
SciPost Phys. Core 4, 020 (2021)

The derivative expansion in asymptotically safe quantum gravity:
general setup and quartic order

Benjamin Knorr?

Perimeter Institute for Theoretical Physics,
31 Caroline Street North, Waterloo, ON N2L 2Y5, Canada

? bknorr@perimeterinstitute.ca

Abstract

We present a general framework to systematically study the derivative expansion of
asymptotically safe quantum gravity. It is based on an exact decoupling and cancellation
of different modes in the Landau limit, and implements a correct mode count as well as
a regularisation based on geometrical considerations. It is applicable independent of the
truncation order. To illustrate the power of the framework, we discuss the quartic order
of the derivative expansion and its fixed point structure as well as physical implications.
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1 Introduction

One of the major open problems in fundamental physics is the formulation of a consistent
quantum theory of gravity. Despite of several decades of research effort that went into it,
no completely consistent and experimentally verified solution exists so far. A big contributor
to this status of the field is that quantum gravity effects are expected to be extremely small,
and even one-loop effects appear to be unmeasurably tiny at the present resolution of experi-
ments. Thus a lot of guidance must come from theoretical considerations and consistency with
Standard Model physics.

A conservative approach to construct a theory of quantum gravity was theorised by Wein-
berg [1], and goes under the name of Asymptotic Safety. It tries to achieve the quantisation of
gravity via postulating quantum scale invariance at high energies induced by a second order
phase transition. On the technical level, this translates to an interacting fixed point of the
renormalisation group flow. Results obtained in 2+ε dimensions indeed suggest the existence
of such a fixed point, at least near two dimensions [2–7], but the extrapolation to the physical
case of four dimensions remained difficult for some time.

With the advent of modern, non-perturbative functional renormalisation group techniques
[8–10], Asymptotic Safety picked up speed again. The seminal paper by Reuter [11] indeed
showed evidence for the existence of a fixed point in four dimensions within a minimal ap-
proximation. Since then, a growing body of work [12–54] based on evermore improved ap-
proximations solidifies the picture, even when matter is included [55–73]. Phenomenological
applications have been discussed in [74–91]. For reviews of the field, see [92–98], and for
a critical discussion of open problems, see [99, 100]. Lattice formulations like Euclidean or
Causal Dynamical Triangulations [101–109] indicate the existence of a second order phase
transition as well.

One systematic way to study the stability of these results is the derivative expansion. In
this, interactions which include up to a set amount of derivatives acting on the fundamental
field are taken into account. In the context of gravity, this corresponds to powers of curvature
tensors and their covariant derivatives. Surprisingly, to this point a complete non-perturbative
discussion of the fourth order approximation has not been carried out in the context of Asymp-
totic Safety. This has both conceptual and technical reasons. Conceptually, the functional
renormalisation group relies on the choice of a regulator. The regularisation of operators in
a curved spacetime is much more involved than in a flat spacetime. Only partial results have
been obtained regarding this problem, and most rely on the particular structure of the theory
at second order in derivatives. On the technical side, the computational complexity increases
tremendously with the approximation order.

In this paper, we provide a solution to the problem of regularisation in asymptotically safe
quantum gravity motivated by geometrical arguments. It is based on the decomposition into
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gauge variant and invariant components of the field, and can be applied to any order of the
derivative expansion, including resummations in terms of form factors. We also provide new
technical insights that allow for a generic implementation of the computation of the renormali-
sation group running. To illustrate the framework, we compute the complete non-perturbative
renormalisation group running in quantum gravity to fourth order in the derivative expansion.

The main results that we obtain in the concrete computation are as follows:

• Fourth order gravity admits a non-perturbative fixed point.

• Spacetimes with a negative (positive) Euler characteristic dominate (are suppressed in)
the Euclidean path integral of Asymptotic Safety, whereas spacetimes with vanishing
Euler characteristic contribute with unit strength.

• While the inclusion of the square of the Weyl tensor provides a well-controlled extension
of the Reuter fixed point, the squared Ricci scalar introduces some kind of instability into
the results. This has been observed before, and the inclusion of higher order terms seems
to stabilise the system [19,21,23,29,32,34,36,39,43,47,51–53,110].

This paper is structured as follows. In section 2 we briefly discuss the functional renor-
malisation group (FRG) which lies at the heart of our investigations of Asymptotic Safety. In
particular, we define a set of criteria that well-behaved regulators and flows should satisfy.
Section 3 discussed the decomposition of fields into gauge variant and invariant components.
We first provide a simpler discussion in the context of an Abelian gauge field, and then inves-
tigate how much we can transfer the structure to the gravitational case. This discussion leads
to our proposal of a well-motivated regularisation scheme in gravity. Sections 4, 5 and 6 as
well as appendix A collect some technical machinery that allow us to decrease the technical
complexity to a manageable level. The setup is illustrated in section 7, where we carry out
the computation to fourth order in derivatives. We then conclude and provide an outlook in
section 8.

2 Functional renormalisation group

The tool that we will use to investigate the non-perturbative renormalisation group flow is the
functional renormalisation group. Its central object is the effective average action Γk, which
interpolates between a microscopic action S in the limit k →∞, and the standard quantum
effective action Γ at k = 0. Decreasing the fiducial scale k then corresponds to integrating
out modes in the Wilsonian sense. The dependence of Γk on k is governed by the following
functional integro-differential equation [8–10]:

∂tΓk =
1
2

STr
��

Γ
(2)
k +Rk

�−1
∂tRk

�

. (1)

In this, ∂t = k∂k is the logarithmic scale derivative, Γ (2)k denotes the second functional deriva-
tive of Γk, Rk is a regulator term which acts as a momentum-dependent mass, and the super-
trace STr indicates a sum over discrete (e.g. spacetime or gauge bundle), and an integral over
continuous (e.g. momentum) indices. For reviews of the FRG see [97,111–115].

From the flow equation (1) we can extract the beta functions of a theory, i.e., (integro-
)differential equations that govern the scale dependence of couplings. Typically, one discusses
them for the dimensionless versions of couplings, where we multiply the coupling with a power
of the scale k to make it dimensionless. Combined zeros of all beta functions are called fixed
points. We will indicate fixed point values of couplings by an asterisk. If all couplings vanish
at a given fixed point, it is called Gaussian, otherwise we call it interacting or non-Gaussian.
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A fixed point is then characterised by its critical exponents, which describe the linearised flow
around it. They are defined as minus the eigenvalues of the matrix of partial derivatives of
the beta functions with respect to the couplings, evaluated at the fixed point. Positive (neg-
ative) critical exponents indicate relevant (irrelevant) directions, so that the flow is attracted
towards (repelled away from) the fixed point when increasing the scale k. To end up with a
predictive theory, a fixed point can only have finitely many positive critical exponents, since
they correspond to the number of independent measurements that one has to perform to fix
the theory uniquely. An asymptotically safe fixed point is then defined as an interacting fixed
point with a finite number of positive critical exponents.

In quantum gravity, we have to add a gauge fixing term to the action to make the propaga-
tor that appears in the flow equation well-defined. On the practical level, this is implemented
with the help of the background field method. We split the metric g into an arbitrary back-
ground metric ḡ and (not necessarily small) fluctuations h around it,

gµν = ḡµν + hµν . (2)

Other (non-linear) ways to perform this separation have been investigated, see e.g. [28, 30,
32, 33, 39, 42, 51, 57, 116–122] for examples in the context of Asymptotic Safety. Such a split
is also necessary to define the regulator term. The advantage of this method is that invariance
with respect to background diffeomorphisms can be maintained in every step. However, as
a downside, the regulator and the gauge fixing term break certain Ward identities, so that in
principle one has to deal with modified Ward identities that have to be fulfilled together with
the flow equation. In this work, we will focus on a background field approximation, which
neglects these issues and corresponds to setting the fluctuation field h to zero after taking the
second variation. For an in-depth discussion of these issues, see e.g. [15,18,23–25,27,38,40,
41,46,49,50,56,59,67,71,98,122–140].

In practice, we generally have to make approximations to solve the flow equation (1). Only
in special cases, an exact solution is possible, see [141]. For recent progress in constructing
exact solutions to the flow equation, see also [142]. In the following, we will discuss a (co-
variant) derivative expansion of the effective average action. The order of the expansion is
then the maximal number of derivatives that act on the metric.

A generic problem in this setup is the systematic choice of a regulator. Partial results have
been obtained in the literature, notably [12], but they typically rely on technical assumptions
that potentially do not carry over to higher orders, or only at considerable technical cost.
Two of the goals of this paper are to establish general criteria that a good flow should have,
and a generic way to choose a regulator which gives rise to a good flow. Before we enter
this discussion, we briefly note that in this paper we consider a Euclidean flow. Results with
Lorentzian signature can be found in [13,37,100,117,143–148].

2.1 Criteria for a successful flow

Having introduced the machinery, we will now discuss some criteria that we expect a flow to
have. The first condition is what we call a correct mode count. The idea is that the flow of the
cosmological constant should have a very generic form, and effectively counts the number of
physical degrees of freedom. For example, for a free scalar field, the contribution to the flow
of the cosmological constant is

1
2

1

(4π)
d
2

1

Γ
� d

2

�

∫ ∞

0

dy y
d
2−1 ∂tRk(y)

y +Rk(y)
. (3)

In this, the factor of a half comes directly from the flow equation (1), and the rest of the
prefactor of the integral, as well as its measure y

d
2−1, come from the heat kernel. The integrand
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is then just the product of the regularised propagator and the scale derivative of the regulator.
We thus demand that the contribution of any physical degree of freedom comes in this form:
an integral over the full regularised propagator with the prefactors as above.

A second criterion that we want to implement is that the flow should admit a finite Landau
gauge limit. It corresponds to a strict implementation of the gauge condition, and is a fixed
point of the flow [41, 149]. This puts indirect constraints on the regulator as well, which are
however hard to spell out concretely. A well-motivated setup with an a priori guaranteed finite
Landau limit will be presented below. In any case, this can be easily checked a posteriori, once
the flow is computed.

A third criterion concerns the choice of operator that is regularised, and the tensor structure
of the regulator. As a convention, we will always assume that the operator is normalised such
that the (principal) Laplace part of the operator comes with a unit prefactor. We then require
that the regularised operator, and the tensor structure of the regulator, have a physical or
mathematical motivation. We will discuss this more concretely in the next section.

3 Field decompositions in curved spacetime

To solve the problem of finding a suitable regularisation, we will now discuss the decompo-
sition of fields into components. A guiding principle will be that we rescale the modes such
that no non-trivial Jacobians are introduced into the path integral. As a simple example, we
will start with an Abelian gauge field, for which we can easily derive all necessary ingredients.
We then make a short digression to discuss more general vector fields, and discuss their regu-
larisation. This includes the gravitational Faddeev-Popov ghost, which has a slightly different
structure than an Abelian gauge field. Finally, we will discuss the mode decomposition of the
graviton and the regularisation strategy that this suggests.

Let us mention that in practice, it is easier to avoid working with decomposed fields when
it comes to computing functional traces like in (1). We will provide an argument for this in
subsection 3.4. The aim of this section is to motivate our choice of regularisation from a ge-
ometric perspective. In concrete computations, we then implement the regularisation on the
level of the full fields with suitable projectors so that we can use standard heat kernel tech-
niques. We will nevertheless provide all details in the hope that some readers with different
applications might find them useful.

3.1 Transverse decomposition of an Abelian gauge field

We will now discuss the decomposition of an Abelian gauge field into modes, and their respec-
tive regularisation. The starting point will be the gauge fixing condition, from which we derive
the decomposition. We then rescale some of the fields to eliminate the need of Jacobians. Af-
ter a discussion of the projectors onto the different modes, we discuss the natural operator
that arises from the decomposition, including its heat kernel properties. This will suggest a
particular way to regularise the theory. Finally, we will make some comments on the origin of
the natural operator, and briefly discuss how to regularise higher derivative Abelian theories.

Gauge fixing condition The standard choice for a linear, covariant gauge fixing is

FµAµ = DµAµ , (4)

where D is the covariant derivative. The sought-after decomposition should be such that only
the gauge mode appears in this expression, i.e., the physical mode of the decomposition is
annihilated by F. In this case, it means that the physical mode is (covariantly) transverse.
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Transverse decomposition By this argument, the decomposition into gauge invariant and
gauge variant modes is the well-known decomposition into transverse and longitudinal com-
ponents,

Aµ = AT
µ + Fµφ̃ ≡ AT

µ + Dµφ̃ , DµAT
µ = 0 . (5)

Here, AT
µ is the gauge invariant transverse mode and φ̃ a scalar field underlying the longitu-

dinal gauge variant component. In consequence, acting with the gauge fixing operator on the
field gives

FµAµ = DµDµφ̃ = −∆φ̃ , (6)

where we introduced the Laplacian

∆= −DµDµ . (7)

At this point, let us mention that there is still a potential gauge redundancy in the transverse
mode. It can be shifted by the derivative of a solution to the Laplace equation,

AT
µ 7→ AT

µ + Dµω , ∆ω= 0 . (8)

We will not address this problem in this work.

Jacobian When calculating an integral, every variable transformation gives rise to a Jaco-
bian. This is also the case when we want to calculate a path integral and perform the de-
composition (5). The arising Jacobian can be calculated by a standard trick [150]. We can
consider the exponential integral

∫

DAe−
∫

dd x
p

g AµAµ '
∫

DAT Dφ̃JA e−
∫

dd x
p

g
�

AT
µATµ+φ∆φ

�

' JA (det∆)−1/2 . (9)

Since the overall normalisation of the path integral is inessential, we neglected overall factors.
We also dropped boundary terms upon integration by parts. The Jacobian has to be chosen to
cancel the determinant, so that

JA = (det∆)1/2 . (10)

Avoiding the Jacobian We would like to avoid the introduction of such determinants, and
formulate a decomposition which has field components of the same mass dimension. This is
not the case for (5) - the scalar φ̃ has a relative mass dimension of one unit less in comparison
to A and AT. In this case, the solution is straightforward: we define a new scalar field

φ =
1
p
∆
φ̃ . (11)

This is well-defined as long as we exclude potential negative or zero modes of the Laplacian.
With this definition, the new decomposition of the vector field

Aµ = AT
µ + Dµ

1
p
∆
φ , (12)

does not give rise to a Jacobian. A path integral over A is thus the same as a path integral over
AT and φ, up to the aforementioned subtleties of individual modes.
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Projectors Let us now write down the projectors onto the transverse and longitudinal com-
ponents. It is easy to see that

ΠL ν

µ = −Dµ
1
∆

Dν , ΠT ν

µ = δ
ν
µ −Π

L ν

µ , (13)

project onto the longitudinal and transverse components,

�

ΠLA
�

µ
= Dµ

1
p
∆
φ ,

�

ΠTA
�

µ
= AT

µ . (14)

Anticipating the discussion for the graviton case, note that the projector onto the gauge mode
is entirely built up from the gauge fixing operator, as we can write

ΠL ν

µ = Fµ
1

FαFα
Fν . (15)

This might seem trivial in the Abelian case, but the structure is true more generally, and a
consequence of demanding that different modes are orthogonal to each other.

Natural operator In connection with the projection operators, we will introduce the concept
of the “natural” operator associated with the field, ∆A. We define it as an operator of Laplace
type which commutes with the projectors, and has a compatible index structure such that it
maps a given field to a field with the same index structure. The principal part of the operator is
then normalised to one. For a vector field the operator ∆A can be constructed easily. Observe
that

�

∆δ ν
µ + R ν

µ

�

ΠL ρ

ν Aρ = −DµDρAρ = Π
L ν

µ

�

∆δ ρ
ν + R ρ

ν

�

Aρ , (16)

so that
∆

ν
Aµ =∆δ

ν
µ + R ν

µ ,
�

∆A,ΠT
�

=
�

∆A,ΠL
�

= 0 , (17)

is the sought-after operator. When calculating the renormalisation group running of couplings,
using this operator simplifies calculations. The above operator is the unique local, Laplace-type
operator whose set of eigenfunctions splits into transverse and longitudinal eigenfunctions.

Heat kernel coefficients of∆A Let us illustrate the special role of the operator∆A by consid-
ering its heat kernel coefficients. While it has been found that the heat kernel coefficients of a
pure Laplace operator in the space of transverse functions is singular in even dimensions [151],
we will illustrate now that this is not the case for the natural operator (17). To that extent, we
consider the (traced) heat kernel coefficients in the longitudinal sector,

HL
1(∆A) = TrΠL e−s∆A = −TrDµDν

�

e−s∆A

∆A

� ρ

ν

= −
∫ ∞

0

dt Tr DµDν
�

e−(s+t)∆A
� ρ

ν
. (18)

The trace can be calculated with standard off-diagonal heat kernel techniques [151, 152].
One finds that the heat kernel coefficients agree precisely with the heat kernel coefficients
corresponding to a pure Laplacian acting on a scalar,

HL
1(∆A) = H0(∆) . (19)

This should not come as a surprise - the gauge fixing operator equips the longitudinal scalar
φ with a plain Laplacian,

∫

dd x
p

g
�

FµAµ
�2
=

∫

dd x
p

gφ∆φ . (20)
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One different way to interpret (19) is that the vector version of the Laplacian acting on a scalar
is the operator ∆A.

From this, we can calculate the transverse heat kernel,

HT
1 (∆A) = TrΠT e−s∆A = Tr e−s∆A −HL

1(∆A) . (21)

The total contribution of a free Abelian gauge field in curved spacetime is thus

H1(∆A) = HT
1 (∆A) +HL

1(∆A) = Tr e−s∆A . (22)

This seems like a trivial statement - the contribution of a vector is the sum of the contributions
of the individual modes. In a quantum field theory setting, where regularisation is necessary,
this becomes a guiding principle. Only those regularisations that preserve this additive struc-
ture are proper. In particular, if one were to regularise only the flat part of the operator, this
sum rule is violated, and heat kernel coefficients diverge in even dimensions [151]. This find-
ing has particular relevance for the flow equation. For a classification of different regulator
types see [153].

We thus can finally formulate our regularisation strategy for an Abelian vector field. The
transverse part is regularised using the operator ∆A, so that1

RT
k(∆A) = k2RT

k(∆A/k
2)ΠT . (23)

In the longitudinal sector, we can either also adapt this operator if in practice we work without
the explicit decomposition,

RL
k(∆A) = k2RL

k(∆A/k
2)ΠL , (24)

or equivalently, we use a pure Laplacian if we use the decomposition,

R
φ

k (∆) = k2RL
k(∆/k

2) . (25)

In practice, it is useful to expand the regulator in powers of curvature. This can be done easily,
see e.g. [154]. This is possibile even within a form factor setup, see e.g. appendix C of [139].

General actions and identifying propagators and interactions Coming back to a more
general scope, the precise shape of the operator ∆A is no coincidence. The action of a free
Abelian gauge field is proportional to the square of the field strength

Fµν = DµAν − DνAµ . (26)

The corresponding two-point function of a free Abelian gauge field reads

∆δ ν
µ + DµDν =

�

∆AΠ
T
� ν

µ
, (27)

which is precisely the natural operator found above, together with a projector onto the trans-
verse mode. This observation has a profound consequence for the definition of the non-
perturbative Abelian gauge field propagator in curved spacetime. The most general term
quadratic in the Abelian gauge field strength can be written as

∫

dd x
p

g FµνE ρσ
µν Fρσ , (28)

1We generally take the convention that Rk has a dimension of k2, whereas Rk is dimensionless. In addition,
the latter is also defined to have a dimensionless argument. This gives rise to various factors of k2 in some of the
equations.
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where E is some operator which is independent of A. If we want to preserve the above struc-
ture, namely that this action gives rise to a two-point function of the transverse Abelian gauge
field of the form2

�

e(∆A)∆AΠ
T
� ν

µ
, (29)

with an arbitrary function e which defines Abelian gauge field propagation in curved space-
time, we have to chose

E ρσ
µν = e

�

∆δ
[ρ

[µ δ
σ]

ν] + 4R [ρ
[µ δ

σ]
ν] − 2R ρσ

µν

�

. (30)

The operator in brackets can be derived by demanding

−DµE ρσ
µν Fρσ∝ (e(∆A)∆AA)ν , (31)

together with the assumption that it is a local Laplace-type operator. The above gives a unique
prescription of how to split the action of an Abelian gauge field in an arbitrarily curved space-
time into propagator and interaction terms: first collect the pieces that survive in the flat
spacetime limit, then complete the operator to E to lift it into curved space. This represents a
minimally coupled Abelian gauge field with a non-trivially momentum-dependent propagator.
Any term with two Abelian gauge field strengths and some power of curvature that is not of
this form is then a genuine interaction term. Note that the regularisation prescription that we
outlined above is still applicable.

3.2 General vector field

Before we continue with the case of the graviton, let us briefly discuss the regularisation of
more general vector fields. This will also cover the gravitational Faddeev-Popov ghost. A
general second order two-point function for a vector looks like

∆ ν
µ =∆δ

ν
µ + bDµDν + Ẽ ν

µ . (32)

Here b is a number and Ẽ is a multiplicative operator (often referred to as endomorphism).
For the gravitational Faddeev-Popov ghost, and with the gauge fixing (41) defined below, we
have

b = 2
1+ β

d
− 1 , Ẽ ν

µ = −R ν
µ . (33)

For later reference, we will call this ghost operator ∆c ,

∆ ν
cµ =∆δ

ν
µ +

�

2
1+ β

d
− 1

�

DµDν − R ν
µ . (34)

Let us rewrite the operator ∆ in terms of the operator ∆A:3

∆=∆A

�

ΠT + (1− b)ΠL
�

+ E , (35)

2Formally, we define a function of an operator by either its Taylor series, or an inverse integral transform
of exponential type, e.g., an inverse Laplace transform. This covers most interesting functions. In particular, it
includes the logarithm via

ln x =

∫ ∞

0

ds
e−s − e−sx

s
.

To prove some formulas, we will work with inverse Laplace transforms. All manipulations that we perform here
and later in the paper will however also go through without significant changes for functions like the logarithm.

3In this form we see that for the special case b = 1, the kinetic part of the operator is proportional to a projector,
and thus not invertible in a derivative expansion. For gravity, this corresponds to the singular gauge fixing β = d−1,
as has been noted before [28]. We will see the imprint of this in some parts of the trace (38) below.
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where we introduced the shifted endomorphism

E ν
µ = Ẽ ν

µ − R ν
µ . (36)

Due to the central role that is played by ∆A, we will still use it as the operator in our regu-
lator choice. This means that we treat E as the curvature interaction term. Concretely, the
regularised version of (35) reads

∆reg =
�

∆A+ k2Rk(∆A/k
2)
� �

ΠT + (1− b)ΠL
�

+ E . (37)

For simplicity, we chose the same regulator shape function in both sectors. This regularisation
satisfies the mode count requirement: the contribution of a vector trace in the flat limit counts
as d modes, independent of the value of b. As a matter of fact, for E = 0 the dependence on b
drops out. This is reasonable since when we decompose the vector into transverse and longitu-
dinal parts, we still have to canonically normalise the field φ. The rescaling then eliminates all
occurrences of b. The above regulator choice implements this idea in the presence of a finite
endomorphism. In turn, the flow equation automatically takes care of the above-mentioned
rescaling if we regularise like in (37).

With standard off-diagonal heat kernel methods, one can then derive the contribution of
the trace of a vector regularised in such a way within the FRG in a derivative expansion. In
general dimension d, it reads

T1 =
1
2

STr
�

(∆reg)−1 �ΠT + (1− b)ΠL
�

∂t[k
2Rk(∆A/k

2)]
�

=
1
2

STr

�

∑

n≥0

�

−
1

∆A+ k2Rk(∆A/k2)

�

ΠT +
1

1− b
ΠL
�

E
�n ∂t[k2Rk(∆A/k

2)]
∆A+ k2Rk(∆A/k2)

�

'
1
2

1

(4π)
d
2

1

Γ
� d

2

�

∫

p
g

�

d I1
1 +

d − 2
2

�

d
6
− 1

�

RI2
1 −

�

1+
1
d

b
1− b

�

E µ
µ I1

2

+ (d − 2)(d − 4)
�

d − 12
288

R2 −
d − 90

720
RµνR

µν +
d − 15

720
RµνρσRµνρσ

�

I3
1

+
��

d − 2
2
+

1
6

b
1− b

�

Rµν Eµν −
1
12

�

(d − 2) +
b

1− b

�

RE µ
µ

�

I2
2

+

�

�

1+
2
d

b
(1− b)2

�

1−
d + 1
d + 2

b
��

EµνEµν +
1

d(d + 2)
b2

(1− b)2
E µ
µ E ν

ν

�

I1
3

�

.

(38)

In the last line we neglected terms with more than four derivatives, and we introduced the
integrals

In
m = 2 kd−2(n+m−2)

∫ ∞

0

dz z
d
2−n

Rk(z)− zR′k(z)
(z +Rk(z))

m . (39)

Higher orders can be calculated systematically. As expected from the general form of the trace,
terms with m powers of E come with (m+ 1) powers of the propagator in the integrals. From
the prefactor of the integral of the volume term, we can explicitly see that the mode count of
d modes for a vector is implemented correctly.

Since later we are interested in d = 4, we have to be careful in the evaluation of (d−4)I3
1 .

One can show that
lim
d→4
(d − 4)I3

1 = 4 . (40)

3.3 Decomposition of the graviton

We will now turn our attention to the decomposition of the graviton. In doing so, we will try to
follow the same steps as for the Abelian gauge field. As it turns out, much of the construction
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can be done in a similar way, but there are some key differences. From the general theory of
irreducible representations, we anticipate a rank two transverse traceless tensor, a transverse
vector and two mixing scalars. The scalars can be diagonalised with respect to the gauge fixing,
so that one linear combination is gauge invariant, while the other is gauge variant, and will be
recombined with the pure gauge transverse vector. In the construction of the decomposition,
we took inspiration from [150], but with view on our goal of defining a useful regularisation
and avoiding Jacobians, our implementation differs in some details.

In the continuum approach to quantum gravity, the use of the background field method is
hard to avoid. Thus, as indicated earlier, in the discussion below we will make use of it and
construct the decomposition with respect to background quantities, indicated by an overbar.
For an alternative approach towards defining a decomposition with respect to the full metric,
see [23].

Gauge fixing condition Again we start by specifying a gauge condition. For gravity one
typically considers the one-parameter family of linear covariant gauges

F µν
α = δ (µα D̄ν) −

1+ β
d

ḡµνD̄α , (41)

where β is a gauge parameter that determines the way of how the two scalar modes mix to
give the gauge invariant and the gauge variant scalar mode.

Transverse traceless decomposition We make the following ansatz for the decomposition
of the metric fluctuation:

hµν = hTT
µν + 2Fαµνζα +Qµνθ ,

D̄µhTT
µν = 0 , ḡµνhTT

µν = 0 , Qµν =Q(µν) .
(42)

Here hTT is the transverse traceless mode, which is the gauge invariant spin two mode. The
pure gauge vector ζ is introduced by means of the gauge fixing operator, similar to the Abelian
case. We do not decompose it further into transverse and longitudinal components. The scalar
θ is then the gauge invariant scalar.

By construction, hTT is annihilated by the gauge operator,

F µν
α hTT

µν = 0 . (43)

We also require that the gauge condition also annihilates θ ,

F µν
α Qµνθ = 0 . (44)

Let us construct the operator Q. Observe that for the choice β = 0, the gauge fixing operator
is traceless, so that the gauge invariant scalar mode is the trace. This motivates the ansatz

Qµν = ḡµν − 2βQµν , (45)

where Q is symmetric. In the following we will assume that there is no term proportional to
the metric in Qµν. If there were such a term, we could pull it out and rescale the field θ to
enforce a unit coefficient as in the above equation.

Acting with the gauge fixing operator on this gives

F µν
α Qµνθ = −β

�

D̄α + 2D̄µQµα − 2
1+ β

d
D̄αQµµ

�

θ = 0 . (46)
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Let us now assume that β 6= 0 so that we can fix the operator Q. We can rewrite the equation
as

2D̄µ

�

Qµα −
1+ β

d
δ µ
α Qνν

�

θ = −D̄αθ . (47)

This equation tells us that acting with a derivative from the left on the operator Q and contract-
ing should essentially give back the derivative, i.e. it is some kind of longitudinal projector,
but with an unusual index structure. For that reason, let us make the ansatz

Qµν = D̄(µX
α

ν) D̄α , (48)

and derive the form of X so that the above equation is fulfilled. Note again that we could add
a term proportional to the background metric to Q, but this would only yield a total rescaling
of Q, as discussed above. With (48), we get

−D̄µθ =
�

D̄αD̄αX ν
µ + D̄αD̄µX ν

α − 2
1+ β

d
D̄µD̄αX ν

α

�

D̄νθ

= −
�

∆̄δ α
µ − D̄αD̄µ + 2

1+ β
d

D̄µD̄α
�

X ν
α D̄νθ .

(49)

We conclude that X must be the inverse of the operator in the brackets,

X =
�

∆̄δ ·· − D̄·D̄· + 2
1+ β

d
D̄·D̄

·
�−1

. (50)

In fact, this is precisely the kinetic operator of the Fadeev-Popov ghosts (34) associated to the
gauge fixing operator (41),

X =∆−1
c . (51)

This means that, up to the condition that

β < d − 1 , (52)

which is needed for positivity and invertibility, see (35), the operator and its inverse should
exist inside the first Gribov region.

Jacobian Having derived the decomposition into gauge invariant and gauge variant modes,
let us calculate the Jacobian that arises from this variable transformation. We consider the
same integral as for the case of the Abelian gauge field. Before we do that, we first define the
operator

Q†µν = ḡµν − 2β D̄αX (µ
α D̄ν) , (53)

which fulfils
∫

dd x
p

ḡ Y Qµνθ =

∫

dd x
p

ḡ (Q†
µνY )θ , (54)

upon neglecting boundary terms. By this it is clear that Q† annihilates the gauge condition,

Q†µνFαµν = 0 . (55)

Also, Q† annihilates hTT,
Q†µνhTT

µν = 0 . (56)

Note that F† = −F since it is a linear differential operator, so we will omit the dagger symbol
for it.
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Combining all properties, we see that in the calculation of the Gaussian integral
∫

Dh e−
∫

dd x
p

ḡ hµνhµν , (57)

all off-diagonal terms, that is those that mix the different modes, vanish. We also see imme-
diately that the transverse traceless sector does not give rise to a Jacobian. The gauge vector
integral reads

∫

DζJζ e−
∫

dd x
p

ḡ 1
2ζ
µ
�

−2F αβ
µ Fν

αβ

�

ζν , (58)

so that the corresponding Jacobian is

Jζ =
�

det
�

−2F αβ
µ Fναβ

��1/2
. (59)

The choice of normalisation will be made clear below. In the gauge invariant scalar sector,
∫

Dθ Jθ e−
∫

dd x
p

ḡ θQ†µνQµνθ , (60)

so that the Jacobian reads
Jθ =

�

detQ†µνQµν
�1/2

. (61)

Avoiding the Jacobians Once again, we would like to avoid the introduction of these Jaco-
bians. For that matter, we rescale the fields by

ζµ =
�

�

−2F αβ· F·
αβ

�−1/2
� ν

µ
ξν , θ =

�

Q†µνQµν
�−1/2

σ , (62)

again assuming that all involved operators exist. The decomposition of the metric fluctuation
into the set (hTT,ξ,σ),

hµν = hTT
µν + 2Fαµν

�

�

−2F κλ· F·
κλ

�−1/2
� β

α
ξβ +Qµν

�

Q†αβQαβ
�−1/2

σ , (63)

then gives rise to no Jacobians, and the decomposed fields have all the same mass dimension.

Projectors I We can now construct the projectors onto each of the individual components.
In doing so, we make use of the properties of the gauge fixing operator F and of Q. Let us
start with the gauge invariant scalar. Acting with Q† on (63) gives

Q†µνhµν =
�

Q†αβQαβ
�1/2

σ . (64)

From this it is immediately clear that the projector onto this mode reads

Π
0 κλ
µν =Qµν

�

Q†αβQαβ
�−1

Q†κλ . (65)

In a similar fashion, acting with the gauge fixing operator onto h gives

F µν
α hµν = −

�

�

−2F κλ· F·
κλ

�1/2
� ν

α
ξν , (66)

so that the gauge projector is

Π
1 κλ
µν = −2Fαµν

�

�

−2F τω· F·τω
�−1� β

α
F
κλ

β
. (67)
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Finally, we define the projector onto the TT mode by subtracting the two other projectors from
the symmetric identity,

Π
2 κλ
µν = 1 κλ

µν −Π1 κλ
µν −Π0 κλ

µν . (68)

The symmetric identity is defined as

1
κλ

µν = δ κ

(µ δ
λ

ν) , (69)

and maps symmetric rank two tensors to themselves. Inserting explicit expressions into these
projectors seems to indicate that Π2 depends on β . We will now rewrite everything to show
that this is actually not the case.

Rewriting the operators In the above expressions, we have two different inverse operators,
one constructed from the square of the gauge fixing operator,

−2F αβ
µ Fναβ = ∆̄δ

ν
µ − D̄νD̄µ + 2

1− β2

d
D̄µD̄ν , (70)

whose explicit form clarifies the choice of prefactor, the other is X which appears in the oper-
ator Q,

X =
�

∆̄δ ·· − D̄·D̄· + 2
1+ β

d
D̄·D̄

·
�−1

. (71)

The two operators agree for the gauge parameter choices β = 0,−1. It will be convenient to
formally expand the operators in a Taylor series in β around zero, and resum the full series
once the inverse is calculated. The central operator then is

∆
ν

1µ = ∆̄δ
ν
µ − D̄νD̄µ +

2
d

D̄µD̄ν . (72)

Once again we assume that the inverse of ∆1 exists. Using a geometric series, we can write X
as

X ν
µ =

∑

l≥0

�

�

−
2β
d

�

∆−1
1

� γ

· D̄γ D̄·
�l� α

µ

�

∆−1
1

� ν

α

=
�

∆−1
1

� ν

µ
−

2β
d

�

∆−1
1

� α

µ
D̄α
∑

l≥0

�

−
2β
d

D̄ ·∆−1
1 · D̄

�l

D̄γ
�

∆−1
1

� ν

γ

=
�

∆−1
1

� ν

µ
−

2β
d

�

∆−1
1

� α

µ
D̄α

1

1+ 2β
d D̄ ·∆−1

1 · D̄
D̄γ
�

∆−1
1

� ν

γ

≡
�

∆−1
1

� ν

µ
−

2β
d

�

∆−1
1

� α

µ
D̄α

1

1+ 2β
d N

D̄γ
�

∆−1
1

� ν

γ
.

(73)

From the first to the second line, we rewrote the terms in the sum into a form of another
geometric series, which is performed in the next step. We also defined the scalar operator

N = D̄µ
�

∆−1
1

� ν

µ
D̄ν . (74)

The inverse of the squared gauge fixing operator (70) can evidently be obtained from that
result by the replacement β →−β2, so that

�

�

−2F τω· F·τω
�−1� ν

µ
=
�

∆−1
1

� ν

µ
+

2β2

d

�

∆−1
1

� α

µ
D̄α

1

1− 2β2

d N
D̄γ
�

∆−1
1

� ν

γ
. (75)
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Before we go back to the explicit form of the projectors, we can re-express the operator Q as

Qµν = ḡµν − 2β D̄(µ
�

∆−1
1

� α

ν) D̄α
1

1+ 2β
d N

. (76)

This also entails the compact form of the expression

Q†µνQµν = d
1− 2β2

d N

(1+ 2β
d N )2

. (77)

Projectors II We will now present the explicit form of all projectors. The scalar projector
reads

Π
0 κλ
µν =

�

ḡµν − D̄(µ
�

∆−1
1

� α

ν) D̄α
2β

1+ 2β
d N

�

×

�

1+ 2β
d N

�2

d
�

1− 2β2

d N
�

�

ḡκλ −
2β

1+ 2β
d N

D̄γ
�

∆−1
1

� (κ
γ

D̄λ)
�

.

(78)

For the gauge projector we find, after a short calculation,

Π
1 κλ
µν = −2D̄(µ

�

∆−1
1

� (κ
ν) D̄λ) −

4β2

d
D̄(µ

�

∆−1
1

� α

ν) D̄α
1

1− 2β2

d N
D̄γ
�

∆−1
1

� (κ
γ

D̄λ)

+ 2
1+ β

d

�

ḡµν
1

1− 2β2

d N
D̄α
�

∆−1
1

� (κ
α

D̄λ) + D̄(µ
�

∆−1
1

� α

ν) D̄α
1

1− 2β2

d N
ḡκλ

�

− 2
�

1+ β
d

�2

ḡµν ḡκλ
N

1− 2β2

d N
.

(79)

Combining the two into the TT projector, we get

Π
2 κλ
µν = ΠTL αβ

µν

�

1
γδ

αβ
+ 2D̄(α

�

∆−1
1

� (γ
β) D̄δ)

�

Π
TL κλ

γδ
. (80)

Here we used the traceless projector to bring the expression into a compact form,

Π
TL κλ
µν = 1 κλ

µν −
1
d

ḡµν ḡκλ ≡ 1 κλ
µν −ΠTr κλ

µν , (81)

where in the second equation we also introduced the trace projector ΠTr. As promised above,
the TT-projector is indeed independent of the gauge parameter β .

Natural operator An obvious question is whether we can define a natural operator for the
graviton. This would be a local Laplace-type operator which commutes with the projectors. As
it turns out, such an operator does not exist. One can show this in the following way. Assume
that there is an operator ∆2 which commutes with the spin two projector (80). In that case,
we would have that

D̄µ∆ ρσ
2µν hTT

ρσ = D̄µΠ2 κλ
µν ∆ ρσ

2κλ hTT
ρσ = 0 , (82)

since the projector is transverse. We can easily write down the most general form that this
local operator can take,

∆ ρσ
2µν =

�

∆̄+ c1R̄
�

Π
TL κλ
µν + c2Π

TL αβ
µν R̄ γ

α δ
δ

β
Π

TL κλ

γδ
+ c3 C̄ ρ σ

(µ ν) . (83)
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Here C̄ is the background Weyl tensor, see (108) below, and the ci are numerical coefficients.
All other potential tensor structures vanish when they act on hTT. Inserting this ansatz into
(82), one finds that there is no choice of ci to make this equation true. One can find a non-
local solution to (82), but due to the inherent difficulties in handling such operators, we will
avoid that path in this work, and rather look for alternatives for the operator that we want to
regularise.

3.4 Regularisation and decoupling in gravity

Having discussed the decomposition of the graviton into gauge variant and invariant modes,
but not having found a natural operator, we now have to construct a regularisation scheme by
other means. Let us first discuss the gauge variant vector mode. By means of the decoupling
theorem [12], the vector mode decouples from the gauge invariant modes completely in the
Landau gauge limit, which implements the gauge fixing condition strictly. This means that
the functional trace (1) splits into the gauge invariant sector which involves the correlation
functions derived from the given action, and a simple vector trace of the form (38) with the
operator (70). At the same time, the trace over the Faddeev-Popov ghosts is the same trace
but with the operator (34). As noted earlier, the two operators agree if either β = −1 or
β = 0. These gauge choice thus implement an exact partial cancellation of these traces. The
cancellation is only partial due to the extra factor of two for the ghosts. The regularisation of
these two vector fields then follows the discussion in subsection 3.2.

Now we will discuss the gauge invariant part. From the explicit form of the spin zero
projector (78), we see that the gauge choice β = −1 leaves the gauge invariant scalar non-
local. We would like to avoid such non-localities, so we will settle for β = 0 as our preferred
gauge choice. In this case, the gauge invariant scalar mode is just the trace of the fluctuation
field h.

To finally fix the regularisation, we take inspiration from the Abelian case and consider the
two-point correlation function of the simplest gravitational action - the Einstein-Hilbert action
(without cosmological constant):

SEH∝
1

GN

∫

d4 x
p

g R . (84)

We then decompose the field via (63) where we can neglect the gauge variant vector since
it decouples. In d = 4, the two-point function turns out to be diagonal, and up to overall
prefactors containing GN , it has the two parts

hTT
µν�

µνρσ
2 hTT

ρσ ≡ hTT
µν

��

∆̄+
2
3

R̄
�

ΠTLµνρσ − 2 C̄ (µ|ρ|ν)σ
�

hTT
ρσ , h∆̄h . (85)

Here h= h µ
µ is the trace of hµν, which is the fieldσ for β = 0. We thus propose a regularisation

involving �2 and ∆, with traceless and trace projectors, respectively:

RTT
k (�2)∝

k2

GN
ΠTL ·RTT

k (�2/k
2) ·ΠTL ,

RTr
k (∆̄)∝

k2

GN
ΠTr RTr

k (∆̄/k
2) .

(86)

The numerical prefactors are fixed uniquely by requiring that the regularised version of (85)
reads

hTT
µν

�

�2 + k2RTT
k (�2/k

2)
�µνρσ

hTT
ρσ , h

�

∆̄+ k2RTr
k (∆̄/k

2)
�

h . (87)

Let us explain why we do not have to use the transverse traceless projectors for the regula-
tor. First, the regulator clearly does not add a regularisation to the trace mode by construction,
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since we chose β = 0. Second, the regulator has some overlap with the gauge variant vector
mode. However, since we implement the strict Landau gauge limit, the contribution of this
regulator to the vector mode drops out of any final trace. It is thus unnecessary to employ the
spin two projector, and we can rather use the much easier traceless projector. Note that this
regulator also fulfils our mode count requirement.

Let us note that in dimensions other than four, the two-point function obtained from the
Einstein-Hilbert action is not diagonal - there are off-diagonal terms of the form

hTT
µν R̄µν h . (88)

We will not discuss the regularisation with such off-diagonal terms here, since we are exclu-
sively interested in the physical case d = 4 in this work.

(Not) Using the decomposition Having discussed the regularisation, we will briefly clarify
why using a decomposition in practice does not necessarily simplify computations except in
special cases. The central reason is that the inverse of a projected operator (in the projected
subspace) is in general not the projected inverse of the unprojected operator. As a concrete
example (neglecting the regularisation), assume that we would want to invert a plain Laplacian
in the transverse sector of a vector field. That is, we are looking for the inverse

�

ΠT ·∆ ·ΠT
�−1

, (89)

where the inversion is to be understood in the transverse subspace. To compute this, we
can complete the Laplacian to the natural vector operator ∆A and invert the operator via a
geometric series:

�

ΠT ·∆ ·ΠT
�−1
=
�

ΠT · (∆A−Ric) ·ΠT
�−1

=
�

ΠT ·∆A ·
�

ΠT −
1
∆A
·ΠT ·Ric ·ΠT

��−1

=
∑

n≥0

ΠT ·
�

1
∆A
·ΠT ·Ric ·ΠT

�n

·
1
∆A
·ΠT .

(90)

Here Ric indicates the Ricci tensor. By contrast, the projected inverse reads

ΠT ·
1
∆
ΠT = ΠT ·

1
∆A−Ric

·ΠT

=
∑

n≥0

ΠT ·
�

1
∆A
·Ric

�n

·
1
∆A
·ΠT .

(91)

These two expressions do not agree for an arbitrary manifold. In general, the two expressions
only agree if the operator commutes with the projector. This once again highlights the central
role of a natural operator.

Coming back to gravity, in the previous subsection we found that there is no local natural
operator for the transverse traceless part of the graviton. Rather, the Einstein-Hilbert action
suggests to consider the spin two operator �2, which does not commute with the spin two
projector Π2. As a consequence,

�

Π2 ·�2 ·Π2
�−1 6= Π2 ·�−1

2 ·Π
2 . (92)

The inversion on the left hand side is to be understood on the space of transverse traceless
tensors. This means that even if we use the decomposition, the computation of the transverse
traceless propagator is complicated by the presence of the projectors.
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4 Inversion of the graviton two-point function

To compute the non-perturbative renormalisation group flow with the FRG, we have to com-
pute the regularised propagator, which is the inverse of the regularised two-point function. In
this section we briefly illustrate how to perform this inversion for the graviton in a derivative
expansion, without specifying a particular background metric. The idea is based on the ob-
servation that if we were to compute the propagator in flat spacetime, that is to zeroth order
in the derivative expansion, we can simply go to momentum space and perform the inversion
with standard techniques. Concretely, both the flat two-point function and the flat propagator
have the form

X ρσ
µν = X1(p

2)1 ρσ
µν + X2(p

2)ΠTr ρσ
µν + X3(p

2)δ(ρ(µ p
ν)p

σ)

+
1
2

X4(p
2)
�

gµνpρpσ + pµpνgρσ
�

+ X5(p
2)pµpνpρpσ .

(93)

Here, pµ is the momentum vector. The determination of the flat part of the propagator from
an arbitrary flat two-point function has been carried out in full detail e.g. in [41]. The key
observation is that any difference between the flat propagator and the full propagator is, by
definition, at least linear in curvature. We can thus define the covariantised flat propagator

G ρσ
0µν = g1(∆̄)1

ρσ
µν + g2(∆̄)Π

Tr ρσ
µν +δ(ρ(µ D̄

ν)D̄
σ)g3(∆̄)

+
1
2

�

gµνD̄(ρ D̄σ) + D̄(µD̄ν)g
ρσ
�

g4(∆̄) + D̄(µD̄ν)D̄
(ρ D̄σ)g5(∆̄) .

(94)

Crucially, we can choose where we put the scalar propagator functions gi , since any different
choice only differs by terms at least linear in curvature. The functions gi can be computed in
flat space. To obtain the full propagator, we notice that the product of the inverse of the full
propagator G and G0 is

G−1 · G0 = 1+X , (95)

where X is, by definition, of linear and higher order in curvature. Crucially, since the inverse
full propagator is just the regularised two-point function, which is known for a given action, X
can be computed to the necessary order. Knowing X, we then can calculate the full propagator
via

G = G0 [1+X]−1 =
∑

l≥0

G0 X
l , (96)

where we suppressed the indices. For a fixed order of the derivative expansion, only finitely
many terms of this sum contribute to the full propagator.

Let us mention that one can of course also choose a different operator ordering. In com-
plete analogy to the above, we can define a tensor Y via

G0G−1 = 1+Y , (97)

so that the full propagator reads

G = [1+Y]−1 G0 . (98)

In general the tensors X and Y do not agree. Which of the two orderings is more efficient is
hard to predict generally, and has to be tested in practice.

The algorithm also works on more general backgrounds, for which one can derive the exact
propagator. A prime example is the sphere - the Ricci scalar is finite and covariantly constant,
so that (94) holds if we let the propagator functions also depend on R̄. This has been used in
the context of affine gravity in [155].
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5 Commutator rules

The complexity of computations beyond actions linear in the curvature increases extremely
quickly. It is thus advantageous to employ tensor algebra packages to perform the necessary
calculations to achieve reliable results. A key ingredient for a reliable code is the generic
implementation of simplification rules like commutators to a given order. In this section, we
will derive such recursive formulas for the commutator of a function of the Laplacian with
either a curvature tensor or a covariant derivative. Our focus lies on formulas applicable in a
finite order derivative expansion - an extension to the curvature expansion will be presented
elsewhere.

Before we specify a detailed commutator, let us consider the following general case. Let f
be a suitable function, X is an arbitrary operator and Y is a tensor of arbitrary rank. We are
interested in a formula of the form

f (∆̄)X Y = X f (∆̄)Y + . . . , (99)

where we want to find an explicit expression of the term indicated by the dots on the right-
hand side of the equation. To derive the expression, we will formally use an inverse Laplace
transform and the Baker-Campbell-Hausdorff formula,

f (∆̄)X Y =

∫ ∞

0

ds f̃ (s)e−s∆̄X Y

= X f (∆̄)Y +

∫ ∞

0

ds f̃ (s)
∑

l≥1

(−s)l

l!

�

∆̄, X
�

l e−s∆̄Y

= X f (∆̄)Y +
∑

l≥1

1
l!

�

∆̄, X
�

l f (l)(∆̄)Y .

(100)

In this equation, we use the multicommutator

[A, B]n = [A, [A, B]n−1] , [A, B]1 ≡ [A, B] = AB − BA . (101)

The reason why (100) is useful in a derivative expansion is that the multicommutators increase
the order of the expression by at least one. In that way, in a finite order computation, only
finitely many terms in this sum contribute.

With the help of the formulas that we prove in appendix A, we can rewrite (100) into the
form

f (∆̄)X Y = X f (∆̄)Y +
∑

l≥1

1
l!

l−1
∑

k=0

(−1)l−1−k
�

l − 1
k

�

∆̄k
�

∆̄, X
�

∆̄l−k−1 f (l)(∆̄)Y . (102)

The usefulness of this formula lies in the fact that it only involves the simple commutator,
which is straightforward to implement.

Let us now specify the two cases of commutators that are needed in the derivative expan-
sion. The first case is whenever X is a multiplication operator. The relevant example is that of
a curvature tensor, potentially with a number of derivatives acting on it. In that case, we have

�

∆̄, X
�

=
�

∆̄X
�

− 2
�

D̄µX
�

D̄µ . (103)

This can be inserted into (102) and produces

f (∆̄)X Y = X f (∆̄)Y

+
∑

l≥1

1
l!

l−1
∑

k=0

(−1)l−1−k
�

l − 1
k

�

∆̄k
§

�

∆̄X
�

− 2
�

D̄µX
�

D̄µ

ª

∆̄l−k−1 f (l)(∆̄)Y .
(104)
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Since the commutator increases the order of the expression by at least one derivative, the recur-
sive application of (102) produces only finitely many terms for a fixed order of the derivative
expansion.

The second case is when X = D̄µ is the covariant derivative. In that case,

�

∆̄, D̄µ
�

= −D̄α
�

D̄α, D̄µ
�

−
�

D̄α, D̄µ
�

D̄α . (105)

The commutator of two covariant derivatives is related to the Riemann tensor via

�

D̄µ, D̄ν
�

Yα1...αn
=

n
∑

l=1

R̄ β
µναl

Yα1...αl−1βαl+1...αn
. (106)

We thus find

f (∆̄)D̄µYα1...αn
= D̄µ f (∆̄)Yα1...αn

−
∑

l≥1

1
l!

l−1
∑

k=0

(−1)l−1−k
�

l − 1
k

�

∆̄k×

�

R̄αµD̄αYα1...αn
+ D̄α

n
∑

l=1

R̄ β
αµαl

∆̄l−k−1 f (l)(∆̄)Yα1...αl−1βαl+1...αn

+
n
∑

l=1

R̄ β
αµαl

D̄α∆̄l−k−1 f (l)(∆̄)Yα1...αl−1βαl+1...αn

�

.

(107)
This time, the commutator increases the order of the expression by at least two units, so that
once again only finitely many terms contribute to any fixed order computation. Repeatedly
applying the formulas (104) and (107) then gives the commutator of a function of the Laplace
operator to the needed order.

6 Simplification of tensor expressions of maximal order

Before we finally discuss the application of our framework, we shall point out a way to sim-
plify the calculation of truncated RG flows significantly. This simplification concerns operators
which are already of the derivative order that one truncates at, and before such operators are
traced. The key observation is that eventually these terms will be contracted with metrics only,
and by assumption no higher order terms arise. Because of this, we can replace these operators
by combinations of metrics and scalar curvature invariants that respect the symmetries of the
term.

To make this concrete, let us first discuss the Einstein-Hilbert case, that is we truncate at
the second order in derivatives. At this order, the most convenient way to see the simplification
is to transition to the traceless basis, that is all occurrences of the Riemann tensor are replaced
by the Weyl tensor C̄ , the Ricci tensor and the Ricci scalar via

R̄ ρσ
µν = C̄ ρσ

µν +
4

d − 2
δ
[ρ

[µ R̄ σ]
ν] −

2
(d − 2)(d − 1)

R̄δ [ρµ δ σ]
ν , (108)

and then all Ricci tensors are replaced by traceless Ricci tensors S̄ and Ricci scalars via

R̄µν = S̄µν +
1
d

ḡµνR̄ . (109)

Now since eventually all these tensors must be contracted with metrics only, it is immediately
clear that we can drop the terms with Weyl and traceless Ricci tensors since their traces vanish.
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In other words, terms linear in C̄ and S̄ can only contribute to quartic and higher orders in
derivatives, and we can set

C̄µνρσ 7→ 0 ,

S̄µν 7→ 0 .
(110)

Indeed this has been used implicitly in much of the literature on Asymptotic Safety, however
with a different view, namely that a special background was chosen. Here we see that the
procedure is indeed general and not related to a specific choice of background.

At quartic order in derivatives the structure is slightly more complicated. In this case we
can replace terms quartic in the curvature, but not those that are linear. Once again it is useful
to employ the traceless basis. Since there are only three scalar curvature monomials at this
order, in this basis only three combinations of curvatures do not vanish. In particular we find
directly that

C̄µνρσS̄τω 7→ 0 ,

C̄µνρσR̄ 7→ 0 ,

S̄µνR̄ 7→ 0 ,

(111)

since all complete contractions of these terms with metrics vanish. On the other hand, we find
that

C̄µνρσC̄τωκλ 7→ TµνρστωκλC̄αβγδC̄αβγδ ,

S̄µνS̄ρσ 7→
2

(d − 1)(d + 2)
ΠTL
µνρσS̄αβ S̄αβ .

(112)

Here T is a rank 8 tensor constructed from the metric alone, which is too long to be displayed
here. These equations can be derived by making the most general ansatz of the appropriate
number of metrics, imposing the relevant symmetries, and finally computing some particular
contractions to fix any remaining free coefficients.

Note that both at quadratic and quartic order, if we neglect boundary terms (which we do
in this work), all curvature tensors can be assumed to be covariantly constant. Only at sextic
and higher orders, monomials with covariant derivatives appear.

Clearly one can also formulate similar equations in a Riemann basis, however the trace-
less basis disentangles the invariants maximally. The generalisation to higher orders is also
straightforward, although increasingly lengthy. Nevertheless it is also clear that by using these
relations the computational complexity can be decreased considerably, since a lot fewer tensor
structures arise at any intermediate step of the calculation.

7 Application to quartic order

We will now apply the machinery introduced in the preceding sections to quantum gravity at
the quartic order in the derivative expansion. This entails a theory space with a total of five
coupling constants. This section contains a discussion of the action, the flow equations, the
fixed point search strategy, the actual fixed point structure of the theory, and a discussion of
the topological term.

7.1 Action

To fix our conventions, we will first discuss the ansatz for the effective average action. Con-
cretely, this ansatz reads

Γk =
1

16πGN

∫

d4 x
p

g
�

− R+ 2Λ+
1
2

GC2 CµνρσCµνρσ −
1
6

GR2R2 + GEE

�

. (113)
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In this, GN is the Newton’s constant, Λ is the cosmological constant, and GC2 , GR2 and GE

are the quartic couplings. All these couplings depend on the FRG scale k, which for better
readability we do not indicate explicitly. Moreover, E stands for the integrand of the four-
dimensional Euler characteristic,

E= RµνρσRµνρσ − 4RµνRµν + R2 . (114)

For the discussion of fixed points, we introduce dimensionless coupling constants by a rescaling
with the appropriate power of k, so that

g = GN k2 , λ= Λk−2 , gC2 = GC2 k2 , gR2 = GR2 k2 , gE = GEk2 . (115)

We will also use an overdot to indicate the derivative with respect to the RG time t, e.g.,

ġ = ∂t g . (116)

The action (113) is amended by a gauge fixing term of the form

Γgf =
1

32πGNα

∫

d4 x
p

ḡ ḡαβ
�

F µν
α hµν

��

F
ρσ

β
hρσ

�

, (117)

and a corresponding Faddeev-Popov ghost term

Γc =
1

GN

∫

d4 x
p

ḡ c̄µ F αβ
µ Dαcβ . (118)

Note that we deviate from standard convention by introducing the coupling GN also in the
ghost action. This is necessary for an exact cancellation of traces as discussed in subsection
3.4. The gauge parameter α will be sent to zero to implement the Landau limit.

The final ingredient to specify is the regulator. Since this has been discussed in detail in
section 3, we will not repeat it here.

To derive the flow equations, we have used the tensor algebra package suite xAct [156–160]
together with a minimal extension4 of [161] to parallelise the code.

7.2 Flow equations

In this section we present the flow equations for the dimensionless couplings of our system.
For convenience, we introduce the dimensionless propagators

GTT(z) =
1

z + gC2z2 +RTT
k (z)− 2λ

,

GTr(z) =
1

z + gR2z2 +RTr
k (z)−

4
3λ

,

Gc(z) =
1

z +Rc(z)
.

(119)

We also introduce the notation

�Rk(z) =
�

4−
ġ
g

�

Rk(z)− 2zR′k(z) , (120)

for all regulator shape functions. It is related to the scale derivative of the regulator with some
factors pulled out for convenience. The additional dependence on ġ comes from the fact that

4The extension consists of loading the package xTras in parallel to have access to the command CollectTensors
on all kernels.
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the regulator tensor comes with a prefactor of 1/g, see (86), on which the scale derivative
acts non-trivially. The additional factor of 1/g is then cancelled by a factor of g coming from
the propagator. This cancellation is already taken into account in the above notations.

For the cosmological constant, we find

λ̇=
�

−4+
ġ
g

�

λ+
1
2

8πg
16π2

∫ ∞

0

dz z

�

5GTT(z)�RTT
k (z) + GTr(z)�RTr

k (z)− 4Gc(z)�Rc
k(z)

�

. (121)

We did not simplify the prefactor of the integral to illustrate where the individual factors come
from: the factor 8πg comes from the left-hand side, the factor of a half comes from the flow
equation itself, and the 1/(16π2) comes from the heat kernel. We can also see how the mode
count is satisfied: we have a prefactor of 5 for the transverse traceless sector, a prefactor of 1
for the trace sector, and a prefactor of −4 for the combination of gauge variant vector (+4)
and ghosts (−8). For identical regulators and at vanishing cosmological constant and higher
order couplings, this gives a total of 2 modes that contribute to the flow of the cosmological
constant, which is the correct number of physical polarisations of the graviton in d = 4.

The flow of the dimensionless Newton’s coupling reads

ġ = 2g +
1
2

16πg2

16π2

∫ ∞

0

dz
1
6

�

¦

− 25+ 5 (5gC2 − 2gR2) z2GTT(z)
©

GTT(z)�RTT
k (z)

+
¦

1+ 2gR2z2GTr(z)
©

GTr(z)�RTr
k (z) +

¦

2− 11z Gc(z)
©

Gc(z)�Rc
k(z)

�

.

(122)

The terms with more than one power of the propagator come from genuine interaction terms.
In the graviton sector, they are proportional to the higher order couplings due to our regulator
choice (86).

Next, we will present the flow equations for the fourth order couplings. A general feature
of higher order couplings is that if the dimension is at or below the order, their flow equations
feature non-integral terms. These stem from positive powers of the heat kernel expansion
parameter, which map to derivatives of the function that is traced over, evaluated at zero
argument. The flow of the R2 coupling is

ġR2 =
ġ
g

gR2 −
1
2

96πg
16π2

�

�

4−
ġ
g

�

�

175
108

RTT
k (0)

RTT
k (0)− 2λ

+
1

72

RTr
k (0)

RTr
k (0)−

4
3λ
−

1
36

�

+

∫ ∞

0

dz

�

GTT(z)2�RTT
k (z)

§

−
20
81

�

1+RTT′
k (z)

�

−
5z

162

�

147gC2 − 73gR2 + 8RTT′′
k (z)

�

−
5z3

162
g2

R2GTr(z)

+
�

20
81

�

1+RTT′
k (z)

�2
+

80
81

gC2 z
�

1+RTT′
k (z)

�

+
5z2

18

�

19g2
C2 − 10gC2 gR2 + 2g2

R2

�

�

z GTT(z)
ª

+ GTr(z)2�RTr
k (z) z gR2

§

1
18
+ z2 gR2

�

−
5

162
GTT(z) +

1
9
GTr(z)

�ª

+ Gc(z)2�Rc
k(z)

§

19
54
−

185
162

z Gc(z)
ª

��

.

(123)
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For the flow of the C2 coupling, we find

ġC2 =
ġ
g

gC2 +
1
2

32πg
16π2

�

�

4−
ġ
g

�

�

−
17

180

RTT
k (0)

RTT
k (0)− 2λ

+
1

120

RTr
k (0)

RTr
k (0)−

4
3λ
−

7
60

�

+

∫ ∞

0

dz

�

GTT(z)2�RTT
k (z)

§

−
40
27

�

1+RTT′
k (z)

�

−
5z
54

�

15gC2 − 2gR2 + 16RTT′′
k (z)

�

−
5z3

27
g2

R2GTr(z)

+
�

40
27

�

1+RTT′
k (z)

�2

+
160
27

gC2 z
�

1+RTT′
k (z)

�

+
65
6

g2
C2z2

�

z GTT(z)
ª

−
5z3

27
g2

R2 GTr(z)2GTT(z)�RTr
k (z)

+ Gc(z)2�Rc
k(z)

§

17
18
−

91
54

z Gc(z)
ª

��

.

(124)

Finally, the flow of the coupling to the Euler term reads

ġE =
ġ
g

gE −
1
2

�

ġC2 −
ġ
g

gC2

�

+
1
2

16πg
16π2

�

4−
ġ
g

�

�

103
270

RTT
k (0)

RTT
k (0)− 2λ

+
1

180

RTr
k (0)

RTr
k (0)−

4
3λ
+

11
180

�

.
(125)

Since the Euler characteristic is a topological invariant in d = 4, its coupling does not appear
in any of the flow equations, except in the scaling term in (125). Intriguingly, the flow of the
Euler coupling can be written in terms of the other flows and a term without an integral.

The complete set of flow equations (123), (124) and (125) has been obtained for the first
time without using a special background [17, 82, 162–165] (thereby neglecting some of the
couplings) or expanding in some of the couplings [20,166–168].

We note in passing that the above equations do not reduce to the standard one-loop result
of perturbative Stelle gravity if the Einstein-Hilbert part of the action is neglected. There
are several reasons for this. First, both the gauge fixing and the regulator are constructed
with a non-perturbative setting in mind (meaning that all terms in the action are assumed to
be non-vanishing), as they include an explicit factor of 1/GN . Thus to be able to probe the
perturbative Stelle limit where GN →∞, both would need a very careful rescaling. Second,
and more importantly, we have used the background field approximation. It is well-known
that this can introduce artefacts even into universal one-loop beta functions [149]. To resolve
this issue, either the corresponding Ward identities have to be solved, or the limit k→ 0 has to
be taken. Both options go beyond the scope of the present work. It is however noteworthy that
with the standard higher derivative gauge fixing which makes the fourth order kinetic term
minimal, the universal one-loop beta functions come out in the usual way, see e.g. [166–168].
This leads to the conjecture that such minimal gauge fixings might generally not need Ward
identities to obtain such a result. It would be interesting to understand which classes of gauges
share this property.

7.3 Intermezzo: fixed point search strategy

Before we move on to discuss the fixed point structure of the theory, we will present a strategy
to search for fixed points in an extended truncation that are continuously connected to a fixed
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point found in a smaller truncation. We illustrate the strategy going from one to two couplings,
but the method is applicable generically.

Let us assume that we start with a truncation with a single coupling g1, and that we have
found a fixed point for it, say g∗1, so that

ġ1(g
∗
1) = 0 . (126)

Now we enhance the truncation by adding a coupling g2 which was set to zero before. That
is, the above condition for the beta function of the coupling g1 now reads

ġ1(g
∗
1, g2 = 0) = 0 , (127)

while the beta function of the new coupling at this point in theory space is in general non-zero,

ġ2(g
∗
1, 0) 6= 0 . (128)

The search strategy is then to change the new coupling g2 by a small amount, say ε, and search
for a fixed point in g1 for this new value of g2. Let us assume that we find a zero of ġ1 at the
value g ′1, so that

ġ1(g
′
1,ε) = 0 . (129)

The beta function of g2 will now also have changed. We then repeatedly change g2 by a small
amount, find a fixed point for g1, and compute ġ2. The result is that we get ġ2 as a function
of g2 on a partial fixed point. Clearly, if we find a g2 such that ġ2 = 0, we have found a fixed
point of the complete system which is continuously connected to the fixed point which only
involves g1.

While this strategy will in general not find all fixed points, one can extend its applicability
by starting at any value of the new coupling, search for a fixed point in the old couplings, and
start the procedure from there. This gives an efficient search strategy for fixed points in all of
theory space.

7.4 Fixed point analysis

We now study the fixed point structure of the quartic order of the derivative expansion. To
set the stage, we briefly present the fixed point at the quadratic order for our setup. We then
add either of the couplings individually, and finally discuss the complete system. In all of the
following discussion, we choose the regulator shape function

Rk(x) = e−x , (130)

that is a simple exponential regulator.

Einstein-Hilbert truncation The system with gC2 = gR2 = 0 has a single fixed point at the
coordinates

g∗ = 0.534 , λ∗ = 0.121 . (131)

The critical exponents at this fixed point are

θ1,2 = 2.99± 1.38i . (132)

Since the real part is positive, the fixed point is fully attractive. This is the well-known Reuter
fixed point, and the results for the critical exponents are in reasonable agreement with re-
sults published in the literature [14, 15, 23, 26, 28, 153, 169–173] when factoring in different
regularisation schemes and choices of gauge fixing.
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Figure 1: The partial fixed points for g (solid blue line) and λ (dashed orange line)
as well as the beta function ġC2 (dotted green line) evaluated on the partial fixed
point, as a function of the coupling gC2 . The dashed grey horizontal line indicates
zero, whereas the dashed grey vertical line indicates the combined fixed point.

C2 truncation We now add the C2 term to the system, and use the strategy outlined in
subsection 7.3 to search for fixed points. Figure 1 depicts the result of this strategy. It shows
the partial fixed point values for g and λ at a range of values of gC2 , and the value of ġC2 at
these coordinates. The horizontal dashed line indicates zero, whereas the vertical dashed line
is at the value of gC2 where its beta function vanishes. We find a single fixed point at

g∗ = 1.04 , λ∗ = −0.0313 , g∗C2 = 0.735 , (133)

with critical exponents

θ1 = 3.83 , θ2 = 1.85 , θ3 = −0.953 . (134)

The value of g∗C2 is positive, so that no new poles arise for positive squared Euclidean momenta
in the spin two sector. The inclusion of the C2 term thus has two effects: first, it makes the
formerly complex conjugate critical exponents real, and second, it adds an irrelevant direction,
so that the value of one of the couplings can be predicted. Considering the magnitude of the
critical exponents, we find a slight to moderate reduction compared to the canonical scaling
dimensions, which are 4,2 and 0, respectively. This is in line with the conjecture of “near-
Gaussian scaling exponents” [19,21,43,47,53].

R2 truncation As a next step, we add the R2 term to the Einstein-Hilbert system. Applying
the fixed point search strategy for positive gR2 does not yield a fixed point, see figure 2. The
slope near gR2 = 0 indicates that there might be a fixed point for negative gR2 though. For this
case, we however have to flip the sign of the trace regulator,

RTr
k 7→ −R

Tr
k , (135)

since the coupling of the highest order term in a derivative expansion dictates the sign of the
regulator. As a consequence, we introduce a new singularity into the flow, which sits at

λsing = −
3
4

. (136)

We are thus confined to the region λ ∈ (−3/4, 1/2), so that all propagators have the correct
sign and integrals over the loop momentum exist.
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Figure 2: The partial fixed points for g (solid blue line) and λ (dashed orange line)
as well as the beta function ġR2 (dotted green line) evaluated on the partial fixed
point, as a function of positive gR2 . The dashed grey horizontal line indicates zero.
No combined fixed point is found in this regime.

This also causes the fixed point search for negative gR2 to not continuously connect to the
case of vanishing coupling. We thus have to start our fixed point search strategy at a finite,
negative value of gR2 , search a fixed point in g and λ, and apply the recursive strategy from
that point. The result of this procedure is shown in figure 3, and we indeed find a fixed point
at

g∗ = 0.739 , λ∗ = 0.382 , g∗R2 = −1.84 , (137)

with critical exponents
θ1,2 = 4.44± 7.06i , θ3 = −3.09 . (138)

This fixed point is much closer to the singular line λ = 1/2, and the deviation of the critical
exponents from the canonical scaling is large. Moreover, the complex conjugate pair has a
large imaginary part. Similar signs of instability have been observed previously in f (R)-type
truncations [19,21,23,29,32,34,36,39,43,47,51–53,110]. Including higher orders tends to
tame these stronger variations.

Complete quartic order Having studied the two quartic terms individually, we now set out
for the full system. There are two starting points to initialise our search strategy. Starting from
the fixed point with finite gC2 , (133), we do not find a continuously connected fixed point for
positive gR2 , mimicking the case for vanishing gC2 . On the other hand, we do find a fixed point
when starting from (137). It sits at

g∗ = 0.955 , λ∗ = 0.496 , g∗C2 = 0.816 , g∗R2 = −4.53 , (139)

and has the critical exponents

θ1 = 9.47 , θ2,3 = −89.6± 120i , θ3 = −162 . (140)

Judging from the very non-canonical values of the critical exponents, one might conclude that
this fixed point is either an artefact of the truncation, or that higher order terms should have
a large impact to stabilise the fixed point. It is likely that these extreme values arise due to the
fixed point of the cosmological constant lying so extremely close to the singular line λ= 1/2.
It is conceivable that higher order terms indeed shift it to smaller values, yielding more realistic
critical exponents in the process, but in the end only an actual computation can give certainty
about this.
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Figure 3: The partial fixed points for g (solid blue line) and λ (dashed orange line)
as well as the beta function ġR2 (dotted green line) evaluated on the partial fixed
point, as a function of negative gR2 . The dashed grey horizontal line indicates zero,
whereas the dashed grey vertical line indicates the combined fixed point.

7.5 Comparison: regulator without endomorphism

To investigate the stability of the results under changes of the regularisation, we briefly discuss
the fixed point structure of the same system where we leave out the endomorphism in the
traceless regulator. This entails using ∆̄ instead of �2 as an argument in (86). Stable fixed
points should only be quantitatively affected by this.

At the Einstein-Hilbert level, and with only the C2 term, this is indeed the case. In the
former case, we find a fixed point at

g∗ = 0.640 , λ∗ = 0.169 , (141)

with critical exponents
θ1,2 = 2.78± 2.14i . (142)

The critical exponents in this case are very close to the ones found above, see (132). With
gC2 6= 0, the fixed is at

g∗ = 1.85 , λ∗ = −0.185 , g∗C2 = 1.36 , (143)

with critical exponents

θ1 = 4.19 , θ2 = 0.998 , θ3 = −0.619 . (144)

This is in qualitative agreement with (134), and serves as an estimate of the truncation error.
As soon as we include the coupling of the R2 term, we do not find a fixed point, neither

without nor with finite gC2 . This indicates again the instability mentioned earlier, and we
expect more stable results when higher order terms are included.

Let us finally note that the flow of the Euler coupling within this regularisation scheme is
not of the simple form (125). It rather has an additional integral, which in particular depends
on gC2 . Taking the simplicity of (125) as a guiding principle, this might be taken as an a
posteriori argument for the regularisation choice (86).
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7.6 The flow of the Gauss-Bonnet term

As mentioned earlier, the Gauss-Bonnet term is a topological invariant. Consequently, the
right-hand side of the flow equation is independent of the coupling constant gE in front of
it. This implies, absent some unlikely cancellations, that this coupling will never have a fixed
point, since its beta function, evaluated on the fixed point of all other couplings, is a constant:

e≡ ġE|gi=g∗i
=

2g∗

π

�

103
270

RTT(0)
RTT(0)− 2λ∗

+
1

180
RTr(0)

RTr(0)− 4
3λ
∗
+

11
180

�

6= 0 . (145)

This can be seen very easily from the explicit form of the beta function, (125).
Depending on the sign of the constant e, gE will go to either a positive or negative infi-

nite value at high energies. This has an interesting consequence for the weight of different
topologies in the (Euclidean) path integral. Disregarding the subtleties of the reconstruction
problem [174–176], if we find that e is positive (negative), spacetimes with a negative (pos-
itive) Euler characteristic are enhanced, while spacetimes with a positive (negative) Euler
characteristic will be suppressed. This mimics the idea of finite action [177], but the origin is
the coupling instead of a divergent curvature invariant.

Due to the extremely simple structure of the beta function, we can make analytical state-
ments about the sign of it at a fixed point of the other couplings. As a matter of fact, at our level
of truncation, and with the normalisation condition that the regulators at vanishing argument
are ±1 (depending on the sign of the quartic couplings), we find

e> 0 . (146)

From this it follows that generically, at this level of the truncation, the beta function for the
Euler coupling is positive at the fixed point. This suggests that manifolds with a complicated
topology contribute most to the Euclidean formulation of Asymptotic Safety. Incidentally, the
same conclusion holds for Stelle gravity at the asymptotically free fixed point.

We illustrate this with numerical results. At the level of the Einstein-Hilbert truncation, we
find

eEH = 0.523 , (147)

for the fixed point with finite C2 coupling, we have

eC2
= 0.282 , (148)

for the fixed point with negative R2 coupling, the value is

eR2
= 2.88 , (149)

whereas finally, in the full system, we find

eR2+C2
= 28.4 . (150)

For a Lorentzian path integral, one might argue that either sign suppresses spacetimes with
non-vanishing Euler characteristic, since they “oscillate away”. This would give a dynamical
mechanism whereby only spacetimes with vanishing Euler characteristic will contribute to the
path integral.
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8 Conclusion

In this paper we have set up a systematic framework to study the derivative expansion of non-
perturbative renormalisation group flows in quantum gravity. We proposed a set of criteria
that well-defined flows and regulators should satisfy. Then we set out to construct a suitable
regulator that fulfils these criteria. Geometric considerations guided this search. As a simple
example, we discussed the case of vector fields first, and found a natural way to regularise
them. Moving on to gravity, we encountered some difficulties which obstruct a similar reg-
ularisation. We then used input from the action of General Relativity to nevertheless set up
a well-motivated regularisation scheme. From the discussion, it is clear that our approach is
applicable to any order in the derivative expansion, including an expansion in form factors.

Having set up the formal structure, we then discussed some techniques that help in practi-
cal computations and allow for an efficient evaluation of renormalisation group flows via ten-
sor algebra software. In particular, we presented a general algorithm to obtain the propagator
from an arbitrary two-point function. On the more technical side, we provided commutator
rules that can be implemented generically in computer code, and discussed simplifications for
tensorial terms at the maximum considered order.

We finally applied all these methods to derive and analyse the non-perturbative flow equa-
tions at the quartic order of the derivative expansion in quantum gravity. The complete set of
flow equations (121) - (125) has been presented for the first time without further assumptions
on top of the truncation itself. After a brief generic discussion of our fixed point search strat-
egy, we discussed the resulting fixed point structure at different levels of sophistication. In all
approximations, we find an interacting fixed point. The inclusion of the R2 term introduces
previously observed instabilities which are expected to be resolved by the inclusion of higher
order terms. Lastly, we discussed the flow of the Euler term, which we found to flow to pos-
itive infinity at the fixed point. This indicates that Euclidean Asymptotic Safety is dominated
by manifolds with negative Euler characteristic. We speculated that in Lorentzian signature,
only spacetimes with vanishing Euler characteristic would contribute. This includes the flat
spacetime, and gives a dynamical principle to discard more exotic structures.

Several future directions are available from here. Clearly, to resolve whether the instability
of the R2 term persists upon improving the truncation, the derivative expansion should be
extended to sextic order, see [178] for results in the conformally reduced case. We will report
results on the full case elsewhere. Another road is the inclusion of form factors along the lines
of [139,179], and discuss aspects of unitarity and causality of the theory e.g. in the context of
scattering amplitudes [180, 181]. This would also allow to compute spectral functions from
the fully momentum-dependent background propagators [140].

In any improved truncation, it will moreover be interesting whether the simple form of the
flow equation (125) for the Euler coupling remains to be valid. If this would be the case, this
would give a constructive proof of our observation on which topologies contribute to the path
integral.
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A Some commutator formulas

In this appendix we prove some useful commutator formulas. The aim is to rewrite the mul-
ticommutator into a form slightly more useful for an implementation in a computer code. In
the following, X shall be any operator.

First, we have

[∆l , X ] =
l−1
∑

k=0

∆k[∆, X ]∆l−k−1 , l ≥ 1 , (A.1)

which we prove by induction. The base case l = 1 is trivially seen to be true. For the induction
step, assume that the formula is correct for some l ≥ 1, and calculate

[∆l+1, X ] =∆[∆l , X ] + [∆, X ]∆l

=∆
l−1
∑

k=0

∆k[∆, X ]∆l−k−1 + [∆, X ]∆l

=
l
∑

k=1

∆k[∆, X ]∆l−k + [∆, X ]∆l

=
l
∑

k=0

∆k[∆, X ]∆l−k .

(A.2)

In the first line we used the product formula for the commutator, in the second line we used the
induction hypothesis, in the third line we relabelled the sum index, and finally we combined
all terms into a single sum. This establishes the claim (A.1).

The second formula that we will prove is that

[∆, X ]l =
l
∑

m=0

�

l
m

�

(−1)m∆l−mX∆m =
l
∑

m=0

�

l
m

�

(−1)l−m∆mX∆l−m , l ≥ 0 . (A.3)

The equality between the two sums follows by a relabelling of the summation index. Once
again we will prove this formula by induction. The base case l = 0 is true by the definition of
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the multicommutator. Assume now that the formula holds for some l ≥ 0 and calculate

[∆, X ]l+1 = [∆, [∆, X ]l]

=
l
∑

m=0

�

l
m

�

(−1)m∆l−m[∆, X ]∆m

=
l
∑

m=0

�

l
m

�

(−1)m∆(l+1)−mX∆m −
l
∑

m=0

�

l
m

�

(−1)m∆l−mX∆m+1

=
l
∑

m=0

�

l
m

�

(−1)m∆(l+1)−mX∆m +
l
∑

m=0

�

l
m

�

(−1)m+1∆(l+1)−(m+1)X∆m+1

=
l
∑

m=0

�

l
m

�

(−1)m∆(l+1)−mX∆m +
l+1
∑

m=1

�

l
m− 1

�

(−1)m∆(l+1)−mX∆m

=
l
∑

m=1

§�

l
m

�

+
�

l
m− 1

�ª

(−1)m∆(l+1)−mX∆m +∆l+1X + (−1)l+1X∆l+1

=
l
∑

m=1

�

l + 1
m

�

(−1)m∆(l+1)−mX∆m +∆l+1X + (−1)l+1X∆l+1

=
l+1
∑

m=0

�

l + 1
m

�

(−1)m∆(l+1)−mX∆m .

(A.4)

The first step uses the definition of the multicommutator. In the second step, we use the
induction hypothesis. Afterwards, we use the definition of the commutator to split the sum
into two. The next two steps implement a relabelling of the second sum. Then, we combine the
overlapping parts of the two sums, then use a standard identity for the binomial coefficients.
In the final step, we recombine the individual summands into the final sum. This proves the
formula (A.3).

Finally, we will combine (A.1) and (A.3) and show that

[∆, X ]l =
l−1
∑

k=0

(−1)l+1−k (l − 1)!
(l − k− 1)!k!

∆k[∆, X ]∆l−k−1 , l ≥ 1 . (A.5)

We will prove this formula by direct calculation, starting from (A.3):

[∆, X ]l =
l
∑

m=0

�

l
m

�

(−1)l−m∆mX∆l−m

= (−1)l X∆l +
l
∑

m=1

�

l
m

�

(−1)l−m∆mX∆l−m

= (−1)l X∆l +
l
∑

m=1

�

l
m

�

(−1)l−m ([∆m, X ] + X∆m)∆l−m

= (−1)l X∆l +
l
∑

m=1

�

l
m

�

(−1)l−mX∆l +
l
∑

m=1

�

l
m

�

(−1)l−m[∆m, X ]∆l−m

=
l
∑

m=1

�

l
m

�

(−1)l−m[∆m, X ]∆l−m .

(A.6)

We started by using (A.3). We then have split off the first term of the sum, introduced a
commutator and calculated one of the sums which cancelled with the first term. We also
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assumed l ≥ 1 for this in order for the splitting to make sense. We can now use (A.1) since
that formula applies for the involved commutator as the sum starts at one:

[∆, X ]l =
l
∑

m=1

�

l
m

�

(−1)l−m[∆m, X ]∆l−m

=
l
∑

m=1

�

l
m

�

(−1)l−m

�m−1
∑

k=0

∆k[∆, X ]∆m−k−1

�

∆l−m

=
l
∑

m=1

m−1
∑

k=0

�

l
m

�

(−1)l−m∆k[∆, X ]∆l−k−1

=
l−1
∑

k=0

l
∑

m=k+1

�

l
m

�

(−1)l−m∆k[∆, X ]∆l−k−1

=
l−1
∑

k=0

(−1)l+1−k (l − 1)!
(l − k− 1)!k!

∆k[∆, X ]∆l−k−1 .

(A.7)

Here we have exchanged the order of the sums to be able to perform one of them. This
completes the proof of the formula (A.5).
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