
SciPost Phys. Core 5, 015 (2022)
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Abstract

We investigate the effects of spatial curvature for an atomic Bose-Einstein condensate
confined in an elliptical waveguide. The system is well described by an effective 1D
Gross-Pitaevskii equation with a quantum-curvature potential, which has the shape of
a double-well but crucially depends on the eccentricity of the ellipse. The ground state
of the system displays a quantum phase transition from a two-peak configuration to a
one-peak configuration at a critical attractive interaction strength. In correspondence
of this phase transition the superfluid fraction strongly reduces and goes to zero for a
sufficiently attractive Bose-Bose interaction.
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1 Introduction

How does a locally-varying spatial curvature influence the properties of low-dimensional quan-
tum systems? This is a relevant question asked by scientists working in very different fields
such as the linear Schrödinger equation for a particle constrained on a curve manifold [1–3],
but also quantum gravity [4] or quantum chaos [5]. It is well know [6–8] that the local curva-
ture of a curve on the three-dimensional (3D) Euclidean space is characterized by the so-called
geodesic curvature. This geodesic curvature κ is an extrinsic quantity: it does not remain in-
variant if the curve is under the effect of a distance-preserving transformation [6–8]. Instead,
the local curvature of a surface on the 3D Euclidean space is characterized by the so-called
Riemann curvature tensor, which can be written in terms of the invariant Gaussian curva-
ture and the not-invariant average curvature [6–8]. The quantum motion of a particle on a
curved waveguide has been anayzed by several authors [9–14]. More recently, the highly non-
trivial role of curvature for constrained quantum systems has been theoretically investigated
with ultracold atomic gases confined in a quasi-1D [15–18] and quasi-2D configurations [19].
The main result of all these investigations is that the local curvature gives rise to a quantum-
curvature potential.

In this paper we consider an atomic Bose-Einstein condensate (BEC) confined in a quasi-1D
elliptical waveguide finding that the quantum-curvature potential has the shape of a double-
well, if the eccentricity of the ellipse is different from zero. By numerically solving the 1D
Gross-Pitaevskii equation of the BEC wavefunction under the effect of this quantum-curvature
potential, we show that the ground state of the system is uniform along the waveguide only if
the eccentricity ε of the ellipse is zero (circular waveguide with constant curvature). Instead,
for ε 6= 0 we find that the ground state is generically characterized by a two-peak configura-
tion, where the peaks are located around the minima of the effective double-well potential.
However, we discover that in the case of attractive interaction it exists a critical (negative)
interaction strength below which the ground state exhibits a quantum phase transition from
the two-peak configuration to a one-peak configuration. This is the analog of the spontaneous
symmetry breaking, i.e. the modulational instability [20], of the uniform configuration pre-
dicted some years ago for an 1D attractive BEC in a circular waveguide [21–23]. Our results
show that the critical interaction strength depends on the eccentricity ε of the ellipse in a
non-trivial way. We also analyze the effect of a boost velocity on the BEC moving in the ellip-
tical waveguide deriving the Leggett formula [24] for the superfluid fraction of a 1D bosonic
system [25–27]. Our numerical investigation reveals that the superfluid fraction decreases
dramatically in response to this quantum phase transition, eventually reaching zero for a suf-
ficiently negative Bose-Bose interaction.

2 Quantum-curvature potential

We consider a Bose-Einstein condensate (BEC) made of N identical bosonic atoms of mass
m. The atoms are constrained to move along a curve C by the presence of a strong harmonic
potential of frequency ω⊥ in the local transverse plane with respect to C. The characteristic
length of the transverse confinement is l⊥ =

p

ħh/(mω⊥) where ħh is the reduced Planck con-
stant. We introduce a local system (s, u, v) of coordinates, where s is the curvilinar abscissa
(arclength) along C while u and v are two coordinates of the transverse plane [15–18]. In this
way the Lagrangian density of our problem is given by

L =
iħh
2
(Ψ∗∂tΨ −Ψ∂tΨ

∗)−
ħh2

2m
|∇Ψ|2 −

mω2
⊥

2
(u2 + v2)|Ψ|2 −

1
2

g|Ψ|4 , (1)
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where Ψ(s, u, v, t) is the BEC wavefunction normalized to one and g = 4πħh2as(N − 1)/m is
the 3D strength of the contact inter-atomic potential with as the s-wave scattering length.
Clearly, the Laplacian operator ∇2 must be written in terms of the local system (s, u, v) of
coordinates [15–18]. Assuming the factorization

Ψ(s, u, v, t) =ψ(s, t)
e−

(u2+v2)
2σ(s,t)2

π1/2σ(s, t)
(2)

and inserting this ansatz into the Lagrangian density, after integration over u and v one gets
[18,28,29],

L̄ =
iħh
2
(ψ∗∂tψ−ψ∂tψ

∗)−
ħh2

2m
|∂sψ|2 +

ħh2κ2(s)
8m

|ψ|2

−
�

ħh2

2m
1
σ2
+

mω2
⊥

2
σ2

�

|ψ|2 −
1
2

g
2πσ2

|ψ|4 , (3)

where κ(s) is the local geodesic curvature of C, and the conditions σκ� 1 and σ� ξ must
hold, with ξ = ħh/

p

2g|Ψ|2 the 3D healing length [18]. The Euler-Lagrange equations of the
1D action functional with respect to the 1D wavefunction ψ(s, t) and the transverse width
σ(s, t) are

iħh∂tψ=
�

−
ħh2

2m
∂ 2

s −
ħh2κ2(s)

8m
+
ħh2

2m
1
σ2
+

mω2
⊥

2
σ2 +

2ħh2as(N − 1)
mσ2

|ψ|2
�

ψ , (4)

and
σ2 = l2

⊥

Æ

1+ 2as(N − 1)|ψ|2 . (5)

Eq. (4), equipped with Eq. (5), is the time-dependent 1D nonpolynomial Schrödinger equation
(NPSE) [28, 29] for the wavefunction ψ(s, t) of the BEC moving along the curve C (see also
[18]). As previously discussed, the geodesic curvature κ(s) gives rise to an effective potential

UQ(s) = −
ħh2κ(s)2

8m
. (6)

This curvature potential UQ(s) is quantum because it involves the square of the reduced Planck
constant ħh. At fixed atomic mass m, only if the square of the curvature κ(s) is sufficently large
the effects of this quantum-curvature potential become relevant.

Under the assumption that σ ' l⊥, which corresponds to a very strong transverse confine-
ment, the 1D NPSE becomes the familiar 1D Gross-Pitaevskii (GPE) equation

iħh∂tψ=
�

−
ħh2

2m
∂ 2

s −
ħh2κ(s)2

8m
+ħhω⊥ +

2ħh2as(N − 1)
ml2
⊥

|ψ|2
�

ψ . (7)

It is very important to stress that, from Eq. (5), the conditionσ ' l⊥ implies 2as(N−1)|ψ|2� 1.
In the rest of the paper we will work within this 1D regime. n the new version of the manuscript
I shall discuss the role Clearly, Eq. (7) is reliable in the weak-coupling and strong-transverse-
confinement regime, where both beyond-mean-field and transverse-size effects are very small.

3 Properties of the elliptical waveguide

We now choose an ellipse for the curve C. By using cartesian coordinates its defining equation
reads

x2

a2
+

y2

b2
= 1 , (8)
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Figure 1: Quantum-curvature potential UQ(s), Eq. (6), induced by the geodesic cur-
vature κ(s) of an ellipse, as a function of the arclength s, where a is the length of the
major semi-axis, L = aE(2π,ε) is the perimeter of the ellipse, and Ea = ħh2/(ma2) a
characteristic energy. The curves are obtained for different values of the eccentricity
ε.

where a and b are the lengths of the two semi-axes of the ellipse. Here we assume that a ≥ b,
such that a is the length of the major semi-axis. The eccentricity of the ellipse is defined as [8]

ε=

√

√

1−
b2

a2
. (9)

Clearly, 0 ≤ ε < 1 and for ε = 0 we obtain a circle of radius R = a = b. Introducing the angle
φ ∈ [0, 2π] we can write

x = a cos (φ) , (10)

y = b sin (φ) , (11)

and the arclength s along the ellipse can be expressed with the formula [8]

s = a E(φ,ε) , (12)

where

E(φ,ε) =

∫ φ

0

q

1− ε2 sin2 (φ′) dφ′ (13)

is the incomplete elliptic integral of the second kind. It follows that the perimeter L of the
ellipse reads

L = a E(2π,ε) , (14)

such that for ε = 0 we have L = 2πa because E(2π, 0) = 2π. Instead, for ε → 1 we have
L → 4a because E(2π, 1) = 4. We conclude that 4a < L ≤ 2πa. The geodesic curvature κ of
the ellipse can be written as [8]

κ=
1
a

p
1− ε2

�

sin2 (φ) +
p

1− ε2 cos2 (φ)
�3/2

. (15)
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At fixed a and ε, the maximum of the curvature is obtained for φ = 0 and φ = π, i.e.

κmax =
1
a

1

(1− ε2)1/4
, (16)

while the minimum of the curvature is obtained for φ = π/2 and φ = 3π/2, i.e.

κmin =
1
a

p

1− ε2 . (17)

Thus, for ε = 0 we have κmax = κmin = 1/a while for ε → 1 we have κmax → +∞ and
κmin→ 0. We conclude that 1/a ≤ kmax < +∞ and 0 < kmin ≤ 1/a. In general, the formula
which gives the curvature κ as a function of the arclength s is called Cesaro equation. Unfor-
tunately, in the case of the ellipse there is no Cesaro equation. In other words, an analytical
formula of κ as a function of s is not available. However, from Eqs. (12) and (15), fixing
the length a and the eccentricity ε of the ellipse, we can easily plot κ vs s using φ as dummy
variable. More explicitly: we calculate separately κ vs φ and s vs φ, and then we plot κ vs
s. The curvature κ(s) has a the periodic structure of κ(s). By increasing ε, the perimeter L of
the ellipse slightly decreases while κmax and κmin pull away. In Fig. 1 we plot the quantum-
curvature potential UQ(s), Eq. (6), induced by the curvature κ(s) of the ellipse for different
values of the eccentricity ε. The figure clearly shows that, for ε 6= 0, UQ(s) is symmetric
double-well potential where the depth of the wells becomes larger by increasing the eccentric-
ity. The minima (maxima) of the quantum-curvature potential UQ(s) are in correspondence to
the maxima (minima) of the curvature κ(s).
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Figure 2: Probablility density ρ(s) of the non-interacting BEC ground state in an
ellipse as a function of the arclength s, where a is the length of the major semi-
axis and L = aE(2π,ε) is the perimeter of the ellipse. The curves are obtained for
different values of the eccentricity ε. Here the s-wave scattering length as is set to
zero or, equivalently, the number N of particles is set to one.

4 BEC ground state in elliptical waveguide

The time-independent 1D GPE is obtained from Eqs. (7) setting

ψ(s, t) = Φ(s) e−i(µ+ħhω⊥)t/ħh . (18)

5

https://scipost.org
https://scipost.org/SciPostPhysCore.5.1.015


SciPost Phys. Core 5, 015 (2022)

In this way we have

µΦ=
�

−
ħh2

2m
∂ 2

s −
ħh2κ(s)2

8m
+

2as(N − 1)ħh2

ml2
⊥

|Φ|2
�

Φ , (19)

that is the 1D GPE equation for the stationary wavefunction Φ(s), such that ρ(s) = |Φ(s)|2 is
the probability density of finding the BEC at the position s. In Fig. 2 we report the proba-
bility density ρ(s) of the ground-state of the non-interacting (as = 0 or, equivalently, N = 1)
BEC confined along the ellipse as a function of the arclength s. Our results are obtained by
solving Eq. (7) with a Crank-Nicolson predictor-corrector method and imaginary time. In the
figure, the curves correspond to different values of the eccentricity ε. Clearly, for ε = 0 the
ground state is uniform along the ellipse. However, for ε 6= 0 the ground state is no more
uniform due to a non-constant curvature κ(s) which implies a non-constant effective potential
UQ(s) = −ħh2κ(s)2/(8m). By increasing the eccentricity ε the localization of ρ(s) around the
minima of UQ(s), where the curvature is larger, becomes more evident.

5 Quantum phase transition

It is interesting to investigate the effect of the inter-atomic interaction on the ground
state properties of the system. In adimensional units the interaction strength reads
γ = g/(2πl2

⊥aEa) = 2aas(N − 1)/l2
⊥ with Ea = ħh2/(ma2). In Fig. 3 we consider the case

of an attractive BEC and plot our numerical results obtained for different values of a negative
γ with fixed eccentricity ε= 0.9. Quite remarkably, for γ < −1.5 the ground state has a spon-
taneous symmetry breaking: one of the two local mimima contains more bosons. Indeed for
γ = −2 this single-well localization is very clear. It is important to observe that this kind of
quantum phase transition happens for any ε. In the case of a circle (ε = 0) a similar sponta-
neous symmetry breaking was predicted about 20 years ago [21–23]. Actually, this quantum
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Figure 3: Probablility density ρ(s) of the attractive BEC ground state in an el-
lipse as a function of the arclength s, where a is the length of the major semi-axis
and L = aE(2π,ε) is the perimeter of the ellipse. The curves are obtained with
eccentricity ε = 0.9 for different values of the adimensional interaction strength
γ = 2aas(N − 1)/l2

⊥, where as is the 3D s-wave scattering length and l⊥ is the char-
acteristic length of the transverse harmonic confinement.
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phase transition, or spontaneous symmetry breaking, is nothing else than the modulational
instability of the ground-state configuration, induced by the appearance of an imaginary com-
ponent in the energies of the elementary excitations of the ground state [20]. However, for
ε= 0 there is a quantum phase transition from a uniform configuration to a single-peak config-
uration, while for the ε 6= 0 there is a quantum phase transition from a two-peak configuration
to a single-peak configuration. This quantum phase transition was observed some years ago
with an attractive BEC of 39K atoms, where the double-well potential was created by inter-
secting two pairs of laser beams [31]. Our double-well system is slightly different because the
particles tunnel from one well to the other well following two different curved paths; more-
over, our elipsoidal configuration offers also the possibility of having persistent currents. For
a sufficiently attractive BEC the transverse width σ of the BEC becomes smaller than l⊥ and
there is the collapse of the single-peak configuration. For ε = 0 the 1D NPSE predicts the
collapse of this single-peak configuration at γc = (4/3)(a/l⊥) [28, 30]. Thus, our numerical
results of Fig. 3, obtained from the 1D GPE, are fully reliable under the condition a/l⊥ � 1.
This is again the condition of a tight transverse confinement.

6 Superfluid fraction

Let us consider the effect of a boost velocity vB on the BEC moving along the ellipse. In this
case Eq. (19) is modified as follows

µΦ=
� 1

2m
(−iħh∂s −mvB)

2 −
ħh2κ2(s)

8m
+

2as(N − 1)ħh2

ml2
⊥

|Φ|2
�

Φ , (20)

Now we set

Φ(s) =
n(s)1/2
p

N
eiθ (s) , (21)

where n(s) = Nρ(s) is the local number density of the BEC. Morover, we introduce the local
velocity field

v(s) =
ħh
m
∂sθ (s) . (22)

Inserting these formulas into Eq. (20) we obtain 1D stationary equations of zero-temperature
superfluid hydrodynamics

µ= −
ħh2

2m
p

n
∂ 2

s

p
n+

m
2
(v − vB)

2 −
ħh2κ(s)2

8m
+

2as(1− 1/N)ħh2n

ml2
⊥

, (23)

and also
∂s [n (v − vB)] = 0 . (24)

Eq. (24) implies that n (v − vB) = J , where J is a constant current density. This result is very
interesting because it says that if n(s) has spatial variations then also v(x) must have spatial
variations.

Inspired by Ref. [27], we now introduce the average value of the velocity v(x) in a region
[a, b] of the ellipse as

v̄ =
1

(b− a)

∫ b

a
v(s) ds , (25)

Then, from the previous equations we obtain

v̄ =
1

(b− a)

∫ b

a

�

J
n(s)

+ vB

�

ds =
J
n̄s
+ vB , (26)
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where

n̄s =
1

1
(b−a)

∫ b
a

1
n(s)ds

. (27)

The number density n̄s can be interpreted as the superfluid number density of the stationary
state in the spatial region [a, b]. Indeed, Eq. (27) is the 1D version of the formula obtained
by Leggett [24] for a supersolid with spatial periodicity (b − a), and recently discussed by
others [25–27]. If the stationary state Ψ(s) moves with the average velocity v̄, its current
density reads J = n̄s (v̄ − vB), where v̄ is the average velocity in the region [a, b] and n̄s the
corresponding superfluid number density. We can also introduce

n̄=
1

(b− a)

∫ b

a
n(s) ds (28)

that is the average number density in the region [a, b]. Consequently, the superfluid fraction
of the BEC in the region [0, L] reads

fs =
n̄s

n̄
=

1
N
L2

∫ L
0

1
n(s)ds

, (29)

where N =
∫ L

0 n(s) d x = Ln̄. This formula can be also obtained as the response of the linear
momentum of the BEC to the boost velocity v̄B, that is the non-classical translational inertia of
the system [25].

In Fig. 4 we plot our numerical results of the superfluid fraction fs as a function of the
adimensional interaction strength γ for different values of the eccentricity ε of the ellipse. For
positive values of γ the superfluid fraction fs is close to 1 also with ε = 0.9. However, for
0 ≤ γ < 1 and a very large eccentricity (ε = 0.99) we find fs ' 0.95. This result is quite
reasonable because the wavefunction is strongly localized in the two well of the quantum-
curvature potential. For negative values of γ the most interesting effect appears in Fig. 4:
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Figure 4: Superfluid fraction fs of the BEC ground state in an ellipse as a function of
the adimensional interaction strength γ = 2aas(N − 1)/l2

⊥, where a is the length of
the major semi-axis, as is the 3D s-wave scattering length and l⊥ is the characteristic
length of the transverse harmonic confinement. The curves are obtained for three
values of the eccentricity ε of the ellipse.
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around γ ' −1.6 the superfluid fraction fs quckly decreases and it goes to zero for very large
negative values of γ. This is exacly the quantum phase transition from a two-peak configura-
tion to a one-peak configuration. As previously stressed, the one-peak configuration becomes
modulationally unstable when at least one of the energies of its elementary excitations acquires
an imaginary component. A similar modulational instability [20] happens in the formation of
a train of bright solitons from a single-peak Bose-Einstein condensate, induced by a sudden
change in the sign of the scattering length from positive to negative [32]. Our Fig. 4 reveals
that the critical strength γc crucially depends on the eccentricity ε, such as the behavior of fs
as a function of γ for γ < γc . In particular, we find that γc slightly reduces by increasing ε, but
this effect is quite weak.

An important remark is that Eq. (29) has been derived here without any assumption about
the sign of γ. Moreover, the absence of superfluidity for γ = 0 is true only in the thermody-
namic limit. In a ring there is a finite energy gap between the ground state and the first excited
state also for γ = 0. The Bose system we are considering has a finite size because it is con-
fined in a finite elliptical ring. Finally, the 3D version of Eq. (27) was proposed historically by
Leggett to characterize the superfluid density of a supersolid [24], while here Eq. (27) is used
to determine the superfluid density of a Bose-Einstein condensate which is not supersolid but
it is instead spatially modulated due to the crucial interplay between elliptical confinement
and attractive interaction.

7 Conclusions

The main goal of this paper was to understand the role of a locally-varying curvature for a
Bose-Einstein condensate confined in an elliptical waveguide. The proposed setup, and the
double-well quantum-curvature potential that we have found, can be experimentally achieved
by using ultracold atoms, which are a paradigmatic physical platform due to the high ex-
perimental tunability of inter-atomic interactions and trapping potentials. For instance, one
can trap N = 104 ultracold Rb atoms by using a rapidly moving laser beam which creates a
time-averaged elliptic-shaped toroidal optical dipole potential [33]. The length a of the major
semi-axis of the ellpse can be a ' 100 microns and the transverse length l⊥ = 5 microns. The
scattering length as could be then tuned by using an external magnetic field, which induces
a Fano-Feshbach resonance [34]. Despite the fact that we focused on space curvature rather
than space-time curvature, we believe that our results can be of interest not only to atomic
and condensed matter physics researchers, but also to a large community working on general
relativity and relativistic quantum field theory.
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