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Abstract

The hybridizations of machine learning and quantum physics have caused essential im-
pacts to the methodology in both fields. Inspired by quantum potential neural network,
we here propose to solve the potential in the Schrödinger equation provided the eigen-
state, by combining Metropolis sampling with deep neural network, which we dub as
Metropolis potential neural network (MPNN). A loss function is proposed to explicitly
involve the energy in the optimization for its accurate evaluation. Benchmarking on the
harmonic oscillator and hydrogen atom, MPNN shows excellent accuracy and stability on
predicting not just the potential to satisfy the Schrödinger equation, but also the eigen-
energy. Our proposal could be potentially applied to the ab-initio simulations, and to
inversely solving other partial differential equations in physics and beyond.

Copyright R. Hong et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 18-06-2021
Accepted 02-09-2021
Published 13-09-2021

Check for
updates

doi:10.21468/SciPostPhysCore.4.3.022

Contents

1 Introduction 1

2 Brief review on quantum potential neural network 2

3 Metropolis Potential Neural Network Method 4

4 Numerical results 4

5 Summary 8

References 8

1 Introduction

In recent years, machine learning (ML) has been increasingly applied to the field of quantum
physics [1]. On one hand, it provides alternative or more powerful tools to solve the prob-
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lems that are challenging for the conventional approaches. For instance, neural network (NN),
which is widely accepted as the most powerful ML model, is utilized to design functional ma-
terials with much higher efficiency than human experts [2–7]. One popular way is to apply to
ML model to fit the relations between the experimental or numerical data and the target phys-
ical quantities. There are also some works that are directly aimed to solve physical equations,
such as Schrödinger equation [8–12] or those in the ab-initio simulations [13,14], using ML.
For the strongly correlated systems, NN has also been used as efficient state ansatz to solve
the eigenstates of given Hamiltonians [15,16].

On the other hand, the hybridizations with ML bring powerful numerical tools to investi-
gate the inverse problems. These problems are critical in many numerical and experimental
setups, such as designing the exchange-correlation potentials in the ab-initio simulations of
material [17,18], the analytic continuation of the imaginary Green’s function into the real fre-
quency domain [19], and designing quantum simulators [20]. One topic that currently attracts
wide interests is to estimate the Hamiltonian given the states or their properties [21–26]. Con-
sidering the quantum lattice models, for example, it has been proposed to predict the coupling
constants from the measurements of the target states [27–29] or the local reduced density
matrices [30]. Sehanobish et al. consider the Schrödinger equation and propose the quantum
potential NN (QPNN) to predict the potential term provided the eigen wave-function [31].
These works indicate the feasibility of using ML to investigate quantum phenomena by refor-
mulating the quantum mechanical systems as the solutions of certain inverse problems.

In this work, we propose to combine Metropolis sampling with deep NN to gain higher
accuracy and efficiency on the predictions of quantum potential, which we dub as Metropo-
lis potential neural network (MPNN). The goal is to estimate the potential in the continuous
space. The data to train the NN contain multiple coordinates with the labels as the expected
values of the potential function. Metropolis sampling [32] allows to efficiently obtain the train-
ing data (see some applications of Metropolis sampling to ML and quantum computation in,
e.g., [15, 33–36], to name but a few) and evaluate the energies of the given wave-functions,
same as the quantum Monte Carlo approaches [37–39]. A loss function that explicitly involves
the energy is proposed to characterize the violation of the Schrödinger equation. The varia-
tional parameters in the NN are optimized by minimizing the loss function using back prop-
agation [40]. Benchmarking on the harmonic oscillator and hydrogen atom, MPNN exhibits
higher accuracy and stability on predicting the potential and evaluating the eigen-energy.

2 Brief review on quantum potential neural network

Consider the time-independent Schrödinger equation in D dimensions
�

−
∇2

2
+ V (r)

�

Ψ(r) = EΨ(r), (1)

with the coordinates r = (x1, · · · , xD) and ħhm = 1 as the energy scale. Normally, the task is to
solve the eigenstates and energies given the potential V (r). Here, we considered an inverse
problem, which is to solve the potential so that the given wave-function Ψ(r) is the eigenstate
of the Hamiltonian.

In Ref. [31], the authors propose to use a deep neural network named as quantum potential
neural network (QPNN) to predict the unknown potential V (r). In detail, the QPNN maps the
coordinates to the values of the potential, denoted as Uθ (r) with θ the variational parameters
of the QPNN. With a trial potential, a spatial-dependent energy is introduced as

E(r) = −
∇2Ψ(r)
2Ψ(r)

+ Uθ (r). (2)
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Figure 1: (Color online) The illustration of the main procedures of MPNN. With the
potential Uθ (r) predicted by the neural network, the target wave-function Ψ(r) is
expected to be the eigenstate of the Hamiltonian Ĥ = −∇

2

2 + V (r).

or

E′(r) = −
∇2|Ψ(r)|
2|Ψ(r)|

+ Uθ (r). (3)

One can see that E(r) and E′(r) is the same if Ψ(r) is real for any r. The authors of Ref. [31]
proposed to use E′(r), considering that the square root of the probability density is much easier
to access in experiments.

To characterize the extent of how the Schrödinger equation is satisfied, the loss function
is defined as

L =

∫

|∇E(r)|2 dr+ [Uθ (r0)− V (r0)]
2 , (4)

with r0 a given coordinate at which the value of potential V (r0) is previous known. In the
practical simulations, one should choose a finite region and discretize the space into pieces
with identical width. The loss function is then approximated as

L =
N
∑

n=1

|∇E(r)|2r=rn
+ [Uθ (r0)− V (r0)]

2 , (5)

where {rn} are sampled randomly from the discretized positions.
The loss minimally takes L = 0. In this case, one has E(r) = E as a constant inde-

pendent on r, and Uθ (r0) = V (r0). Then Ψ(r) is strictly the eigenstate of the Hamiltonian
Ĥθ = −

∇2

2 + Uθ (r), with Uθ (r0) given by the QPNN and E the eigen-energy. With a nonzero
loss, one normally has E as a function of the coordinates r, and possibly a deviation between
Uθ (r0) and its expected value V (r0). In general, the loss function L in Eq. (5) characterizes
how well the potential from the QPNN gives the target wave-function as an eigenstate, and
should be minimized. The QPNN can be updated using the gradient decent method as

θ ← θ −η
∂ L
∂ θ

, (6)

with η the learning rate.
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3 Metropolis Potential Neural Network Method

The MPNN method is illustrated in Fig. 1. Our goal is solving the potential V (r)while knowing
the target wave-function Ψ(r) as the eigenstate of the Hamiltonian. The first step is sampling
N positions {rn} according to the probability distribution

P(r) = |Ψ(r)|2. (7)

The sampling process can be implemented on a quantum platform if one can make sufficiently
many copies of the state Ψ(r), or on a classical computer when Ψ(r) is analytically or numer-
ically accessible. Then a neural network (NN) is applied to predict the values of potential at
these positions {Uθ (rn)}.

To estimate how the potential predicted by the NN satisfies the Schrödinger equation, we
define the loss function as mean-square error of the deviations that reads

L =

√

√

√

√

1
N

N
∑

n=1

�

�[ĤθΨ(r)]r=rn
− ẼΨ(rn)

�

�

2

+λ [Uθ (r0)− V (r0)]
2 . (8)

Since any global constant shift of the potential (i.e. V (r)← V (r) + const.) would only cause
a shift on the energy, a Lagrangian multiplier is added to fix the constant. In other words, we
need to know the value of the ground-true potential V (r0) at one certain coordinate r0. The
λ is a tunable hyper-parameter to control the strength of this constraint. In Ĥθ = −

∇2

2 + Uθ ,
the kinetic energy can be estimated while knowing Ψ(r), and Uθ is given by the NN.

In L, we explicitly evaluate the energy Ẽ of the target state given Uθ (rn) as

Ē = 〈Ĥ〉=
∫

E(r)P(r)dr'
1
N

N
∑

n=1

E(rn), (9)

with E(rn) given by Eq. (2) and the positions {rn} sampled from the probability distribution
P(r) in Eq. (7). With the loss L→ 0, the NN would give a potential Uθ (rn)→ V (r) satisfying
the Schrödinger equation (note V (r) denotes the “correct” potential that we expect the NN to
give). Meanwhile, the constraint is satisfied, i.e., |Uθ (r0)− V (r0)| → 0, with L→ 0.

4 Numerical results

To benchmark the performance of MPNN, we take the ground states of the hydrogen atom
and 1D harmonic oscillator (HO) as examples. Note for the hydrogen atom, we do not use
the spherical coordinate to transform the Schrödinger equation in three spatial dimensions to
a 1D radial equation, just to test the performance on predicting the 3D potentials.

To compare with QPNN, here we use the same architecture of the NN. There are three
hidden layers in the NN, where the number of the hidden variables in each layer is no more
than 128. A residual channel is added between second and third layers. We use Adam as the
optimizer to control the learning rate η [see Eq. (6)]. The testing set are sampled indepen-
dently from the training set. In other words, the coordinates in the testing set are different
from those in the training set.

To show the accuracy, we demonstrate in Table 1 (a) the error of potential as

ε =
1
N

N
∑

n=1

|Uθ (rn)− V (rn)| . (10)
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Table 1: (a) The error of potential ε in Eq. (10) and (b) the energy Ē obtained by
QPNN, QPNN with Metropolis sampling (MS) as another baseline for comparison,
and MPNN. We take the ground state of the hydrogen atom and the second excited
state of 1D harmonic oscillator (HO) as examples. The numbers of hidden variables
in the three layers of the NN are taken as 32, 128, and 128, respectively, same as
those in Ref. [31]. See more details about the evaluations of the error and energy for
these three methods in the main text.

(a) Error of potential
ε QPNN QPNN+MS MPNN
hydrogen (ground state) 0.072 0.060 0.028
1D HO (2nd excitation) 0.042 0.016 0.006

(b) Energy
Ē Exact QPNN QPNN+MS MPNN
hydrogen (ground state) -0.5 -0.486 -0.534 -0.493
1D HO (2nd excitation) 2.5 2.474 2.519 2.506

We evaluate ε by averagely taking 20× 20× 20 = 8000 coordinates {rn} in x , y, z ∈ [−1, 1].
Besides QPNN and MPNN, we also test a modified version of QPNN by simply replacing the
purely random sampling by Metropolis sampling, which we denote as QPNN+MS. In specific,
the coordinates {rn} to evaluate the loss function in Eq. (5) are randomly obtained according
to the probability in Eq. (7). Other parts including the NN are the same as the QPNN. For
MPNN, we use the loss function given in Eq. (8) where {rn} are also obtained by Metropolis
sampling. Our results indicate that one should explicitly involve the energy in the loss function
as Eq. (8) to give full play to the advantages of Metropolis sampling. The lowest losses is stably
obtained by MPNN for these two systems.

Table 1 (b) shows the energies by QPNN, QPNN with Metropolis sampling, and MPNN.
For QPNN, if Ψ(r) is an eigenstate of Ĥθ , one will have a zero loss and E(r) in Eq. (2) as a
constant. Therefore, it is a reasonable evaluation of the energy for QPNN using the average of
E(r) as

ĒQPNN =
1
N

N
∑

n=1

E(rn). (11)

A more reasonable choice to evaluate the average of the Hamiltonian 〈Ĥθ 〉 for Ψ(r), for which
the correct way is to calculate a weighted average as Eq. (9). For this reason, we use Metropo-
lis sampling to get the positions {rn} in QPNN+MS. Another potential advantage of using
Metropolis sampling is that the positions with |Ψ(r)| → 0 will be avoided since the probability
of having these positions will be vanishing. For the nonzero {rn}, we have E(rn) = E′(rn).

From our results, we do not see obvious improvement on evaluating the energy by in-
troducing Metropolis sampling to the QPNN. The error compared with the exact solution is
around O(10−1). One possible reason is that the energy is not explicitly involved in the loss
function, i.e., in the optimization. The MPNN method gives the most accurate among these
three approaches, with the error around O(10−3).

MPNN also shows its advantage on the sampling efficiency. Fig. 2 demonstrates the aver-
age of the error ε [Eq. (10)] with different numbers of samples N used to optimize NN. We
implement 10 independent simulations to calculate the average and variance of ε for each N .
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Figure 2: (Color online) The average of the error ε [Eq. (10)] by MPNN and QPNN
with different numbers of samples N used to optimize NN. For each point in the curve,
we implement 10 independent simulations to obtain the average and the variance
that is O(10−3) or less (illustrated by the shadows). The numbers of hidden variables
in the three layers of the NN are taken as 128, 128, and 128, respectively.

Figure 3: (Color online) (a)-(d) show four different potentials Uθ (r) that approxi-
mately give the ground-state wave-functionΨ(r) of the hydrogen atom with the losses
L ' O(10−5)−O(10−6). The potential in (a) is obtained by our MPNN, which gives
the lowest loss and the best estimation near the singular point r = 0. The numbers
of hidden variables are taken as the same values as those in Fig. 2. See more details
of (a)-(d) in the main text. We show in (e) the target wave-function Ψ(r), and in (f)
the exact potential V (r) = − 1

|r| . In all sub-figures, we fix z = 0 to illustrate the x- and
y-dependence of the potentials or wave-function.

Note the fluctuations of ε are from the randomness in the initialization of the variational pa-
rameters in the NN and the sampling processes. The variances are illustrated by the shadows,
which are around O(10−3) or less. With a same N , MPNN achieves a lower error than QPNN.

6

https://scipost.org
https://scipost.org/SciPostPhysCore.4.3.022


SciPost Phys. Core 4, 022 (2021)

Figure 4: (Color online) The error of the potential [Eq. (10)] and the loss [Eq. (8)]
with different values of the Lagrangian multiplier λ. The insets show two examples
of the predicted potential with z = 0. We take the numbers of hidden variables to be
the same values as those in Fig. 2.

There exist many local minimums of the loss function. A bad local minimum might give
rise to an incorrect or inaccurate energy, even if the value of the loss is small. Figs. 3 (a)-(d)
show four different Uθ that give the losses L ∼ O(10−5)−O(10−6) for the ground state of the
hydrogen atom. Figs. 3 (e) and (f) show the exact ground-state wave-function Ψ(r) and the
potential V (r) = − 1

|r| . We fix z = 0 to illustrate the x − y dependence of the potentials or
wave-function.

Compared with the expected potential V (r), the best result is obtained by the MPNN, illus-
trated in Fig. 3 (a). By changing the initialization strategy of the NN, say without multiplying
the initial θ with δ, one may obtain a different energy with a similar loss, as shown in Fig. 3
(b). Our simulation results indicate an effective initialization strategy by letting the initial
potential be near the hyper-surface of V = 0. This can be done by first randomly initializing
all θ in the NN and then multiplying them with a small factor, e.g., δ = 0.01.

In Fig. 3 (c), we set λ = 0, then an extra degree of freedom will appear. It can be easily
seen that a potential V ′(r) = V (r) + C will be the solution of our inverse problem for any
constant C if V (r) is the solution. The penalty term λ [Uθ (r0)− V (r0)]

2 is to fix this degrees
of freedom to give the correct energy.

Fig. 3 (d) shows the Uθ obtained by the QPNN. The dominant error is the data that are
taken near the center of the potential. For the MPNN, the positions with larger |Ψ(r)| are
taken more frequently in the Metropolis sampling. Better prediction is obtained since such
data contribute more to the physical properties, such as the observables and the gradients in
optimizing the NN, compared with those that have small |Ψ(r)|.

The penalty term λ [Uθ (r0)− V (r0)]
2 is to fix the degrees of freedom with a global shift

of the potential. The coefficient determines how strictly we require the NN to give the correct
value at the position r0. Fig. 4 shows the error ε in Eq. (10) of the hydrogen atom with
different values of λ. For λ = 0, meaning we do not require Uθ (r0) = V (r0), the predicted
potential can be shifted determined by the initial values of θ . Thus one cannot correctly give
the energy Ē, and the error ε is significant. But the loss is small with L ∼ O(10−4). This means
without knowing the potential at some position, we cannot uniquely give the eigen-energy of
Ψ but can still give the potential Uθ so that Ψ is the eigenstate of Ĥθ .

As λ increases to certain extent, we are able to obtain the expected potential V (r) with
small ε. Note the loss is still small, which fluctuates around L ∼ O(10−4)−O(10−5). In such
cases, we obtain accurate predictions of the eigen-energy Ē ' −0.5.
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5 Summary

The hybridization of machine learning with quantum physics brings new possibility to solve
the important problems that are challenging using the conventional approaches. Stimulated
by the quantum potential neural network, we consider to predict the potential in Schrödinger
equation, with which the target state Ψ is the eigenstate of the Hamiltonian. The Metropolis
potential neural network (MPNN) is proposed to predict the potential by combining deep
neural network and Metropolis sampling. With the benchmark on the harmonic oscillator
and hydrogen atom, MPNN exhibits excellent precision and stability on both predicting the
potential and evaluating the eigen-energy. Our proposal can be readily generalized to inversely
solving the Schrödinger equation of multiple electrons, and the differentiation equations for
other physical problems.
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