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Abstract

We find the complete family of many-body quantum Hamiltonians with ground-state of
Jastrow form involving the pairwise product of a pair function in an arbitrary spatial
dimension. The parent Hamiltonian generally includes a two-body pairwise potential as
well as a three-body potential. We thus generalize the Calogero-Marchioro construction
for the three-dimensional case to an arbitrary spatial dimension. The resulting family of
models is further extended to include a one-body term representing an external poten-
tial, which gives rise to an additional long-range two-body interaction. Using this frame-
work, we provide the generalization to an arbitrary spatial dimension of well-known
systems such as the Calogero-Sutherland and Calogero-Moser models. We also intro-
duce novel models, generalizing the McGuire many-body quantum bright soliton solu-
tion to higher dimensions and considering ground-states which involve e.g., polynomial,
Gaussian, exponential, and hyperbolic pair functions. Finally, we show how the pair
function can be reverse-engineered to construct models with a given potential, such as a
pair-wise Yukawa potential, and to identify models governed exclusively by three-body
interactions.
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1 Introduction

Exactly solvable models play a prominent role in many-body physics. Their study has guided
the exploration of strongly correlated states of matter, superconductivity, and other rich phe-
nomena. It has been key to the discovery of Bose-Fermi duality and its generalizations [1]
and has motivated new concepts such as the generalized exclusion statistics [2, 3]. Solvable
models are also utilized as test-bed for approximations and are useful in the development of
nonperturbative methods [4].

Most known exact solutions are confined to one spatial dimension, in which the scatter-
ing between particles is highly constrained by conservation laws [5]. Powerful mathematical
methods such as the Bethe ansatz and the quantum inverse scattering technique have been
developed for their description [6–9]. The availability of solvable models in higher spatial
dimensions is however scarce. A successful strategy to discover them consists of choosing the
ground-state in a given form. A widely used choice is the so-called Jastrow form in which the
many-body wavefunction is expressed as the pair-wise product of a two-body pair function f
of the interparticle distance ri j [10]

Φ0(~r1, . . . ,~rN ) =
∏

i< j

f (ri j) , (1)

which captures spatial two-body correlations and has proved useful in the description of su-
perfluid Helium and quantum fluids. The Jastrow form can be easily modified to account for
external one-body potentials (such as an optical lattice or a harmonic trap) by multiplying it
by a product of one-body terms. In this spirit, so-called Slater-Jastrow wave functions can be
constructed as products of Jastrow functions and Slater determinants of single-particle wave-
functions, e.g., to describe electronic systems. An alternative approach to construct fermionic
wave-functions starts from pair orbitals and use Pfaffian wave-functions [11,12].

In addition, generalizations of the Jastrow form to include higher-order correlations have
also been proposed. One can thus consider an expansion of the form [10]

Φ0(~r1, . . . ,~rN ) =
∏

i< j

f (ri j)×
∏

i

g(~ri)×
∏

i jk

h(~ri ,~r j ,~rk)× · · · (2)

Once the ground-state wavefunction Φ0 is chosen, one can consider the explicit action of the
kinetic T̂ operator on it. Whenever it is possible to identify the terms resulting from the explicit
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evaluation as an interaction potential acting on Φ0, T̂Φ0 = −VΦ0, the parent Hamiltonian Ĥ0
of Φ0 follows, with the Schrödinger equation Ĥ0Φ0 = (T̂+V )Φ0 = 0. This ‘optimistic’ approach
to identifying exact solutions of many-body quantum systems was pioneered by Sutherland in
the derivation of the Calogero-Sutherland model [13,14]. However, and at variance with that
case, the parent Hamiltonian of (1) is only expected to be quasi-exactly solvable, in the sense
that only part of the spectrum may be derived. Further, the parent Hamiltonian is generally
characterized by two-body and three-body interactions. The conditions under which it in-
volves only two-body interactions have been studied under periodic boundary conditions in
one spatial dimension and restrict the form of the two-body function f to be a Jacobi theta
function in one spatial dimension [15].

The analogous construction in one-spatial dimension without imposing periodic boundary
conditions has recently been presented in [16] for Jastrow wavefunctions (2) including one
and two-body functions. For many relevant choices of the pair function, the three-body term
vanishes, becomes constant, or reduces to a two-body term. As a result, Jastrow ground-states
are common in one-dimensional models containing only two-body interactions. Examples
include the paradigmatic Lieb-Liniger model [17, 18] describing one-dimensional Bose gas
with contact interactions of relevance to ultracold gases confined in tight-waveguides [19].
While in general eigenstates take the form of the Bethe ansatz, for attractive interactions the
Jastrow form appears in the McGuire bright quantum soliton solution [20]. This feature is
preserved upon embedding in a harmonic trap, provided the Hamiltonian is supplemented
with long-range interactions [21]. In the case of hard-core repulsive interactions known as the
Tonks-Girardeau gas [1], the Jastrow form is well known under harmonic confinement [22].
The latter is a specific instance of the celebrated Calogero-Sutherland model with inverse-
square interactions [13, 23, 24]. This structure also appears in states of systems related by
Bose-Fermi duality [1] and anyonic generalizations [25,26].

Beyond the one-dimensional case, restricting the Jastrow form to the pair-wise product,
Calogero and Marchioro [27] identified the family of parent Hamiltonians with a ground state
of the form (1) in three spatial dimensions. The latter generally include two-body and three-
body interactions.

In two spatial dimensions, Jastrow wavefunctions are ubiquitous in the description of quan-
tum Hall physics with effective complex coordinates of the form z j = x j−i y j [28]. For example,
the Laughlin state [29] can be seen as a deformation of the ground state of the one-dimensional
Calogero-Sutherland model [30]. Such Jastrow wavefunctions are related to models of anyons
including a relative angular momentum term [31]. For real coordinates (i.e., ~r j = (x j , y j)) and
in the absence of momentum-dependent terms (other than the kinetic energy contribution),
few instances of quantum many-body solvable models are available [32,33].

In arbitrary spatial dimension, Gambardella used a group theoretical approach to identify
the family of parent Hamiltonian of Jastrow ground-state wavefunctions in translationally
invariant systems with SU(1,1) symmetry [34]. The latter applies to Calogero-like models with
inverse-square interactions but it is rather restrictive and excludes relevant cases involving,
e.g., contact and Coulomb interactions. A closely related and more general result was reported
by Kane et al. [35]who considered bosonic models with translational invariance and identified
the structure of the parent Hamiltonian including two and three-body terms. Further, they
showed that the long-wavelength physics of these models is independent of the three-body
interactions. However, the interaction terms were expressed merely in terms of gradients
of the pair function, i.e., as momentum-dependent interactions. The accumulated results in
different dimensions indicate that the parent Hamiltonian with ground-state of Jastrow form
is generally not exactly solvable, and only part of the spectrum is available.

In this work, we provide explicitly the complete family of parent Hamiltonian in arbi-
trary spatial dimension d with ground state of Jastrow form including one and two-body pair
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functions, i.e., Ψ0(~r1, . . . ,~rN ) =
∏

i g(~ri)
∏

i< j f (ri j). It is shown that such models generally
involve two-body and three-body interaction terms. In addition, the one-body function g can
be used to account for an external one-body potential such as a harmonic trap, but only when
the parent Hamiltonian is supplemented with a long-range two-body contribution. Our re-
sults thus pave the way to the systematic construction of quasi-solvable models in an arbitrary
spatial dimension.

2 Parent Hamiltonians in d-spatial dimensions

In arbitrary spatial dimension d, we denote the spatial coordinate of a particle with index i by

a vector ~ri ∈ Rd with components ri,α (α = 1, . . . , d) and norm ri = ‖~ri‖ =
r

∑d
α=1 r2

i,α. The
kinetic energy operator is given in terms of the Laplace operator,

∆i =
d
∑

α=1

∂ 2

∂ r2
i,α

. (3)

In hyperspherical coordinates for a system of N particles, the explicit form of the kinetic
term reads

T̂ = −
~2

2m

N
∑

i=1

∆i = −
~2

2m

N
∑

i=1

�

1

rd−1
i

∂

∂ ri
rd−1

i
∂

∂ ri
+

1

r2
i

∆Sd−1

i

�

,

where the Laplace-Beltrami operator on the sphere Sd−1 is denoted by ∆Sd−1

i . We consider
ground-states described as the pair-wise product of pair functions, that depend exclusively on
the relative distance between particles ri j = ‖~ri − ~r j‖, i.e.,

Φ0(~r1, . . . ,~rN ) = 〈~r1, . . . ,~rN |Φ0〉=
∏

i< j

f (ri j) , (4)

which describes bosons, being symmetric with respect to permutation of particles. For this
choice of Φ0, an important simplification occurs as

∆Sd−1

i Φ0 = 0 . (5)

We are interested in finding the many-body quantum parent Hamiltonian satisfying the
time-independent Schrödinger equation

Ĥ0|Φn〉= En|Φn〉 . (6)

In one [16] and three [27] spatial dimensions, it is known that H0 involves exclusively two-
body and three-body interactions

Ĥ0 = T̂ + V2 + V3 . (7)

We next show that the form of the parent Hamiltonian (7) holds in arbitrary spatial di-
mension d. To identify it, we explicitly compute the action of the kinetic energy operator on
the Jastrow wavefunction (4). For compactness, we denote f (ri j) = fi j and similarly for the
first and second derivatives of the function f . As shown In Appendix A, explicit evaluation of
the action of the Laplacian yields:

∑

i

∆iΦ0 =
∑

i

∑

j 6=i

�

f ′′i j

fi j
+

d − 1
ri j

f ′i j

fi j

�

Φ0 +
∑

i

∑

j 6=k 6=i

~ri j

ri j
·
~rik

rik

f ′i j

fi j

f ′ik
fik
Φ0 .
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After noticing that the functions fi j and f ′′i j are symmetric with respect to permutations
~ri ↔ ~r j , we rewrite the first sum as

∑

i 6= j = 2
∑

i< j . For the second term, we use the following
sum decomposition

∑

i 6= j 6=k

Ai jk = 2
∑

i< j<k

Ai jk + 2
∑

j<k<i

Ai jk + 2
∑

k<i< j

Ai jk = 2
∑

i< j<k

�

Ai jk + A jki + Aki j

�

,

to obtain

∑

i

∆iΦ0 = 2
∑

i< j

�

f ′′i j

fi j
+

d − 1
ri j

f ′i j

fi j

�

Φ0

+ 2
∑

i< j<k

�

~ri j

ri j
·
~rik

rik

f ′i j

fi j

f ′ik
fik
−
~ri j

ri j
·
~r jk

r jk

f ′i j

fi j

f ′jk
f jk
+
~rik

rik
·
~r jk

r jk

f ′ik
fik

f ′jk
f jk

�

Φ0 , (8)

where we use ~ri j = −~r ji .
As an upshot, the parent Hamiltonian of a Jastrow wavefunction in dimension d takes the

explicit form

Ĥ0 = T̂ + V2 + V3 , (9)

V2 =
~2

m

∑

i< j

�

f ′′(ri j)

f (ri j)
+ (d − 1)

f ′(ri j)

ri j f (ri j)

�

, (10)

V3 =
~2

2m

∑

i

∑

j 6=k 6=i

~ri j

ri j
·
~rik

rik

f ′i j

fi j

f ′ik
fik

=
~2

m

∑

i< j<k

�

~ri j · ~rik

ri j rik

f ′(ri j) f ′(rik)

f (ri j) f (rik)
−
~ri j · ~r jk

ri j r jk

f ′(ri j) f ′(r jk)

f (ri j) f (r jk)
+
~rik · ~r jk

rikr jk

f ′(rik) f ′(r jk)

f (rik) f (r jk)

�

, (11)

with zero ground-state energy E0 = 0, i.e., Ĥ0|Φn〉 = 0. We note the presence of a three-body
term that does not vanish in general (unless f is constant), as we shall see.

For d = 3, equations (9)-(11) reduce to the Calogero-Marchioro complete family of par-
ent Hamiltonians in three spatial dimensions [27]. Similarly, equations (9)-(11) generalize
the complete family of parent Hamiltonians in one spatial dimension identified in [16]. The
d = 1 case is indeed better discussed as a separate instance, due to the appearance of contact
interactions. In this sense, our current work focuses on d > 1. In what follows we proceed to
the construction of instances of this family by considering relevant choices of the pair function
f (ri j), i.e., by specifying the ground-state Jastrow wavefunction. But first, we discuss how to
include a one-body potential such as external confinement. To this end, we include a product
over single-particle terms in the Jastrow wavefunction.

3 Localized Jastrow wavefunctions and confining potentials

The Jastrow form (1) is exclusively given as the pairwise product of a pair correlation function.
In many applications, a one-body term is added to the Hamiltonian to account for an external
potential to which all particles are subject. This is particularly relevant in the description of
ultracold gases confined in a trap. In paradigmatic instances of one-dimensional integrable
models such as hard-core bosons in the Tonks-Girardeau regime and the (rational) Calogero-
Sutherland model, the effect of an external harmonic trap on the ground-state wavefunction
is to modify the Jastrow form by including the product of a one body-term [16].
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We thus consider a ground-state of the form

Ψ0 =
∏

k

g(rk)
∏

i< j

f (ri j) =
∏

k

g(rk)Φ0 . (12)

In spite of the fact that we know the parent Hamiltonian of Φ0, derived in the previous section,
it proves convenient to perform an explicit computation making use of the Jastrow form of Φ0.
The detailed calculation is shown in the Appendix A, where the Laplacian is found to be

∆iΨ0 =
∑

j 6=i

�

d − 1
ri j

f ′i j

fi j
+

f ′′i j

fi j

�

Ψ0 +
∑

j 6=k 6=i

�

~ri j

ri j
·
~rik

rik

f ′i j

fi j

f ′ik
fik

�

Ψ0

+ 2
∑

j 6=i

�

~ri j

ri j

f ′i j

fi j
·
~ri

ri

g ′i
gi

�

Ψ0 +

�

d − 1
ri

g ′i
gi
+

g ′′i
gi

�

Ψ0 .

To find the parent Hamiltonian, we evaluate the kinetic term and deduce the form of the
potential V using the identity

ĤΨ0 = 0 , (13)

where

Ĥ = −
~2

2m

∑

i

∆i + V = Ĥ0 + V1 + V2LL . (14)

Using the equation above, we find that the potential V includes the two-body and three-body
terms V2 and V3 of Ĥ0, as well as an external one-body potential V1, and a mixed coupling
between the two-body and external potential that we denote by V2LL as it generally describes
a long-range two body contribution:

V1 =
~2

2m

∑

i

�

d − 1
ri

g ′i
gi
+

g ′′i
gi

�

, (15)

V2LL =
~2

m

∑

i 6= j

�

~ri j

ri j
·
~ri

ri

f ′i j

fi j

g ′i
gi

�

=
~2

m

∑

i< j

f ′i j

fi j

~ri j

ri j
·

�

~ri

ri

g ′i
gi
−
~r j

r j

g ′j
g j

�

. (16)

As a particular example, we consider the presence of an isotropic harmonic trap, that
corresponds to the choice

gi = e−
mω
2~ r2

i . (17)

In this case

V1 =
1
2

mω2
N
∑

i=1

r2
i − dN

~ω
2

, (18)

which represents a harmonic trap minus the zero-point energy contribution. The coupling
term reads in this case

V2LL = −~ω
∑

i 6= j

�

~ri j

ri j
· ~ri

f ′i j

fi j

�

= −~ω
∑

i< j

f ′i j

fi j
ri j . (19)

This term is the generalization to arbitrary spatial dimension of the two-body function long-
range term found in the long-range Lieb-Liniger model [16, 21]. We also note that this term
reduces to a constant in the case of SU(1,1) systems considered by Gambardella [34].
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More generally, the role of an external spatially isotropic confining potential can be associ-
ated with the one-body function g(ri) = exp[v(ri)], provided that the Hamiltonian is supple-
mented with the V2LL term. Specifically, the one-body external potential reads

V1 =
~2

2m

N
∑

i=1

�

d − 1
r

v′(ri) + v′(ri)
2 + v′′(ri)

�

, (20)

while the two-body long-range potential reads

V2LL =
~2

m

∑

i 6= j

�

~ri j

ri j
·
~ri

ri

f ′i j

fi j
v′(ri)

�

=
~2

m

∑

i< j

f ′i j

fi j

~ri j

ri j
·
�

~ri

ri
v′(r j)−

~r j

r j
v′(r j)

�

. (21)

These equations for V1 and V2LL generalize the results for the embedding of Jastrow ground-
states in external potentials in [16] from one to an arbitrary spatial dimension d.

Summarizing this section, if a wavefunction Φ0(~r1, . . . ,~rN ) =
∏

i< j f (ri j) fulfills the

Schrödinger equation (T̂ + V2 + V3)Φ0 = 0, then the modified wavefunction Ψ0 =
∏

i ev(ri)Φ0
obeys the Schrödinger equation

ĤΨ0 = (T̂ + V1 + V2 + V2LL + V3)Ψ0 = 0 , (22)

with V1 and V2LL given by Eqs. (20) and (21), respectively.

4 List of models

The family of parent Hamiltonians of Jastrow wavefunction is infinite. To determine specific
instances within this family it suffices to specify a valid pair function f . We next discuss some
specific examples, partially motivated by the existence of analogous models in one spatial
dimension:

• Calogero-Moser (CM) model: fi j = rλi j .

• Calogero-Sutherland (CS) model: fi j = rλi je
−ω2 r2

i j .

• McGuire model: fi j = e−cri j , c > 0.

• Hyperbolic (inverse-sinh-square) model: fi j = sinh(ri j/r0)λ, λ > 0.

• New model 1: McGuire-Calogero-Sutherland: fi j = ecri j e−
ω
2 r2

i j .

• New model 2: McGuire-Calogero-Moser model: fi j = rλi je
−cri j , c > 0.

• New model 3: Hyperbolic McGuire model: fi j = sinh(ri j/r0)λe−cri j , c > 0.

• New model 5: Hyperbolic Calogero-Sutherland model: fi j = sinh(ri j/r0)λe−
ω
2 r2

i j .

• New model 6: Model with Yukawa-like pairwise interactions: fi j = rλi je
ari j+br2

i j+cr3
i j .
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4.1 Calogero-Moser model in d-spatial dimensions

In one spatial dimension, the pair function

f (ri j) = rλi j , (23)

for the Jastrow wavefunction is associated with the celebrated Calogero-Moser model as parent
Hamiltonian. For this choice V3 = 0, and the CS Hamiltonian exclusively involves two-body
interactions that decay with the square of the interparticle distance.

The d-dimensional case, obtained from Eqs. (10)-(11), and described by the Hamiltonian

Ĥ0 = −
~2

2m

N
∑

i=1

∆i +
~2

m

∑

i< j

λ(λ+ d − 2)
|ri j|2

+ V3 , (24)

with

V3 =
~2λ2

m

∑

i< j<k

�

~ri j · ~rik

r2
i j r

2
ik

−
~ri j · ~r jk

r2
i j r

2
jk

+
~rik · ~r jk

r2
ikr2

jk

�

. (25)

In the d = 1 case, the latter reduces to a constant term. In arbitrary d, the Hamiltonian
preserves SU(1, 1) symmetry. Embedding in a harmonic trap results in an additional long-
range pairwise interaction term (Eq. (21) that in this case takes becomes a constant

V2LL = −
~ωλ

2
N(N − 1) . (26)

The resulting Hamiltonian was discussed by Khare and Ray in [32, 33], who also provided
a tower of excited states. We note that the interaction terms of the Hamiltonian have the
same scaling dimension as the kinetic energy operator. Under variations of the trap-frequency
ω→ω(t), the time-evolution is thus self-similar. Exact coherent states can thus be constructed
following [14, 36, 37]. In addition, the homogeneous character of f (ri j) makes it possible to
study a wide range of properties including the mean energy [38] and energy fluctuations [39],
as well as information-theoretic quantities such as the time-dependent fidelity and Bures angle
[40].

4.2 Calogero-Sutherland model d-spatial dimensions

Consider the two-body function of the Calogero-Sutherland (CS) model

fi j = rλi je
− µΩ2~ r2

i j . (27)

The corresponding two-body term involves harmonic and inverse-square interactions

V2 = −
~µΩN(N − 1)

2m
(2λ+ d) +

∑

i< j

�

µ2

m
Ω2r2

i j +
~2

m
λ(λ+ d + 2)

r2
i j

�

. (28)

The three-body term, written in compact form, reads

V3 =
~2

2m

∑

i

∑

j 6=k 6=i

~ri j · ~rik

�

µ2Ω2

~2
+
λ2

r2
i j r

2
ik

−
µΩ

~

�

1

r2
i j

+
1

r2
ik

��

. (29)

In this case, embedding in a harmonic trap of frequency ω results in an additional harmonic
contribution

V2LL = µωΩ
∑

i< j

r2
i j −

~ωλ
2

N(N − 1) . (30)
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4.3 Bose gas with contact and Coulomb-like inverse-distance interactions in d-
spatial dimensions

In d = 1, the attractive one-dimensional Bose gas with contact interactions, known as the
Lieb-Liniger model [17,18], supports quantum bright soliton states described by the McGuire
wavefunction Φ0 = e−c

∑

i< j |x i j | [20]. We next consider the generalization to d > 1, in which
Φ0 is determined by the pair function

fi j = e−cri j , c > 0 . (31)

Explicit computation yields

V2 =
~2N(N − 1)

2m
c2 − (d − 1)c

∑

i< j

1
ri j

. (32)

Note that V2 takes the form of a gravitational or Coulomb-like potential in d = 3. However,
we recall that in d = 2 the latter involves a logarithmic dependence on the relative coordinate,
rather than an inverse power-law. In the d = 1 case, the Coulomb and gravitational potentials
are linear on the relative distance between particles. As a result, for d 6= 3, the power-law
interaction ∼ 1/ri j does not admit an analogy with electromagnetism or Newtonian gravity.

Regarding the three-body contribution, it takes a particularly simple form given by

V3 =
~2c2

m

∑

i< j<k

�

~ri j · ~rik

ri j rik
−
~ri j · ~r jk

ri j r jk
+
~rik · ~r jk

rikr jk

�

=
~2c2

m

∑

i< j<k

�

cos(θi, jk) + cos(θ j,ki) + cos(θk,i j)
�

,

where θi, jk =
~ri j ·~rik
ri j rik

is the angle between the relative positions ~ri j and ~rik. Interestingly, the
sum of the cosines varies between 1 and 3/2 depending on the relative positions of three
particle, e.g., it takes unit value if the three particles are aligned and equals 3/2 if they form
an equilateral triangles. This observation brings us to find the lower and the upper bound of
the three-body potential

~2c2

m
N(N − 1)(N − 2)

6
≤ V3 ≤

~2c2

m
N(N − 1)(N − 2)

4
, (33)

which is consistent with [34] (equation (27) and comment before that). Notice that for d = 1,
we find that the three-body term is constant and is equal to the lower bound above [21].
From the observation above, the ground-state energy is minimized in a classical configuration
in which particles are located at the apex of d-dimensional regular simplex blocks (e.g., equi-
lateral triangles for d = 2, tetrahedron for d = 3) with edges of characteristic length a = 1/c.

The embedding of such state in an isotropic harmonic trap (18) is characterized by the
wavefunction

Ψ0 = e−c
∑

i< j ri j e−
mω
2~
∑

i r2
i , (34)

whenever the Hamiltonian is supplemented by the long-range two-body term

V2LL = ~ωc
∑

i 6= j

�

~ri j

ri j
· ~ri

�

= ~ωc
∑

i< j

ri j (35)

and by the external potential (18). This can be seen as a higher-dimensional generalization of
the confinement-induced long-range term in the modified Lieb-Liniger model [16,21].
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4.4 Inverse-sinh-square potentials in d-spatial dimensions

In d = 1, the pair correlation function sinh(|x i − x j|) constitutes a relevant example and is
associated with a parent Hamiltonian characterized by an inverse-sinh-square pairwise poten-
tial, often referred to as a hyberbolic potential for short [15, 16]. It is natural to consider its
higher dimensional generalization associated with the pair function

fi j = sinh(ri j/r0)
λ , (36)

where r0 as units of length. This choice imposes a hard-core constraint on Φ0 which vanishes
as ri j → 0. Further, at long distances the pair function behaves as an exponential function
fi j ∼ exp(λri j/r0) over the range r0/λ. In this case, the two-body term reads

V2 =
~2λ2N(N − 1)

2mr2
0

+
~2

m

∑

i< j

�

λ(λ− 1)
r2
0 sinh(ri j/r0)2

+
λ(d − 1)

r0

1
ri j

coth(ri j/r0)

�

. (37)

Interestingly, at short distances, this potential behaves as

V2 =
~2λ(2λ+ d)N(N − 1)

6mr2
0

+
~2

m

∑

i< j

�

λ(λ+ d − 2)
r2

i j

+
λ(3λ− d − 2)

45r4
0

r2
i j

�

, (38)

which effectively takes the form of that in the Calogero-Sutherland model.
By contrast for ri j/r0� 1,

V2 =
~2λ2N(N − 1)

2mr2
0

+
~2

m

∑

i< j

λ(d − 1)
r0ri j

, (39)

which takes the form of the Coulomb-like inverse-distance interaction.
In addition, the three-body contribution reads

V3 =
~2λ2

2mr2
0

∑

i

∑

j 6=k 6=i

~ri j · ~rik
coth(ri j/r0) coth(ri j/r0)

ri j rik
. (40)

Regarding the embedding in a harmonic trap of frequencyω, it gives rise to the additional
interaction term

V2LL = −
~ωλ

r0

∑

i< j

ri j coth(ri j/r0) , (41)

which is continuous and effectively harmonic near the origin, as in the d = 1 case [16], given
that (r/r0) coth(r/r0)≈ 1+ (r/r0)2/3+O(r/r0)2).

4.5 McGuire-Calogero-Sutherland model (MCS)

Consider the pair correlation function

fi j = ecri j e−µΩr2
i j/(2~) , (42)

with first and second spatial derivatives given by

f ′i j = c f −
µΩ

~
ri j fi j = (c −

µΩ

~
ri j) fi j , (43)

f ′′i j = −
µΩ

~
fi j + (c −

µΩ

~
ri j)

2 fi j =

�

−
µΩ

~
+ c −

2µΩc
~

ri j +
�

µΩ

~

�2

r2
i j

�

fi j . (44)
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We note the following identities

d − 1
ri j

f ′i j

fi j
= c

d − 1
ri j
−
µΩ

~
(d − 1) , (45)

f ′i j

fi j

f ′ik
fik

= (c −µΩri j)(c −
µΩ

~
rik) = c2 +

�

µΩ

~

�2

ri j rik −
µΩc
~
(ri j + rik) , (46)

~ri j · ~rik

ri j rik

f ′i j

fi j

f ′ik
fik

= c2
~ri j · ~rik

ri j rik
+
�

µΩ

~

�2

~ri j · ~rik −
µΩc
~

�

~ri j ·
~rik

rik
+ ~rik ·

~ri j

ri j

�

. (47)

Using the first one in combination with equation (10), we find

V2 = V (1)2 + V (2)2 ,

where

V (1)2 =
~2

2m
N(N − 1)

�

c −
µΩ

~

�

− 2γ~Ωc
∑

i< j

ri j + γµΩ
2
∑

i< j

r2
i j , (48)

V (2)2 =
~2c
m
(d − 1)

∑

i< j

1
ri j
−
~Ω
2
γ(d − 1)N(N − 1) , (49)

where γ = µ/m. As for the three-body term, using equations (46) and (47) together with
(11), we find

V3 = V (1)3 + V (1)3 + V (1)3 , (50)

where

V (1)3 =
~2c2

m

∑

i< j<k

�

~ri j · ~rik

ri j rik
−
~ri j · ~r jk

ri j r jk
+
~rik · ~r jk

rikr jk

�

, (51)

V (2)3 = γµΩ2
∑

i< j<k

�

~ri j · ~rik − ~ri j · ~r jk + ~rik · ~r jk

�

, (52)

V (3)3 = −γ~Ωc
∑

i< j<k

�

~ri j · ~rik

�

1
rik
+

1
ri j

�

− ~ri j · ~r jk

�

1
ri j
+

1
r jk

�

+~rik · ~r jk

�

1
rik
+

1
r jk

��

. (53)

As we have seen above, the first three-body term reduces to

V (1)3 =
~2

m
(c2 +δ2)

N(N − 1)(N − 2)
6

, (54)

where we emphasize that δ is coordinate-dependent 0≤ δ2 ≤ c2

2 . The other three-body terms
reduce to two-body interactions of the form

V (2)3 = γ
µΩ2

2

∑

i< j<k

�

r2
ik + r2

i j + r2
jk

�

= γ
(N − 2)µΩ2

2

∑

i< j

r2
i j (55)

and

V (3)3 = −γ~Ωc
∑

i< j<k

�

rik + ri j + r jk

�

= −γ~Ωc(N − 2)
∑

i< j

ri j . (56)
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Now, combining the equations above, we find
�

~2

2m
∆+ V2MCS+ V3MCS

�

φ0 = E0φ0 , (57)

with the effective two-body potential

V2MCS = −γ~ΩcN
∑

i< j

ri j +
~2c
m
(d − 1)

∑

i< j

1
ri j
+ γ
µΩ2

2
N
∑

i< j

r2
i j (58)

and the three-body interactions

V3MCS =
~2

m
(c2 +δ2)

N(N − 1)(N − 2)
6

, (59)

where the coordinate-dependent potential term fulfills 0 ≤ δ2 ≤ c2

2 , and the effective zero-
point energy reads

E0 = γ
~Ωd

2
N(N − 1)−

~2c
2m

N(N − 1) . (60)

Interestingly, the model is equivalent to the model described in section 4.3 for γ = 0 or
Ω = 0 and to the latter model in an external harmonic trap (with the additional two-body
interaction (35)) for γ= 1, µ= m, and Ω=ω0/N . To see that, one can use the identity

∑

i

r2
i = NR2 +

1
N

∑

i< j

r2
i j , ~R=

1
N

∑

i

~ri (61)

and multiply the wavefunction (42) by the independent center of mass contribution
e−N(mω/~)R2

, which cancels out and gives the wavefunction (34).

4.6 McGuire-Calogero-Moser model in d-spatial dimensions

The preceding examples provide d-dimensional generalizations of well-known models. The
potential of our framework to guide the discovery of new quasi-exactly solvable models is
apparent from the following example. Consider a two-body function

fi j = rλi je
−cri j , c ≥ 0,λ > 0 , (62)

which yields to Jastrow ground-state wavefunctions which is the product of the McGuire so-
lution of the attractive Lieb-Liniger model and that in the Calogero-Moser model. In this case

V2 =
~2cN(N − 1)

2m
+
~2

m

∑

i< j

�

−
c(2λ+ d − 1)

ri j
+
λ(λ+ d − 2)

r2
i j

�

, (63)

which includes a inverse-distance interaction term (matching the Coulomb/gravitational one
in d = 3) together with an inverse-square interaction. This combination is reminiscent of the
Kratzer’s molecular potential [41].

Given the fact that f ′/ f = −c +λ/r, the three-body term admits the form

V3 =
~2c2

6m
N(N − 1)(N − 2) +

~2

2m

∑

i

∑

j 6=k 6=i

~ri j · ~rik

�

−2cλ

�

1

r2
i j rik

+
1

ri j r
2
ik

�

+
λ2

r2
i j r

2
ik

�

. (64)
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The long-range two-body term stemming from the embedding in a harmonic trap of fre-
quency ω takes the form

V2LL = ~ωc
∑

i< j

ri j −
~ωλ

2
N(N − 1) , (65)

which is precisely the sum of the corresponding V2LL in Eq. (26) and Eq. (35).
The one-dimensional case seems not to have been discussed in the literature and merits

some specific attention as the three-body contribution identically vanish. In particular, one
finds

Ĥ0 = −
~2

2m

N
∑

i=1

∆i +
~2

m

∑

i< j

�

2cλ
ri j
+
λ(λ− 1)

r2
i j

�

+
~2c2

2m
(N2 − 1)N , (66)

with the last term accounting for the ground-state energy of the McGuire quantum soliton. We
note however that the inverse square interactions involve a hard-core constraint and thus the
case λ= 0 is to be treated independently as in Sec. 4.3.

4.7 Hyperbolic McGuire model in d-spatial dimensions

Consider a two-body function

fi j = sinh(ri j/r0)
λe−cri j , c > 0 , (67)

which is the product of the pair functions in the McGuire solution and the hyperbolic model.
We identify the two-body interaction term

V2 =
~2N(N − 1)

2m

�

c2 +
λ

r2
0

�

+
~2

m

∑

i< j

�

λ(d − 1)
r0ri j

coth(ri j/r0) +
λ(λ− 1)

r2
0

coth(ri j/r0)
2 −

c(d − 1)
ri j

+
2cλ
r0

coth(ri j/r0)

�

,

(68)

while the three-body term reads

V3 =
~2

2m

∑

i

∑

j 6=k 6=i

~ri j · ~rik

ri j rik

�

c2 +
λ2

r2
0

coth(ri j/r0) coth(rik/r0)

−
cλ
r0

�

coth(ri j/r0) + coth(rik/r0)
�

�

. (69)

4.8 Hyperbolic Calogero-Sutherland model in d-spatial dimensions

For completeness, we consider the modification of the predecing model in which the expo-
nential decay of the pair function fi j is replaced by a Gaussian function. Consider a two-body
function

fi j = sinh(ri j/r0)
λe−

µΩ
2~ r2

i j , c > 0 . (70)

The two-body interaction term has multiple contributions

V2 =
~2N(N − 1)

2m

�

−
dµΩ
~
+
λ

r2
0

�

(71)

+
~2

m

∑

i< j

�

λ(d − 1)
r0ri j

coth(ri j/r0) +
λ(λ− 1)

r2
0

coth(ri j/r0)
2 +
µ2Ω2

~2
r2

i j −
2µΩλ
~r0

ri j coth(ri j/r0)

�

,
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which differs from that in the preceding model in the first contribution to the zero-point energy
and the last two terms proportional to ri j . Likewise, given the identity f (r)′ = −µΩr/~ +
λ coth(r/r0)/r0, the three-body potential reads

V3 =
~2

2m

∑

i

∑

j 6=k 6=i

~ri j · ~rik

ri j rik

�

µ2Ω2

~2
ri j rik +

λ2

r2
0

coth(ri j/r0) coth(rik/r0)

−
µΩλ

r0

�

rik coth(ri j/r0) + ri j coth(rik/r0)
�

�

. (72)

4.9 Model with Yukawa-like pairwise interactions

The Yukawa potential has the form [42]

VYuk(r) = −α
e−r/D

r
= −V0

e−δρ

ρ
, (73)

where D and α are two constants and r is the relative radius between two particles,
a0 = ~2/(mα) is the Bohr radius, δ = a0/D is a dimensionless parameter, ρ = r/a0, and
V0 =

~2

ma2
0

is the amplitude of energy of the potential. In most physical systems where the

Yukawa potential is introduced, one considers the constant D to be large compared to the
Bohr radius, i.e., δ� 1. Then, the Yukawa potential can be approximate as

VYuk(r)≈ −V0

�

1
ρ
+δ−

δ2

2
ρ +

δ3

6
ρ2 +O(δ4)

�

, (74)

where we neglect the terms of order higher than four.
In this section, we propose to use our technique to find an approximation of the ground

state of the Hamiltonian

H =
~2

2m
∆~r + VYuk(r)≈ V0

�

−
∆ ~ρ

2
−
�

1
ρ
+δ−

δ2

2
ρ +

δ3

6
ρ2

��

, (75)

where we rescaled the relative position ~ρ = ~r/a0. Furthermore, we propose to generalize to
N particles with the following pairwise function

fi j = eaρi j+bρ2
i j+cρ3

i j , (76)

where a, b, c are three real constant and where ρi j is the dimensionless relative distance be-
tween two particles with indices i and j, respectively. Using the identities

f ′i j =
�

a+ 2bρi j + 3cρ2
i j

�

fi j , (77a)

f ′′i j =
�

a+ 2bρi j + 3cρ2
i j

�2
fi j +

�

2b+ 6ρi j

�

fi j , (77b)

we find
2 f ′i j

ρi j fi j
=

2a
ρi j
+ 4b+ 6cρi j , (78a)

f ′′i j

fi j
= (a2 + 2b) + (4ab+ 6c)ρi j + (4b2 + 6ac)ρ2

i j + 12bcρ3
i j + 9c2ρ4

i j , (78b)
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whence it follows that the two-body rescaled potential v2 = V2/V0 equals

v2(ρi j) =

�

a
ρi j
+

1
2
(a2 + 6b) + (2ab+ 6c)ρi j + (2b2 + 3ac)ρ2

i j + 6bcρ3
i j +

9
2

c2ρ4
i j

�

. (79)

As we did in the previous sections, the three-body potential V3 can be obtained from equation
(11) in a similar fashion.

Let us now take N = 2 and find the coefficients a, b, c. After identifying the coefficients in
equations (75) and (79), we obtain











a = −1

b = 1
4

�

1−
q

1+ 4
3δ

3 − 2δ2
�

≈ 1
4δ

2 − 1
6δ

3

c = −1
2δ

2 + 2b ≈ − 1
18δ

3

, (80)

which leads to the potential given by equation (74) and to the ground-state energy

E = V0ε0 , ε0 = −
1
2

a2 − 3b = −
1
2
−

3
4
δ2 +

1
2
δ3 . (81)

This is consistent with results recently reported in [43], where the authors used the quantum
supersymmetry approach. The advantage of our present method is that it works for any dimen-
sions d ≥ 1 and that it can easily extended to higher order of δ as well as to non-zero angular
momentum l > 0. Indeed, to incorporate the angular momentum, it suffices to multiply the
pairwise function (76) by r l

i j

fi j = r l
i je

aρi j+bρ2
i j+cρ3

i j . (82)

We then find an additional effective potential Vl = V0l(l + 1)/r2
i j and modified two-body po-

tentials. Using similar method, we identify the constants to find










a = − 1
1+l

b ≈ 1+l
4 δ

2 − (2+l)(1+l)2
12 δ3

c ≈ −1+l
18 δ

3 ,

(83)

and the energy level El = V0εl with

εl = −
1
2

a2 − 3b− 2bl = −
1

2(1+ l)2
−

3
4
(1+ l)

�

1+
2
3

l
�

δ2 +
1
4
(2+ l) (1+ l)2

�

1+
2
3

l
�

δ3

(84)

= −
1

2n2
−

1
4

n(2n+ 1)δ2 +
1
12
(n+ 1)n2(2n+ 1)δ3 , (85)

where the quantum number n = 1 + l. Notice that for δ = 0, we find that En =
E0
n2 where

E0 = −V0/2 = −~2/(2ma2
0) as expected. Notice that using our technique we find the same

energy levels and wavefunction as in [43]. It is also possible to find the approximate solution
for the higher order terms in δ. The general method consists of adding power of ρ in the
exponential in equation (82):

fi j = r l
i je

∑∞
k=1 akρ

k
(86)

and to identify the coefficients in front of the two-body potential. One can use analytical or
numerical methods to find the coefficients ak, k = 1,2, 3, . . . up to a certain order M > 3.
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Once we identify the coefficients, we can easily find the expression of the energy levels En,l for
n = l + 1. To find the eigenstates for other degeneracies (such as n = 1+ p+ l, p = 1, 2, . . . ),
we have to multiply the pairwise functions (82) (for M = 3) or (86) (for M > 3) by some
polynomials

∑s
j=1 c j r

j and find for which values of the coefficients c j the function satisfies
the Schrödinger equation. In the limit δ → 0, these polynomial should approach the La-
guerre polynomials [44]. This detail analysis is beyond the scope of this paper and would
require further investigation. We note that this technique could be also used to find solutions
of Schrödinger equations with potential written as a Taylor series V (r) =

∑∞
j=0 b j r

j .

5 Reverse-engineering pair function for given interactions

The models discussed have been derived making a choice of the pair function that singles out
a given Jastrow wavefunction. Such choice can be motivated on physical grounds, by analogy
with other models, etc. In other applications, one may be interested in studying models with
a given kind of interaction. It is then possible to reverse engineer the form of the pair function
fi j . Indeed, by looking at the general expression of the two-body potential (10), we consider
the differential equation

�

f ′′(ri j)

f (ri j)
+ (d − 1)

f ′(ri j)

ri j f (ri j)

�

=
1

r2
0

v(ri j/r0) , (87)

where v(ri j/r0) is a dimensionless potential function. Such ordinary second-order differential
equation can be integrated numerically. In some cases, it admits an analytical solution.

For the sake of illustration let us consider models with vanishing two-body potential. As an
interesting precedent in the literature, we note that systems of bosons dominated by three-body
hard-core interactions have been introduced by Paredes et al. [45] in the quest of non-Abelian
anyons in one dimension. The latter were further discussed in Girardeau’s last solo paper [46].

In what follows we consider parent Hamiltonians of Jastrow wavefunctions in d spatial di-
mensions with vanishing V2 and governed by V3. Let us first look into the case of N = 2 particles
in d = 3, in which there are no interactions, i.e., the particles are free. According to the sym-
metry with respect to the center of mass, the solution looks like A

r e−cr , where c =
p

2mE/~2.
This is nothing but the solution of the free Schrödinger equation using spherical symmetry. It
motivates the choice of the pairwise function

fi j =
A
ri j

e−cri j . (88)

Interestingly, this is an specific instance of the case discussed in section 4.6, see equation
(62) with λ = −1. Indeed, plugging λ = −1 into equation (63), we find that V2 = 0, which is
consistent with the reasoning above. In this case, the three-body potential is given by equation
(64) (again for λ= −1) and the total three-dimensional Hamiltonian reads

Ĥ0 = −
~2

2m

N
∑

i=1

∆i +
~2c2

6m
N(N − 1)(N − 2)

+
~2

2m

∑

i

∑

j 6=k 6=i

~ri j · ~rik

�

2c

�

1

r2
i j rik

+
1

ri j r
2
ik

�

+
1

r2
i j r

2
ik

�

. (89)

The family of models introduced is infinity and we conclude here our investigation of quasi-
exactly solvable many-body quantum models in spatial dimension d. Many other models can
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be found, such as those with pair-wise function given in terms of products of elementary func-

tions (e.g. fi j = rλi je
−cri j e−

µΩ
2~ r2

i j ), considering other elementary functions (e.g. e−crαi j ), etc. The
identification of these models may be assisted by making use of methods in supersymmetric
quantum mechanics [47].

6 Discussion and conclusions

We have identified the complete family of Hamiltonians with a ground-state of Jastrow form,
involving one and two-body functions. These models describe particles of equal mass in d-
spatial dimensions with kinetic energy and one-, two- and three-body local potentials, that
neither involve a magnetic field nor momentum-dependent interactions. For d = 3 this family
corresponds to the Calogero-Marchioro models [27] while the corresponding family in d = 1
has been discussed in [16]. For arbitrary d our results provide the complete family of parent
Hamiltonians of Jastrow wavefunction without restriction to Calogero-like models associated
with SU(1, 1) symmetry [34] or the nonlocal momentum dependent terms [35]. Further,
while these models generally involve three-body interactions, their long-wavelength behavior
is independent of the latter [35].

Our construction readily provides the generalization to arbitrary spatial dimension of
known models, such as the Calogero-Sutherland, Calogero-Moser, and inverse-sinh-square
models. In addition, our results greatly facilitate the identification of new specific instances
within this family of models. To this end, it suffices to choose the pair function entering the
Jastrow form and to evaluate its first and second derivatives. As an example, motivated by
the many-body quantum bright soliton found by McGuire state in the attractive Lieb-Liniger
model, we have shown that its generalization to higher dimensions has a parent Hamiltonian
involving inverse distance interactions. Similarly, we have constructed novel models by con-
sidering wavefunctions functions that are the product of the corresponding ground state of
some of these models. The parent Hamiltonians of the resulting models (for which we use a
hybrid notation e.g., McGuire-Calogero-Sutherland, hyperbolic McGuire, etc.) have a hybrid
structure with pairwise interactions inherited from the constituent models and additional cross
terms. This construction can be generalized to higher-order hybrids involving more than two
reference models.

Importantly, our results allow reverse-engineering the pair function that gives rise to a
given pairwise potential. As an example, we have identified the ground-state of a Hamiltonian
with Yukawa two-body interactions, and an additional model with a vanishing two-body term
that is governed exclusively by three-body interactions.

Our results can be extended to models that are supersymmetric [47], include spin degrees
of freedom, as well as multiple species [48–50], and truncated interactions [51,52]. Likewise,
one can envision the extension to account for anyons with two-body interactions involving
the relative angular momentum [31]. Yet another generalization is suggested by considering
more general Jastrow wavefunctions of the type in Eq. (2). An exciting prospect is offered
by considering Nosanov-Jastrow wavefunctions used to describe quantum solids, as this may
allow the identification of quasi-exactly solvable many-body quantum systems with a lattice.
To this end, one may consider including symmetrized wave-functions [16, 53–55], shadow
wave-functions [56–58], and permutation-sampling methods [59,60].

While we have focused on ground-state wavefunctions and the identification of the cor-
responding parent Hamiltonians, an interesting outlook concerns the identification of excited
states and their corresponding energy eigenvalues. The systems discussed are generally quasi-
exactly solvable and thus only part of the spectrum may be derived. It is thus of interest to
explore whether one can establish the integrability of the parent Hamiltonian from the prop-
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erties of the ground-state Jastrow wavefunction.

Acknowledgements

The authors thank Aurelia Chenu, Bogdan Damski, Xi-Wen Guan, Apollonas S. Matsoukas-
Roubeas, and Jing Yang for illuminating discussions. We thank P. Le Doussal for pointing out
the recent reference [61] about one-dimensional fermionic ground-states and for discussing
the connection of our work with his recent work [62] about diffusion of interacting particles
in one dimension.

A Laplacian of Jastrow wavefunctions

The action of the Laplacian yields on a Jastrow wavefunction of the form
Φ0(r1, . . . , rN ) =

∏

i< j f (ri j) is given by
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A similar derivation holds for the generalized Jastrow wavefunction
Ψ0 =

∏

i< j f (ri j)
∏

k g(rk) =
∏

k g(rk)Φ0. We first evaluate the gradient:
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Using this expression, the Laplacian is found to be
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