Within
the MPS, the von Neumann entropy is connected to the required maximally allowed bond
dimension in order to obtain a good description of the state. Here, we find that during the
evolution a spreading around the mean develops so that the maximum entanglement in in-
dividual samples can be significantly larger than the mean value suggests. The relationship
between entropy and the necessary bond dimension is highlighted further for a single trajec-
tory created from the same random seed for different maximal bond dimensions D in Fig. 6.
It is evident that calculations with a fixed maximum value for the bond dimension can only
provide a sufficiently accurate representation of the entanglement up to a certain time.

4 Methods for the computation of two-time correlation functions
in open quantum systems

We will discuss the different concepts for determining two-time correlation functions in open
quantum systems with the methods introduced in Sec. 3, which will later form the basis for
the comparison. More precisely, the goal is to compute correlation functions of the form

g(t2, t1) = 〈B(t2)A(t1)〉, (35)
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Figure 6: Evolution of the von Neumann entropy SvN of a single trajectory sample
with different maximal values for the bond dimension for a chain of length L = 32,
dissipation strength ~γ/Jx = 1, spin anisotropy Jz/Jx = 1, time step ~∆t/Jx = 0.05
and truncation goal ε = 10−12.

where the two operators are applied at different times during the course of a dissipative time
evolution.

4.1 Two-time correlations within the purification approach

The purification approach can be straight-forwardly extended in order to determine two time
correlation functions [1]. After purifying the initial state, the reshaped density matrix is
evolved until time t1, where the operator A is applied, followed by an evolution to t2, where
an ordinary measurement of B is carried out

〈B(t2)A(t1)〉= 〈〈1| (B ⊗ I)eL(t2−t1) (A⊗ I)eLt1 |ρ(t = 0)〉〉. (36)

Only a single time evolution needs to be calculated. Nevertheless, the fact of the evolution
taking place in a doubled Hilbert space, can potentially result in the need for a large bond
dimension.

4.2 Stochastic sampling: two approaches to two-time correlations

In the following we introduce two different approaches to evaluate two-time correlation func-
tions in the framework of Monte-Carlo wave functions. The first step is to evolve an initially
prepared state, which is in the case of a mixed state drawn according to the weights in the
density matrix, up to the application time t1 of the first operator. This is performed using the
unraveling scheme of piece-wise deterministic jump processes. For each trajectory one defines
the state |φ(t1)〉 ≡ A |ψ(t1)〉. In principle it seems that we are left with the task of calculating
the dissipative time-evolution of the two states |φ(t1)〉 and |ψ(t1)〉 up to time t2 and then the
expectation value with the operator B, i.e.

g2(t2, t1) = 〈ψ(t2)|B |φ(t2)〉 . (37)

However, while this expression is well-defined for states of a closed system, the transfer to
a stochastic sampling approached is more involved. In the next two sections we outline two
methods which are well defined for the stochastic sampling approach. Subsequently, we com-
pare the efficiency of both concepts.
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|ψ(t1)〉

split trajectories

|ψ(t1)〉
|φ(t1)〉

|ψ(t2)〉
|φ(t2)〉

joint jumps L j

Figure 7: Sketch of the creation of one sample for the computation of two-time cor-
relators following [2]. After the evolution up to t1 the trajectory is copied, followed
by a time span characterized by an independent deterministic non-unitary evolution
interrupted by joint jump operator applications.

4.2.1 Joint evolution of two states following Breuer et al. [2]

The first idea, developed by Breuer et al. [2], uses a doubling of the Hilbert space at time t1
by introducing for each trajectory the vector

|Θ(t1)〉=
�

|ψ(t1)〉
|φ(t1)〉

�

. (38)

As the matrix ρ̃(t1) = |Θ(t1)〉 〈Θ(t1)| again fulfills all properties of a physical density matrix,
the task is reduced to recover the time dependence in Eq. 37. By defining a new Hamiltonian
operator and new jump operators acting on the doubled space

H̃ =

�

H 0
0 H

�

and L̃l =

�

Ll 0
0 Ll

�

, (39)

and using this in a Lindblad-type equation with Hamiltonian H̃ and jump operators L̃l , we
arrive at Lindblad equations for all matrix blocks [2]. As a result, we can apply the same un-
raveling approach as before on the doubled space to compute two-time correlation functions.
Since the operators do not couple the two subspaces, a separate time evolution of |ψ(t)〉 and
|φ(t)〉 is possible, where only the application time and the selection of jump operators is de-
termined based on the joint evolution (see Fig. 7). The algorithm to create a single trajectory
can be condensed to the following steps:

1. Initialize the wave function |ψ(t = 0)〉 in the original Hilbert space and evolve it until
t1 using the introduced piece-wise deterministic process.

2. Make a copy of the state at time t1, apply the operator A to it |φ(t1)〉 ≡ A |ψ(t1)〉 and
define a state in the doubled space |Θ(t1)〉 ≡ (|ψ(t1)〉 , |φ(t1)〉)T , where T denotes the
transpose. To ensures the transfer of accumulated jump probability at t1 to the doubled
space we normalize this state to |Θ̃(t1)〉 ≡

1p
Ω
|Θ(t1)〉 ≡ (|ψ̃(t1)〉 , |φ̃(t1)〉)T with the

normalization factor Ω= 〈Θ(t1)|Θ(t1)〉/ 〈ψ(t1)|ψ(t1)〉. Here the norm of the new state
is the same as of the initial state (〈Θ̃(t1)| Θ̃(t1)〉= 〈ψ(t1)|ψ(t1)〉).

3. Evolve both states independently under the effective non-Hermitian Hamiltonian while
sampling jumps simultaneously according to the joint loss of norm of |Θ̃(t)〉.

4. Repeat the procedure until the time t2 is reached where one obtains |Θ̃(t2)〉=
�

|ψ̃(t2)〉
|φ̃(t2)〉

�

.

Then, use the components of this state in order to measure the two-time correlation func-
tion by calculating the full overlap

〈B(t2)A(t1)〉=
〈ψ̃(t2)|B |φ̃(t2)〉
〈Θ̃(t2)| Θ̃(t2)〉

Ω.

This method can be further extended to multi-time correlation functions by additional operator
applications between the first and the final application time [2].
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4.2.2 Separate evolution of four trajectories following Mølmer et al. [3]

An alternative strategy, established by Mølmer et al. [3], uses the quantum regression theorem
[39, 72] to represent the time dependence of two-time correlation functions in terms of the
evolution of quantities, which only involve equal-time measurements. The proof relies on the
quantum regression theorem which states that if the evolution of equal-time observables for
the set of operators {Bi} is described by a closed set of differential equations

d
dt1
〈Bi(t1)〉=

∑

j

Gi j〈B j(t1)〉, (40)

the two-time correlations are generated by the same kernel G as

d
d(t2 − t1)

〈Bi(t2)A(t1)〉=
∑

j

Gi j〈B j(t2)A(t1)〉. (41)

The idea of this approach relies on constructing four new states at time t1 for each trajectory
such that a combination of the expectation values of the operator applied at t2 for each of these
state gives the corresponding two-time correlation. To this end, the four states are defined by
applying the first operator A [3],

|χ±R (t1)〉=
1

Æ

µ±R

(I ± A) |ψ(t1)〉 ,

|χ±I (t1)〉=
1

Æ

µ±I

(I ± iA) |ψ(t1)〉 , (42)

where for each trajectory |ψ(t1)〉 the state at t1 is obtained by the usual unraveling scheme.
Further, µ±R and µ±I normalize the respective states. These new states evolve independently
from time t1 to t2 with the same unraveling scheme (see Fig. 8). By properly combining the
expectation values of the second operator B for each state the two-time correlation functions
can be recovered [3]

〈B(t2)A(t1)〉=
1
4

�

µ+R 〈χ
+
R (t2)|B |χ+R (t2)〉 −µ−R 〈χ

−
R (t2)|B |χ−R (t2)〉

− iµ+I 〈χ
+
I (t2)|B |χ+I (t2)〉+ iµ−I 〈χ

−
I (t2)|B |χ−I (t2)〉 ] . (43)

Consequently, it is possible to access the two-time correlation functions by evolving the four
states from Eq. 42 separately. In contrast to the MCWF technique of the doubled Hilbert space,
also the jump sampling procedure is completely independent so that it is possible to compute
the four trajectories after t1 in parallel. In addition to the average over the four states, the
average over many trajectories from the initial time to t1 and from time t1 to t2 needs to be
taken. A disadvantage of this approach using four different state is, however, that it does not
offer a straight-forward extension to multi-time correlation functions.

There are two special cases, defined by the properties of the operators A and B of the
correlation function. If the operator at time t1 is Hermitian (A† = A) and commutes with the
operator at t2 ([A, B] = 0), it is possible to consider two instead of four trajectories and to
calculate the two-time correlation as

〈B(t2)A(t1)〉=
1
4

�

µ+R 〈χ
+
R (t2)|B |χ+R (t2)〉 −µ−R 〈χ

−
R (t2)|B |χ−R (t2)〉

�

. (44)

To ensure that the comparison between the two approaches is as fair as possible, we concen-
trate on such a special case for the two-time correlator in Eq. 45, since for this case the number
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Figure 8: Sketch of the creation of one sample for the computation of two-time corre-
lators following Ref. [3]. The initial dynamics up to time t1 is followed by the splitting
of the wave function into four trajectories from which the two-time expectation value
at t1 can be reconstructed. Then each sub-trajectory is evolved separately.

of trajectories needed in both approaches is equal. We expect that in the more general case
where even four trajectories are needed in the approach by Mølmer et al., this approach will be-
come even more costly. The second case is more subtle and appears in the context of conserved
quantum numbers. If the Lindbladian evolution allows the partition of the superoperator into
symmetry blocks, and the operator A at t1 couples different blocks, the resulting states |χ±R,I〉
cannot longer be addressed to a single block. Instead it is possible to evolve the parts of the
different sectors separately as they are decoupled for all times t > t1. A closer look reveals
that in this case the introduced scheme is equivalent to the approach by Breuer et al. from the
last section.

5 Comparison of the different methods to determine two-time cor-
relations functions in open quantum systems

In this section we compare the performance of the different methods to calculate two-time
correlations using the spin model described in section 2. We focus on the two-time correlation
function relating two applications of local Sz-operators at sites separated by a distance d given
by

Cd(t2, t1) = 〈Sz
c (t2)S

z
c+d(t1)〉. (45)

Recall, c is the central site for a chain with an odd number of sites and the center-left site
otherwise. This correlation function has been proven to be essential to uncover interesting
dynamical regimes displaying physical phenomena such as aging or hierarchical dynamics
[1]. We start by the comparison of the two stochastic approaches for the dissipator D1 in
subsection 5.1. We use as an initial state a classical Neel state. We find that typically the
Breuer et al. approach combined with the MPS methods performs better than the Mølmer
et al. approach. We continue in comparing the better performing stochastic approach, the
approach by Breuer et al., to the purification approach in subsection 5.2. For the considered
situation the purification approach greatly outperforms the stochastic approach. Reasons of the
excellent performance of the purification approach in this situation are the ’easy’ initial state
and the conservation of the magnetization by the Lindblad dynamics and most importantly,
the low matrix dimension needed.

In subsection 5.3 we turn to the local dissipator D2. We consider the situation where the
initial state is the ground state of the Hamiltonian and the dissipation is switched on at time
t = 0. We compare again the stochastic approach of Breuer et al. to the purification approach.
The entangled initial state and the absence of the conservation of magnetization constitutes an
additional difficulty for the purification approach. We find that for most parameters considered
the stochastic approach is much more suited to treat this situation efficiently.
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Figure 9: Evolution of the von Neumann entropy as a resource measure for different
branches of Breuer and Mølmer MCWF approach to computing two-time correlation
functions for two different sets of model parameter. Results are shown for t1Jx/~= 5,
a time step of ∆tJx/~ = 0.02 and 104 trajectory samples for (left panel) an exact
MPS representation with chains of length L = 14 and (right panel) non-exact MPS
representation for L = 20.

5.1 Comparison of stochastic approaches for the dephasing noise D1

In this section we compare the efficiency of the two stochastic approaches in order to calculate
two-time correlation functions.

We calculate the correlation function from Eq. 45 for the spin model with the dissipator
D1. The choice for the correlation functions allows us to only use two states, i.e. |χ±R 〉, in the
method by Mølmer et al.

First, we investigate the cost of generating a single two-time trajectory sample with MPS
methods. To this end, the entanglement entropy is evaluated for all times t > t1. As it is
directly linked to the needed bond dimension, it serves as an architecture-free measure of the
required resources in terms of run time and memory consumption. In Fig. 9 we show the von
Neumann entropy for the two branches in the Breuer approach, where |φ(t1)〉= A |ψ(t1)〉, as
well as for the |χ±R 〉 branches of the Mølmer procedure for different parameter sets and system
sizes. As the results for the two Mølmer branches are indistinguishable in the plot, we only
present data for |χ+R 〉. Besides the MC average we also show the maximum measured entropy
over all sampled trajectories and the 1σ interval of the measured standard deviation. In the left
panel we use an exact MPS representation for L = 14 sites in order to avoid biases introduced
by the truncation. We see that the entropy increases over time and the statistical deviation
increases in all cases. However, for both parameter sets presented it is evident that the two
branches of the Breuer approach generate significantly less entropy than the Mølmer branches.
Furthermore, a strong dependence on the model parameters exists. The von Neumann entropy
is much smaller for large anisotropy parameters Jz/Jx . In the right panel of Fig. 9 larger system
size L = 20 are shown. The total von Neumann entropy generated (Jz/Jx = 2) is larger for
larger system sizes. However, concerning the behavior of the different approaches the findings
of the small system size are confirmed that the von Neumann entropy in the Mølmer approach
grows a bit faster than the one of the approach by Breuer et al.. Another important factor is the
convergence of the Monte-Carlo averages with respect to the number of samples. We present
the scaling of the standard deviation of the mean with the number of samples at different time
points in Fig. 10. As the sampling is statistically independent we observe an inverse square
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Figure 10: Standard deviation of the mean of the two-time correlation function in
dependence of the number of Monte-Carlo samples R measured at four different
times t2 > t1. The black dashed line is a guide to the eye and data is shown for
the interaction strengths Jz/Jx = 2 (top panel) and Jz/Jx = 20 (bottom panel),
L = 14, ~γ/Jx = 2, t1Jx/~ = 5, an exact MPS representation and a time step of
∆tJx/~= 0.02.

root scaling in all cases. However, this is more than one order of magnitude smaller for the
joint evolution suggested by Breuer et al. than for the evolution of Mølmer et al.. In addition,
the standard deviation is smaller at later times, which indicates the approach of the unique
infinite temperature steady state.

In summary of this section, we can conclude, that for the specific model and parameter
sets considered here, the approach of Breuer et al. is favorable over the one by Mølmer et al.
in terms of both, memory and run time.

5.2 Comparison of Monte-Carlo wave function and purification method for D1

After having identified the approach by Breuer et al. as superior compared to Mølmer et al.
for the considered situation, we compare this approach to the purification method. Since
the exact increase of the bond dimension is unknown in both cases, the trade-off between the
larger Hilbert space and the cost of sampling many trajectories needs to be evaluated carefully.

We compare the accuracy of the two-time correlation function Cd(t2, t1) normalized to
the value at t1 during the dissipative evolution of a spin-1/2 chain initially prepared in the
Neel state with bulk dephasing, i.e. using the dissipator D1. We previously performed such
calculations in Ref. [1] and analyzed there the time step required to obtain a good accuracy. In
the following we use these time steps for our comparison. Fig. 11 shows the results obtained by
the purification method with different values for the bond dimension. This method converges
faster in terms of the bond dimension for larger values of the dissipation strength and smaller
system sizes. Since it is not clear at which time the greatest inaccuracy exists, we use the
maximum deviation of the normalized two-time correlations from the results of the largest
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Figure 11: Convergence of the purification approach for spin-1/2 chains of different
length L, different dissipation strengths and Jz/Jx = 2. We chose a vanishing trun-
cation goal ε = 0 to enforce the realization of the bond dimension D and use a time
step ∆tJx/~= 0.05 and t1Jx/~= 5.

achievable bond dimension Dmax over the entire time as a measure for the error

∆max(D) =max
t2

��

�

�

�

C1(t2, t1, D)
C1(t1, t1, D)

−
C1(t2, t1, Dmax)
C1(t1, t1, Dmax)

�

�

�

�

�

. (46)

The two-time correlation C1(t2, t1) which is calculated using bond dimension D is denoted by
C1(t2, t1, D). Let us note that this measure for the error not only measures the ’pure’ truncation
error, since the trajectories with a different bond dimension also have a different stochastic
nature.

The results for the stochastic sampling approach presented in Fig. 12 point in a similar
direction, i.e. stronger dissipation and smaller systems require a smaller bond dimension to
yield reliable results. Surprisingly, the convergence of the stochastic approach with increasing
the bond dimension is generally much slower compared to the purification method. In addi-
tion, the accuracy is also influenced by the number of stochastic samples taken. To capture
the error from the stochastic sampling, we first define the maximum value of the standard
deviation of the mean in time as

σmax(D) =max
t2

§

σmean

�

C1(t2, t1, D)
C1(t1, t1, D)

�ª

(47)

and then the total error for the MCWF approach as the maximum of∆max(D) and σmax(D). As
can be seen in Fig. 13, increasing the number of samples used, the sampling error decreases.
Further, with increasing bond dimensions, the truncation error becomes less important and
∆max(D) becomes of the same order as σmax(D).
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Figure 12: Convergence of two-time correlations obtained from MCWF using the
method by Breuer et al. for different system sizes L and dissipation strengths and a
spin interaction anisotropy Jz/Jx = 2 with t1Jx/~ = 5. Here we use the truncation
goal ε = 0 and a time step ∆tJx/~ = 0.02 for ~γ/Jx = 1 and ∆tJx/~ = 0.002 for
~γ/Jx = 10. The bond dimension D and the number of MC samples R are given for
each curve.
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Figure 13: Error estimation of the MCWF computation of the normalized two-time
correlator Cd=1(t2, t1) for L = 16 sites, ~γ/Jx = 1, Jz/Jx = 2, t1Jx/~= 5 and a time
step of ∆tJx/~= 0.02. The solid lines show the MPS truncation error ∆max and the
dashed lines show the statistical errorσmax for different number of trajectories R. The
statistical error becomes dominant when choosing the bond dimension sufficiently
large. Here ∆max is calculated with respect to the results with D = 500 and R= 104.

Another important fact to consider is the dependence of the choice for the time step on the
dissipation strength and the system size in the MCWF approach as mentioned in the discussion
of Fig. 4. Fig. 14 confirms that∆tJx/~= 0.02 is a suitable time step for the dissipation strength
~γ/Jx = 1. Using the extrapolation indicated in Fig. 4 we estimate ∆tJx/~ ≈ 0.002 as a
potential step size for ~γ/Jx = 10. However, the convergence analysis reveals that this is still
not sufficient to obtain high quality simulation results. We find that larger dissipation strengths
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Figure 14: Time step convergence of MCWF approach for different dissipation
strengths for a chain of L = 16 spins, Jz/Jx = 2, t1Jx/~ = 5, truncation goal ε = 0
and a bond dimension D = 500. The sample size is 104.

require a very small time step for MCWF simulations in this cases, which causes substantially
longer run times and additionally increases the error caused by the MPS truncations, as more
gate application with subsequent singular value decompositions are needed to reach a certain
simulation time.

With the introduced benchmark strategy, i.e. using

Error(D) =

¨

∆max(D) : purification

max {∆max(D),σmax(D)} : MCWF
(48)

as an error measure for the two approaches, it is now possible to compare them quantita-
tively. The dependence of the error on the bond dimension is presented in Fig. 15 for two
different system sizes and dissipation strengths. While a weak dependence on the system size
is noticeable, the dissipation strength turns out to be the decisive parameter. For the purifi-
cation calculations the convergence regarding the bond dimension is much faster for strong
dissipation. The accuracy of the stochastic sampling is relatively quickly dominated by the
statistic error, so that the behavior with the bond dimension appears to be almost constant.
Consequently, there are crossing points above which the accuracy of the purification method
is better for the same bond dimension.

To put these results into the context of realistic numerical resources, we show in Fig. 16
the required run time for a certain error on a computer cluster consisting of machines with
2.6 GHz clock frequency and sufficient memory resources. In case of strong dissipation, the
generation of a single trajectory already takes longer than the evolution using the purification
of the reshaped density matrix due to the necessity of a much smaller time step. For weaker
dissipation strengths the run time of a single trajectory becomes comparable to the purification
approach. However, the total run time of the stochastic sampling computation, requiring a
sample size of the order 104 trajectories, is orders of magnitude larger than the full evolution,
even with a massive parallelization of the sampling process. This means that the purification
approach in these cases is strongly favorable over the stochastic approach.

5.3 Comparison of purification and stochastic approach for local dissipation D2

To demonstrate the strong influence of the model and the initial state on the method choice,
we continue by supplementing the findings of the last chapter with investigating results of
another set-up. For this purpose, we turn to the dissipator D2, which only contains one jump
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for Jz/Jx = 2 and t1Jx/~= 5. For the purification data a time step of∆tJx/~= 0.05
has been used and for the MCWF method ∆tJx/~ = 0.02 for ~γ/Jx = 1 and
∆tJx/~ = 0.002 for ~γ/Jx = 10. As a reference to calculate the ∆max used in
Error(D) we choose Dmax = 900 for ~γ/Jx = 1 and Dmax = 110 for ~γ/Jx = 10
for the purification method. For the MCWF approach we consider Dmax = 1000 with
R = 104 for L = 16 and ~γ/Jx = 1, Dmax = 1000 with R = 2500 for L = 16 and
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Figure 16: Run time measurement to achieve certain numerical accuracy provided by
the measured error of the two-time correlation functions using machines with clock
frequency 2.6 GHz. The run time of the creation of single Monte-Carlo sample is
compared to the full run time of a purification based computation. Parameters are
the same as in Fig. 15.

operator given by the spin lowering operator S−c acting on the central site of a system with an
odd number of spins. As this jump operator violates the conservation of the total magnetiza-
tion during the Lindbladian evolution, it is not possible to exploit symmetry properties in the
evolution of the purified state. Nevertheless, the non-unitary evolution in the deterministic
part of the stochastic sampling conserves the total magnetization and only the jump applica-
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Figure 17: (left panel) Deviation of ground state energy after purification from the
value obtained by DMRG in the original Hilbert space for different system size L.
(right panel) The difference between ground state energy obtained by DMRG in the
original Hilbert space for two bond dimensions D and Dmax. The maximum bond
dimension fulfills truncation error ε = 10−12 and varies from Dmax = 40 for system
size L = 15 to Dmax = 90 for system size L = 49. The ground state has been calculated
for Jz/Jx = 0.5.

tions switch between different symmetry blocks, so that the MCWF evolution can be calculated
using conserved quantum numbers.

While the initial state was a product state in the previous chapter, the system is here initially
prepared in the ground state of the equilibrium model accessed with the density matrix renor-
malization group (DMRG) ground state search algorithm [56,73]. We have chosen the ground
state of an anisotropy of Jz/Jx = 0.5, which is located in the gapless Tomonaga-Luttinger liq-
uid phase of the Hamiltonian and requires a sizable bond dimension for its representation in
MPS form. As a result, a strong truncation is necessary when reshaping the corresponding
density matrix to a purified state in the doubled Hilbert space as described in Sec. 3.2.1. In
Fig. 17 (left panel) we show the bond dimension dependence of the deviation of the ground
state energy calculated after the reshaping process from the original value obtained by DMRG.
For small system sizes with less than 20 sites, the ground state energy can be reproduced after
the purification step with a medium sized bond dimension with less than 103 states taken into
account. However, even for slightly larger systems with up to 50 spins bond dimensions of
several thousand states are needed to achieve an accuracy of the ground state energy of only
10−3. In this case the purification step alone takes more than three days of run time. On the
other hand in Fig. 17 (right panel) the energy difference between two ground states in the
original space with two different bond dimensions D and Dmax is plotted for different system
sizes. One sees that without purification the bond dimension below 100 is large enough to
get the convergence of ground state energy of 10−8.

To estimate the numerical effort and the influence of inaccuracy in the representation of
the ground state on time evolution for the purification method we compare the equal-time
correlation functions for different values of the bond dimension in Fig. 18. As the equal-time
correlations represent the initial condition for the two-time correlation functions at time t1, the
accuracy of their calculation is crucial in order to obtain the two-time correlation functions.
The direct comparison in Fig. 18 shows that the purification method reaches a comparable
accuracy to the MCWF approach for D ≥ 600. Even for these bond dimensions sizable devia-
tions occur of the order of 10−3. Looking at the associated run times, as summarized in Tab. 1,
shows that the simulation based on purification takes about ten times as long for such a large
bond dimension as compared to a parallel implementation of the stochastic sampling.

Based on the substantially larger run time (of a few weeks to months), the purification be-
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the dissipator D2. We present the deviation of the simulation results using the purifi-
cation approach with different values for the maximal bond dimension from MCWF
data using 3 × 104 samples and D = 500 (solid lines). We evolve a chain of size
L = 29 with ~γ/Jx = 2 and Jz/Jx = 0.5. The time step is chosen as ∆tJx/~ = 0.05
in all cases. The dashed lines mark the time average over the presented time interval
and the dashed-dotted line is the time-dependency of the standard deviation of the
Monte-Carlo average.
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Figure 19: Evolution of the normalized two-time correlation functions computed by
the MCWF method by Breuer et al. The simulation has been done for ~γ/Jx = 2,
Jz/Jx = 0.5, D = 500, t1Jx/~= 1, ∆tJx/~= 0.05 and 104 trajectory samples.

comes very inefficient for the analysis of a physical situation. Even though the actual run time
on a single core would be comparable, here, the MCWF scheme is preferential since the ’wait-
ing time’ to obtain the results makes a thorough analysis of a physical question more feasible.
The waiting time to obtain the results can be easily shortened by the trivial parallelization of
the stochastic approach.

To conclude the analysis, it remains to be demonstrated that the two-time correlation func-
tions are accessible by the MCWF scheme. For this purpose we show in Fig. 19 the two-time
correlation functions for the system sizes L = 25 and L = 29 which would be very inaccurate
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Table 1: Table of run times for evaluating equal-time correlation functions from
Fig. 18. The MCWF simulation was executed in parallel on 10 cores. Parameters
are the same as in Fig. 18.

method bond dimension run time [hours]
MCWF 500 84.47

purification 100 2.93
purification 200 29.04
purification 300 110.28
purification 400 355.24
purification 500 818.38
purification 600 829.88

and time consuming to reach by the purification method. We see that the two time function
is rising in time, which signals rising fluctuations. A detailed study of the arising physics goes
beyond the present work with a strong technical focus.

6 Conclusion

To conclude we have presented a comparison of three different MPS based methods for the
calculation of two-time functions in open quantum systems. This comprises the purification
approach and two different approaches based on the stochastic unraveling of the Lindblad
dynamics. First we compared the two stochastic approaches in the situation of an XXZ spin
chain subjected to a dephasing noise starting initially in the classical Neel state. In this situation
we find a clear preference for the stochastic approach suggested by Breuer et al. over the
approach suggested by Mømler et al.. This is due to the better convergence of the trajectories
used in the approach by Breuer et al.. However, the purification approach is even much more
efficient for the considered situation. We would like to emphasize that this conclusion that
the purification approach was the most efficient also hold for correlations of the type S+S−.
Additionally, we considered the dynamics of a XXZ spin chain subjected to a local application
of the jump operator S−c starting from a Tomonaga-Luttinger liquid. This changes drastically
the efficiency of the methods and the stochastic approach becomes more efficient than the
purification approach. There are several reasons for this. First, already the representation of
the Tomonaga-Luttinger liquid in the purified form is resource demanding. Secondly, in the
following time-evolution the conservation of the magnetization is not fulfilled anymore. These
reasonings also hold for correlations of different type. We therefore expect that the purification
approach is valuable if the initial state is easily represented within the purified space. Further,
a strong symmetry of the Linbladian enabling the use of conserved quantities is of advantage.
In comparison the stochastic wave function approach is well suited also to represent difficult
initial states and the following Lindblad evolution. However, the presence of many jumps,
as for the case of strong dephasing noise, calls for a very low time-step which makes the
trajectory approach less efficient. We would like to point out that even though the comparison
was mainly performed for short range correlations d = 1, since the computational efficiency
up to the application of the operator at time t2 is independent of the chosen distances, all our
findings will also hold for larger values of the distances.
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