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Abstract

We study the phase diagram for a lattice model of a time-reversal-broken three-
dimensional Weyl semimetal (WSM) in an orbital magnetic field B with a flux of p/q
per unit cell (0 < p < q — 1), with minimal crystalline symmetry. We find several inter-
esting phases: (i) WSM phases with 2q, 4q, 6q, and 8¢ Weyl nodes and corresponding
surface Fermi arcs, (ii) a layered Chern insulating (LCI) phase, gapped in the bulk, but
with gapless surface states, (iii) a phase in which some bulk bands are gapless with
Weyl nodes, coexisting with others that are gapped but topologically nontrivial, adiabat-
ically connected to an LCI phase, (iv) a new gapped trivially insulating phase (I’) with
(non-topological) counter-propagating surface states, which could be gapped out in the
absence of crystal symmetries. Importantly, we are able to obtain the phase boundaries
analytically for all p,q. Analyzing the gaps for p = 1 and very large q enables us to
smoothly take the zero-field limit, even though the phase diagrams look ostensibly very
different forq =1,B=0, and g — c0,B — 0.
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1 Introduction

Weyl semimetals (WSM) [1-11] are examples of topological quantum matter which are
not fully insulating in the bulk but have an even number of points in the Brillouin zone called
Weyl nodes where the conduction and valence bands touch each other. Each Weyl node has a
topological charge and acts as a source or sink of the Berry phase in momentum space. The
gapless surface states of the WSM consist of Fermi arcs in the surface Brillouin zone (SBZ)
which join the projections of the Weyl nodes onto the SBZ.

It is well-known [12-15] that in the presence of parallel external electric and magnetic
fields, the density of electrons at individual nodes is not conserved and transport in the WSM
is anomalous due to the chiral anomaly. This causes the electrons to be pumped from one Weyl
node to another with opposite topological charge until this process is balanced by internode
scattering. The surface Fermi arcs also show interesting quantum oscillations [16-19] in an
applied magnetic field. Semiclassically, the Lorentz force causes the electrons to move along
the Fermi arc, tunnel through the bulk at the Weyl node and then complete the circuit via the
Fermi arc on the other surface and tunneling back through the bulk.

Beyond the semiclassical limit, the effect of orbital magnetic fields B on the WSM has been
well-studied [12,15] in the continuum limit (magnetic length £ = /f/eB is much larger than
the lattice spacing a), where the B field is weak enough that attention can be restricted to
states very close to the Weyl nodes. Coming to strong fields, Roy and co-workers [20] have
characterized the Hofstadter-Weyl butterfly in a simple two-band model with two Weyl nodes,
where the magnetic field is applied parallel to the separation between the Weyl nodes. There
has also been some work [21] on obtaining the energy spectra for the Hofstader Hamiltonians
for Weyl and double-Weyl semimetals, where the systems are shown to exhibit 3D quantum
Hall effect [18,22, 23] for appropriate hopping parameters and rational fluxes.

We go beyond previous work in two ways. First, we consider a two-band model with a
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mimimal crystalline symmetries, - i.e., with fully anisotropic hoppings. Here, even without an
external magnetic field, we find that there are several new phases of WSMs with 2, 4, 6, and
8 Weyl nodes. Earlier studies [23-26] had imposed crystalline symmetries and had uncovered
the WSM phases with 2 and 4 nodes with the LCI phase (also sometimes called a 3D Quantum
Hall state [24] or a 3D Chern Insulator [25]), but the phases with 6 and 8 nodes had not
been seen earlier and requires unconstrained anisotropic hoppings. Second, unlike earlier
studies of the effect of magnetic fields on this model, we consider the case when the external
B field is perpendicular to the separation between the nodes. Constraining one of the hopping
parameters, we are able obtain the phase boundaries analytically at arbitrary values of p,q.
Last, but not least, we smoothly connect our results for small but commensurate fields to the
semiclassical limit.

Our central result is the set of phase diagrams in Fig. 1 for each q (where p/q quanta of
flux go through each unit cell). The phase diagrams are universal in two distinct ways: (i)
For each value of ¢, the set of phases and the regions they occupy in parameter space are
independent of p. (ii) For all ¢ > 1, phases with 2q, 4q, 6q, and 8q Weyl nodes appear in the
phase diagram, as well as the trivial insulator and the LCI phase. For all ¢ > 2, a phase in which
gapless Fermi arcs coexist with gapless chiral states spanning the surface BZ (characteristic of
the LCI) always appears. For all ¢ = 3 a topologically trivial insulator with gapless surface
modes on certain surfaces (protected by translation symmetry) always appears.

In a particular gauge, the g-fold increase in the number of Weyl nodes is essentially a
consequence of the g-fold increase in the periodicity along the y axis. This g-fold increase in
periodicity also leads to an increase in the number of phase boundaries and consequently an
increase in the number of times each phase appears in the phase diagram. Transitions between
phases with differing numbers of Weyl nodes occur via the creation/annihilation of pairs of
Weyl nodes of opposite topological charge. The bulk dispersion at the location of the phase
transition is quadratic in one direction but linear in the other two. The corresponding surface
spectrum of the Fermi arcs is also quadratic in one direction but linear in the other at the phase
transitions.

While the phase diagram is independent of p, the spectrum strongly depends on p. For a
certain restricted, but still nontrivial, set of parameters, we can solve for the phase boundaries
analytically, which enables us to go to very large values of g, where the phase diagram in
most of the parameter space approaches a limit as ¢ — oo. The exception is a complicated
patchwork of many phases occurring in a narrow band of parameters, whose width vanishes
as ¢ — oo (Fig. 8). At first glance, it is puzzling that the phase diagram as p = 1,q — ©0
(Fig. 8) which is the semiclassical limit B — 0, looks very different from that at at B = 0
(Fig. 1a). However, a detailed examination of the asymptotic behavior of the gap near zero
energy enables us to make the correspondence between the p = 1,g — o0 and the B = 0
phase diagrams (studied in Figs. 8-10).

Many of the features that we find in our analysis can be translated to experimental detec-
tion of the new phases via their topological responses. For instance, phases with co-existence
of the LCI and a WSM can lead to both of them contributing to the Hall conductance (Figs.
3-5). The Hall conductance can also be tuned by changing parameters to go between phases.

The plan of the paper is as follows. In Sec. 2, we introduce the fully anisotropic two-band
lattice model of a WSM with broken time-reversal symmetry and obtain its phase diagram at
zero flux. In Sec. 3 we obtain the phase boundaries analytically for p/q flux quanta piercing
each unit cell in a direction perpendicular to the Weyl-node separation (the x direction). In
Sec. 4 we study the bulk and the surface spectra, paying particular attention to gapless surface
states. In Sec. 5 we discuss the weak-field limit in detail and make contact with the continuum
description. We conclude in Sec. 6 with a summary, potential caveats in our results, the effects
of disorder, and possible directions for the future. A number of straightforward mathematical
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details are relegated to the appendices.

2 The lattice model and its phase diagram at zero flux

We begin with a time-reversal-broken two-band lattice model [23] of Weyl semi-metal
defined on a cubic lattice given by the following Hamiltonian

H= ZCT(n)ZMaxc(n) — (CT(n +aé;) Tj c(n) +H.c.) s D
n,j

where n = a(n,,n,,n,), n; being integers, denote the lattice sites, &; is the unit vec-
tor along j direction, the o,’s are the Pauli matrices representing the (pseudo)spin and
c(n) = (¢q(n),c l(n))T are the two-component fermions. Microscopically, the pseudospin label
arises from spin-orbit coupling, leading to eigenstates which are linear combinations of spin
and orbital eigenstates. The hopping matrices T;, j = (x,y,2), are given by: T, = t,0,,
T, = tgll)ax + itg,z)oy and T, = tgl)ax + itgz)az. The lattice constant a is set to be
unity for the rest of the paper. This model has been studied earlier for isotropic hoppings
t, = tg,l) = tél) = tq, tg/z) = tgz) = t, and with t; = t, and is known [23-26] to have a Weyl
semimetal (WSM) phase for [M/t;| < 3. In this paper we work with fully anisotropic hop-
pings, where the model has minimal rotational symmetry - a single two-fold rotation about
the x-axis (the full symmetry analysis is carried out in the Appendix A).

(b) g¢=2 () ¢=3
W2

W4
W6
W8
LCI
NI
w2

(S0

0 1 2 3 4
M/t, M/t, M/t,

50 DEEEE

Figure 1: The phase diagram for (a) zero field (g = 1) and (b)-(c) for finite com-
mensurate fields (g = 2, 3), with tgl) =t = ty. (a) The gapless phases consisting
of WSM phases with 1, 2, 3, and 4 pairs of Weyl nodes are shown in blue, purple,
green, and brown. The gapped phase (in orange) is a layered Chern insulator (LCI),
where the 2D Chern layers are coupled via t,.. The white region at the right bottom
corner represents a trivial insulator. In (b)-(c) the WSM phases have 2q, 4q, 6q, and
8q Weyl nodes in the bulk, labeled W2, W4, W6, and W8 respectively. In non-zero
magnetic fields, two additional phases appear which are labeled W2’ and I’. The
W2’ phase (aqua) is gapless and has 2q Weyl nodes, but coexists with an LCI, and
hence possesses gapless surface modes in addition to the usual Fermi arcs. The I’
phase is a gapped, topologically trivial, insulating phase but has counterpropagating
zero-energy surface states. We also note that the gapped LCI and I’ phases take up
regions from the WSM phases and expand with increasing q. We emphasize that the
phases of the same color in (a), (b), and (c) are not identical. The number of Weyl
nodes in corresponding phases is related by the factor gq.

To set the stage for our nonzero flux results, we first analyse the model at zero flux in the

4
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full parameter space. We find that the topological phase diagram, in general, depends only on
three of the hoppings (t,, tg,l), tél)) and the onsite mass parameter M, which are all real. The
Bloch Hamiltonian in k-space is

h(k) =2 (M —t,cosk, — tg,l) cosk, — tgl) cos kz) o+ Ztg,z) sink, o, + 2t§2) sink,0,. (2)

Since the second and third terms vanish at k, = 0,7 and k, = 0, 7 respectively, the gapless
points in the energy spectrum along with k, directions are given by the zeroes of the first term

cosk, = (M — (=1 )= (-1)" ¢ /¢, (3)

Note that here both u and v take values 0 and 1, depending on the k, and k, values being
0 and 7 respectively. The above equation represents a set of four equations whose solutions
are the Weyl nodes of the model, each equation potentially producing a pair of Weyl nodes.
Since both y and v take two values each, and each equation can have two values of k, where
the spectrum can be gapless, there could be upto eight distinct Weyl nodes. Of course, not all
parameter values support eight solutions. We label the WSM phases with 1, 2, 3 and 4 pairs
of Weyl nodes as W2, W4, W6, and W8 in Fig. 1(a) respectively.

We now show how to obtain the phase boundaries in the (M, t,) parameter space from
Eq. 3. The knowledge we gain from here will be useful when we will study the model in a
magnetic field in the following sections. The left hand side of Eq. 3 is cos k, which lies in the
range [—1,1]. Equation 3 has a solution only in the range of parameters for which the right
hand side also lies in the same range for a given u, v. Recall that different u, v correspond
to different values of k,, k, where the spectrum is gapless. Thus, Weyl nodes at different u, v
cannot annihilate each other. A phase transition corresponds to a change in the number of
Weyl nodes at a specific u, v, which can only occur when two Weyl nodes are either created
or destroyed. Eq. 3 shows that if k, is a solution, so is —k,y. The two solutions can be
created/annihilated only when they coincide in the BZ, which means at k,, = 0, . Therefore,
at a putative phase transition, the right hand side of Eq. 3 should be at the boundary of its
allowed range, namely +1 = (—1)®. Thus the condition for the phase transition is,

M —(=1)? t, = (=1)*e )+ (=1)"cV. )

The above equation represents a set of eight equations because each of the exponent &, u and
v take the two values 0 and 1. Clearly, the equations are symmetric under M — —M and
t, — —t,, because this does not lead any new conditions - it merely shuffles the set of eight
equations. Therefore, we can restrict ourselves to M, t, > 0.

In addition to WSM phases and a trivial insulator, we find a layered Chern insulator (LCI)
with a bulk gap. The LCI phase can be imagined as a stack (along the x-direction) of 2D Chern
insulator layers in the yz plane which are tunnel-coupled via t,. When t,, = 0, we have a set
of disconnected 2D Chern insulator layers for M < 2 (for M > 2, it is a trivial insulator, see
Fig. 1la), with a Chern number C = 1 per layer. For t, # 0, this simple picture no longer
holds, but one can compute the Chern number C(k,) for each value of k, by integrating the
Berry curvature over the two dimensional k, -k, BZ. We obtain C(k,) = 1 for each k, showing
that the LCI is adiabatically connected to the t, = 0 limit. The LCI phase has the expected
surface state, which is the collection of quantum Hall-like chiral edge states of the 2D Chern
insulators, spanning the entire Brillouin zone along k, direction. Here we note that increasing
tunnel-coupling t, runs a phase transition from LCI to WSM [27] (also clear from the phase
diagram Fig. 1a ).

The Fermi arc surface states in all the WSM phases as well as in the LCI phase are
(pseudo)spin-polarized along the z-direction. The surface states which are localized on the xy
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crystal surface have the low energy dispersion E(k,,k,) o< k,, and the surface states which
are localized on the xz crystal surface have the low energy dispersion E(k,,k,) o< k,. For
completeness, we have shown the spectra for some of the phases in Appendix B. We have also
shown plots of a few surface states and numerically confirmed their pseudospin polarizations
and the directions of their velocities.

3 The phase diagrams for p/q flux quanta per unit cell

3.1 Hamiltonian in Hofstadter regime

Now we are ready to examine how the phase diagram at zero orbital flux (Fig. 1a) gets
modified in the presence of an orbital magnetic field. Note that we consider the orbital effect
only. The reason is the following: The orbital coupling, since it couples to the charge degree
of freedom, is universal. On the other hand, since the pseudospin label is a k-dependent
linear combination of spin and orbital labels, which does depend sensitively on the microscopic
material parameters, the associated Zeeman coupling is not universal. In any case, the most
general form of the Zeeman coupling in our Hilbert space is

H, =y(K)BAK) 0. (5)

Provided y(k) is not too large, the effect of the Zeeman coupling will be to shift the locations
of the Weyl nodes (if present), and shift the phase boundaries. Since the Zeeman coupling is
not expected to introduce anything qualitatively different, we will ignore it in the following.

We consider an orbital flux along the z-direction perpendicular to the xy plane. The
hopping terms in the Hamiltonian pick up a nontrivial phase factor under Peierls substitu-
tion [28]. We will work in the Landau gauge A = (—Y, 0,0)B, where only the hopping in the
x-direction picks up a nontrivial phase so that the Hamiltonian in a magnetic field is obtained
from Eq. 1 by the replacement T, — T, exp(—i27wy ¢ /¢y). We will restrict ourselves to the
case where the flux ¢ (in units of the quantum flux ¢, = h/e) per unit cell is commensurate i.e.
¢ = Ba%/¢, = p/q, where p and q are relatively prime, so that translation symmetry along
the y-direction is restored with a larger unit cell [29]. To diagonalize the Hamiltonian, we
define a magnetic unit cell which is q times the original unit cell, extended in the y-direction.
Upon Fourier transformation with respect to the Bravais lattice sites of the magnetic unit cell,
the following Bloch Hamiltonian is obtained

q—1
hy(0)= > ¢l [0 + ££()0, e, (1) - (C[Taﬂ](k)eiqky(s(%q—l) T, ¢, (k) +H.c.) . (6
a=0

We will refer to hy (k) as the Hofstadter Hamiltonian, where a = 0, 1,....,q—1 are the sublattice
indices in the magnetic unit cell and k lies in the reduced (magnetic) Brillouin zone, i.e.,
k: k. € (0,27), k, € (0,2n/q), k, € (0,2m). The square bracket notation in the above
equation implies that the values are taken modulo q - i.e., [a] = a mod q. The hopping
matrix T, = t(yl)ax + itglz)ay has been defined earlier in the previous section. The functions
f{ and f;* are defined as

2
(k) =2 (M —t, cos (kx + %a) — tgl) cos kz) , (7a)

f8k) =2tPsink, . (7b)
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Note that the spectrum of hy(k), shown explicitly in Appendix C, is particle-hole symmetric.
As shown in Appendix C, we can compute the entire phase diagram analytically if we set
|t§2)| = |t§1)|. To avail ourselves of the simplicity and computational advantages this gives us,

especially at large q, we will make this choice tglz) = tgll) = t, for the rest of the paper.

3.2 Gapless points and phase boundaries

To obtain the phases and phase boundaries, we need to identify the zeroes of the Hof-
stader Hamiltonian h (k) (its spectrum is particle-hole symmetric about the zero energy as
shown in Appendix A), which gives us the band-touching points where the energy spectrum
vanishes, which in turn allows us to find the number of Weyl nodes. This can be done by
explicitly writing the Bloch Hamiltonian as a 2q x 2q matrix in the basis of sublattice and pseu-
dospin W = { Cg 1,115+ Cq—1,>€0, 1> C1, | » -+ Cq—l,l)- The details of the calculation are shown in
Appendix C. The energy gap can close only at k, = 0 and/or k, = 7/q, and only at k, = 0
and/or k, = 1. For each of these possibilities, the k, values at which the spectrum is gapless
are given by

cos g, = (—1)P*[ =T, (g) + (—1)" 4 2071 (£,/¢,)7], ®)

where u takes values 0 and 1 which correspond to closing of the gap at k, =0 and k, = 7/q
respectively. Here T,(g) is the Chebyshev polynomial [30] of the first kind of degree q. Its

argument g = (—M + (—1)”t§1)) /t., where v takes values 0 and 1, which correspond to
closing of the gap at k, = 0 and k, = 7 respectively. So essentially, Eq. 8 is a set of four
independent equations. Note also that Eq. 8 involves only the parameters g and ¢, /t, . Finally,
we note that for a given (g, t,/t,), if k, = kg is a solution of Eq. 8, then so is k, = —k,.
Furthermore, since cosq(+ky+2mm/q) = cosqk,, it is easy to see that k, = ko + 2mm/q
where m = 0,1,2,...,(q — 1) are also solutions. Since, without loss of generality, k, can be
restricted to 0 < ky < 2m/q, it is clear that there are 2q values of k, in the magnetic BZ
where the spectrum could be gapless. Since p and v take two values each, and each equation
can have 2q values of k, where the spectrum can be gapless, there could be regions in the
parameter space with up to 8q distinct gapless values for k,. These distinct gapless points in
the magnetic BZ are the Weyl nodes in the theory.

We can now obtain the phase boundaries from Eq. 8 by arguments identical to those given
in the zero field case in Sec. 2 above Eq. 4. As the left hand side is now changed to cosgk,
the number of zeros will be 2q for a given u, v and the phase boundary equation will be (after
setting RHS to £1 in Eq. 8),

—To(g) + (=171 297" (£, /t,) 79 = (—1)P*9*0, )

where 6 takes two values 0 and 1, which correspond to setting the RHS of Eq. 8 equal to 1
and —1 respectively. Analogous to Eq. 4 in the zero-field case, the above compactly written
equation is a set of eight independent equations because each of the exponents u, v and 6 take
two values. Note that the only appearance of the numerator p (of the flux p/q) is in the expo-
nent on the RHS, and the value only depends on whether p is odd or even. This only shuffles
between the set of equations and does not lead to any new condition. So the phase bound-
aries are completely independent of the value of p. Interestingly, as we mentioned earlier,
there are only two parameters g and t, /t, which enter the Eq. 9. The hopping parameter tgl)

enters the equation via the value of g = (—M +(-1)” tgl)) /t,, which, given that a solution

exists, determines the values of k, at which there are Weyl touchings. To simplify our analysis
without sacrificing anything qualitatively new, we henceforth fix tgl) = tg,l) = t(yz) =t, =1
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and tgz) = 1. With this simplification, our phase diagram is essentially controlled only by two
parameters M /t, and t, /t,. The same Eqs. 8-9 are also applicable to the zero field case and
correctly reproduce (setting ¢ = 1 in Eq. 9) the phase boundaries given by Eq. 4.

Note that a uniform magnetic field in the y-direction, would give identical conditions
(Egs. 8 and 9) for the gapless spectrum and the phase boundary respectively, if we make
the replacements tgl) — tg}), t£2) — _t§/2) and tglz) — tgz). So all our results including the
phase diagrams described in the following sections apply to this case as well.

1 2 ~0.5 0.0 0.5
kw/ﬂ ky/m

Figure 2: The spectrum of a finite slab in the z-direction in the LCI phase, when g = 2.
The parameters are M = 1.2t,, t, = 0.4t,. (a) The surface states (highlighted in
red) are dispersionless in k, and span the BZ. (b) The surface states (highlighted in
red) disperse in k,,, with linear dispersion near zero energy, with two gapless modes
of opposite slopes belonging to opposite open surfaces of the slab. The surface state
living on the xz crystal surface, has a linear dispersion in k, near zero energy (not
shown here).

3.3 Phase diagrams for a strong field, small q

In the earlier section, we obtained an analytical expression for the phase boundaries at any
arbitrary commensurate magnetic flux penetrating a primordial unit cell ¢ = Ba%/¢, = p/q,
where p and q are relatively prime. As explained earlier, the phase boundaries are independent
of p, and the phase diagrams are shown in Fig. 1 for ¢ = 1,2, 3. Note that ¢ = 1 implies that
an integer quantum of flux pierces the primordial unit cell. Since there are no nontrivial phase
factors in the hopping terms, we get back the zero-field Hamiltonian for ¢ = 1. From Fig. 1,
we see that the phase diagrams for ¢ = 2,3 are similar to the diagram forq =1 = B = 0.
However, there are certain prominent differences -

(i) Instead of the gapless phases with 2, 4, 6, and 8 Weyl nodes, we now have gapless phases
with 2q, 4q, 6q, and 8q Weyl nodes. This g-fold increase in the number of Weyl nodes is
a consequence of the translation symmetry of the Hamiltonian in the y-direction within
a magnetic unit cell.

(ii) For non-zero magnetic fields, there are two additional phases which we call W2’ and
I’, which do not occur for B = 0. The spectrum of the phase W2’ has Weyl nodes in
certain bands, while other bands form an LCI. Surface states of both types are present.
The phase I’ is a trivial insulator in the bulk but has counter-propagating surface states
on certain surfaces.
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(iii) Each of the WSM phases gets fragmented and multiple copies appear with increasing
g. We can understand this as follows. Each of the critical curves (phase boundaries)
are determined by Eq. 9, which are inherently q'" degree polynomials in (M, t,). Thus
there are many solutions with increasing gq.

(iv) Despite its increasing complexity with increasing g, the phase diagram approaches a
limit in the ¢ — oo limit, with only four nontrivial phases W4, W8, LCI, and I’ (see Fig.
8). We will describe in detail the weak-field limit behavior in Sec. 5.

(v) The gapped LCI and I’ phases take up regions from the WSM phases and expand with
increasing q and approach a limit when q is large (see Fig. 8). Therefore a strong
magnetic field can drive a Weyl semimetal to an insulator with a robust gap (~ t,, when
p/q~1/2= B ~ 10° Tesla, for lattice constant a ~ 1 nm) in our lattice model (see Sec.
5).

()

kyl/7r

Figure 3: Bulk and surface spectrum in the W2’ phase for ¢ = 2, for M = 1.2¢t,
and t, = 1.3t,. (a) The bulk bands around zero energy show 2q = 4 Weyl nodes
which live at the boundary of the magnetic BZ (ky = *xn/q, k, = 0). In (b)-(h)
the spectrum along k, and k,, directions is shown for the WSM slab (finite in the z-
direction with L, = 40). (b)Spectrum along k, for a fixed ky = 0 shows the surface
states (in red) which are not connected to the bulk Weyl node projections and span
the magnetic BZ. (c) Spectrum along k, for a fixed k, = 7/q shows the Fermi arc
surface states (in blue) connecting the bulk Weyl node projections. (d)-(h) Spectrum
along k,, for a series of values of k, (indicated in (c) by vertical green arrows) shows
the existence of two types of surface states. The surface states around k, = +7/q
correspond to the Fermi arc surface states which are connected to the bulk Weyl
node projections, whereas those around k, = 0 are the additional surface states
unconnected to the bulk. The red and blue shadings are meant for visualizations
of the surface states around k, = 0 and k, = 0.57 respectively. As the Weyl point
projection is approached, the associated Fermi arc surface states start to mix with the
bulk states (see figure (g)) and the decay length will diverge when we hit the Weyl
node. In (h) we have only one type of surface states. The decay length of the surface
states (shown in Figs. 3e-h) for a series of ky values in between ky =0 and 0.57 is
plotted in Fig. 4.
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Figure 4: Decay length plot of the surface states shown in Figs. 3e-h, for a series of k,,
values in between k, = 0 and 0.57t. Surface states at around k, = 0 do not decay into
the bulk for any k, values, but those at around k,, = 0.5 start decaying into the bulk
when k, is taken closer to the Weyl point projection k, ~ 0.217, k, = 0.57. When
k, = 0.207 is very close to Weyl point projection, decay length of the surface states
at around k, = 0.57 diverges (hits the system size). At k, = 0.57, we have only one
type of surface states (but no Fermi arc states associated with Weyl nodes) which
mixes with bulk for k,, values far away from k, = 0 (which can be clearly seen in Fig.
3h). We compute decay length [ by solving In[[|1(z =0)>] = 1 +In[|y(z = D[?]
numerically, where 1 (z) is the wavefunction of the surface states.

3.3.1 The LCI phase

As explained earlier, the LCI phase can be thought of as a stack (along x-direction) of
2D Chern layers which are tunnel coupled via the hopping t,. The phase is adiabatically
connected to the set of disconnected Chern layers in the limit ¢, — 0. The presence of an
external magnetic field which is parallel to the Chern layers should not change the LCI phase.
In fact, we find that the LCI phase is always present in the phase diagram for all . We also
note that some parts of the WSM phases in the phase diagram of Fig. 1a transform to the LCI
phase in the presence of the magnetic field.

Other than the LCI and I’ phases, all other phases get fragmented into multiple copies as
q is increased. For example, there are 2,3,5,5, and 3 copies of W2, W2', W4, W6, and W8
respectively for ¢ = 3. The LCI phase, which exists for arbitrary g, expands both along M and
t, directions with increasing q (see Fig. 1) by making the system gapped in a larger region
of the parameter space. It is instructive to find the maximum values of M and ¢, upto which
the region occupied by the LCI can reach for a given g and also determine the limits of these
maximum values as ¢ — ©0. So we define the critical values t{, and M as follows: for t, > t},
the LCI phase does not exist for any M, and similarly for M > M° the LCI phase does not exist
for any t, for a given q. For a given q > 1, it is possible to obtain the exact expressions for
these critical values (details in Appendix D),

te=rt, 21714, (10a)
M = tgl) +t; cos(m/2q) = (1 + 2174 cos (n/2q)) ty, (10b)
where we set tgl) = t,, in the second equation. For q = 1, we have t{ =t, and M = 2t,,. As
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q — 09, these critical values approach t; = 2t, and M“ = 3t,, (see the large q phase diagram
in Sec. 5). So we find that the gapped LCI phase is always confined in a finite region M < M¢,
t, < t; for all values of magnetic field strength.

3.3.2 WSM phases and Chern numbers

Let us now examine the WSM phases in more detail. We know that in the zero-field WSM
phase, it is possible to understand the existence of the surface Fermi arc states by computing
the Chern numbers [2] of the two-dimensional planes that cut the Fermi arc. A similar analysis
here is slightly more subtle. Since in our model, the Weyl nodes are all along the k, axis, on
the k,-k, surface BZ, the projection of all the Weyl nodes are on the lines k, = 0 and/or
k, = 1/q. In general, there are two sets of Fermi arc surface states on the surface BZ. One set
is at ky = 0 and the other is at ky = 1/q (see Fig. 6 for an illustration). In both cases, the Fermi
arcs are dispersionless along the k, -direction. We can obtain the total Chern number C(k, ) by
integrating the Berry curvature of all the occupied bands of the two-dimensional magnetic k-
k, BZ. In our chosen Landau gauge A = (—y, 0, 0)B, as earlier discussed in the beginning of Sec.
111, we get C(k,) =1 (or —1), when k, belong to the Fermi arc states at k, = 0 (or k, = 71/q)
respectively for all the planes that cut a single Fermi arc. If the constant k, plane cuts both
the Fermi arcs at k, = 0 and k, = 7/q, then we get C(k,) = 0. However, a computation of
the same quantity in a different Landau gauge A = B(0, x,0) gives C(k,) = q,—q and O for
each of the three cases above. The reason is that what is physical, and thus gauge-invariant, is
the Chern number per unit length in the x-direction (directly proportional to the Hall current
per unit x-length). In the first Landau gauge, the magnetic unit cell is the same size in the
x-direction as the primordial unit cell, while in the second Landau gauge the magnetic unit
cell is g-fold longer in the x-direction than the primordial one. The Chern number per unit
length in x is the same in both cases.

3.3.3 The phase W2’

Now let us turn to the W2’ phase which did not exist when B = 0. This is a gapless phase
with 2q Weyl nodes. Its novelty lies in the fact that it has two types of bulk bands: those
that touch at Weyl nodes, and those that are fully gapped but carry a nonzero Chern number.
Thus, the W2’ is a phase shows the coexistence of WSM and LCI bands. Consequently, it
has two types of localized surface states - (i) the standard Fermi arc surface states which are
connected to the bulk states at the surface projection of the Weyl nodes and (ii) surface states
which are disconnected from the Weyl nodes, and span the magnetic BZ (see Fig. 3). The most
important difference between the two types of surface states is their decay length into the bulk.
The decay lengths of the Fermi arc surface states diverge at the surface projection of the Weyl
nodes whereas the decay length of the surface states associated with the LCI bands always
remains finite. In this respect, they resemble the surface states of a topological insulator. The
two types of surface states are also depicted in mixed real and momentum space representation
in Figs. 5a-5b.

The Hall response of the W2’ phase is additive between the two types of bands. The
Weyl semimetal Fermi arc surface states contribute ky(q)ge?/27mh to the Hall conductance
per layer [27], while the layer Chern insulator surface states will contribute e?/h to the Hall
conductance per layer. Since their surface states are counter propagating, the total effective
Hall conductance per layer is

2 2

e e
Oyz —E—ﬁqko(ﬂ -
:f 1— qko(q)
h 2 )’
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Figure 5: The zero-energy Fermi arc surface states shown in Fig. 3 in the W2’ phase,
are depicted here through the cartoon figures (a) and (b), in mixed real and momen-
tum space representation. (a) In the k,-k, surface BZ, there are two types of surface
states: type (i) surface states (shown in blue), which are the standard Fermi arcs,
end at the Weyl point projections ; type (ii) surface states (shown in red) live across
the surface BZ. The velocity v = VE(k,, k,), of the particles occupying the type (i)
surface states are along the positive/negative y-direction on the top/bottom surface.
For type (ii) surface states, the direction of the velocity gets reversed. So type (i)
and type (ii) surface states are counter propagating. The Chern number C(k,) =1,
if the constant k, plane cuts only the type (ii) surface states, else it is zero. (b) In
the k, -k, surface BZ, there are only type (i) Fermi arc surface states which end at the
Weyl point projections. Here we note that the W2’ phases which share a boundary
with the I’ phase (see Fig. 1c) have two types of surface states which co-exist on the
k,-k, surface BZ. (c) This cartoon figure shows the zero-energy surface states in the
I’ phase, in mixed real and momentum space representation. In the I’ phase, there
exists localized surface states only on the k,.-k, surface BZ. On both the open crystal
surfaces y = 0 and y = L,, there are two counter propagating surface states with
green arrows indicating their spin polarization. Here, the Chern number C(k, ) =0,
for all k, planes.

where k(q) is the length of each of the q Fermi arcs connecting the 2q number of Weyl point
projections on the k,-k,, surface BZ where both the LCI and Weyl semmimetal Fermi arc surface
states exist together (see also Fig. 5a). We also note that the length of the Fermi arc ky(q)
changes (it decreases) with increasing q. So generally the Hall conductance in the W2’ phase
can be tuned by changing the external applied magnetic field.

A similiar phenomenon involving the co-existence of a Weyl semimetal band and a gapped
topological phase has also been recently studied in Ref. 31. However, in their case, the WSM
has higher order Weyl nodes, and the topological bands are part of a higher order topological
phase with hinge states which require crystalline symmetry. In our case, we have a simple
Weyl semimetal and a LCI which co-exist, with no crystalline symmetry needed.

3.3.4 The phase I’

The phase I’ is a new topologically trivial phase that appears in the presence of a magnetic
field and is insulating in the bulk. However, it has zero energy surface states which exist only
on the k, -k, surface BZ (010 crystal surface). Each of the open crystal surfaces y = 0 and
Yy = L, host a pair of counter-propagating states which are separated in k, (see Fig. 5¢). A
physical way to think about this insulator is as having bulk gapped bands carrying opposite
Chern numbers. The projections of the gapless surface states corresponding to these bulk
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bands are naturally counterpropagating, and separated in k,. If the free surface of the slab is
parallel to the xy-plane, k, is not a good quantum number, and the would-be surface states
hybridize and gap themselves out. However, if the free surface is parallel to the xz-plane then
k, is a good quantum number, and they cannot gap themselves out.

To support this picture, note that I’ always appears adjacent to W2'. From W2’, one can
obtain I’ by the expanding the separation of the Weyl nodes till the Fermi arc stretches across
the BZ before allowing them to annihilate (see Fig. 5 and caption therein).

4 Bulk and surface dispersions

In this section, our main aim is to understand how the bulk and the surface band structures
evolve as we vary the parameters to approach the phase boundaries. We first study the bulk
and surface bands deep inside each phase and then analyze how the phase transitions that
occur via the creation/annihilation of Weyl nodes alter the bulk and surface dispersions.

4.1 Bulk dispersion within the phase

The spectrum of the 2q x 29 Hamiltonian given in Eq. 6 has been explicitly derived in
Appendix C:

By, (1) = 1/ 7a() + (2¢Psink, )2, (12)

withn=1,2,3,...,q and r = (—,+). Although we do not have a closed form expression for
vn(kK) (which is non negative for all k) we can numerically compute its dependence on the
parameters (M, t,, t,, tgl)) for the flux p/q. We note that in all the gapless Weyl semimetal
phases including the W2’ phase, the low energy bulk dispersion around each of the Weyl nodes
ko, is linear in all the three directions k,, k, and k,, for all values of q. This will change close
to the phase boundaries. In the gapped phases, which are the LCI, I’ and the normal insulator
(NI), the spectrum has a gap at the Fermi energy (zero-energy).
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Figure 6: Fermi arcs on the surface BZ kx-ky in (a) W2 and (b) W4 for g = 2.
M is taken to be 2.2t,, and t, is tuned from t, = 1.4t, in W2 to t, = 1.65¢,
in W4, which gives rise to a new pair of Weyl nodes around k, = 0 and *m, at
k, = +m/q, k, = 0. The low energy bulk dispersions exactly at the phase bound-
ary M, = 2.2ty,t; = 1.56¢t,, are shown in (c) and (d). The Weyl nodes get cre-
ated/annihilated via a band touching which is (¢) quadratic in k, and (d) linear in
k,. The dispersion along k, is also linear (not shown here).
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Figure 7: The low energy dispersion of the surface states when the system is a finite
slab along the z-direction with L, = 80, for ¢ = 2. The parameters M and t, are
chosen so that the system is at the boundary between phases W2 and W4. See the
caption of Fig. 6 for the choice of parameters. The surface bands (red) touch (a)
quadratically in k, and (b) linearly along k. The low energy surface band touching
is similar to the low energy bulk band touching (see Fig. 6c-d). The small gap at
zero energy in the spectrum is due to finite size effects.

4.2 Bulk dispersions at phase boundaries

The boundaries between the phases in the phase diagram (see for example, Figs. 1b-c),
can be between (a) gapped and gapless phases (b) two gapless phases, and (c) two gapped
phases. Category (c) never occurs in our model, as a gapless phase always intervenes between
two gapped phases, even if its area in parameter space is exponentially very small. For instance
in Fig. 8, the intervening gapless phases are not visible in the phase diagram. The absence
of a direct transition between two gapped phases is a consequence of the fact that the band
structure is continuous in the parameters of our Hamiltonian. For both categories (a) and (b),
the transitions occur through a band touching which is quadratic in k,, but linear in k, and
k,. At these transitions, pairs of Weyl nodes are either created or annihilated. An illustrative
case is depicted in Fig. 6.

4.3 The dispersion of the surface states within the phases and at boundaries

For WSM phases, Fermi arc states are obtained by diagonalising the Hamiltonian of a finite
slab along either the z (or y) directions. In the surface BZ k,-k, (or k,-k,), they are disper-
sionless along k, and linear in k,, (or k,). The relevant dispersions in the W2 and W4 phases
are shown in Fig. 6. More details on the dispersion of the surface states in the W2’ phase are
shown in Fig. 3 and for the I’ phase in Fig. 5c.

As in the bulk spectrum, at phase boundaries, the surface bands touch quadratically in
ky, and linearly in the remaining direction k, (or k,) when the system is taken to be finite
along the z (or y) direction. An example is shown in Fig. 7. One might think that interactions
could play an important role on the 2d surface of the sample because the combination of the
quadratic dispersion in k, and the linear in the other direction could lead to a finite density of
states (DOS) at the Fermi energy. However, it turns out that the low energy DOS goes as vE,
and vanishes at zero energy.
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M/t,

Figure 8: The phase diagram for ¢ = 200. The blue, green and purple straight lines
are the phase boundaries when B = 0 (see Fig. 1la for details). Clearly, for very
large g, the phase diagram looks much simpler with just four nontrivial phases W8
(brown), W4 (purple), LCI (orange) and I’ (red), and of course the trivial insulator
phase. We note that the regions occupied by I’, a significant part of the LCI and
the normal insulator (NI) above the blue straight line were semimetallic when the
external magnetic field was zero. As ¢ — o0, the widths of the blue region which
consists of many copies of W2 and W2’ phases as well as the cyan region which
consists of many copies of W2, W2/, W4, W6, and W8, shrink to zero at t, = 2t,.
Along the M direction, the LCI phase expands upto M“ = 3t, in the ¢ — oo limit.
The critical values M and t¢, are derived in Appendix D and also discussed in Sec.
3.3.1. The points p; and p, are discussed in the text.

5 The Weak-Field Limit

So far we have studied the phase diagram for small values of g. In this section, we will
focus on the phase diagram in the weak magnetic field limit where B — 0. The B = 0 or zero
flux case, corresponding to ¢ = 1, has been studied earlier in Sec. 3. However, the ¢ — oo
limit, where the magnetic flux ¢ oc 1/q goes to zero, is more subtle. Equations 8 and 9, do
not have any simple behaviour as ¢ — 0o. Nevertheless, the Egs. 8-9 allow us to construct the
phase diagram for large values of g and consequently deduce the phase diagram in the limit
g — 00. Surprisingly, the phase diagram has a simple structure in this limit, with only four
nontrivial phases occupying a significant part of the parameter space - W8, W4, LCI and I'.
This is shown in Fig. 8. We have checked that the widths of the blue region which consists of
multiple copies of the W2 and W2’ phases and the cyan region which consists of multiple copies
of the W2, W2', W4, W6, and W8, shrink to zero when ¢ — oo. Similarly, a thin sliver of the
W2’ phase lying between the LCI and I’ phases shrinks to zero as ¢ — co. Clearly, this phase
diagram looks different from the zero-field phase diagram shown in Fig. 1a (phase boundaries
at B =0 have been drawn as lines in Fig. 8 to facilitate the comparison).In particular, regions
which are gapless at B = 0 appear to be gapped in Fig. 8. On physical grounds, we expect the
behavior as B — 0 to be smoothly connected to that at B = 0.

To resolve this apparent contradiction, we carry out a more detailed study of the bulk
energy gaps and the low energy dispersions at different points in the phase diagram. In what
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Figure 9: (a) The logarithm of the bulk energy gap (computed numerically), corre-
sponding to a WSM region at B = 0, plotted as function of q, for a fixed value of
p = 1, shows the exponential fall as e” 19, with a constant 1;. The parameters are
M =1.8t,, t, = 0.9¢t, correspond to the point p; in Fig. 8. (b) The bulk energy gap
is plotted as a function of p for a fixed value of ¢ = 31. The energy gap first increases
with p and then falls again symmetrically about p ~ q/2. (c) Bulk energy gap plotted
as function of g, for a fixed p = 1, for the point p, in Fig. 8, corresponding to a LCI
region at B = 0. The parameters are M = 1.2t,, t, = 0.4t,.. The gap can be fit to a

phenomenological form A(q) ~ A, e%/?, which does not vanish as ¢ — 0o.

follows, we will fix p = 1, unless stated otherwise, and examine large values of q, choosing a
few representative points in the phase diagram in Fig. 8 to show how the physics as B — 0 is
smoothly connected to that at B = 0.

Let us consider an arbitrary point p; in a region which is a WSM when B = 0, but is in the
LCI phase when B — 0, or at least when q is large. To check whether the phase is really semi-
metallic or insulating when ¢ — o0, we need to check whether the gap vanishes or remains
finite in that limit. To study this, we compute the bulk energy band gap at p; as a function of
g, shown in Fig. 9a. It can be seen that the gap at zero energy falls exponentially with q at
large q for fixed p = 1.

To enable the reader to visualize the change in the spectrum graphically, the bulk energy
spectrum at the point p; in the phase diagram is shown in Fig. 10 for two different values,
g = 3 and g = 30 (the magnetic field is along the z direction as earlier). The dispersions
along the k,, k, and k, directions have been shown explicitly for both cases. The dispersion
in the k, and k, directions become almost flat for ¢ = 30, corresponding to the semiclassical
Landau levels. Furthermore, we note that already for ¢ = 30, the two central bands come
close together at k, = 0 with a very tiny gap, approaching the linear dispersion, in the field
direction of the n = 0 Landau levels in the semiclassical limit. In fact, even for ¢ = 30, the
low energy dispersion for small k, in our lattice model looks almost identical to the dispersion
of Weyl fermions in the continuum model [12,15,32,33]. In the ¢ — oo limit, clearly, this is
the W2 phase (there are only two linearly dispersing n = 0 Landau levels). This is true even
though, for any finite g, the phase is gapped and is in the LCI phase. It is just that the gap is
exponentially small in g. We have also checked that when the point p; is moved to regions
where the zero field case is in the W4 or W6 phase, the bands come close together both at
k, = 0 and k, = m, signifying that in the ¢ — oo limit, they evolve to Weyl nodes at both
k,=0,m.

Now let us consider another point p, in a region which is a LCI both when B = 0 and
B — 0. Here, when we compute the bulk energy gap as a function of g, we find that it behaves
roughly as A &~ A e%/9, which does not vanish as ¢ — oo. This is shown in Fig. 9c. Further,
we also note that in regions which are gapless semi-metals, both when B = 0 and B — 0,
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Figure 10: The bulk energy spectrum in k,, k, and k, directions for ¢ = 3 (first
row) and q = 30 (second row). The parameters are M = 1.8, t, = 0.9, at the
location of the point p; in the phase diagram Fig. 8. For each of the plots, one of the
momenta is allowed to vary, and the other ones are fixed at k, = 0.37, k, = 0.27/q
and k, = 0.17 appropriately. The two central bands are shown in color. Note that
the dispersions in k, and k, become almost flat for ¢ = 30. Also, the low energy
dispersion as a function of k, for ¢ = 30, has a very tiny gap, explained further in the
text.

the low-energy dispersion of the B — 0 phase approaches that of the B = 0 phase. We hence
conclude that although naively the g — oo phase diagram looks different from the zero-field
(g = 1) phase diagram, the physics they describe, in terms of their bulk energy gaps and their
low-energy dispersions, is smoothly connected via the semiclassical description.

We end by noting the behaviour of the bulk energy gap as a function of p and g, which is
shown in Fig. 9. The energy gap decreases with ¢ for a fixed p and increases with p for a fixed
q, and the maximum gap ~ t, occurs when p/q ~ 1/2. Thus for large q values and when

p/q ~ 1/2, a very strong magnetic field B = %% ~ 103 Tesla (if lattice constant a = 1 nm )
can drive a Weyl-semimetal to an insulator by annhilating the Weyl nodes with gap ~ t, in a
robust region of the parameter space.At a large magnetic field, annihilation of Weyl nodes is
expected to open a gap when the inverse magnetic length +/eB/f ~ kg, the separation between
the Weyl nodes. This has been observed also in experiments by measuring the resistivity of
Weyl materials TaP [34] and TaAs [35] in high applied magnetic field.
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6 Summary and Outlook

In summary, we have studied a time-reversal broken WSM in the presence of a commen-
surate orbital magnetic field with minimal crystalline symmetry. We have considered the case
where the direction of the magnetic field is normal to the line joining the Weyl nodes in the
absence of a magnetic field, which we denote as the x-direction. In the presence of a p/q
flux per unit cell, we have obtained the phase diagram in the parameter space of the onsite
mass M and the x-direction hopping t,. Setting two of the five independent hoppings equal
(|t§,1)| = |t§,2)|) allows us to solve for the entire phase diagram analytically for arbitrary p,q.

We find that the phase diagram contains WSM phases hosting 2q, 4q, 6q, and 8q Weyl
nodes. These phases occur in multiple copies for nonzero flux, with the number of copies
depending on q. The gapped LCI phase also exists for arbitrary q. There are two additional
phases, which we call W2 and I’, that appear in the phase diagram only at nonzero flux. The
phase W2’ has a gapless bulk spectrum with 2q Weyl nodes, but has additional gapped bulk
bands which carry nontrivial Chern number in the k, -k, plane at fixed k,.. This phase displays
a coexistence of Weyl semimetal and layered Chern insulating behavior. In accordance with
the bulk-boundary correspondence, the W2’ phase has Fermi arc states at the surface, as well
as surface states required by the layered Chern insulator. These two types of surface states
in the W2’ phase are counter-propagating. The phase I’ is fully gapped in the bulk but hosts
a pair of counter-propagating surface states on the xz crystal surface, but none on the yz
surface.

The fact that we can analytically obtain the entire phase diagram for arbitrary p, q enables
us to systematically study the weak-field limit ¢ — oo, and to smoothly relate it to the B=10
limit. Formally, for p = 1 and any large but finite q, the phase diagram looks quite different
from the zero-field case p = ¢ = 1. However, an examination of the spectral gap at zero energy
reveals the way the limit should be taken physically. In regions of parameter space where the
zero-field case is fully gapped, the ¢ — oo gap remains finite when the limit is taken, whereas
in the regions of parameter space where the g = 1 case is gapless and the large q case appears
gapped, the gap of the latter vanishes exponentially as a function of q.

Let us briefly consider the stability of these phases to time-reversal symmetric potentials,
either commensurate with the lattice, or arising from quenched disorder. Focusing on com-
mensurate potentials (of very small amplitude compared to the bandwidth), provided the
separation between the bulk Weyl nodes is commensurate, any WSM phase can be gapped out
in the bulk by an appropriate periodic potential. This will naturally gap out the corresponding
surface Fermi arcs as well. Coming to the W2’ phase, such a periodic potential would gap
out the Weyl nodes, but cannot destroy the Chern numbers of the fully gapped bands. Thus,
we conclude that the W2’ phase is unstable to becoming a simple LCI. Similarly, the I’ phase
becomes a trivial insulator when subjected to a small periodic potential of the appropriate
period, which induces matrix elements between the counter-propagating surface modes and
gaps them out.

Extending our discussion to quenched disorder, two lines of argument have been explored
in the literature. It is known that the WSM is perturbatively stable to disorder in the renormal-
ization group sense [26,36-42]. In this picture, the WSM undergoes a transition to a diffusive
metal at a nonzero critical disorder strength. Along a different line of reasoning, however,
the nonperturbative effects of large but rare Griffiths regions have been argued to destroy the
WSM at arbitrarily weak disorder [43-46], and make it a diffusive metal at the longest length-
scales. If the first scenario prevails, the WSM phases uncovered in this work (and, significantly,
the W2’ phase) will be stable to weak disorder. However, if the second scenario is proven to
hold generically, the WSM phases and the W2’ phases will be destroyed immediately for ar-
bitrarily weak disorder. This is because a diffusive metal will destroy the quantization of the
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Hall conductance immediately. However, the LCI and the I’ phases, being fully gapped in the
bulk, are expected to be stable to arbitrary weak disorder.

Let us comment briefly on potential experimental realizations of the physics uncovered
here: There is a theoretical proposal for the simplest Weyl semimetal with only two Weyl
nodes, based on inserting magnetic layers of Mn into a layered topological insulator such as
Bi,Sb; [47]. According to theory, the material should be a WSM with two Weyl nodes when the
Mn layers are ferromagnetic [48]. Clearly, very large magnetic fields are needed to realize even
g ~ 100 in this realization. In a different direction, there are several proposals for realizing a
Weyl semimetal in an optical lattice [49-51]. Very recently one such proposal has been also
experimentally realized [52]. Since orbital fields can be imposed in a frequency driven optical
lattice [53, 54], approaching commensurate fields seems more achievable in this realization.

Many open questions remain. An important one is the effect of interactions on the phase di-
agram. At B = 0, interactions have been conjectured to drive the WSM into numerous phases,
including charge density wave [55-58], superconducting [59], Mott insulating [60], and even
fractionalized [61, 62] phases. Renormalization group analyses have also been carried out
keeping all symmetry-allowed interactions [63,64]. As we have shown, near a quantum phase
transition between different WSM phases, the spectrum near zero energy becomes quadratic
in one direction, remaining linear in others. This would suggest a greater instability to certain
types of interactions near the phase boundaries.

Our work could also be extended in a different direction. Our starting point in this study
was a time-reversal broken WSM; adding the orbital magnetic field did not change this. How-
ever, we did find extra phases W2’ and I’ which appear only in the presence of a magnetic
field. It would be of interest also to study time-reversal symmetric, inversion broken, Weyl
semi-metal in a magnetic field, where the introduction of the magnetic field would introduce
time-reversal breaking as well. We look forward to answering these and other questions in
future work.
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A Symmetries of the lattice model

We have considered a minimal two-band lattice model of Weyl semimetals, Eq. 1, which
breaks time reversal symmetry but keeps the inversion symmetry. Since the model involves
pseudospin, the time reversal operation is just complex conjugation. For the case of isotropic
hoppings, the symmetries of this model can be found in Ref. 65. Now let us look at in more
detail at the crystalline symmetries which our anisotropic model has:
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A.1 Rotation:

It has a single two-fold rotation symmetry only about the x-axis and the symmetry trans-
formation (C,,) is given by

CZx Cs(nx: ny: nz)Cz_xl = (Gx)ss/ Cs/(nx> _ny) _nz) . (13)
It can be easily checked that this symmetry operation leaves the Hamiltonian in Eq. 1 invariant
ie. o, HC;! =H.
A.2 Mirror reflection:

The model is symmetric under the following mirror reflections about the yz (M,), xz (M)
and xy (M,) planes:

M, ¢s(ny,ny,n )M = (0¢)s c(—ny,ny,n,), MyiM ' =1, (14)
My Cs(nxa ny, nz)M;l = (Ux)ss’ Cs’(nx;_ny: le), MyiM;l =—, (15)
M, ci(ne,ny,n )M, = (00)sy co(ne,ny,—n,), MM, "' =—i. (16)

All the above three symmetry transformations M,., M, and M, leave the Hamiltonian in Eq. 1
invariant i.e. M,HM ' = H, u=x,y,z. We note that the symmetry operations given by M y
and M, are not pure mirror reflections, rather they can be thought of as a product of mirror and
time reversal operations. On the other hand, the two fold rotation C,, about x axis and the
mirror reflection M, about the yz plane together give the inversion operation, and therefore
the Hamiltonian is also inversion symmetric.

A.3 Particle-hole transformation:

We find that the following particle-hole transformation, which also includes the mirror
reflection about the xz plan,

chs(nx: ny: nz)Px_l = (O-x)ss’ Csr/(nx)_ny: nz): Pxipx_l = i: (17)

takes the Hamiltonian H in Eq. 1 to —H i.e. P.HP_ ! = —H. Therefore this symmetry forces
the spectrum of H to be symmetric about zero energy.

Now we check on which of these symmetries survive in the presence of an applied uniform
external magnetic field along the z-direction. In presence of the magnetic field, the x-hopping
T, = t, 0, picks up a phase factor exp(—i27y ¢ /¢p), which breaks all the symmetries, except
the mirror reflection M, about the xz plane (Eq. 15) and the particle-hole transformation P,
(Eq. 17). Therefore the symmetry realized by P, survives even in the presence of the magnetic
field, and ensures that the spectrum is symmetric about zero energy.

B Fermi arc surface states at zero and finite commensurate fields
The pseudospin polarization of the Fermi arc surface states changes its polarization char-
acter as we go from zero field to finite commensurate fields for both the WSM and the LCI

phases. At zero field, the surface states are polarized in pseudospin along the z-direction. The
right moving surface states of a slab finite along z-direction are localized at the top surface

20


https://scipost.org
https://scipost.org/SciPostPhysCore.5.1.014

SciPost Phys. Core 5, 014 (2022)

(a) (b) (c)

o
Eft,

-1 -6

. 0
44*/7,\ 1 -1

-1

0
Lofe 1 ﬁu/ﬂ

1

0
ky/7r

Figure 11: Energy spectrum of the zero field model showing Weyl nodes with linear
dispersion along all directions near zero energy. (a) There are two Weyl nodes in the
W2 phase which appear in the k, = 0 plane. There exist four Weyl nodes in the W4
phase: two of them occur in the (b) k, = 0 plane and the other two in the (c) k, =7
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Figure 12: Eigenstate plots of the right moving Fermi arc surface states for the zero
field (B = 0) case for a finite slab along the z-direction with lattice sites L, = 40.
(a) This is in the LCI phase: the right moving surface states are localized on the top
surface z = L, and are polarized along z-direction with pseudospin s =T. (b) This is
in the W2 phase: the right moving Fermi arc states are localized on the top surface
z = L, and they are polarized along z-direction with pseudospin s =7.

z = L, and they are polarized along the positive z-direction with pseudospin s =7. In contrast,
the left moving surface states are localized at the bottom surface z = 0 and they are polarized
along the negative z-direction with pseudospin s =|.

A few eigenstates plots are shown in Fig. 12 for this zero field case. When a magnetic field
is switched on in the z-direction, surface states in the k,-k, surface BZ of both the WSMs and
LCI phases alter their polarization from the z-direction to the x-y plane. Now the top surface
hosts left moving surface states and the bottom surface hosts right moving surface states with
amplitude being the same for both the s =7 and s =] pseudospins. A few eigenstate plots are
shown in Fig. 13 for non zero magnetic field with g = 2.

C Zeros of Bloch-Hofstadter Hamiltonian for arbitrary g

In this section, we will go through a detailed discussion of how we obtained the topological
phase boundaries, the critical values and the phase diagram in the presence of an arbitrary
commensurate magnetic field. We begin by writing the Hofstader Hamiltonian hy (k) in Eq. 6

as hy (K) = U1y (K) @, with & = (y1,))7, where v, = (co,5(K), ¢1 3K, s q_1,(K)) and
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Figure 13: Eigenstate plots of the right moving Fermi arc surface states in the pres-
ence of a finite commensurate field (B # 0) with ¢ = 2, for a finite slab along the
z-direction with lattice sites L, = 40. Here a = 0, 1 refer to the coordinate of the lat-
tice sites inside the magnetic unit cell. (a) This is in the LCI phase: the right moving
Fermi arc states are localized on the bottom surface z = 0 and both the pseudospin
components have the same amplitude. (b) This is in the W2 phase: the right moving
Fermi arc states are localized at the bottom surface z = 0 and both the pseudospin
components have the same amplitude.

s =(1,1). The matrix ild, (k) is given by

(k) = (‘2‘ ﬁ) , (18)

where all the blocks are of same dimension q x q and are given by

A= —D=2t§2) sinkZIq and (19a)
[ m —-u 0 0 . —veiha]
-y m —u O 0
0 — —
B=C' = VoM . (19b)
0 0 -V my_o —u
_—ue_lkyq 0o .. .. —v my_1 |
Here I, is the identity matrix of dimension g x q, u = tg,l) - tglz), v = tg,l) + tg,z),

m, = f2(k) = 2 (M —tWcosk, —t, cos (kx + Z%a)), and a € [0,q — 1] is the sublattice
index. The eigenvalues A satisfy

A—AI B
q =
det[ c D_Mq] 0. (20)
Clearly the matrix C commutes with both D = (D—?LIq) = —(A+2t§2) sinkz)lq and

A= (A—Mq) = —(A—Ztéz) sin kz)lq. The left hand side of Eq. 20 is identically equal to
det (Af) —Bﬁ_lcf)). Using the commutation of C and D, Eq. 20 can be simplified to

det(y1,—BB") =0, 1)
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. 2 ]
where we have used AD =y, y = A2 — (Ztgz) sin kz) and C = B'. So the eigenvalues are
given by

2
A= :I:\/y + (2t§2) sin kz) . (22)

The spectrum (we have suppressed the momentum argument k of y and A for notational
simplicity) is obviously particle-hole symmetric, which is a consequence of the particle-hole
symmetry P, of the Hamiltonian discussed in Appendix A. Eq. 21 implies that y is the eigen-
value of the positive semi-definite matrix BB' and so it must satisfy y > 0. Therefore, for the
spectrum to be gapless (which means A = 0), we must have y = 0 and sink, = 0. The only
possibilities are k, = 0 and 7 at which energy gap can close in the k, direction.

Since y = 0 for energy spectrum to be gapless, we get the following determinant vanishing
condition from Eq. 21,

det(B) =0, (23)

where we have used the identity det(BB") = det(B)det(B"). To get the explicit gap closing con-
dition in terms of the parameters of the theory, we must compute the determinant of the g x q
matrix B. Looking at the matrix B, we find that it is particularly simple to calculate determi-
nant of B if either u = tg}) — t§,2) orv= tg,l) + tg,z) is zero (B then becomes almost a lower/upper
triangular matrix). This can happen only when |t§,1)| = |t§/2)|. We choose tg}) = t§,2) (=t, say)
such that u = 0 as discussed in the main text, and we use t, as a unit of energy. The other
choice t() = —t(?) which makes v = 0 will be equally valid and will not make any difference
to our final results. Now we can expand the determinant of B (setting u = 0) about the first
row to get

q—1
det(B) = {]_[ ma} + (—1)TH (—velky 1) (—y)a!
a=0

q—1
= {I_[ ma} —ekyay, (24)
a=0

For det(B) = 0, the imaginary part —v?singk, and the real part must vanish. This implies that
the energy gap can close only at k, = 0 and 7t/q, along the k,, direction (recall 0 < k, < 27/q).
For the real part of det(B) = 0 to vanish we must have

qg—1
| [ma=(=1pvi= (=120, (25)
a=0

where u takes values 0 and 1 corresponding to the closing of the gap at k, = 0 and 7/q
respectively. We have used v = tg,l) + tglz) = t, +t, = 2t, in the above expression. Recall

that all the k, dependence is in the m, = Z(M—(—l)"tgl)— ty COS (kx + ?a)). Here v
takes values 0 and 1 which correspond to closing of the gap at k, = 0 and 7 respectively.
Equation 25 gives us the final set of conditions which are to be satisfied by all the parameters
of the theory for the energy spectrum to be gapless and thus completely determines the phase
boundaries of the topological phase diagram.

It is possible to simplify the left hand side even further. We will use the following identity
for the finite product [66]

q—1

l_[ (Zg + 2cos (kx + ?a)) =2 [Tq(g) + (—1)**9 cos qu] , (26)

a=0
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where p and q are relative primes and T, (g) is the Chebyshev polynomial of first kind of degree
g. We can then simplify the left hand side of Eq. 25 and obtain the following,

q—1
l_[ 2 (M - (—1)%,(51) —t, cos (kx + ?a)) = 2(—t,)? [Tq(g) +(=1)"*9 cos qu:l ., (27)
a=0

where we identify g = (—M +(-1)” tél)) /t,. Rewriting Eq. 25 with the above simplification,
we get the following expression for k,

cos gk, = (—1)P*9 [—T,(g) + (—1)* 70 2970 (£, /e,)™] . (28)

Note that Eq. 28 involves only the two parameters (g,t,/t,). For a given (g,t,/t,), if
k, = kg is a solution of Eq. 28, then k, = —k, too satisfies the same equation. Further,
since cosq(*ky +2mm/q) = cosqky, k, = ko + 2mm/q, m runs over 0,1,2,...,(q — 1); and
k, = —koy + 2mtm/q, where now m runs over 1,2,....,q; are also solutions of Eq. 28. We
recall that k, lives in the magnetic BZ, 0 < k, < 27, and in the above k; is restricted to
0 < kg < 2m/q. Hence, for a given u and v, there are a total 2q number of k, values in the
magnetic BZ where the spectrum is gapless. We have numerically verified that these distinct
gapless points in magnetic BZ are the Weyl nodes in the theory.

We can also obtain the boundaries of the topological phases from Eq. 28. Note that the
gapless point k, could be anywhere in between 0 and 27t/q. But cosgk, is distinct only in
the range 0 < ky < m/q. So when we vary k, from 0 to 7t/q, the Eq. 28 describes gapless
regions in the parameter space. Solutions of Eq. 28 exist only if the value of the RHS lies in the
interval [—1,1]. For a given u and v, the spectrum has 2q zeros (gapless points in BZ) when
RHS € (—1,1). As explained in the argument before Eq. 3, phase transitions, which imply a
change in the number of solutions for a particular u, ¥, can occur only when the RHS is at the
edge of its allowed range, namely +1. Therefore the phase boundaries in the (g, t, /t,) space
are given by

—T,(g) + (=1)*72 2971 (¢, /1, )79 = (=1)7*P, (29a)
—T,(g) + (=1)F 79297 (t,/t, ) 9 =— (—=1)T*P. (29b)

Egs. 29a and 29b are obtained from Eq. 28 by setting the RHS equal to 1 and —1 respectively.
Note the dependence of p in the above equations; it only matters whether p is even or odd. But
even and odd values of p merely interchange the equations Eq. 29a and Eq. 29b. So p does not
affect the topological phase diagram at all. Each of the above equations is a set of four equa-
tions, because both y and v take values 0 and 1 (v enters through g = (—M + (—1)”t§1)) Jt).
Note that the phase boundaries given in Eq. 29 are solely determined by only two parameters
(g, tx/t,). Therefore, the topological phase diagram is essentially controlled by the two pa-
rameters (M/t,,t,/t,). The role of the parameter tgl) which enters through g is to merely
shift the origin of M - it does not lead to any new phase. The topological phase diagram is
shown in Fig. 1. There are gapless WSM phases, the W2’ phase, a gapped Layered Chern
Insulator (LCI) phase, an unusual I’ insulator phase along with a trivial insulator phase.

D Critical M and ¢, for LCI phase

The critical values M and t{ which are defined in the main text in the Sec. 3.3.1 can be
derived as follows. From the graphical visualization of the critical curves (phase boundaries)
which can be seen explicitly in the figures in Fig.1 in the main text, we find that ¢ and M*¢
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are given by the intersection of the following two critical curves (obtained by putting u =1,
y=0in Eq. 29a and 4 =0, v=0in Eq. 29b)

—T,(g)+(—1)'"9 2971 (¢, /t,) 71 = (1), (30a)
—T(g)+ (=172 (¢, /t,) 9= —(-1)T*, (30b)

where, now, g = (—M + (—1)"tV)/t, = (=M + t!Y)/t, and we have used p = 1. We can
easily find t;, by subtracting Eq. 30a from Eq. 30b and the corresponding M* can be found by
adding the two equations to get T,(g) = 0 and solving for M. We find the following solutions
forqg>1,

_ 1-1
te=t, 2171, (31)
M, = tél) +t; cos (ﬂ/Zq) = (1 +21-1/q cos(ﬂ:/Zq)) ty. (32)

For ¢ = 1, we have t; = ty and M = 2t, (where we have used tél) =t,). In the g — oo
limit, these critical values approach to M = 3t and t; = 2t,. This set of values gives the
region M > M, t, > t, where the LCI phase cannot appear.
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