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Abstract

In this work we first propose a method for the derivation of a general continuous an-
tilinear time-dependent (TD) symmetry operator I(t ) for a TD non-Hermitian Hamilto-
nian H(t ). Assuming H(t ) to be simultaneously ρ(t )-pseudo-Hermitian and Ξ(t )-anti-
pseudo-Hermitian, we also derive the antilinear symmetry I(t ) = Ξ−1(t )ρ(t ), which re-
trieves an important result obtained by Mostafazadeh [J. Math, Phys. 43, 3944 (2002)]
for the time-independent (TI) scenario. We apply our method for the derivation of the
symmetries associated with TD non-Hermitian linear and quadratic Hamiltonians. The
computed TD symmetry operators for both cases are then particularized for their equiv-
alent TI Hamiltonians and PT -symmetric restrictions. In the TI scenario we retrieve the
well-known Bender-Berry-Mandilara result for the symmetry operator: I2k = 1 with k
odd [J. Phys. A 35, L467 (2002)]. The results here derived allow us to propose a useful
symmetry-metric relation for TD non-Hermitian Hamiltonians. From this relation the
TD metric is automatically derived from the TD symmetry of the problem. Then, when
placed in perspective with the antilinear symmetry I(t ) = Ξ−1(t )ρ(t ), the symmetry-
metric relation finally allow us to derive the Ξ(t )-anti-pseudo-Hermitian operator. Our
results reinforce the prospects of going beyond PT -symmetric quantum mechanics mak-
ing the field of pseudo-Hermiticity even more comprehensive and promising.
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1 Introduction

In the last two decades, since the seminal contributions of Bender and Boettcher [1] and
Mostafazadeh [2–4], PT -symmetric Hamiltonians —invariant under parity (P) and time-
reversal (T ) symmetry— have been investigated in practically all domains of physics, from
low to high energies, revealing to be an increasingly autonomous and thought-provoking field.
The PT -symmetry condition, weaker than Hermiticity, greatly expands the possibility of the
Hamiltonian description of physical systems (with real eigenvalues [1] and conservation of
the norm [2]), which is one of the strong calls for the field. And much has been done re-
cently, such as the experimental realizations of Floquet PT -symmetric systems [5] and PT -
symmetric flat bands [6], besides enhanced sensing based on PT -symmetric electronic cir-
cuits [7] and PT -symmetric topological edge-gain effect [8]. The linear response theory for
a pseudo-Hermitian system-reservoir interaction was developed [9], as well as a protocol to
approach non-Hermitian non-commutative quantum mechanics [10].

In this work we propose a method to derive a general time-dependent (TD) continuous
symmetry operator for a TD non-Hermitian Hamiltonian. This will be done in the broader sce-
nario of non-autonomous Hamiltonians, and for this reason we revisit the TD non-Hermitian
Hamiltonians of a cavity field under linear [11] and parametric [12] amplifications. These
Hamiltonians have been considered for approaching TD non-Hermitian Hamiltonians under
TD Dyson maps, thus extending the method proposed by Mostafazadeh [2]. This extension
was also undertaken in Refs. [13,14]. The consequences of allowing the Hilbert space to have
a TD metric were posed in Ref. [15], while a treatment of a TD non-Hermitian Hamiltonian
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through a TI metric operator was done in Ref. [16]. The investigation of TD metric operators
for the treatment of TD non-Hermitian Hamiltonians was undertaken in Ref. [17].

Many interesting contributions to the subject of TD non-Hermitian Hamiltonians have been
presented [18–23]. We mention, in particular, a method that adds to the achievements of
Ref. [11], enabling the unitarity of the time-evolution and the observability of non-Hermitian
Hamiltonians through particular TD Dyson maps that define time-independent (TI) metric
operators [24]. Moreover, we stress the introduction of the all-creation and all-annihilation TD
pseudo-Hermitian bosonic Hamiltonians [25,26], able to generate an infinite squeezing degree
at a finite time. A TD pseudo-Hermitian Hamiltonian for a cavity mode with complex frequency
is also able to generate an infinite squeezing at a finite time [27]. Finally, we mention the
enhancement of photon creation through the pseudo-Hermitian dynamical Casimir effect [28].

Our subject, pseudo-Hermiticity beyond PT -symmetry, is in fact at the foundations of
pseudo-Hermitian quantum mechanics. A theorem by Mostafazadeh [4] —formulated for TI
non-Hermitian Hamiltonians, symmetries and metric operators— asserts that a diagonalizable
(non-Hermitian) Hamiltonian is pseudo-Hermitian if an only if it has an antilinear symmetry,
i.e., a symmetry generated by an invertible antilinear operator. Moreover, Bender, Berry and
Mandilara [29] have shown that a non-Hermitian Hamiltonian presents a real spectrum not
only when invariant under PT -symmetry, but also under any antiunitary operator I satisfying
I2k = 1 with k odd. We also mention the demonstration that supersymmetry gives rise to
non-PT -symmetric families of complex potentials with entirely real spectra [30], and also the
proposition of chiral metamaterials with PT symmetry and beyond [31]. Despite the general-
ity of the pseudo-Hermitian requirement, the particular case of PT -symmetric Hamiltonians
gained prominence due to Bender and Boettcher’s seminal work and certainly due to the strong
physical appeal of parity and time-reversal invariance.

Our objective is precisely to explore more general symmetries than PT starting from the
general scenario of TD non-Hermitian Hamiltonians. The method we propose for the deriva-
tion of TD symmetries for TD non-Hermitian Hamiltonians applies indistinctly to linear or anti-
linear, unitary or nonunitary symmetries. However, we assume the symmetry to be an antilinear
operator aiming to retrieve the results by Mostafazadeh [4] and Bender-Berry-Mandilara [29]
in the particular case of a TI scenario, i.e., TI non-Hermitian Hamiltonians, metrics and sym-
metries. The above mentioned theorem by Mostafazadeh [4] is retrieved when considering an
antilinear symmetry while the result by Bender-Berry-Mandilara is retrieved when considering
a unitary antilinear or antiunitary symmetry.

After presenting our method to derive the symmetry operator, we then apply it for TD
non-Hermitian linear and quadratic Hamiltonian, modelling a cavity field under linear and
parametric amplifications. As expected, we have derived TD continuous antilinear symme-
tries far more complex than the spatial reflection and time reversal. These TD symmetries are
then particularized to the equivalent TI non-Hermitian linear and quadratic Hamiltonians and
their PT -symmetric restrictions. Then, in the TI scenario, the results in Refs. [2, 3, 29] are
perfectly retrieved. The PT -symmetry is then a particular case of more general symmetries in
which spatial reflection is generalized to continuous rotations followed by additional displace-
ment and/or squeezing in phase space. Our results reinforce the prospects of going beyond
PT -symmetric quantum mechanics making the field of pseudo-Hermitian quantum mechanics
even more comprehensive and promising.

In addition, guided by the results in Refs. [2, 3, 29], here we explore the connection be-
tween antilinear symmetries and metrics. We derive a relation between the TD symmetry and
a pair of TD metric operators, one linear and the other antilinear, which is analogous to the
Mostafazadeh’s relation [4] for the TI scenario. This connection between symmetry and met-
ric is explored a little further, leading us to propose a relation between symmetry (I) and
metric (ρ) operators. Then, this symmetry-metric relation is put in perspective with the TD
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antilinear symmetry I(t) = Ξ−1(t)ρ(t) we have derived, allowing us to finally compute the
Ξ(t)-anti-pseudo-Hermitian operator.

We stress that from the 1990s onwards, the field of radiation-matter interaction under-
went extraordinary progress when experimentalists began to coherently control the process of
the interaction of a single atom with a single photon of the radiation field [32,33]. This con-
trol allowed probing fundamental aspects of quantum mechanics and implementing quantum
logic operations, among other important achievements. We also remember the construction
of the Bose-Einstein condensates, which allowed unprecedented control in the manipulation
of many-body processes [34, 35]. For some time now, this control of the atom-field interac-
tion has been sought towards time-dependent processes of radiation-matter interaction, as
we know from the many advances made in the experimental verification of the dynamical
Casimir effect [36–40]. We have reason to believe that not only the dynamical Casimir effect,
but other processes involving TD Hamiltonians —such as a TD Josephson-type coupling in two-
mode Bose-Einstein condensates [41,42]— will soon be achieved. Therefore, the TD pseudo-
Hermitian quantum mechanics, in its most general form, accounting for TD non-Hermitian
Hamiltonians, symmetries and metric operators, must be studied to account for these TD pro-
cesses.

We also note that our results shed light on the treatments already presented in the literature
on TD non-Hermitian Hamiltonians. For example, our developments considerably broaden our
understanding of those presented in Refs. [11,12,25–28], where all the analysis on symmetry is
reduced to the conditions for a TD Hamiltonian to bePT -symmetric. From our conclusions, we
now know that there are close connections between the group algebra of the Hamiltonian, the
symmetry and the metric operator. As concluded below, when considering a TD non-Hermitian
and non-PT -symmetric Hamiltonian, we can now start by computing the symmetry operator
I(t) of the system modeled by the Hamiltonian H(t), from which we automatically compute
the metric operator, the ρ-pseudo-Hermitian and the Ξ-anti-pseudo-Hermitian operators.

Our paper is organized as follows. In Section 2 we briefly revisit the foundations of pseudo-
Hermitian quantum mechanics for TI and TD Hamiltonians. In Section 3 we present a method
for the construction of a general TD symmetry operator for a TD non-Hermitian Hamilto-
nian. In Section 4 we assume that the TD non-Hermitian Hamiltonian is simultaneously ρ(t)-
pseudo-Hermitian and Ξ(t)-anti-pseudo-Hermitian, to derive the relation I(t) = Ξ−1(t)ρ(t)
for our TD antilinear symmetry operator. From this relation we retrieve the Mostafazadeh’s
theorems for the TI scenario [4]. The TD non-Hermitian Hamiltonian describing a cavity field
under linear amplification is introduced in Section 5. We then compute the TD symmetry
operator for this non-Hermitian linear Hamiltonian using the method presented in Section 3.
We demonstrate that this TD symmetry reduces to the PT operator when the non-Hermitian
linear Hamiltonian is assumed to be PT symmetric. An ansatz for the Dyson map is then pro-
posed for the construction of the pseudo-Hermiticity relation. In Section 6 we address the TI
equivalent of the TD non-Hermitian Hamiltonian introduced in Section 5. In this TI scenario
we retrieve the Bender-Berry-Mandilara [29] result, and when considering a PT -symmetric
TI non-Hermitian Hamiltonian, we verify that the TI symmetry again reduces to the PT oper-
ator. In Section 7 we introduce the TD pseudo-Hermitian Hamiltonian of a cavity field under
parametric amplification. The TD symmetry operator is then derived. Also in this section the
TD Dyson map is presented and the Hermitian counterpart of the Hamiltonian is computed. In
Section 8 we consider the TI equivalent of the Hamiltonian introduced in Section 7. In Section
9 we present a symmetry-metric relation for TD non-Hermitian Hamiltonians by which the TD
metric is automatically computed from the TD symmetry of the problem. By contrasting the
symmetry-metric relation with the antilinear symmetry I(t) = Ξ−1(t)ρ(t) derived in Section
4, we are finally able to compute the Ξ(t)-anti-pseudo-Hermitian operator. In Section 10 we
present our conclusions.
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2 Pseudo-Hermiticity for TD and TI non-Hermitian Hamiltonians

We start our review following the Ref. [11], where a method is presented for approaching the
quantum mechanics of TD non-Hermitian and non-observable Hamiltonians with TD metric
operators. Alternative developments for the TD scenario are also given in Refs. [13,14]. From
the particularization of these results for TI non-Hermitian Hamiltonians and metric operators,
we then derive the results presented by Mostafazadeh in Ref. [2]. Considering a TD non-
Hermitian Hamiltonian H(t) and a nonunitary TD Dyson map η(t), the Schrödinger equation
i∂t |Ψ(t)〉= H(t) |Ψ(t)〉 (ħh= 1) is transformed to i∂t |ψ(t)〉= h(t) |ψ(t)〉, with

h(t) = η(t)H(t)η−1(t) + i
�

∂

∂ t
η(t)

�

η−1(t) , (1)

and |ψ(t)〉 = η(t) |Ψ(t)〉. This transformed Hamiltonian h(t) becomes Hermitian as long as
the TD pseudo-Hermiticity relation

H†(t)ρ(t)−ρ(t)H(t) = i∂tρ(t) (2)

is satisfied, where ρ(t) = η†(t)η(t) is the TD metric operator ensuring the norm-conservation:




Ψ(t)
�

�Ψ̃(t)
�

ρ(t) =



Ψ(t) |ρ(t) Ψ̃(t)
�

=



ψ(t)
�

�ψ̃(t)
�

. (3)

In the same way that Eq. (2) ensures the norm-conservation —through the time derivative
of Eq. (3)—, it also ensures the similarity transformation

O(t) = η−1(t)o(t)η(t) , (4)

between the observables O(t) and o(t) in the pseudo-Hermitian and Hermitian systems, re-
spectively, thus enabling the computation of the matrix elements




Ψ(t) |O(t)| Ψ̃(t)
�

ρ(t) =



Ψ(t) |ρ(t)O(t)| Ψ̃(t)
�

=



ψ(t) |o(t)| ψ̃(t)
�

. (5)

The reason why a TD Dyson map is required for the construction of the Hermitian coun-
terpart h(t) of an equally TD non-Hermitian H(t), is to avoid unwanted constraints between
the parameters defining H(t). When considering a TI non-Hermitian H so that an equally TI
Dyson map η can be considered, as in Ref. [2], the TD Dyson relation (1) simplifies to the
similarity transformation

h= ηHη−1 , (6)

whereas the Eq. (2) simplifies to the well-known pseudo-Hermiticity relation

H†ρ = ρH . (7)

We now analyze the consequences of the TD extension of the Mostafazadeh’s method based
on the last two equations (6) and (7). First, within the TD extension and then the TD Dyson
relation (1), we lose the similarity transformation (6) which ensures the observability of the
Hamiltonian. However, the similarity transformation (4) remains valid for all operators O(t)
other than the Hamiltonian, making the TD pseudo-Hermitian Hamiltonians as pertinent as
their TI partners. It is worth noting that the observability of TD Hamiltonians is a sensitive
point even in Hermitian quantum mechanics, where, as discussed in Ref. [24], the Hamiltonian
acts essentially as the generator of the model’s dynamics.

We end this brief review noting that in Ref. [24] a method is proposed for the derivation
of particular TD Dyson maps which ensures the observability of TD pseudo-Hermitian Hamil-
tonians —as much as in Hermitian quantum mechanics— by restoring the similarity transfor-
mation between H(t) and h(t). In the treatment we have developed below, however, we are
not considering the method in [24], and the Hamiltonians H(t) and h(t)must be transformed
through the TD pseudo-Hermiticity relation (2).
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3 A Method for the construction of a general TD symmetry opera-
tor

In order to explore more general symmetries than PT for a TD non-Hermitian Hamiltonian
H(t), we first propose a method to derive this symmetry I(t)which applies indistinctly to linear
or antilinear, unitary or nonunitary symmetries. However, as anticipated above, from now on
we assume this symmetry to be antilinear so that we can retrieve the results in Refs. [4,29] for
the particular case of TI Hamiltonians and symmetries. Moreover, as well as the Hamiltonian,
we assume the symmetry to be a TD operator. Starting from the Schrödinger equation for
H(t), we apply the antilinear operator I(t) on both its left-hand sides and then replace t by
−t, to obtain

i
∂

∂ t
I(−t) |ψ(−t)〉=

�

I(−t)H(−t)I−1(−t) + i
∂ I(−t)
∂ t

I−1(−t)
�

I(−t) |ψ(−t)〉 . (8)

Therefore, for the transformation I(t) to be a symmetry of the system modeled by the Hamilto-
nian H(t), thus producing an independent solution I(−t) |ψ(−t)〉 of the Schrödinger equation
from a given solution |ψ(t)〉, we end up with the equation

i
∂ I(t)
∂ t

+H(−t)I(t)− I(t)H(t) = 0 , (9)

which defines an anti-linear invariant for a non-Hermitian Hamiltonian. If we had considered
a linear instead of antilinear transformation I(t), we would have obtained the equation

i
∂ I(t)
∂ t

+ [I(t), H(t)] = 0 , (10)

which defines a linear dynamical invariant for a non-Hermitian Hamiltonian H(t). The Eq.
(10) is exactly that defining the Lewis & Riesenfeld linear dynamical invariant for a Hermitian
Hamiltonian H(t) [43–46].

For a TI symmetry I , the Eq. (9) simplifies to the form

IH(t)I−1 = H(−t) , (11)

and for the case where both the symmetry and the Hamiltonian are TI operators, the condition
(11) is further simplified to the commutation

[I , H] = 0 . (12)

Regarding the TI PT operation, the condition for a TD Hamiltonian to be PT -symmetric is
given by

PT H(t) (PT )−1 = H(−t) , (13)

which reduces, for TI Hamiltonians, to the commutation relation [PT , H] = 0.
We thus verify that the condition for the TD operator I(t) to be the symmetry associated

with a TD Hamiltonian H(t), given by the differential equation (9), simplifies to the algebraic
equation (11) for a TI symmetry operator. This represents a major reduction in the generality
of the symmetry operator, which becomes even greater for a TI Hamiltonian.

Following the reasonings in Ref. [44], where a method for the construction of nonlinear
Lewis & Riesenfeld TD invariants is presented, we define the general symmetry operator as the
product I(t) = Λ(t)U(t), with Λ(t) being either a unitary or nonunitary operator. Regarding
U(t), from now on we assume it to be antilinear in accordance with the condition imposed in

6

https://scipost.org
https://scipost.org/SciPostPhysCore.5.1.012


SciPost Phys. Core 5, 012 (2022)

references [4,29], whose results we want to rescue in the scenario of TI Hamiltonian, symmetry
and metric operators.

Considering the product I(t) = Λ(t)U(t), Eq. (9) can be rewritten in the form

�

i
∂Λ(t)
∂ t

+H(−t)Λ(t)−Λ(t)H(t)
�

U(t) +Λ(t)
�

i
∂ U(t)
∂ t

+ [H(t),U(t)]
�

= 0 . (14)

By also rewriting the Hamiltonian as H(t) = H0(t)+ V (t), with H0(t) being either a diagonal
or nondiagonal operator with known eigenstates, we propose the ansatz U(t) =R(t)T , with
T being the time-reversal operator and R(t) = eiφ(t)H0(t), with a TD complex parameter φ(t).
For a Hermitian H0(t), U(t) then becomes an antiunitary operator. We thus define the TD
operator

Θ(t) =
�

i
∂ U(t)
∂ t

+ [H(t),U(t)]
�

U−1(t) , (15)

such that Eq. (14) becomes

i
∂Λ(t)
∂ t

+H(−t)Λ(t)−Λ(t)H(t) = −Λ(t)Θ(t) . (16)

In summary, to obtain I(t) = Λ(t)U(t), we first compute the TD operator Θ(t) from Eq. (15),
by taking the advantage of the known eigenstate basis of H0(t) which defines R(t). Next,
starting from an ansatz for Λ(t), based on the symmetry group of V (t), we then compute this
operator from Eq. (16), what finally gives us the symmetry I(t). It is evidently straightforward
to derive the equivalent of Eq. (9) for a linear symmetry operator, with the same ansatz
I(t) = Λ(t)U(t) applying for its solution.

4 The antilinear symmetry described by a couple of linear and an-
tilinear metric operators

Let us consider a TD non-Hermitian Hamiltonian H(t)which obeys the TD pseudo-Hermiticity
relation given by Eq. (2): H†(t)ρ(t) − ρ(t)H(t) = i∂tρ(t). Starting with the Schrödinger
equation for H(t), i∂t |ψ(t)〉 = H(t) |ψ(t)〉, applying the linear metric operator ρ(t) on its
l.h.s., and assuming the relation in Eq. (2), we obtain

i
∂

∂ t
|χ(t)〉= H†(t) |χ(t)〉 , (17)

where we have defined |χ(t)〉 = ρ(t) |ψ(t)〉. Next, assuming that H(t) also obeys a TD anti-
pseudo-Hermiticity relation

H†(t)Ξ(t)−Ξ(t)H(−t) = iΞ̇(t) , (18)

for the TD antilinear metric operator Ξ(t), the application of the operator Ξ(−t) on the
l.h.s. of the Schrödinger equation for H(t), leads us again to the Eq. (17) once we define
|χ(t)〉= Ξ(t) |ψ(−t)〉.

Considering both the TD pseudo-Hermiticity relations, in Eqs. (2) and (18), we derive
H†(t) = ρ(t)H(t)ρ−1(t)+iρ̇(t)ρ−1(t) from the former and then substitute this adjoint Hamil-
tonian into the latter to obtain

i
∂

∂ t

�

Ξ−1(t)ρ(t)
�

=
�

Ξ−1(t)ρ(t)
�

H(t)−H(−t)
�

Ξ−1(t)ρ(t)
�

. (19)
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It is straightforward and remarkable to verify that the above expression recovers the Eq. (9)
for the TD antilinear symmetry operator defined as

I(t) = Ξ−1(t)ρ(t) . (20)

In fact, for the case where only the Hamiltonian H(t) is a TD operator, we then ob-
tain the simplified linear and antilinear pseudo-Hermiticity relations H†(t)ρ = ρH(t) and
H†(t)Ξ = ΞH(−t), with the TI antilinear symmetry I = Ξ−1ρ. When the Hamiltonian is also
a TI operator, we then retrieve from our assumption of a TD anti-pseudo-Hermitian relation
(18), the results proved by Mostafazadeh in Ref. [4], that every (non-Hermitian) diagonalizable
Hamiltonian is anti-pseudo-Hermitian and that the pseudo-Hermiticity of the Hamiltonian implies
the presence of an antilinear symmetry. In fact, in this case we have ρHρ−1 = H† = ΞHΞ−1,
and hence

�

H,Ξ−1ρ
�

= 0.
We have thus verified that, for TD Hamiltonian, symmetry and metric operators, we

have derived the TD counterpart of the important Mostafazadeh’s relation for the symme-
try operator, I = Ξ−1ρ. We do not, of course, have a counterpart to the theorem proved by
Mostafazadeh in the TI scenario, but verifying that the symmetry operator I(t) = Λ(t)U(t) we
have derive through Eq. (9) can also be written in the form that generalizes Mostafazadeh’s
expression to the TD scenario, is significant and will be explored below.

5 The TD non-Hermitian Hamiltonian of a cavity field under linear
amplification

The TD non-Hermitian Hamiltonian modeling a cavity field under linear amplification is given
by

H(t) =ω(t)a†a+α(t)a+ β(t)a† , (21)

with the TD parameters ω(t), α(t), and β(t) being complex functions. Here we just demand
that H†(t) 6= H(t), such that ω∗(t) 6= ω(t) and/or α∗(t) 6= β(t). The usual requirement for
the Hamiltonian (21) to be PT -symmetric, given by Eq. (13), imposes the more restrictive
conditions ω∗(−t) = ω(t), α∗(−t) = −α(t), and β∗(−t) = −β(t). From Eq. (13) we also
verify that the Hamiltonian (21) is PT -symmetric under spatial reflection about both x0 = 0
and

x0 = −
√

√ 1
2mω(t)

α(t) + β(t)
ω(t)

= real constant . (22)

For the case of a TI Hamiltonian, x0 6= 0 implies a Hermitian Hamiltonian, whereas for a TD
Hamiltonian, x0 6= 0 imposes constraints on the Hamiltonian parameters which do not occur
for x = 0.

5.1 The TD antilinear symmetry operator

Considering the method proposed for deriving the symmetry operator, we rewrite the Hamilto-
nian (21) in the form H(t) = H0(t)+V (t), with H0(t) =ω(t)a†a and V (t) = α(t)a+β(t)a†.
We then define the operator R(t) = e−iφ(t)a†a, such that U(t) = e−iφ(t)a†aT . Consequently,
using Eq. (15) we obtain

Θ(t) =
�

ω(t)−ω∗(t) + φ̇(t)
�

a†a+
�

α(t)−α∗(t)eiφ(t)
�

a+
�

β(t)− β∗(t)e−iφ(t)
�

a† , (23)

where the dot indicates a time derivative. Next, we consider, as an ansatz, the generalized
displacement operator

Λ(t) = eν(t)a
†+λ(t)a+µ(t) , (24)
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which becomes a unitary operator for λ(t) = −ν∗(t), and a Hermitian operator for
λ(t) = ν∗(t). We thus obtain from Eqs.

(24) and (16):

i
∂Λ(t)
∂ t

+H(−t)Λ(t)−Λ(t)H(t) = −
�

A(t)a†a+ B(t)a+ C(t)a† + D(t)
�

Λ(t) , (25)

where

A(t) =ω(t)−ω(−t) , (26a)

B(t) =− λ̇(t) +ω(t)λ(t) +α(t)−α(−t) , (26b)

C(t) =− ν̇(t)−ω(t)ν(t) + β(t)− β(−t) , (26c)

D(t) =− µ̇(t)−
1
2

�

ν̇(t)λ(t)− ν(t)λ̇(t)
�

−ω(t)λ(t)ν(t)−α(t)ν(t) + β(t)λ(t) . (26d)

From the r.h.s. of Eqs. (16) and (25), it follows that

Λ(t)Θ(t)Λ−1(t) = A(t)a†a+ B(t)a+ C(t)a† + D(t) , (27)

and by substituting Eqs. (23) and (24) in Eq. (27), we obtain

φ(t) =φ0 +

∫ t

0

[ω∗(τ)−ω(−τ)] dτ , (28a)

λ̇(t) =ω(−t)λ(t) +α∗(t)eiφ(t) −α(−t) , (28b)

ν̇(t) =−ω(−t)ν(t) + β∗(t)e−iφ − β(−t) , (28c)

µ(t) =µ0 −
1
2

∫ t

0

��

α∗(τ)eiφ(τ) +α(−τ)
�

ν(τ)

−
�

β∗(τ)e−iφ(τ) + β(−τ)
�

λ(τ)
	

dτ . (28d)

Note from Eq. (28d) that the parameterµ(t) is added to the generalized displacement operator
to avoid undesirable constraints in the Hamiltonian’s parameters. For the particular case of a
unitary operator Λ(t), where λ(t) = −ν∗(t), we use Eqs. (28b) and (28c) to obtain

ν(t) =
α(t) + β∗(t)

ω(−t) +ω∗(−t)
e−iφ −

α∗(−t) + β(−t)
ω(−t) +ω∗(−t)

. (29)

Therefore, from Eqs. (28) we obtain the parameters defining the TD antilinear symmetry
operator

I(t) =D(t)R(t)T , (30)

where we have replaced Λ for D, which, for a unitary Λ becomes the displacement opera-
tor. This symmetry operator describes the successive actions of a time-reversal operator T ,
a TD global rotation in phase space R(t) = e−iφ(t)a†a and, finally, let us say, a TD general-
ized displacement in phase space D(t) = eν(t)a

†+λ(t)a+µ(t). For a unitary Λ, this TD symmetry
I(t) =D(t)R(t)T resembles the evolution operator for the Hermitized counterpart of the TD
Hamiltonian in Eq. (21), except, of course, for the time-reversal operation. Such evolution
operator can be derived following the reasonings in Refs. [12, 25, 26, 44–46]. Therefore, if
applied to a given state of the Hermitized counterpart of our Hamiltonian, this peculiar TD
symmetry operator I(t) = D(t)R(t)T causes the probability distribution to trace an upward
spiral in phase space.
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5.2 The Dyson map and pseudo-Hermiticity relation

For treating a TD non-Hermitian Hamiltonian we consider a TD Dyson map η which results,
in general [24], in a TD metric operator ρ = η†η. Otherwise, the TD pseudo-Hermiticity
relation (2) imposes undesirable constraints on the TD parameters of the Hamiltonian. For
the TD Dyson map we consider the ansatz

η= eεa†a+γa+γ∗a†
, (31)

with ε(t) being a real function. To determine its time derivative we use the method of param-
eter differentiation [47], by which

∂

∂ t
eZ =

∫ 1

0

ex Z ∂ Z
∂ t

e−x Z d xeZ , (32)

where Z = εa†a+ γa+ γ∗a†. We thus obtain the Hamiltonian

h=Wa†a+ Ua+ Va† + F , (33)

where

W =iε̇+ω , (34a)

U =iγ̇+ i
�

1−
1− e−ε

ε

�

�γ

ε
ε̇− γ̇

�

+ωγ
1− e−ε

ε
+αe−ε , (34b)

V =iγ̇∗ + i
�

1+
1− eε

ε

��

γ∗

ε
ε̇− γ̇∗

�

+ωγ∗
1− eε

ε
+ βeε , (34c)

F =2 |γ|2
�

i
ε̇

ε
+ω

�

1− coshε
ε2

−
i
ε

�

1−
1− e−ε

ε

�

γ∗γ̇

−
i
ε

�

1+
1− eε

ε

�

γγ̇∗ −
αγ∗

ε

�

1− e−ε
�

−
βγ

ε
(1− eε) . (34d)

To ensure the Hermiticity of h(t)we impose a complex TD frequencyω(t) =ωR(t)− iε̇(t),
with ωR(t) being a real function, in addition to U = V ∗ and F ∈ R, what demands that

γ̇+
�

ε cothε− 1
ε

ε̇− iωR

�

γ− i
ε

2sinhε

�

αe−ε − β∗eε
�

= 0 , (35a)

2i
�

sinhε
ε
− 1

�

(γγ̇∗ + γ∗γ̇) + 2
�

ω−ω∗ + 2i
ε̇

ε

�

|γ|2
1− coshε

ε

− (αγ∗ −α∗γ)
�

1− e−ε
�

− (βγ− β∗γ∗) (1− eε) = 0 . (35b)

From (35a) we obtain

γ= e−χ
�

γ0 + i

∫ t

0

εeχ

2sinhε

�

αe−ε − β∗eε
�

dτ

�

, (36)

with

χ =

∫ t

0

�

(ε cothε− 1)
ε

ε̇− iωR

�

dτ . (37)

Now, by substituting Eq. (35a) into Eq. (35b), and admitting momentarily the approximation
ε� 1, we obtain

ε' exp

�

−i

∫ t

0

(α∗ + β)γ− (α+ β∗)γ∗

2 |γ|2
dτ

�

, (38)
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showing that the Hermiticity requirements in Eqs. (35) imposes no additional constraints
on the Hamiltonian parameters, apart from the complex TD frequency ω(t) = ωR(t)− iε̇(t)
coming from Eq. (34a). Otherwise, when we assume thatω(t) is real from Eq. (21), it follows
that εmust be constant, Which leads to a new Hamiltonian h in Eq. (33), and consequently to
a new system in Eq. (34) and a new hermitization condition in Eq. (35). When the simplified
Dyson map η = eγa+γ∗a†

is considered, as in Ref. [11], with ε = 0, the pseudo-Hermiticity
requirement of a complex frequency simplifies to that of a real one, ω(t) = ωR(t), still with
no constraints on α(t) and β(t).

Therefore, when considering the symmetry operator for the TD pseudo-Hermitian Hamil-
tonian (33), with γ and ε following from Eqs. (36) and (38), we must necessarily assume the
function ω(t) appearing in Eqs. (28) to be of the form ω(t) = ωR(t)− iε̇(t) (or ω = ωR for
the particular Dyson map η = eγa+γ∗a†

). Despite of the frequency constraint, the symmetry
operator in Eq. (30), have no restrictions for the amplification parameters α(t) and β(t).

5.3 From I(t) in Eq. (30) to PT

The TI PT operator can be directly recovered from Eq. (30), starting with the constraints
under which the Hamiltonian (21) is PT -symmetric: ω∗(−t) = ω(t), α∗(−t) = −α(t), and
β∗(−t) = −β(t). Assuming also a unitary Λ(t), we verify from Eqs. (28a) and (28b) that
the rotation is reduced to a TI operator with φ(t) = φ0, while the parameter ν(t) of the
displacement operator is simplified to

ν(t) =
α(t) + β∗(t)
ω∗(t) +ω(t)

�

1+ eiφ0
�

. (39)

For a TI symmetry operator, where I =DU must be a TI parameter, we must then assume,
to avoid undesirable constraints on the Hamiltonian parameters, that φ0 = (2n+ 1)π, with
n ∈ Z. From this assumption we obtain ν(t) = µ(t) = 0, and noting that the parity operator
can be written in the form e−i(2n+1)πa†a, we finally recover the TI operator PT from Eq. (30),
i.e.,:

I(t)→ I = e−i(2n+1)πa†aT = PT . (40)

6 The TI non-Hermitian Hamiltonian of a cavity field under linear
amplification

Now we consider the particular case of a TI non-Hermitian Hamiltonian

H =ωa†a+αa+ βa† , (41)

with ω∗ 6= ω and/or α∗ 6= β . The PT -symmetry of H, now following from the commutation
[PT , H] = 0, imposes here the more restrictive conditions ω∗ = ω, α∗ = −α, and β∗ = −β ,
and enables the spatial reflection only about x0 = 0, for

ω ∈ R , α= |α| ei(n+1/2)π , β = |β | ei(m+1/2)π , with n, m ∈ Z . (42)

The case x0 6= 0 implies a Hermitian Hamiltonian as anticipated above.

6.1 The TI antilinear symmetry operator

The condition for the TI Hamiltonian (41) to be invariant under a TI antilinear operator I
is given by the commutation relation [I , H] = 0. From the knowledge of the TD symmetry
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operator in Eq. (30), it is natural to assume for its TI equivalent the form I =DRT , with a TI
global rotation R = e−iφa†a and a TI D = eνa†+λa. We have neglected the parameter µ added
to the Eq. (24) since it is insensitive to the commutation relation [I , H] = 0, which imposes
the equations

ω∗ =ω , (43a)

ωλ−α+α∗eiφ = 0 , (43b)

ων+ β − β∗e−iφ = 0 , (43c)

ωλν+α∗νeiφ − β∗λe−iφ = 0 . (43d)

For a unitary Λ (λ = −ν∗), and using the polar forms α = |α| eiϕα and β = |β | eiϕβ , it follows
from Eqs. (43) that

φ = i ln
α∗ − β
α− β∗

, (44a)

|ν|=
1
ω

�

|α| sin
�

ϕα −
φ

2

�

− |β | sin
�

ϕβ +
φ

2

��

, (44b)

ϕν =
�

n+
1
2

�

π−
φ

2
. (44c)

Substituting Eqs. (44b) and (44c) into Eq. (43d) (with λ= −ν∗), we obtain the expression

|ν|
�

|α| cos
�

ϕα −
φ

2

�

− |β | cos
�

ϕβ +
φ

2

��

= 0 , (45)

which result in two different solutions, one for |ν| = 0 and the other for |ν| 6= 0. For
|ν| = 0, the Eq. (45) is automatically satisfied and using Eq. (44b) we obtain the constraints
ϕα = φ/2+ nπ and ϕβ = −φ/2+mπ, with n, m ∈ Z, which satisfy Eq. (44a) for n= 0, such
that φ = 2ϕα and the Hamiltonian’s parameters become

ω ∈ R , α= |α| eiϕα , β = |β | ei[mπ−ϕα] , (46)

and the TI antiunitary symmetry operator

I = e−2iϕαa†aT . (47)

For |ν| 6= 0, we get the constraint

cos (ϕα −φ/2)
cos

�

ϕβ +φ/2
� =
|β |
|α|
= p , (48)

which, considering ϕα +ϕβ = ϕ, leads to the relation

φ = 2ϕα − 2 tan−1 1− p cosϕ
p sinϕ

, (49)

in agreement with Eq. (44a). From the above results, we obtain from Eq. (44b) the expression

|ν|=
|α|
ω

1− p2

1+ p2 − 2p cosϕ
, (50)

which imposes

f= p2 −
2ω cosϕ
ω+ |α|

p+
ω− |α|
ω+ |α|

< 0 , (51)
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together with |cosϕ|>
Æ

ω2 − |α|2/2ω, and then p− < f< p+, with

p± =
ω

ω+ |α|



1±

√

√

√

1−
ω2 − |α|2

4ω2 cos2ϕ



 . (52)

The parameters in Eqs. (49) and (50), under the above constraints for ϕ and f, define the TI
antiunitary symmetry operator

I = eνa†−ν∗ae−iφa†aT . (53)

Although the TI continuous symmetry operators in Eqs. (47) and (53) are particular
cases of the TD symmetry operator in Eq. (30), they are generalizations of the discrete par-
ity and time-reversal transformation. Differently from the operator I(t) in Eq. (30), whose
TD parameters depend on the Hermiticity conditions only through the frequency requirement
ω=ωR− iε̇ (orω=ωR for the particular Dyson map η= eγa+γ∗a†

), the operators in Eqs. (47)
and (53) takes into account the constraints imposed on ω, α and β . The TI non-Hermitian
Hamiltonians and consequently the associated symmetry operators are more vulnerable than
their general TD equivalents to the constraints imposed by the pseudo-Hermiticity relation.
This vulnerability to the constraints follows from the more stringent condition for the invari-
ance of a TI Hamiltonian: [I , H] = 0.

6.1.1 Bender-Berry-Mandilara

Although it is straightforward to verify the validity of the relation I2k = 1, with k odd [29], for
the symmetry operator in Eq. (47), its validity for the operator in Eq. (53) demands a little
algebra. In fact, for the operator in Eq. (53) we obtain

I2 = eνa†−ν∗ae−iφa†aeν
∗a†−νaeiφa†aT 2

= exp
�

νa† − ν∗a
�

exp
�

ν∗e−iφa† − νeiφa
�

= 1 , (54)

since it follows from Eqs. (44c) and (50) that νeiφ = −ν∗.
It is important to note that the TD symmetry operator I(t) does not obey the Bender-Berry-

Mandilara relation. Although we still have the relation

I2(t) = exp
�

ν(t)a† − ν∗(t)a
�

exp
�

ν∗(t)e−iφ(t)a† − ν(t)eiφ(t)a
�

, (55)

the equality ν(t)eiφ(t) = −ν∗(t) is no longer satisfied in the TD scenario.

6.2 Dyson map and pseudo-Hermiticity

For the TI Hamiltonian (41), we consider the TI Dyson map η = eεa†a+γa+γ∗a†
, with ε ∈ R,

leading to the Dyson relation (6)

h= ηHη−1 =ωa†a+ ua+ va† + f , (56)

where u, v and f follow directly from U , V and F in Eqs. (34). The Hermiticity condition
h= h† imposes ω, f ∈ R and u= v∗, such that

γ=
ε

ω

αe−ε − β∗eε

e−ε − eε
, (57a)

γ∗

γ
=
α∗
�

1− e−ε
�

+ β (eε − 1)

α (1− e−ε) + β∗ (eε − 1)
. (57b)
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By substituting Eq. (57a) into Eq. (57b) we obtain βα ∈ R. With the polar forms
α = |α| eiϕα and β = |β | eiϕβ , it follows that ϕβ = nπ − ϕα, with n ∈ Z . Therefore, for
the chosen TI Dyson map η, the Hamiltonian (41) becomes pseudo-Hermitian, with γ given
by Eq. (57a) and ε being a free real parameter, under the constraints

ω ∈ R , α= |α| eiϕα , β = |β | ei(nπ−ϕα) , (58)

exactly those in Eq. (46). Therefore, for the case |ν| = 0, the pseudo-Hermiticity does not
impose additional constraints on the symmetry operator (47) beyond those already following
from the commutation relation [I , H] = 0. The same does not apply to the case |ν| 6= 0 which
leads to the much more complex symmetry operator (53).

6.3 From I in Eq. (47) to PT

Under the requirement for the PT -symmetry invariance of the TI Hamiltonian (41), which
imposes ϕα = ϕβ = (n+ 1/2)π, the TI symmetry in Eq. (47) automatically reduces to

I = e−i(2n+1)πa†aT = PT . (59)

7 The TD non-Hermitian Hamiltonian of a cavity field under para-
metric amplification

The TD non-Hermitian Hamiltonian for a cavity field under parametric amplification is given
by

H =ω(t)
�

a†a+ 1/2
�

+α(t)a2 + β(t)a†2 , (60)

with complex TD parameters ω(t), α(t), and β(t). We only require this Hamiltonian to be
non-Hermitian, H†(t) 6= H(t), such that ω∗(t) 6= ω(t) and/or α∗(t) 6= β(t). The usual
PT -symmetry requirement for Hamiltonian (60) imposes the more restrictive conditions
ω∗(−t) =ω(t), α∗(−t) = α(t), and β∗(−t) = β(t).

7.1 The TD antilinear symmetry operator

Rewriting the Hamiltonian (60) in the form H(t) = H0(t) + V (t), with H0(t) = ω(t)a†a and
V (t) = α(t)a2 + β(t)a†2, we then define R(t) = e−iφ(t)a†a and U(t) = e−iφ(t)a†aT , enabling
us to derive from Eq. (15) the operator

Θ =
�

φ̇ +ω−ω∗
� �

a†a+ 1/2
�

+
�

α−α∗e2iφ
�

a2 +
�

β − β∗e−2iφ
�

a†2 . (61)

We now consider the ansatz
Λ(t) = eξ(t)a

2+ζ(t)a†2
, (62)

which becomes a unitary operator for ζ(t) = −ξ∗(t), and an Hermitian operator for
ζ(t) = ξ∗(t). From the ansatz in Eq. (62) we compute the l.h.s. of Eq. (16), giving us

iħh
∂Λ(t)
∂ t

+H(−t)Λ(t)−Λ(t)H(t) =
�

A(t)
�

a†a+ 1/2
�

+ B(t)a2 + C(t)a†2
�

Λ(t) , (63)
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where we have defined

A(t) =ω(−t)−ω(t) cos
�

4
p

ξζ
�

+
�

α(t)
Æ

ξ−1ζ− β(t)
Æ

ξζ−1
�

sin
�

4
p

ξζ
�

+ i

�

ξ̇ζ− ξζ̇
�

4ξζ

�

1− 8ξζ− cos
�

4
p

ξζ
��

, (64a)

B(t) =−
1
2
ω(t)

Æ

ξζ−1 sin
�

4
p

ξζ
�

+α(−t)−α(t) cos2
�

2
p

ξζ
�

− β(t)ξζ−1 sin2
�

2
p

ξζ
�

+ iξ̇+ 2i
ξ
�

ξ̇ζ− ξζ̇
�

p

ξζ

�

4
p

ξζ− sin
�

4
p

ξζ
��

, (64b)

C(t) =
1
2
ω(t)

Æ

ξ−1ζ sin
�

4
p

ξζ
�

+ β(−t)− β(t) cos2
�

2
p

ξζ
�

−α(t)ξ−1ζ sin2
�

2
p

ξζ
�

+ iζ̇− 2i

�

ξ̇ζ− ξζ̇
�

ζ
p

ξζ

�

4
p

ξζ− sin
�

4
p

ξζ
��

. (64c)

Next, we substitute Eq. (63) into Eq. (16) to obtain

Λ(t)Θ(t)Λ−1(t) = −
�

A(t)
�

a†a+
1
2

�

+ B(t)a2 + C(t)a†2
�

. (65)

Finally, by substituting Eqs. (61) and (62) into Eq. (65), we derive the system

φ̇ + i

�

ξ̇ζ− ξζ̇
�

4ξζ

�

1− 8ξζ− cos
�

4
p

ξζ
��

sec
�

4
p

ξζ
�

(66a)

=ω∗(t)−ω(−t) sec
�

4
p

ξζ
�

−
�

α∗(t)e2iφ(t)
Æ

ξ−1ζ− β∗(t)e−2iφ(t)
Æ

ξζ−1
�

tan
�

4
p

ξζ
�

,

φ̇ + 2iξ̇
Æ

ξ−1ζ csc
�

4
p

ξζ
�

+ 4i
�

ξ̇ζ− ξζ̇
�

�

4
p

ξζ csc
�

4
p

ξζ
�

− 1
�

=ω∗(t)− 2α(−t)
Æ

ξ−1ζ csc
�

4
p

ξζ
�

+α∗(t)e2iφ(t)
Æ

ξ−1ζ cot
�

2
p

ξζ
�

+ β∗(t)e−2iφ(t)
Æ

ξζ−1 tan
�

2
p

ξζ
�

, (66b)

φ̇ − 2iζ̇
Æ

ξζ−1 csc(4
p

ξζ) + 4i
�

ξ̇ζ− ξζ̇
�

�

4
p

ξζ csc(4
p

ξζ)− 1
�

=ω∗(t) + 2β(−t)
Æ

ξζ−1 csc(4
p

ξζ)−α∗(t)e2iφ(t)
Æ

ξ−1ζ tan
�

2
p

ξζ
�

− β∗(t)e−2iφ(t)
Æ

ξζ−1 cot
�

2
p

ξζ
�

, (66c)

from which we compute the variables φ(t), ξ(t) = |ξ(t)| eiϕξ(t) and ζ(t) = |ζ(t)| eiϕζ(t)which
define the operators U(t) and Λ(t). In order to find a possible solution for the system (66),
we assume small amplification parameters, |ξ| � 1 and |ζ| � 1, in order to disregard their
second order corrections, leaving us with the equations

φ̇(t)−ω∗(t) +ω(−t) + 4
�

α∗(t)ζ(t)e2iφ(t) − β∗(t)ξ(t)e−2iφ(t)
�

= 0 , (67a)

2ξ(t)φ̇(t) + iξ̇(t)− 2ω∗(t)ξ(t)−α∗(t)e2iφ(t) +α(−t) = 0 , (67b)

−2ζ(t)φ̇(t) + iζ̇(t) + 2ω∗(t)ζ(t)− β∗(t)e−2iφ(t) + β(−t) = 0 . (67c)

For the particular case where Λ(t) is a unitary operator, i.e., ζ(t) = −ξ∗(t), and Imω(−t) 6= 0,
the above system simplifies to the decoupled equations

φ̇(t) =ω∗(t)−ω(−t) + 4
�

α∗(t)ξ∗(t)e2iφ(t) + β∗(t)ξ(t)e−2iφ(t)
�

, (68a)

ξ(t) =
α(−t)− β∗(−t)− [α∗(t)− β(t)] e2iφ(t)

4i Imω(−t)
. (68b)
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For the case where Imω(−t) = 0, the parameter ξ(t) follows from

2iξ̇(t) = 4 [Reω(−t)]ξ(t) + [α∗(t) + β(t)] e2iφ(t) −α(−t)− β∗(−t) . (69)

Therefore, from Eqs. (67) we obtain the parameters defining the TD antilinear symmetry
operator

I(t) = S(t)R(t)T , (70)

which becomes an antiunitary operator, with Λ(t) being the squeezing operator
S(t) = eξ(t)a

†2−ξ∗(t)a2
when considering the parameters following from Eqs. (68). This symme-

try operator describes the successive action of a time-reversal operator T , a TD global rotation
in phase space R(t) = e−iφ(t)a†a and a TD operation performed by the generalized squeezing
S(t) = eξ(t)a

†2+ζ(t)a2
. From Eq. (68b) we verify that the approximation |ξ| � 1 corresponds

to small amplification parameters |α| and |β | compared to |ω|.
Similarly to the symmetry operator derived above for the TD non-Hermitian linear Hamil-

tonian, for the case unitary Λ the operator in Eq. (47) resembles the evolution operator for the
Hermitized counterpart of the TD Hamiltonian in Eq. (60) [12,25,26,44–46], apart from the
time-reversal operation. If applied to a given state of the Hermitized counterpart of our Hamil-
tonian, this symmetry operator moves the probability distribution across an upward spiral in
phase space, continuously squeezing it.

7.2 Dyson map and pseudo-Hermiticity

For the TD quadratic Hamiltonian (60) we consider the TD quadratic Dyson map

η(t) = exp
�

ε(t)a†a+ γ(t)a2 + γ∗(t)
�

a†
�2�

, (71)

which is a positive Hermitian operator under the constraint θ2 = ε2 − 4 |γ|2 > 0. This map
provides us with the relations

ηaη−1 =
�

coshθ −
ε

θ
sinhθ

�

a−
2γ∗

θ
sinhθa† , (72a)

ηa†η−1 =
�

coshθ +
ε

θ
sinhθ

�

a† +
2γ
θ

sinhθa , (72b)

and consequently with the transformed Hamiltonian

h= ηHη−1 + iη̇η−1

=W
�

a†a+
1
2

�

+ Ua2 + Va†2 , (73)

where, after defining the parameters

λ=
2γ∗ sinhθ

θ coshθ − ε sinhθ
, (74a)

λ0 =
θ2

[θ coshθ − ε sinhθ]2
, (74b)

χ = |λ|2 −λ0 , (74c)

we obtain

W = −
1
λ0

�

ω
�

χ + |λ|2
�

+ 2 (αλ+ βχλ∗)−
i
2

�

λ̇0 − 2Λλ̇∗
�

�

, (75a)

U =
1
λ0

�

ωλ∗ +α+ βλ∗2 +
i
2
λ̇∗
�

, (75b)

V =
1
λ0

�

ωχλ+αλ2 + βχ2 +
i
2

�

λ0λ̇+λ
2λ̇∗ −Λλ̇0

�

�

. (75c)
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For h in Eq. (73) to be Hermitian we require the constraints W =W ∗ and V = U∗, which
results in the system

|ż|=− |z|2
�

|ω|
χ +Φ2

Φ
sinϕω − 2

�

|α| sin (ϕ −ϕα)− |β |χ sin
�

ϕ +ϕβ
��

�

+
|z|
Φ
Φ̇ , (76a)

Φ̇=
2

χ − 1

�

[|ω|Φ sinϕω − |α| sin (ϕ −ϕα)]
�

1−Φ2
�

−|β |
�

(2χ − 1)Φ2 −χ2
�

sin
�

ϕ +ϕβ
�	

, (76b)

ϕ̇ =
2

(1−χ)Φ
�

|α|
�

1−Φ2
�

cos (ϕ −ϕα) + |β |
�

Φ2 −χ2
�

cos
�

ϕ +ϕβ
��

+ 2 |ω| cosϕω , (76c)

where we have defined γ= |γ| eiϕ, Φ= λeiϕ, and

z =
2γ
ε
= |z| eiϕ , (77)

with the initial values |z(0)| and ϕ(0) being two free parameters defining the Dyson Map.
After deriving z, λ and ϕ from the system (76), we the compute ε from the relation

ε=
1

2
Æ

1− |z|2
ln





�

1+
Æ

1− |z|2
�

Φ+ |z|
�

1−
Æ

1− |z|2
�

Φ+ |z|



 . (78)

As follows from the system (76), the requirement for the Hamiltonian h to be Hermitian
does not imply any restrictions on the Hamiltonian parametersω(t), α(t) and β(t), differently
from what happens with the TD pseudo-Hermitian linear Hamiltonian, where a constraint is
required on the frequency of the oscillator. This desired absence of constraints on the param-
eters defining the TD non-Hermitian quadratic Hamiltonian comes certainly from its SU(1,1)
dynamical symmetry.

7.3 All-creation and all-annihilation Hamiltonians

We next consider, as defined in Ref. [24], the all-annihilation Haa(t) and all-creation Hac(t)
non-Hermitian Hamiltonians, given by

Haa(t) =ω(t)
�

a†a+ 1/2
�

+α(t)a2 , (79a)

Hac(t) =ω(t)
�

a†a+ 1/2
�

+ β(t)a†2 . (79b)

These peculiar Hamiltonians, which are extreme forms of the unbalanced Hamiltonian (60),
follow when considering β(t) = 0 and α(t) = 0, respectively. To compute their symmetry
operators we follow exactly the same procedure presented in subsection 7.1. The same struc-
ture of the symmetry operator in Eq. (47) thus applies for these Hamiltonians. Considering a
unitary Λ(t), the Eqs. (68) simplifies, for the Hamiltonian Haa(t), to

φ̇aa =ω
∗(t)−ω(−t) + 4α∗(t)ξ∗aa(t)e

2iφaa(t) , (80a)

ξaa(t) =
α(−t)−α∗(t)e2iφ(t)

4i Imω(−t)
, (80b)

whereas for Hac(t), we obtain

φ̇ac =ω
∗(t)−ω(−t) + 4β∗(t)ξac(t)e

−2iφac(t) , (81a)

ξac(t) =
β(t)e2iφac(t) − β∗(−t)

4i Imω(−t)
. (81b)
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The nature of the Hamiltonian —following from the group algebra describing the amplifi-
cation process— is then what defines its symmetry operator. When considering the all-creation
and the all-annihilation linear Hamiltonians, derived from the TD linear Hamiltonian intro-
duced above, it can be directly verified that we also have the same structure I(t) =D(t)R(t)T
for the symmetry operator.

Therefore, for the Heisenberg algebra of the linear amplification we have the symmetry
operator I(t) =D(t)R(t)T , whereas for the SU(1,1) algebra of the parametric amplification,
we have I(t) = S(t)R(t)T . Both symmetry operators share the time reversal and rotation
operators. However, as it is well-known from the amplification processes of the radiation field
[48, 49], while the Heisenberg algebra generates displacements in phase space, the SU(1,1)
produces squeezing.

7.4 From I(t) in Eq. (47) to PT

As done for the case of a TD non-Hermitian linear Hamiltonian, when considering the con-
straints under which the Hamiltonian (60) is PT -symmetric [ω∗(−t) =ω(t), α∗(−t) = α(t),
and β∗(−t) = β(t)], the TI PT operator can be directly recovered from I(t) in Eq. (47).
Under these constraints and considering a unitary Λ(t), the Eqs. (68) simplify to

φ̇(t) =
i

Imω(−t)

�

α∗(t) [α(t)− β∗(t)]
�

e2iφ(t) − 1
�

−β∗(t) [α∗(t)− β(t)]
�

e−2iφ(t) − 1
�	

, (82a)

ξ(t) =
α∗(t)− β(t)
4i Imω(−t)

�

1− e2iφ(t)
�

. (82b)

Assuming a TI φ = φ0 = (2n+ 1)π, with n ∈ Z, the Eq. (82a) is automatically satisfied
and the Eq. (82b) leads to ξ = 0, thus avoiding undesirable constraints on the Hamiltonian
parameters. The operator in Eq. (47) is then reduced to

I = e−i(2n+1)πa†aT = PT . (83)

8 The TI non-Hermitian Hamiltonian of a cavity field under para-
metric amplification

Considering the TI non-Hermitian Hamiltonian

H =ω
�

a†a+ 1/2
�

+αa2 + βa†2 , (84)

with complex TD parameters ω, α, and β , we require that H† 6= H, such that ω∗ 6=ω and/or
α∗ 6= β . The PT -symmetry requirement for this TI Hamiltonian imposes the more restrictive
conditions ω∗ =ω, α∗ = α, and β∗ = β .

8.1 The TI antilinear symmetry operator for the TI Hamiltonian

After computing the TD symmetry in Eq. (47), we assume that its TI equivalent has form
I = SRT , with S being an antilinear operator. The condition for the Hamiltonian (84) to be
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invariant under this TI symmetry operator, given by [I , H] = 0, provides us with the system

ω−ω∗ cos
�

4
p

ξζ
�

+
�

α∗
Æ

ξ−1ζe2iφ − β∗
Æ

ξζ−1e−2iφ
�

sin
�

4
p

ξζ
�

= 0 , (85a)

ω∗ −
�

α−α∗e2iφ(t)
�
Æ

ζξ−1 cot
�

2
p

ξζ
�

−
�

α− β∗ξζ−1e−2iφ
�
Æ

ζξ−1 tan
�

2
p

ξζ
�

= 0 , (85b)

ω∗ +
�

β − β∗e−2iφ
�
Æ

ξζ−1 cot
�

2
p

ξζ
�

+
�

β −α∗e2iφξ−1ζe2iφ
�
Æ

ξζ−1 tan
�

2
p

ξζ
�

= 0 , (85c)

which, for an antiunitary S, i.e., ζ= −ξ∗, simplifies to

ω−ω∗ cosh (4 |ξ|) + i
�

α∗ei(2φ−ϕξ) − β∗e−i(2φ−ϕξ)
�

sinh (4 |ξ|) = 0 , (86a)

ω−
�

α∗ −αe−2iφ
�

eiϕξ coth (2 |ξ|) +
�

α∗ + βe−2i(φ+ϕξ)
�

eiϕξ tanh (2 |ξ|) = 0 , (86b)

ω+
�

β∗ − βe2iφ
�

e−iϕξ coth (2 |ξ|)−
�

β∗ +αe−2i(φ−ϕξ)
�

e−iϕξ tanh (2 |ξ|) = 0 . (86c)

Considering a real frequency ω and, as in the TD case, a small squeezing parameter,
|ξ| � 1, to disregard its second order corrections, we obtain from the above equations the
squeezing parameter

ξ=
(α− β∗)− (α∗ − β) e2iφ

4ω
, (87)

and the rotation angle

φ =
i
2

ln
α∗ + β
α+ β∗

, (88)

under the constraint |α|2+ |β |2 + 2αβ = 0. From the polar forms α = |α| eiϕα , β = |β | eiϕβ

and ξ= |ξ| eiϕξ , it follows that

|ξ|=
|α| sin (φ −ϕα)− |β | sin

�

φ +ϕβ
�

2ω
, (89a)

ϕξ =
�

n+
1
2

�

π−φ . (89b)

For the TI non-Hermitian Hamiltonian (84) we then have the TI antiunitary symmetry
operator

I = eξa2−ξ∗a†2
e−iφa†aT , (90)

defined by the parameters in Eqs. (87) and (88). For the case of a PT -symmetric Hamiltonian,
where α and β are real parameters, the rotation angle following from Eq. (88) is given by
φ = (2n+ 1)π, which makes the squeezing degree null, |ξ| = 0, thus reducing the symmetry
I = SRT to the PT operator.

8.1.1 Bender-Berry-Mandilara

The validity of the relation A2k = 1, with k odd [29], for the symmetry operator in Eq. (90)
demands a little algebra. In fact, for the operator in Eq. (90) we obtain

I2 = eξa2−ξ∗a†2
e−iφa†aeξ

∗a2−ξa†2
eiφa†aT 2

= eξa2−ξ∗a†2
eξ
∗e2iφa2−ξe−2iφa†2

= 1 , (91)

since it follows from Eqs. (89) that ξe−2iφ = −ξ∗.
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8.2 Dyson map and pseudo-Hermiticity

For the TI non-Hermitian Hamiltonian (84), we consider the TI Dyson map

η= exp
�

εa†a+ γa2 + γ∗
�

a†
�2�

, (92)

again with θ2 = ε2 − 4 |γ|2 > 0. From the transformation relations in Eq. (72) we obtain

h= ηHη−1 =W
�

a†a+
1
2

�

+ Ua2 + Va†2 , (93)

with

W =ω cosh2 θ −
�

ω
�

ε2 + 4γλ
�

− 4 (αλ+ βγ)ε
� sinh2 θ

θ2
− 2 (αλ− βγ)

sinh2θ
θ

, (94a)

U = α cosh2 θ +
�

αε2 − 2 (ωε− 2βγ)γ
� sinh2 θ

θ2
+ (ωγ−αε)

sinh 2θ
θ

, (94b)

V = β cosh2 θ +
�

βε2 − 2 (ωε− 2αλ)λ
� sinh2 θ

θ2
− (ωλ− εβ)

sinh2θ
θ

. (94c)

The Hermiticity condition h= h† demands a real W and U = V ∗, the former leading to the
relation

Im
�

ε tanhθ
θ

(α∗ − β) z − (α∗ + β) z
�

= 0 , (95)

where we have defined z = 2γ/ε= z0eiϕ, with γ= |γ| eiϕ, such that −1≤ z0 ≤ 1. Considering
α = |α| eiϕα and β = |β | eiϕβ , a particular solution for Eq. (95) follows from the choice of a
real ω and ϕ = ϕα = nπ−ϕβ with an integer n, i.e.

ω ∈ R, α= |α| eiϕ, β = |β | ei(nπ−ϕ) . (96)

The condition U = V ∗ leads to the relation

ε=
1

2
q

1− z2
0

tanh−1





�

|α| − |β | e−inπ
�
q

1− z2
0

|α|+ |β | e−inπ −ωz0



 , (97)

which imposes the restriction z− ≤ z0 ≤ z+, in place of −1≤ z0 ≤ 1, where

z± =

�

|α|+ |β | e−inπ
�

ω±
�

|α| − |β | e−inπ
�

Ω

ω2 + (|α| − |β | e−inπ)2
. (98)

the frequency Ω being defined as Ω2 = ω2 − 4 |αβ | e−inπ, which must be a real parameter
as well as z±. Although we have a real Ω for an even n, for an odd n we must impose the
additional constraint ω ≥ 2

p

|αβ | on the Hamiltonian’s parameters. For ω < 2
p

|αβ |, the
pseudo-Hermiticity relation does not apply to the transformed h.

Considering the pseudo-Hermiticity conditions in Eq. (96), we obtain from Eq. (89a) the
squeezing degree

|ξ|=
|α|+ (−1)n+1 |β |

2ω
sin (φ −ϕα) , (99)

showing that for φ = ϕα, the symmetry operator reduces to the product I =RT , whereas for
φ 6= ϕα we still have I = SRT , with the squeezing operator being defined by the squeezing
degree in Eq. (99) and direction

ϕξ =
�

m+
1
2

�

π−
�

ϕα +
1
2i

ln

�

�

�

�

α

β

�

�

�

�

�

, m ∈ Z . (100)
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8.3 Symmetry breaking

Considering the bosonic operators b and b† defined by the transformations b = ua+ va† and
b† = v∗a + u∗a†, with |u|2 − |v|2 = 1 such that

�

b, b†
�

= 1, we can rewrite the Hamiltonian
(84) in the form

H = Ω
�

b† b+
1
2

�

, (101)

as long as we consider the constraint Ω = ω/
�

|v|2 + |u|2
�

= α/uv∗ = β/u∗v, leading to the
already defined frequency

Ω=
Æ

ω2 − 4αβ . (102)

To ensure the reality of the spectrum of the transformed H with a real frequency Ω, we derive
from Eq. (102) the same conditions for the pseudo-Hermiticity of the TI Hamiltonian (84),
given by Eq. (96). We stress that the parameters in Eq. (96) can also be derived from the
symmetry condition [I , H] = 0 for a TI Hamiltonian, using the operator in Eq. (90), as done
above.

There are two different regimes of eigenvalues following from the parameters given by
Eq. (96). One for an odd integer n, leading to a real frequency Ω, and the other for an even
n, where Ω is real only under the additional constraint ω ≥ 2

p

|αβ |. For ω < 2
p

|αβ | the
symmetry is broken; the frequency is no longer real and the eigenvalues become complex
conjugate pairs.

9 A connection between the symmetry and metric operators

If the symmetry operator stems from the group algebra of the Hamiltonian, the ansatz for
the Dyson’s map must also be guided by this group algebra, as discussed in Ref. [12] where
a strategy for constructing the Dyson map is presented. It is then reasonable to assume that
there must be a close connection between both of these operators: the symmetry and the
Dyson map (or equivalently the metric operator).

In part I of this work we have derived the symmetry operator for the TD non-Hermitian
linear Hamiltonian, which resulted in the form I(t) =D(t)R(t)T , withR(t) = e−iφ(t)a†a being
a unitary operator and D(t) = eν(t)a

†+λ(t)a+µ(t) a unitary (λ= −ν∗) or a Hermitian nonunitary
operator (λ= ν∗). The ansatz for the Dyson map we have used for the pseudo-Hermitization
of this linear Hamiltonian, given by the Hermitian operator η(t) = eε(t)a

†a+γ(t)a+γ∗(t)a†
, bears

resemblance to the generalized displacement D(t). In fact, we could have considered for the
Dyson map the nonunitary operator D(t)R(t) instead of the η(t), possibly at the expense of
constraints on the non-Hermitian Hamiltonian’s parameters. We could also have associated
the linear part of the symmetry directly to the metric operator, i.e., ρ(t) =D(t)R(t).

In the present work, we have obtained the symmetry operator I(t) = S(t)R(t)T ,
for the TD non-Hermitian quadratic Hamiltonian, with Λ(t) = eξ(t)a

2+ζ(t)a†2
, be-

ing a unitary (ζ = −ξ∗) or nonunitary Hermitian operator (ζ = ξ∗). The
Dyson map we have used for the pseudo-Hermitization of our quadratic Hamiltonian,
η(t) = exp[ε(t)a†a + γ(t)a2 + γ∗(t)

�

a†
�2
], also resembles the nonunitary S(t)R(t), which

could be used for the Dyson map instead of η(t). Alternatively, as anticipated above, we could
also have proposed the relation ρ(t) = S(t)R(t).

Considering the TD non-Hermitian quadratic Hamiltonian and assuming η(t) = S(t)R(t),
the above discussion leads us to propose the relation

I(t) = η(t)T . (103)
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With the Dyson map
η(t) = S(t)R(t) , (104)

we obtain from Eq. (60) the transformed Hamiltonian

h= W̃
�

a†a+
1
2

�

+ Ũa2 + Ṽ a†2 , (105)

with

W̃ =
�

φ̇ +ω
�

cos (4 |ν|)−
�

αe−i(2φ−ϕν) − βe+i(2φ−ϕν)
�

sin (4 |ν|) , (106a)

Ũ =
φ̇ +ω

2
sin (4 |ν|) e−iϕν(t) + iν̇∗ +αe−2iφ cos2 (2 |ν|) + βe2i(φ−ϕν) sin2 (2 |ν|) , (106b)

Ṽ = −
φ̇ +ω

2
sin (4 |ν|) eiϕν(t) + iν̇+αe−2i(φ−ϕν) sin2 (2 |ν|) + βe2iφ cos2 (2 |ν|) . (106c)

For the Hamiltonian (105) to be Hermitian, it follows the system

0= |ω| sinϕω +
�

+ |α| sin (2φ −ϕν −ϕα) + |β | sin
�

2φ −ϕν +ϕβ
��

tan (4 |ν|) , (107a)

ϕ̇ν =−
cos (4 |ν|)

2 |ν|
��

φ̇ + |ω| cosϕω
�

tan (4 |ν(t)|) + |α| cos (2φ −ϕν −ϕα)

−|β | cos
�

2φ −ϕν +ϕβ
��

, (107b)

|ν̇|=
1
2

�

|α| sin (2φ −ϕν −ϕα)− |β | sin
�

2φ −ϕν +ϕβ
��

, (107c)

which, like that in Eq. (76), does not lead to constraints on the parameters of Hamiltonian
(60). Therefore, the Dyson map (104) can perfectly be used as an alternative to the ansatz in
Eq. (71), thus leading to the associated metric operator ρ(t) =R†(t)S†(t)S(t)R(t).

When we consider Eq. (103) together with the relation I(t) = Ξ−1(t)ρ(t) derived above,
we obtain η(t) = Ξ−1(t)ρ(t)T , and consequently

Ξ(t) = ρ(t)T η−1(t) . (108)

When we consider, however, the ansatz

I(t) = T η(t) , (109)

as an alternative to Eq. (103), we get a simplest form for the Ξ(t)-anti-pseudo-Hermitian
operator, given by

Ξ(t) = η†(t)T . (110)

Therefore, after computing the TD symmetry operator through Eq. (9), we automatically
derive the Dyson map from the symmetry-metric Eq. (103), and consequently the metric
operator or the ρ-pseudo-Hermitian operator. Then, from Eq. (110), we derive the Ξ-anti-
pseudo-Hermitian operators. In short, after computing the symmetry operator, all the other
operators thus follow automatically.

We observe however that, from Eqs. (9) and (103), we directly derive an equation for the
Dyson map, given by

i
∂ η(t)
∂ t

= η(t)T H(t)T −1 −H(−t)η(t) . (111)

From Eqs. (109) and (103), we obtain instead:

i
∂ η(t)
∂ t

= T H(−t)T −1η(t)−η(t)H(t) . (112)

22

https://scipost.org
https://scipost.org/SciPostPhysCore.5.1.012


SciPost Phys. Core 5, 012 (2022)

Eqs. (111) or (112) can be solved by applying the same reasoning used in Section 3 to compute
the symmetry operator.

We finally note that the formal simplicity ofPT symmetry prevented us, so far, from explor-
ing a relation between symmetry and metric as anticipated here. It is evident that our proposal
for this relation was largely due to the complexity of the symmetry operators associated with
the Hamiltonians discussed here. This fact should motivate us to persist in the investigation of
symmetries that are more general than PT , through the consideration of other Hamiltonians
with different symmetry groups. We believe that we can further deepen our understanding of
pseudo-Hermitian systems and even the symmetry-metric relation through this investigation.

10 Conclusions

In this work we have proposed a method for the derivation of general TD continuous symme-
try operators for TD non-Hermitian Hamiltonians. Although our method applies indistinctly
to linear or antilinear, unitary or nonunitary symmetries, we then assume an antilinear sym-
metry to retrieve the results by Mostafazadeh [4] and Bender-Berry-Mandilara [29] for the
case of TI Hamiltonian and symmetry operators. In fact, assuming that the TD non-Hermitian
Hamiltonian is simultaneously ρ-pseudo-Hermitian and Ξ-anti-pseudo-Hermitian, we derive
the relation I(t) = Ξ−1(t)ρ(t) for our TD antilinear symmetry operator. From this relation
we recover the Mostafazadeh’s theorem, for TI Hamiltonian and symmetry operators, asserting
that the pseudo-Hermiticity of a Hamiltonian implies the existence of an antilinear symmetry of
the form I = Ξ−1ρ. We also retrieve the Bender-Berry-Mandilara result that a non-Hermitian
Hamiltonian presents a real spectrum when invariant under any antiunitary operator I satis-
fying I2k = 1 with k odd.

Our method is also based on a proposal in Ref. [44], for the construction of Lewis & Riesen-
feld TD nonlinear invariants, and we have applied it for the case of TD non-Hermitian linear
and quadratic Hamiltonians modelling a cavity field under linear and parametric amplifica-
tions. We have thus derived TD continuous symmetry operators, given in Eqs. (30) and (70),
for the linear and quadratic cases respectively. These operators describe the successive actions
of a time-reversal operator T , a TD rotation and a generalized displacement or squeezing
in phase space, respectively. This TD continuous symmetry automatically reduces to the TI
discrete PT operator when we restrict our TD Hamiltonian to be PT -symmetrical.

After computing the symmetry operators we then consider the pseudo-Hermitization of our
TD linear and quadratic Hamiltonians. For the case of the TI equivalents of our non-Hermitian
Hamiltonians, the stringent invariance requirement [I , H] = 0, imposes TI continuous sym-
metry operators which are very particular case of the TD symmetry operators in Eq. (30) and
(70), even though they are generalizations of the discrete parity and time-reversal transfor-
mation. The TI non-Hermitian Hamiltonians and the associated symmetry operators are more
vulnerable, as expected, than their general TD equivalents to the constraints imposed by the
pseudo-Hermiticity relation.

The TD general symmetries in Eq. (30) strongly resemble the evolution operator for the
Hermitized counterparts of our TD non-Hermitian linear and quadratic Hamiltonians, except
for the time-reversal operation [25–27,45,46]. If applied to a given state of these Hermitized
counterparts of our Hamiltonians, these peculiar symmetry operators cause the probability
distribution to trace an upward spiral in phase space, with TD rotation and translation rates,
for the linear case, or translation plus squeezing rates for the quadratic case.

We have also computed the TD symmetry operators for the all-creation and all-annihilation
Hamiltonians, in Eqs. (79a) and (79b), which are extreme cases of the parametric amplifica-
tion in Eq. (60), where only creation or annihilation quadratic operators take place in the
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interaction picture. We verify, as expected, that the TD symmetry operators for these peculiar
Hamiltonians have the same form as the symmetry operator for our non-Hermitian paramet-
ric amplification. The group algebra describing the Hamiltonian is what defines its symmetry
operator.

From the results we have derived for the linear and the quadratic non-Hermitian Hamil-
tonians, we have proposed a relation between the symmetry and the metric operators which
enables us to automatically derive the metric operator ρ(t). In fact, from the symmetry of the
problem, we are able to derive both the ρ-pseudo-Hermitian and the Ξ-anti-pseudo-Hermitian
operators, as introduced by Mostafazadeh in Ref. [4]. In order to consolidate the symmetry-
metric relation which we have derived, our next step is to approach other Hamiltonians, asso-
ciated with different groups of symmetries.

Therefore, in the present work we have explored more general symmetries than parity and
time-reversal for TD non-Hermitian Hamiltonians. The TD continuous symmetry operators we
have derived follow evidently from the symmetry group of the Hamiltonians we have studied,
and the symmetry-metric relation we have proposed will certainly act as a guide for the study
of pseudo-Hermitian quantum mechanics for symmetry groups far broader than PT .
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