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Abstract

Quantum emitters, particularly atomic arrays with subwavelength lattice constant, have
been proposed to be an ideal platform for studying the interplay between photons and
electric dipoles. In this work, motivated by the recent experiment [1], we develop a
microscopic quantum treatment using annihilation and creation operator of atoms in
deep optical lattices. Using a diagrammatic approach on the Keldysh contour, we derive
the cooperative scattering of the light and obtain the general formula for the S matrix. We
apply our method to study the trapping effect, which is beyond previous treatment with
spin operators. If the optical lattices are formed by light fields with magical wavelength,
the result matches previous results using spin operators. When there is a mismatch
between the trapping potentials for atoms in the ground state and the excited state,
atomic mirrors become imperfect, with multiple resonances in the optical response. We
further study the effect of recoil for large but finite trapping frequency. Our results are
consistent with existing experiments.
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1 Introduction

The ability to coherently storing photons and controlling their interaction with quantum mat-
ters is of vital importance for quantum science. Although single atoms and photons usually
interact less efficiently, ensembles of atoms can show a cooperative response of photons. As an
example, superradiance can be realized when the radiations between atoms interfere construc-
tively [2–8]. Recently, atomic arrays with subwavelength lattice structures are found to be an
ideal platform where electric dipole-dipole interactions between atoms are mediated by pho-
tons [9–18]. The analysis shows the atomic arrays exhibit subradiance and are nearly perfect
mirrors for a wide range of incident angles [16], as observed in recent experiments [1]. Later,
there are many theoretical studies on the fruitful physics in atomic arrays [19–26,26–41]. For
example, there are proposals for realizing non-trivial topology in atomic arrays [19–21], con-
trolling atom-photon interaction using atomic arrays [22–26], and efforts in understanding
their subradiant behaviors and ability of photon storage [26–32].

In most of these works, atoms are treated as point-like with no motional degree of freedom.
The evolution of the system is described by using non-Hermitian Hamiltonian or Lindblad
master equation [16, 17], with spin degree of freedom σ−im = |rm, g〉〈rm, ei|. Here |rm, g〉 is
the s-wave ground state for the atom at position rm. |rm, ei〉 is the p-wave excited labeled
by the dipole moment d = d ei of the corresponding transition g → ei . However, in real
experiments, the system consists of atoms moving in optical lattices. For deep optical lattices,
although atoms are trapped near the potential minimum, the wave function for the motional
degree of freedom may still play a role. Moreover, the consequence of fractional filling has
been studied in the experiment. It is difficult to analyze the absence of an atom in the spin-
operator language, and consequently, theoretical predictions for the fractional filling case are
still absent.

In this work, we overcome this difficulty by using a microscopic model for the coupled
system consisting of atoms in deep optical lattices and photons. After making plausible as-
sumptions, we derive the cooperative response of the system using a diagrammatic approach
on the Keldysh contour. By summing up bubble diagrams with dressed Green’s function, we
obtain neat results for the transmission coefficient and the reflection coefficient, with the con-
tribution from the motional wave function. Our result matches the previous analysis for unit
filling when the potential of the excited state atoms are the same as that of the ground state.
We study the effect of the discrepancy of optical lattices for the ground state and excited state
atoms, where the transition of the internal state can be accompanied by transitions in the
motional degree of freedom. In particular, we find that multiple resonances can exist in the
response function. The cooperative linewidth is linear in n, consistent with the experimental
observation and previous theoretical predictions [38]. We further study the effect of recoil for
large but finite trapping frequency.
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Figure 1: Schematics of the model considered in this work: the atomic array in the
optical lattices at fractional filling.

2 Diagrammatic Approach to Quantum Atomic Arrays

2.1 Model

We consider coupled systems with atoms and photons. Th Hamiltonian reads

H = HEM +HA +Hint. (1)

Here the first term is the Hamiltonian of the electromagnetic field

HEM =

∫

dr
�ε0

2
E(r)2 +

µ0

2
H(r)2

�

. (2)

The second term describes the motion of atoms in optical lattices

HA =

∫

dr
∑

i

ψ†
ei
(r)

�

ω0 −
∇2

2
+ Vei

(r)

�

ψei
(r) +

∫

dr ψ†
g(r)

�

−
∇2

2
+ Vg(r)

�

ψg(r). (3)

Vg/ei
(r) describes the optical lattice potential for ground/excited-state atoms. We have set

ħh = 1 and m = 1. We assume each site is occupied by at most one atom, which corresponds
to choosing fermionic commutation relation {ψ†

a(r),ψb(r′)} = δabδ(r − r′). The last term
describes the interaction between atoms

Hint = −
∫

dr
∑

i

�

P+i (r) + P−i (r)
�

ei · E(r). (4)

Here ei is the unit polarization vector along the i direction and

P+i (r) = d ψ†
ei
(r)ψg(r) = P−i (r)

†. (5)

The full Hamiltonian (1) describes general model with interaction between atoms and light to
the order of electric dipole transition. For atomic arrays, the ground state particle is always
tightly trapped near the local minimum of optical lattices, with a spread of wave function
σ� a0, where a0 is the lattice constant [1]. Assuming the excited state is also deeply trapped,
we expand

ψg(r)≈
∑

n,a

ϕa(r− rn)ψ
a
g(rn), ψei

(r) ≈
∑

n,a

ϕ′i,a(r− rn)ψ
a
ei
(rn). (6)
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Here ϕa(r)/ϕ′i,a(r) is the motional wave function for ground/excited-state atoms near the lo-
cal minimum rn = 0 with the energy εa/ε

′
i,a. We neglect the tunneling between different sites,

which is suppressed expoenentially and as a result the local motional wave function coninci-
dent with the Wannier function. We have rn = a0(n1e1 + n2e2), where we use a single index
n to represent (n1, n2) for conciseness. The commutation relation for ψa

η(rn) now becomes

{ψa,†
η (rm),ψb

ξ
(rn)} = δηξδabδmn. Using (6), the Hamiltonian HA and Hint can be simplified.

We have

HA =
∑

n,a

�

∑

i

ε′i,aψ
a,†
ei
ψa

ei
(rn) + εaψ

a,†
g ψ

a
g(rn)

�

, (7)

and (4) becomes
Hint = −

∑

n,i

�

p+i (rn) ei · E(rn) +H.C.
�

, (8)

with

p+i (rn) = d
∑

ab

∫

dr ϕ′i,a(r)
∗ϕb(r) ψ

a,†
ei
(rn)ψ

b
g(rn). (9)

Equation (2), (7) and (8) describe the dynamics of the atomic array. Initially, we prepare all
atoms in the s-wave internal ground state |g〉 with motional ground state ϕ0(r). The number
of atoms in the excited states are suppressed due to the violation of energy conservation.
We further add an external probe light, at fixed frequency ω, which is near-resonant with
δ ≡ ω−ω0 � ω,ω0

1. The electric field reads E0(r) = E0eik·r with c|k| = ω. We take c = 1
from now on for conciseness. This probe corresponds to the incident light in the scattering
experiment. Its coupling to atoms reads

δH = −
∑

n,i

�

p+i (rn)e
−iωtei · E0(rn) +H.C.

�

. (10)

We assume the field strength E0 is weak and the response can be analyzed using the linear
response theory. The total electric field including the incident light and the scattered light
then reads

Etot(ω, r) = E0(r) + 〈E(ω, r)〉 . (11)

Far from the atomic array, when only a single diffraction order exists, we expect

Etot(ω, r) =
�

1eikzz + S(ω,k‖)e
ikz |z|

�

· E0eik‖·r‖ , (12)

and S(ω,k‖) is the corresponding S matrix.

2.2 Diagrammatic Expansion

The contribution to the scattered light 〈E(ω, r)〉 can be efficiently organized using the path-
integral formulism. In particular, we work on the Keldysh contour [42], which contains a
forwardly evolving branch and a backwardly evolving branch, corresponding to e−iH t and eiH t

in the Heisenberg evolution. It is one of standard techniques for analyzing quantum many-
body dynamics and systems with disorders.

1As a result, we will not distinguish ω and ω0 unless they combine into δ.
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The expectation of fluctuation field becomes non-zero due to the coupling to atoms. Dia-
grammatically, we have

〈E(ω, r)〉=
E(ω, r) p−(ω, rn)

= −
∑

n

GE
R(ω, r− rn) ·




p−(ω, rn)
�

.
(13)

Here we use the wavy line to represent the propagation of photons. GE
R is the retarded Green’s

function matrix of E in free space defined as

GE
R(t, r)≡ −iθ (t) 〈[E(t, r), E(0,0)]〉d=0 . (14)

In frequency and momentum space, we have

G̃E
R(ω,k) = (ε01+ ε0k× k× /ω2)−1 = −

ω2

ε0
G̃(ω,k). (15)

Here G̃(ω,k) is the standard dyadic Green’s function [16, 43]. Note that we have added an
additional tilde for the Green’s function of photons in momentum space to avoid possible
confusion. The local dipole moment p− is related to the incident light E0 by the Kubo formula
[44]




p−(ω, rn)
�

=
p−(ω, rn) p+(−ω, rm)

=−
∑

m

Gp
R(ω, rnm) · E0(ω, rm).

(16)

We use the double solid line for the retarded Green’s function for dipole momentums Gp
R(ω, r)

and rnm ≡ rn − rm. This is consistent with the semi-classical analysis [16]. The remaining
task is to derive approximate formula for Gp

R(ω, r), which includes renormalization due to the
coupling with photons.

In this work, we take diagrams with single excitation which conserves the total energy.
We first consider the correction of the excited state Green’s function Gei

R (ω, r, r′) by emission
and absorption of photons. As we will see, since the wave function for ground-state atoms is
localized, only Gei

R (ω, r, r′) with r≈ r≈ rn contributes to the light scattering. The bare Green’s
function near rn = 0 reads

G0,ei
R (q0, r, r′)≈

∑

a

ϕ′i,a(r)ϕ
′
i,a(r

′)∗

q0 −ω0 − ε′i,a + i0+
. (17)

The Schwinger-Dyson equation reads (Gei
R )
−1 = (G0,ei

R )−1 −Σei
R , with the self-energy Σei

R

Σ
ei
R (q0, r, r′) =

eiE

≈−
ω2d2

ε0
Gii(ω,0)

∑

a

(1− na)ϕa(r)ϕ
∗
a(r
′).

(18)

Here na≥1 = 0 and n0 = n is equal to the filling fraction. The appearance of
Gii(ω,0) = ei · G(ω,0) · ei owes to the approximation in (8) by using E(rn) instead of E(r).
The real-part of G(ω,0) contributes to the lamb shift, which can be absorbed in the definition
of ω0. As a result, we only keep the imaginary part G(ω,0) = iω/6π × 1. We also assume
δ,εa,ε′i,a�ω, and the resonance frequency ω is much larger than the loop frequency, which
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is an analogy of the Markovian approximation in the master equation [16]. Note that in the
path-integral approach, the Green’s function is defined by adding an addtional particle on top
of the many-body system with filling n, as a result, the Pauli exclusion principle exists and
contributes to the (1 − na) factor. The natural linewidth of a transition with frequency ω is
known to be γ=ω3

0d2/3πε0. This leads to

Σ
ei
R (q0, r, r′)≈ −

iγ
2

�

δ(r− r′)− nϕ0(r)ϕ
∗
0(r
′)
�

, (19)

where we have used the completeness of local wave functions
∑

aϕa(r)ϕ∗a(r
′) = δ(r− r′).

Having obtained the dressed Green’s function, we turn to the calculation of Gp
R(ω, r).

Motivated by the standard Random Phase Approximation (RPA) in interacting fermions [45],
we consider the diagrams

Gp
R =

ei

g
δmn +

ei

g

e j

g
rn rm .... (20)

Note that in our diagrammatic approach, rn can be equal to rm, which is important as we will
see later. The thick solid line represents the normalized Green’s function Gei

R . The first bubble
diagram, which is an elementary building block, is given by

i[ΠR(ω)]i j =
d2

2

∫

dq0

2π
dr′dr

�

Gei
R (q0 +ω, r, r′)G g

K(q0, r′, r) + Gei
K (q0 +ω, r, r′)G g

A(q0, r′, r)
�

δi j . (21)

Here we write ΠR(ω) as a diagonal matrix for later convenience. GηA is the advanced Green’s
function. GηK = GηR ◦ Fη − Fη ◦ GηA is the Keldysh Green’s function, and Fη = (1− 2nη) is the
quantum distribution function [42]. Here we use ◦ to represent the inner product of functions
by integration. This leads to

ΠR(ω)ii =d2n

∫

dr′dr Gei
R (ω+ ε0, r, r′)ϕ0(r)

∗ϕ0(r
′) = d2n ϕ∗0 ◦ Gei

R ◦ϕ0. (22)

It can be further simplified by noticing that

ϕ∗0 ◦ Gei
R ◦ϕ0 =

∑

a

(ϕ0 ◦ϕ′i,a)
∗ ϕ′i,a ◦ϕ0

δ+ ε0 − ε′i,a +
iγ
2

+
iγn
2

 

∑

a

(ϕ0 ◦ϕ′i,a)
∗ ϕ′i,a ◦ϕ0

δ+ ε0 − ε′i,a +
iγ
2

!2

+ .... (23)

As a result, we have

ΠR(ω)ii =
d2n

πi(ω)−1 − i γn
2

, πi(ω)≡
∑

a

(ϕ0 ◦ϕ′i,a)
∗ ϕ′i,a ◦ϕ0

δ+ ε0 − ε′i,a +
iγ
2

. (24)

Then we can sum over the diagrams with multiple bubbles in (20). This gives

iGp
R(ω,k‖) = iΠR(ω)− iΠR(ω)iG̃

E
R(ω,k‖)iΠR(ω) + ...

=
i

ΠR(ω)−1 − G̃E
R(ω,k‖)

.
(25)

Since the summation in (16) is descrete, the Fourier transform here is defined as

G̃E
R(ω,k‖) =

∑

n

GE
R(ω,k‖)e

−ik‖·rn . (26)
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In particular, the denominator of (25) is a generalization of the corresponding result under
non-Hermitian Hamiltonians, which is ω1 − Heff. As we will see later, (21) takes such a
form only for unit filling and Vei

(r) = Vg(r). This implies the breakdown of non-Hermitian
Hamiltonian description for general setups.

Then, using the relation (15), we obtain the relation between



p−
�

and E0 in momentum
space as




p−(ω,k‖)
�

= α(ω,k‖) · E0(k‖),

α(ω,k‖)
−1 = −ΠR(ω)

−1 + G̃E
R(ω,k‖).

(27)

Finally, for a single diffraction order, using (13), α is related to the S matrix as [16]

S(ω,k‖) =
iω2

2a2ε0kz
P(ω,k‖) ·α(ω,k‖). (28)

Here Pi j(ω,k‖) = δi j − ξi j
ki k j

ω2 . ξi j = −1 if only one of (i, j) is in z direction, and at the same
time z < 0. In other cases, ξi j = 1.

Further simplification is possible for the normal incident case as in the experiment [1],
where we have kx = ky = 0, kz =ω. Since, E0 lies in the x-y plane, we have P = 1. Moreover,

due to the rotational symmetry, G̃E
R(ω,0) is also a diagonal matrix. Following the convention

[16], we define∆(k‖)=−
3πγ
ω

∑

n6=0Re G(ω, rn)e−irn·k‖ and Γ (k‖)=
6πγ
ω

∑

n6=0Im G(ω, rn)e−irn·k‖,
which also become scalars ∆ and Γ in the x-y plane for normal incident light. In particular,
it is known that Γ + γ = γ 3π

a2ω2 [16]. As a result, the S matrix is diagonal and there is no
mixing between contributions from different excited states ei . For the incident light polarized
in i0 direction, the only relevant response function is ΠR(ω) ≡ ΠR,i0 i0(ω), which is related to
the local response π(ω) ≡ πi0(ω). We also drop the i0 index in ε′a ≡ ε

′
i0,a and ϕ′a ≡ ϕ

′
i0,a for

conciseness. From now on, we focus on this normal incident case unless mentioned otherwise.
Using these definitions, we have

π(ω)=
∑

a

(ϕ0◦ϕ′a)
∗ ϕ′a◦ϕ0

δ+ε0−ε′a+
iγ
2

, α=−
6πε0

ω3

nγ/2
π(ω)−1−n∆+inΓ/2

, S=−
in(γ+Γ )/2

π(ω)−1−n∆+inΓ/2
. (29)

Since π(ω) is independent of n, the cooperative linewidth is linear in filling fraction n, con-
sistent with the previous work [38].

Equation (24) and (29) together determine the cooperative optical response of the atomic
array. In the next sections, we first validate our path-integral approach by showing that our
result is consistent with previous literatures when the optical lattice is formed by a light with
the magic wavelength. In this case, the trapping poential of the excited state is the same as
that of the ground state. We then consider the effect of the trapping mismatch, which have
been observed in the recent experimental realization of the atomic array [1].

3 Trapping Effects in Quantum Atomic Arrays

In this section, we analyze (24) and (29) in several limits. We first consider the case with
Vei0
(r) = Vg(r), and show that the result then matches the spin operator result. We also add

comments on the relation between our approach and the Schwinger boson representation of
spins [38,39] 2. We then study the effect of trapping mismatch, which leads imperfectness of
mirrors and multiple resonances. We finally go beyond (24) and (29) by analyzing the recoil
effect.

2We thank the Referee for bringing this work to our attention.
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Figure 2: Numerical result for the fractional-filling effect with normal incident light
with ωa0 = 2π× 0.68. Here we take Vei0

(r) = Vg(r). (a). The reflection coefficient
R(ω) as a function of detuning δ − n∆ for different filling fraction n. (b). The
transmission coefficient T (ω) as a function of detuning δ − n∆ for different filling
number n. (c). The filling-normalized absorptance A and reflectance R̃, together with
T + R at cooperative resonance δ = n∆, as a function of filling fraction n.

3.1 Magic Wavelength

We begin with the special case Vei0
(r) = Vg(r), which is valid when the optical lattice is formed

by a light with the magic wavelength [46]. In this case, only the a = 0 term in (24) con-
tributes and the transition of internal state does not couple to the motional degree of freedom.
Moreover, there is no dependence on the detailed shape of the potential. This leads to

π(ω)≡
1

δ+ iγ
2

, α= −
6πε0

ω3
0

nγ/2
δ− n∆+ i(γ+ nΓ )/2

, S = −
in(γ+ Γ )/2

δ− n∆+ i(γ+ nΓ )/2
. (30)

Here we have assumed the normal incidence for the probe light. The cooperative linewidth
becomes γ+nΓ , consistent with the experimental observation and numerical simulation in [1],
and the previous work [38]. For n < 1, we find |S| < 1 even at the resonance and the mirror
becomes imperfect. The transmission coefficient T = |1+S|2 and reflection coefficient R= |S|2

are found to be

T =
(δ− n∆)2 + (1− n)2γ2/4
(δ− n∆)2 + (γ+ nΓ )2/4

, R=
n2(γ+ Γ )2/4

(δ− n∆)2 + (γ+ nΓ )2/4
. (31)

The filling-normalized absorptance A= (1−T )/n and reflectance R̃= R/n can the be computed
straightforwardly.

We plot the numerical result for ωa0 = 2π× 0.68 as in the experiment [1] for various n
in Figure 2, where we have ∆/γ ≈ 0.18 and Γ/γ ≈ −0.48. All above results reduces to the
semi-classical results using spin operators when n = 1, where the frequency shift is ∆ and
the linewidth becomes γ+ Γ . On the other hand, for n → 0, we get back to the single-atom
response with natural linewidth γ. As observed in the experiment [1], generally, we have
T + R < 1. This is due to the fact that the self-energy of the excited state (18) contains the
contribution of spontaneous emission of photons in arbitrary directions with random phases,
which can not be observed by averaged Etot. However, the corresponding contribution exists
if we measure energy density of electromagnetic field




E2(r)
�

[34]. The filling-normalized
absorptance A show a weak dependence of n, while R̃ vanishes as n→ 0, consistent with the
experimental observation and numerical simulation in [1].

Finally we comment on the relation between our results and the Swchinger boson/fermion
representation of spins [38, 39]. Using (30), we find the bubble reads
ΠR(ω) = d2n/(δ+i γ(1−n)

2 ). As we mentioned in the last section, the factor of (1 − n) exist
due to the Pauli exclusion principle. This seems to be unphysical since after the ground state
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Figure 3: Numerical result for the trapping effect with normal incident light with
ωa0 = 2π × 0.68. We fix ωh

g = γ/4 and consider ωh
e < γ. (a). The reflection

coefficient R(ω) as a function of detuning for n = 1 with different ωh
e . (b). The

transmission coefficient T (ω) as a function of detuning for n = 1 with different ωh
e .

(c). The fitted Ares and R̃res as a function of n for different ωh
e/ω

h
g . Here the dashed

lines corresponds to Ares. (d). The fitted linewidth Γcor as a function of n for different
ωh

e .

particle being excited on some site, no Pauli exclusion factor is needed. However, the con-
tribution from −iγn/2 indeed cancels out with the corresponding contribution of the Green’s
function of photons G̃E

R(ω,k‖) in (29) due to (Recall that the definition of Γ does not contain
rn = 0, which is equal to γ.)

ΠR(ω)
−1−G̃E

R(ω,k‖)=
1

d2n

�

π(ω)−1−
iγn
2
+n∆+in

γ+Γ
2

�

=
1

d2n

�

π(ω)−1+n∆+in
Γ

2

�

. (32)

This cancellation can be dated back to the cancellation between diagrams. Let’s consider
diagrams with one internal photons. Before contractions between ψg and ψ†

g , it takes the
form

rn, ei0 rn, ei0

ψ†
g (1) ψg (1) ψ†

g (2) ψg (2)
. (33)

If we contract ψg(1) with ψ†
g(2) and ψg(2) with ψ†

g(1), this leads to the diagram in self-
energies which contains the unwilling factor of (1−n). To realize the fact that when the ground
state particle is excited by ψ†

g(2), there is already no occupation due to ψg(2), we also need

to take into account the contribution by contractingψg(1) withψ†
g(1) andψg(2) withψ†

g(2).
More explicitly, we have n=




ψ†ψψ†ψ
�

=



ψ†ψ
� 


ψ†ψ
�

+



ψψ†
� 


ψ†ψ
�

= n2+n(1−n) = n.
However, the new diagram is just the bubble diagram, which has been taken into account in
our diagrammatic expansion (20). As a result, by summing up self-energies and bubbles, we
find the correct result.

Due to this cancellation, we can alternatively drop the factor of (1 − n) in ΠR(ω), and
restrict the summation to r 6= 0 in (26). This is then consistent with rules in [38, 39] using
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Figure 4: Numerical result for the trapping effect with normal incident light with
ωa0 = 2π×0.68. We fix ωh

g = γ/4 and consider ωh
e ≥ γ in (a-c). (a). The reflection

coefficient R(ω) as a function of detuning for n = 1 with different ωh
e . (b). The

transmission coefficient T (ω) as a function of detuning for n = 1 with different ωh
e .

(c). The fitted linewidth Γcor as a function of n for differentωh
e . (d). The fitted center

of the second peak ∆ω as a function of ωh
e for different filling fraction n. Here the

dashed line corresponds to ∆ω= 2ωh
e .

Schwinger particle representation, where atom on the same site can not appear twice. On
the other hand, if the atoms are not trapped in optical lattices, the density-density correlation
indeed plays an role [47]. In this case, the corresponding contribution in the self-energy should
be kept. We give an example in Appendix A.

3.2 Trapping Mismatch

In this section, we discuss the effect of having Vei0
(r) 6= Vg(r). To make this problem analytically

solvable, we expand the potential of near the minimum of each site and use the approximation
of 3D isotropic harmonic potential. Ground-state atoms |g〉 and excited-state atoms |ei0〉 have
a trapping frequency ωh

g and ωh
e correspondingly. The motional ground state wave function

ϕ0(r) reads

ϕ0(r) =

�

ωh
g

π

�

3
4

e−
ωh

g r2

2 . (34)

Under this approximation, the analytical expression forπ(ω) can be obtained by relatingπ(ω)
to the single-particle propagator in harmonic traps. The results are presented in Appendix B.
It contains multiple resonances near δ = (3/2 + 2n)ωh

e − 3ωh
g/2, broadened by the natu-

ral lifetime γ of the excited state. For ωh
e ¦ γ, this leads to different peaks in the spectral

−Im π(ω)/π. For ωh
e ® γ, different resonances merges, and only a single peak exists.

The parameters in the experiment [1] corresponds to ωh
g < γ, but at the same order ∼

MHz. We plot our results (29) for different ωh
e/γ, ωh

g/γ and n in Figure 3 and 4. We first fix
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Figure 5: Numerical results for the effect of the trapping mismatch with normal
incident light and ωa0 = 2π × 0.68. We fix small excited state trapping frequency
ωh

e = γ/20. (a). The fitted Ares as a function of ωh
g for different n. (b). The fitted

linewidth Γcor as a function of ωh
g for different n.

ωh
g/γ = 1/4 and study the effect of ωh

e 6= ω
h
g for small ωh

e < γ. As shown in Figure 3 (a)
and (b), both reflection coefficient R(ω) and transmission coefficient T (ω) show a single peak
near δ−n∆−3(ωh

e −ω
h
g)/2= 0. For either ωh

e >ω
h
g or ωh

g >ω
h
e , the atomic mirror becomes

imperfect with max R < 1 and min T > 0. Motivated by the experimental result, we study
the the cooperative linewidth of the atomic array by fitting the numerical result for R(ω) near
δ = n∆+ 3(ωh

e −ω
h
g)/2 as

R(ω) =
RresΓ

2
cor/4

(δ− n∆− 3(ωh
e −ωh

g)/2−δ0)2 + Γ 2
cor/4

, (35)

and define Tres = T (n∆+3(ωh
e−ω

h
g)/2+δ0). R̃res and Ares can then be computed correspond-

ingly using Rres and Tres. The numerical results in (c-d) show R̃res and Ares also decreases when
ωh

e 6=ω
h
g . The cooperative linewidth Γcor is linear in n, with similar slope for different ωh

e < γ.

We then consider largerωh
e ≥ γ in Figure 4. Now as shown in Figure 4 (a) and (b), multiply

peaks appear in both reflection coefficient R(ω) and transmission coefficient T (ω). The center
of peaks locates near energy 2nωh

e , where the transition from |g〉 to |ei0〉 is accompanied with
the excitation of motional degree of freedom. As an example, we fit the position of the second
peak ∆ω, and plot it as a function of ωh

e in (d). Similar to the small ωh
e case, the cooperative

linewidth Γcor is still linear in n. However, their slope show dependence on ωh
e .

We finally study Ares and Γcor as a function of ωh
g . We fix a small ωh

e = γ/20, as an analogy

of the anti-trapped excited state in experiment [1], and tuneωh
g . As shown in Figure 5, we find

whenωh
g becomes larger, the absorption rate decreases and the cooperative linewidth becomes

larger. This is due to the increase of the trapping mismatch for small ωh
e . For small ωh

g , the
decrease in Ares and the increase of the decay rate show quadratic dependence, while for large
ωh

g , the dependence becomes linear. This is a close analogy of the experimental observation
in [1].

3.3 Recoil Effects

Now we go beyond the limit of σ � a0 and consider corrections to the leading order of
η = σ/a0 due to the recoil of atoms. The recoil effect has been discussed in previous works
[40,41] using the Lindblad master equation.

We adopt the isotropic harmonic trap approximation used in the last subsection. In our
approach, the recoil effects can be analyzed by using (4) without the approximation (8) as ex-
plained in the Appendix C. However, the same result can also be obtained using direct physical
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Figure 6: Numerical results for the recoil effect with normal incident light and
ωa0 = 2π× 0.68. We fix small excited state trapping frequency ωh

g = 2γ and vary
η = σ/a0. (a). The reflection coefficient R(ω) as a function of detuning for n = 1
with different η. (b). The transmission coefficient T (ω) as a function of detuning
for n= 1 with different η.

intuition. Our result (24) for π(ω) has a simple physical meaning: it measures the optical re-
sponse of a single particle in the harmonic trap, with a lift time γ for the excited state particle.
Without the recoil effect, we take the inner product between wavefunctions ϕ0(r) and ϕ′a(r)
to determine the transition rate for the motional degree of freedom. To take the recoil effect
into account, we consider absorbing a photon with momentum k1 and emitting a photon with
momentum k2. Physically, we expect the local response π(ω) takes the form

πk1k2
(ω) =

∑

a

∫

drdr′ ϕ0(r)
∗ϕ′a(r)e

−ik2·r 1

δ+ ε0 − ε′a +
iγ
2

eik1·r′ϕ′a(r
′)∗ϕ0(r

′). (36)

Since the photons can propagate in any direction within x − y plane, we further average over
the direction of the momentum ki = k(cosθi , sinθi , 0):

π(ω) =
∑

a

∫

drdr′
dθ1

2π
dθ2

2π
ϕ0(r)

∗ϕ′a(r)e
−ik2·r 1

δ+ ε0 − ε′a +
iγ
2

eik1·r′ϕ′a(r
′)∗ϕ0(r

′). (37)

We focus on the case with ωh
g = ω

h
e . For small η = σ/a0 = k/

q

ωh
g , we can expand π(ω) to

obtain

π(ω) =
1

δ+ iγ/2
−

η2/2
δ+ iγ/2

+
1
8
η4

�

1
δ+ iγ/2

+
1/2

δ− 2ωh
g + iγ/2

�

+O(η6). (38)

To the leading order O(η2), we find only a renormalization of the residue near δ+ iγ/2= 0. At
the sub-leading order, O(η4) we see a non-trivial contribution where atoms are excited due to
the recoil even without trapping mismatch ωh

e = ω
h
g , because the recoil increases the energy

of atoms. However, when we further plot the reflection and transmission coefficients (see
Figure 6), we find no visible peaks at δ− n∆ = 2ωh

e even for ωh
g > γ due to the suppression

of η4. We find R(ω) and T (ω) only show weak dependence on η for small η. In particular,
the parameter regime in the experiment [1] corresponds to η∼ 0.1, which is almost the same
as η= 0. This justifies our discussions in previous sections.
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4 Summary and Outlook

In this work, we study quantum atomic arrays using a microscopic model with atoms in optical
lattices. We take a diagrammatic approach with PRA-like diagrams and obtain concise results
for transmission and reflection coefficients. We find trapping mismatch can result in the im-
perfectness of mirrors. Multiple peaks exist when the local trapping frequency of the excited
state ωg

e ∼ γ. We also study the trapping frequency effects on the cooperative lifetime, and
the effect of recoil for large but finite trapping frequency.

Our results can be tested in the experimental platforms similar to that in [1]. Recently,
there are also experimental studies on the Pauli blocking of light scattering in degenerate
fermions [48, 49]. The diagrammatic approach developed here can also be applied to study
the optical response of degenerate fermion gases.

Acknowledgments

We especially thank Yu Chen and Jianwen Jie for helpful discussions. We thank the Referee
for bringing several related works to our attention, and the suggestion of studying the recoil
effect. P.Z. acknowledges support from the Walter Burke Institute for Theoretical Physics at
Caltech.

A Homogeneous Mirrors

Now we consider the case where the atom gas is homogeneous in x− y plane at z = 0, similarly
to [49]. The model of the full system reads

S =

∫

d tdr
∑

i

ψ†
ei
(t, r)

�

i∂t −ω0 +
∇2

2

�

ψei
(t, r) +ψ†

g(t, r)

�

i∂t +
∇2

2

�

ψg(t, r)

+

∫

d tdr
∑

i

|d|
�

ψ†
ei
(t, r)ψg(t, r) +ψ

†
g(t, r)ψei

(t, r)
�

ei · E(t, r).
(39)

The first step is again to determine the renormalization of the excited state Green’s func-
tion. The self-energy reads

Σ
ei
R (ω̃,q‖)i j =

eE
= −

∫

dk′

(2π)2
ω2d2

ε0
ei ·G(ω,q‖ − k′) · e j(1− nF (εk′))

=− i
γ

2
+

∫

dk′

(2π)2
ω2d2

ε0
ei ·G(ω,q‖ − k′) · e jnF (εk′)≡ −i

γ

2
δi j +δH(q‖)i j .

(40)

This leads to

Gei
R (ω̃,q) =

1

ω̃−ω0 − εq −Σ
ei
R (ω̃,q‖)

=
1

(ω̃−ω0 − εq + i γ2)1−δH(q)
. (41)

Here εq = q2/2. We then compute the ΠR. The result reads

ΠR(ω,k‖) =

∫

dq
(2π)2

d2nF (εq)

(δ+ εq − εq+k + iγ/2)1−δH(q+ k‖)
. (42)
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Summing up the contribution from photons, we find

α(ω,k‖) =
1

−ΠR(ω,k‖)−1 −ω2G(ω,k‖, z = 0)/ε0
. (43)

Here since the system is homogeneous, the Fourier transform is

G(ω,k‖, z) =

∫

dr‖ G(ω, r)e−ik‖·r‖ =
i

2kz
eikz |z|P(ω,k‖). (44)

The relation between Etot and α becomes

Etot = E0(r) +
ω2

ε0

∫

dr′G(ω, r− r′) ·α(ω,k‖) · E0eik‖·r′

= E0(r) +
ω2

ε0
G(ω,k‖, z) ·α(ω,k‖) · E0eik‖·r.

(45)

The S matrix reads

S(ω,k‖) =
iω2

2ε0kz
P(ω,k‖) ·α(ω,k‖). (46)

Again we consider the normal incident light. We further assume the density of the system
is low as in [47]. We have

ΠR(ω,0)i j =

∫

dq
(2π)2

d2nF (εq)

(δ+ iγ/2)1−δH(q)

=
n2Dd2

δ+ iγ/2
δi j +

ω2d4

ε0(δ+ iγ/2)2

∫

dqdq′

(2π)4
�

ei ·G(ω,q− q′, z = 0) · e j

�

nF (εq′)nF (εq)

=

�

n2Dd2

δ+ iγ/2
+δΠR(ω)

�

δi j .

(47)
We find

α(ω,0) =
1

−δ+iγ/2
d2n2D

+ (δ+iγ/2)2

d4n2
2D
δΠR(ω)−

iω
2ε0

, S(ω) =
iω
2ε0

−δ+iγ/2
d2n2D

+ (δ+iγ/2)2

d4n2
2D
δΠR(ω)−

iω
2ε0

. (48)

Here we have

(δ+ iγ/2)2

d4n2
2D

δΠR(ω) =
ω2

ε0n2
2D

∫

dqdq′

(2π)4
�

ei ·G(ω,q− q′, z = 0) · ei

�

nF (εq′)nF (εq). (49)

This takes the similar form as results in [47] for the 3D case. This is the contribution from the
density-density correlation in free fermion gases. Finally, we have

S(ω) =
iω
2ε0

d2n2D

−δ− iγ/2+ (δ+iγ/2)2
d2n2D

δΠR(ω)−
iω
2ε0

d2n2D

, (50)

which means δΠR(ω) effectively shifts the resonant energy and the decay rate.
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B The Analytical Formula for π(ω)

In this Appendix, we present detailed derivation of the analytical formula for π(ω). We trick
is to use the transformation to the time domain

π(ω) =
∑

a

∫

drdr′ ϕ0(r)
∗ϕ′a(r)

1

δ+ ε0 − ε′a +
iγ
2

ϕ′a(r
′)∗ϕ0(r

′)

= −
∑

a

∫

drdr′
∫ ∞

0

dτ ϕ0(r)
∗ϕ′a(r)e

(δ+ε0−ε′a+
iγ
2 )τϕ′a(r

′)∗ϕ0(r
′)

= −
∫

drdr′
∫ ∞

0

dτ e(δ+ε0+
iγ
2 )τϕ0(r)

∗Kωh
e
(τ, r, r′)ϕ0(r

′).

(51)

Here we have assumed the integral over τ is convergent by restricting the δ + ε0 < 3ωh
e/2.

After the integration, analytical continuation can be applied to release this restriction. Here
Kωh

e
(τ, r, r′) is the imaginary time Green’s function in a harmonic trap with trapping frequency

ωh
e . We have

Kωh
e
(τ, r, r′) =

�

ωh
e

2π sinhωh
eτ

�
3
2

exp

�

−
ωh

e

2

�

(r2 + r ′2) cothωh
eτ−

2r · r′

sinhωh
eτ

�

�

. (52)

The integral over r and r′ can be carried out first. We find

π(ω) = −2
p

2

∫ ∞

0

dτ ea0τ

�

ωh
eω

h
g

2ωh
eω

h
g coshωh

eτ+ [(ωh
e )2 + (ωh

g)2] sinhωh
eτ

�

3
2

. (53)

Here we have defined a0 =
�

δ+
3ωh

g
2 +

iγ
2

�

for conciseness. Then the integral over τ gives

π(ω) =
p

2
ωh

e

�

2ωh
eω

h
g

(ωh
e +ωh

g)2

�

3
2 q−p−1

�

(−2p(q− 1)− q+ 2)Bq

�

p+ 1, 1
2

�

−(2p+ 3)Bq

�

p+ 1, 3
2

��

1− q
, (54)

where p ≡ −2a0+ωh
e

4ωh
e

and q ≡
(ωh

e+ω
h
g )

2

(ωh
e−ωh

g )2
. Bz(a, b) is the incomplete beta function defined as

Bz(a, b) =
∫ z

0 ta−1(1− t)b−1d t. Forωh
e =ω

h
g , one can check that above result can be simplified

as π(ω)−1 = a0 − 3ωh
e/2.
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C The Derivation of the Recoil Effects

Here we give the derivation of (37) using the diagrammatic approach. For simplicity, we
directly take diagrams under the rule of Schwinger bosons/fermions as discussed section 3.1.
As a result, the self-energy of excited state Σei

R (q0) is just a constant −iγ/2, and the summation
in (20) is restricted by rm 6= rn.

To determine π(ω), we now examine a single diagram

ei

g

e j

g
rn rm

ek

g
rp (55)

This corresponds to

i

∫

dri

∑

m

ΠR(ω, r′, r3)GE
R(ω, rnm + r3 − r2)ΠR(ω, r3, r2)GE

R(ω, rmp + r2 − r1)ΠR(ω, r1, r), (56)

where we have

ΠR(ω, r, r′′)ii = d2n πi(ω, r, r′′) =
∑

a

ϕ0(r)
∗ϕ′i,a(r)

d2n

δ+ ε0 − ε′i,a +
iγ
2

ϕ′i,a(r
′)∗ϕ0(r

′). (57)

We have separated the integral over the full space into a summation over lattice sites rn, and
an integral near each sites ri . For small σ � a0, the dominate contribution comes from
rmp � r2 − r1 and rnm � r3 − r2. Moreover, for normal (or nearly normal) incident light,
we are probing the system with small k‖, which comes from contributions at large rnm and

rmp. We then expand G̃E
R and take the standard approximation at long distance [50]:

GE
R(ω, rmp + r2 − r1)≈ GE

R(ω, rmp)exp(ikr̂mp · (r2 − r1)). (58)

Using this expression, we find

i

∫

dr3dr1

∑

m

ΠR(ω, r′, r3)e
ikr̂nm·r3GE

R(ω, rnm)Π
nmp
R (ω)GE

R(ω, rmp)e
−ikr̂mp·r1ΠR(ω, r1, r). (59)

Here we have defined

Π
nmp
R (ω)ii =

∑

a

∫

drdr′ ϕ0(r)
∗ϕ′i,a(r)e

−ikr̂nm·r d2n

δ+ ε0 − ε′i,a +
iγ
2

eikr̂mp·r′ϕ′i,a(r
′)∗ϕ0(r

′). (60)

This already takes the form of (36), with the direction of the photons determined by r̂nm and
r̂mp. Note that due to the rotation symmetry of the isotropic harmonic trap, it only depends on
r̂nm · r̂mp. Finally, we need to perform the Fourier transform by summing up m, n, p. For large
rnm and rmp, we approximate this summation as a average over r̂nm · r̂mp. Finally, we obtain
the “naive” formula (37) by focusing on incident light polarized in the direction of i0.
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