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Abstract

We systematically examine uncertainties from fitting rare earth single-ion crystal elec-
tric field (CEF) Hamiltonians to inelastic neutron scattering data. Using pyrochlore and
delafossite structures as test cases, we find that uncertainty in CEF parameters can be
large despite visually excellent fits. These results show Yb3+ compounds have particu-
larly large g -tensor uncertainty because of the few available peaks. In such cases, addi-
tional constraints are necessary for meaningful fits.
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1 Introduction

For most magnetic systems, the single ion magnetic anisotropy [1] is crucial information: it
determines not just bulk response [2], but also the strength of quantum effects [3–5], single
ion magnet stability [6, 7], and the exchange interactions between ions [8]. For rare earth
magnetic ions, where magnetic anisotropy is strong, a common way to experimentally measure
magnetic anisotropy is by fitting the crystal electric field (CEF) Hamiltonian to measured CEF
excited levels. Often, this is done with neutron scattering, where the low-energy excited levels
are clearly resolved [9]. However, fits to CEF neutron scattering peaks can sometimes be
underdetermined (c.f. Yb2Ge2O7 [10,11]) and CEF-derived anisotropy does not always match
bulk measures of anisotropy (c.f. YbCl3 [12]). Because neutron CEF studies rarely report
uncertainties for the fitted CEF parameters, it is unclear how serious the discrepancies are. If
CEF-derived quantities are to be useful for other studies (for example, using the g-tensor to fit
exchange constants), the error bars for the fitted quantities must be accurately known.

In this study, we propose a method for quantifying uncertainties of CEF fits by using a
stochastic search method to map out the χ2 contour. We test the method by fitting to simulated
neutron scattering data for various rare earth ions. We find that the g-tensor uncertainties are
strongly ion-dependent, with Yb3+ often having extremely large uncertainty. These results not
only demonstrate a method for rigorously defining error bars on CEF fits, but also reveal which
ions are most in need of additional constraints and which quantities are most susceptible to
error when fitting CEF levels.

2 Method

The CEF Hamiltonian can be written as:

HC EF =
∑

n,m

Bm
n Om

n , (1)

where Om
n are the Stevens Operators [13, 14] and Bm

n are scalar CEF parameters. At a single
wavevector Q, the neutron cross section of a crystal field Hamiltonian is written

d2σ

dΩdω
= A
∑

m,n

pn|〈Γm|Ĵ⊥|Γn〉|2δ(ħhω+ En − Em) , (2)

where A is a normalization factor, pn is the Boltzmann weight, and |〈Γm|Ĵ⊥|Γn〉|2 is computed
from the inner product of the matrix element of magnetic moment with the CEF eigenstates
|Γn〉. In general, because of magnetic form factors and potentially anisotropic g-tensors, this
leads to a wavevector dependence of the intensity. However, it is common practice to fit to
a constant wavevector Q, allowing for the Q-dependent terms to be neglected. In a neutron
experiment, the CEF parameters Bm

n are fitted to the observed intensities in Eq. 2.
To explain the method by which we determine the CEF uncertainties, we consider the

example of Yb2Ti2O7.

Example: Pyrochlore Yb2Ti2O7

Yb2Ti2O7 is a pyrochlore material with magnetic Yb3+ ions in a D3 scalenohedron ligand envi-
ronment, with a three-fold rotation axis along the local [111] direction shown in Fig. 1(a) [15].
In the Stevens Operator formalism [13,14], the D3 symmetry gives six symmetry-allowed CEF
parameters: B0

2 , B0
4 , B3

4 , B0
6 , B3

6 , B6
6 .
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Figure 1: Pyrochlore Yb2Ti2O7 simulated scattering and fits. (a) shows the crystal
structure of Yb2Ti2O7, with a three-fold axis along the [111] direction, which we
set as z. (b) and (c) show the point-charge model simulated scattering at 10 K and
200 K, respectively. The three curves show three fits to the simulated scattering data,
offset along the y axis for clarity. The bottom (grey) shows the original model and
best fit, the middle (green) shows the minimum gzz to within uncertainty, and the
top (red) shows the maximum gzz to within uncertainty.

Using PyCrystalField software [16], we simulated CEF Hamiltonian using a point charge
model based on the structure reported in Ref. [17] and 10 nearest oxygen ions. We calculated
the neutron spectra at T = 10 K and T = 200 K to simulate intensities at realistic experimental
temperatures. To simulate counting statistics of a real neutron experiment, we added intensity-
dependent noise to the simulated data based on the Poisson counting statistics of neutron
experiments, plus an intensity-independent Gaussian background noise. This method allows
us to precisely define the error bar of each simulated data point. For the peak widths, we
use a linear energy dependent Gaussian resolution function to define the Gaussian widths of
the peaks, plus an energy independent Lorentzian broadening contribution which varies with
temperature to account for finite-lifetimes at nonzero temperatures. These two broadning
contributions were simulated with a Voigt profile for computational efficiency. This gave a
realistic simulated neutron scattering data where the “correct” CEF Hamiltonian is exactly
known.

After generating this data set, we defined a global χ2 fit function based on nine fitted
parameters: the six CEF parameters, an overall scale factor, and the two Lorentzian broadening
factors. The Gaussian width resolution function was fixed to the simulated values, and thus
treated as precisely known. The T = 10 K simulation shows three peaks with three intensities,
giving a total of six observable quantities related to the CEF Hamiltonian. Including a second
higher temperature reveals two additional transitions: |Γ1〉 → |Γ2〉 and |Γ1〉 → |Γ3〉, bringing
the total observable quantities to eight (the energies of these transitions are determined by
the low-temperature peak energies, and thus contain no new information). Adding to this
the two Lorentzian broadening parameters (which are not related to the CEF Hamiltonian),
the total independent observed quantities in Fig. 5 comes to ten. Fitting nine parameters to
ten observable quantities is a fully constrained fit. The model which best fits this simulated
data, obviously, uses the nine parameters used to generate the data. This has a reduced χ2

red
of almost exactly 1 due to the stochastic simulated error bars. However, any solution within
∆χ2

red = 1 of the best fit can be considered a valid solution to within one standard deviation
uncertainty [18]. Thus, to calculate uncertainties in the CEF Hamiltonian, we must determine
the allowed variation of the nine parameters such that ∆χ2 < 1.
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Figure 2: χ2
red for the simulated Yb2Ti2O7 data in Fig. 1. Each red point is a solution

within∆χ2 < 1, and each panel shows a fitted CEF parameter. The “real” solution is
shown with the small blue circle. The x axis domain defines the uncertainty in each
CEF parameter.

To calculate this, we use a two-step method: incremental search, and then Monte Carlo
search. First we select a fitted parameter, fix it to a slightly increased value from the optimum
fit, and fit the remaining eight parameters. If the fitted solution is less than ∆χ2

red = 1, we
save the solution as valid and increase the fixed parameter again, using the last fit for starting
parameters. If the new solution has greater than ∆χ2

red = 1 from the original optimum, we
return to the optimum solution and repeat the process decreasing the fixed value from the
optimum. We then repeat the process for each CEF parameter. As a second step, after looping
through each CEF parameter, we then employ a series of Monte Carlo Markov Chains using
each valid solution as a starting point, keeping all solutions within ∆χ2

red = 1. In this way,
we effectively map out the allowed variations in each parameter. The distributions of various
χ2

red solution for Yb2Ti2O7 are shown in Fig. 2.
This family of∆χ2 < 1 solutions in Fig. 2 reveals the uncertainties in both the CEF param-

eters and the CEF derived quantities. The CEF parameter uncertainties are straightforward,
defined by the range of parameter fit values. For derived quantities like the ground state eigen-
kets or the g tensor, we calculate these quantities for each solution and then take the range of
calculated values to be the uncertainty bounds. In this way the uncertainties are propagated
through the CEF calculations.

3 Results

3.1 Pyrochlore Yb2Ti2O7

The resulting CEF parameters with uncertainty are in Table 1, the eigenvectors and eigenvalues
with uncertainty are in Table 2, and the g tensor is gx x = g y y = 4.10+0.14

−0.15, gzz = 2.05+0.06
−1.3 .

Several things are worth noting about the Yb2Ti2O7 CEF uncertainty calculations. First,
some quantities—like gzz—can vary quite a lot even though neutron scattering signal barely
changes. To illustrate this, the maximal and minimal gzz models are plotted in Fig. 1(b)-(c).
All these solutions would be considered “good fits” to the data (the fitted energy eigenvalues
in Table 2 have tiny uncertainties), but gzz = 0.7 is far from the true value gzz = 2.0. Sec-
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Table 1: CEF parameters for Yb2Ti2O7 with uncertainties.

B0
2 = 0.54± 0.02 B0

6 = 0.0± 0.3
B0

4 = −0.04± 0.02 B3
6 = 0.004± 0.013

B3
4 = 0.33± 0.04 B6

6 = 0.0± 0.3

Table 2: Eigenvectors and eigenvalues for Yb2Ti2O7 CEF Hamiltonian with uncer-
tainties.

E (meV) | − 7
2〉 | − 5

2〉 | − 3
2〉 | − 1

2〉 |12〉 |32〉 |52〉 |72〉
0.0 0.0 -0.1(2) 0.0 0.0 -0.92(4) 0.0 0.0 0.38(6)
0.0 0.38(6) 0.0 0.0 0.92(4) 0.0 0.0 -0.1(2) 0.0

38.6(2) 0.0 -0.0(3) 0.0 0.0 0.4(2) 0.0 0.0 0.93(6)
38.6(2) 0.93(6) 0.0 0.0 -0.4(2) 0.0 0.0 -0.0(3) 0.0
47.10(9) 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
47.10(9) 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0
75.1(4) -0.0(2) 0.0 0.0 -0.1(2) 0.0 0.0 -1.00(13) 0.0
75.1(4) 0.0 -1.00(13) 0.0 0.0 0.1(2) 0.0 0.0 -0.0(2)

ond, the uncertainties in both the fitted CEF values and the resulting quantities can be highly
asymmetric, evidenced both in Fig. 2 and the g-tensor variation.

3.2 Pyrochlores

The substantial variation in CEF solutions for Yb2Ti2O7 is not so surprising given that only three
peaks are visible in the low-temperature neutron spectrum. Such a fit is poorly constrained.
Other ions with larger effective J values would have more visible peaks, and would thus fare
much better. To test this, we repeated the above method but replaced the Yb3+ ion in Yb2Ti2O7
point charge model with other rare earth ions: Sm3+, Nd3+, Ce3+, Dy3+, Ho3+, Tm3+, Pr3+,
Er3+, and Tb3+. The ligand environment is exactly the same for each fit—the only thing that
changes is the magnetic ion. (Note that not all these materials exist as cubic pyrochlores;
the point here is to compare the relative uncertainties for different ions in identical ligand
environments.) The uncertainties in the ground state eigenkets and g tensor values from the
χ2

red contours are shown in Table 3.
As expected, most other ions have smaller uncertainty in the ground state CEF wavefunc-

tion than Yb3+. The presence of more CEF levels constrains the fit much better. (One exception
to this is Pm3+, not listed in Table 3: this ion only gives two visible peaks in its neutron spec-
trum, and the range of possible solutions is so great that the uncertainty was functionally
infinite.) For most ions, the ground state wavefunction is generally well-constrained by a CEF
fit to neutron data.

Two unusual cases here are Sm3+ and Ce3+, where the ground state wavefunction is ex-
actly defined. Because of the D3 symmetry of the RE2Ti2O7 site, one eigenstate doublet is
constrained to be | ± 3/2〉 exactly (this is the second Yb3+ excited state in Table 2). For Sm3+

and Ce3+ in the Yb2Ti2O7 structure, this ket is the lowest energy state. Thus, even though
there is substantial variation in the Bm

n values, the ground state anisotropy is precisely known.
Thus a large uncertainty in the CEF parameters does not necessarily lead to a large uncertainty
in the magnetic ground state.

5

https://scipost.org
https://scipost.org/SciPostPhysCore.5.1.018


SciPost Phys. Core 5, 018 (2022)

Table 3: Uncertainties in the CEF Hamiltonian of pyrochlore Yb2Ti2O7, but with Yb3+

replaced with other rare earth ions. Only the three largest contributions to the ground
state eigenket are listed. Sm3+ and Ce3+ both have a uniquely defined ground state
constrained by symmetry despite variation in CEF parameters, but the rest allow for
variation in the ground state wavefunction. Of all the ions, Yb3+ and Dy3+ have the
largest g tensor uncertainty. Note that many ions listed are non-Kramers and are not
in general required to have a doubly-degenerate ground state, but do because of the
pyrochlore lattice symmetry.

Compound ground state gx x gzz

Ce2Ti2O7 ψ0+ = −1.0|3/2〉 0.0 2.5714
ψ0−= −1.0| − 3/2〉

Pr2Ti2O7 ψ0+ = 0.08(5)| − 2〉+ 0.44(9)|1〉 − 0.90(4)|4〉 0.0 5.4+0.3
−0.2

ψ0−= 0.08(5)|2〉 − 0.44(9)| − 1〉 − 0.90(4)| − 4〉
Nd2Ti2O7 ψ0+ = −0.29(3)| − 3/2〉+ 0.04(6)|3/2〉 − 0.956(10)|9/2〉 0.0 5.80+0.11

−0.21
ψ0−= −0.29(3)|3/2〉 − 0.04(6)| − 3/2〉 − 0.956(10)| − 9/2〉

Sm2Ti2O7 ψ0+ = −1.0|3/2〉 0.0 0.8571
ψ0−= −1.0| − 3/2〉

Tb2Ti2O7 ψ0+ = −0.031(7)| − 5〉+ 0.15(5)|1〉+ 0.988(7)|4〉 0.0 11.76+0.12
−0.14

ψ0−= 0.031(7)|5〉 − 0.15(5)| − 1〉+ 0.988(7)| − 4〉
Dy2Ti2O7 ψ0+ = 0.0(3)| − 15/2〉+ 0.12(5)|9/2〉 − 0.99(12)|15/2〉 0.0 19.880+0.099

−15.994
ψ0−= 0.0(3)|15/2〉+ 0.12(5)| − 9/2〉+ 0.99(12)| − 15/2〉

Ho2Ti2O7 ψ0+ = 0.040(6)|2〉+ 0.008(4)|5〉+ 0.9992(2)|8〉 0.0 19.975+0.006
−0.008

ψ0−= −0.040(6)| − 2〉+ 0.008(4)| − 5〉 − 0.9992(2)| − 8〉
Er2Ti2O7 ψ0+ = 0.105(12)| − 1/2〉 − 0.24(2)|5/2〉 − 0.962(4)|11/2〉 0.92+0.06

−0.04 12.50+0.07
−0.04

ψ0−= −0.105(12)|1/2〉 − 0.24(2)| − 5/2〉+ 0.962(4)| − 11/2〉
Tm2Ti2O7 ψ0+ = 0.171(5)| − 2〉+ 0.17(2)|1〉+ 0.968(4)|4〉 0.0 8.65+0.04

−0.06
ψ0−= −0.171(5)|2〉+ 0.17(2)| − 1〉 − 0.968(4)| − 4〉

Yb2Ti2O7 ψ0+ = −0.1(2)| − 5/2〉 − 0.92(4)|1/2〉+ 0.38(6)|7/2〉 4.10+0.14
−0.15 2.05+0.06

−1.3
ψ0−= −0.1(2)|5/2〉+ 0.92(4)| − 1/2〉+ 0.38(6)| − 7/2〉
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Figure 3: Delafossite NaYbSe2 simulated scattering and fits. (a) shows the crystal
structure of NaErSe2, the basis for this fit, with a three-fold axis along the c axis,
which we set as z. (b) and (c) show the point-charge model simulated scattering
with Yb3+ as the central ion at 10 K and 200 K, respectively. The three curves show
three fits: the bottom (grey) shows the original model and best fit, the middle (green)
shows the minimum gzz to within ∆χ2 < 1, and the top (red) shows the maximum
gzz to within ∆χ2 < 1.
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3.3 Delafossites

To test whether these large error bars extend beyond pyrochlores, we now consider uncertain-
ties in delafossite structures using the same method. The delafossite AReB2 structure also has
D3 symmetry for the magnetic site, and for this series we based the point charge model on the
NaErSe2 chemical structure [19]. Thus there is the same number of fitted parameters as in
the pyrochlores. The results of the fits are listed in Table 4. The simulated data and best fits
for NaYbSe2 are shown in Fig. 3.

Despite the different number of ligands and different environment, the results for delafos-
sites are similar to pyrochlores: most ions have well-constrained uncertainties in the ground
state anisotropy except for Yb3+. There are however some exceptions: Ho3+ fares poorly in
the delafossite gzz uncertainty, while Dy3+ fared worse in the pyrochlore gzz uncertainty.

The uncertainty in the NaYbSe2 fitted CEF Hamiltonian becomes more interesting when
we plot χ2

red vs the fitted values in Fig. 4. Here there are two local minima with almost
identical χ2

red . The “real” solution has χ2
red = 0.9682 and gzz = 1.316, gx x = 3.086 (easy

plane anisotropy). The alternate solution has χ2
red = 0.9702 and gzz = 2.626, gx x = 2.600

(isotropic). This double-solution problem was encountered experimentally in NaYbO2 [20];
to distinguish these two solutions would be impossible with neutron scattering data alone. In
a case such as this, it is important to (i) fully map out the χ2 contour to identify competing
solutions, and (ii) collect additional data or information to identify the correct anisotropy
[21,22].

As a side note, Tables 3 and 4 show candidates for strong quantum effects in pyrochlores
and delafossites. The gx x values are directly related to J± expectation values, which are rough
measures of quantum tunneling between the ground states. For pyrochlores, Yb3+ dominates
because of its large weight on |±1/2〉. For the delafossites meanwhile, there are many promis-
ing candidates, most notably Nd3+, Ce3+, and Yb3+ with their large | ± 1/2〉 weights. If these

Table 4: Uncertainties in the fitted CEF Hamiltonian of delafossite materials based
off the NaErSe2 structure. Only ions with doublet ground states have listed g tensors,
some ions (Tm and Pr) have near doublet ground states with the lowest two eigenkets
listed.

Compound ground state gx x gzz

NaCeSe2 ψ0+ = −0.85(5)| − 1/2〉+ 0.53(7)|5/2〉 1.85+0.14
−0.25 0.6+0.5

−0.3
ψ0−= −0.85(5)|1/2〉 − 0.53(7)| − 5/2〉

NaPrSe2 ψ0+ = 0.57(2)| − 3〉 − 0.60(4)|0〉 − 0.57(2)|3〉
ψ0−= 0.3(2)|4〉+ 0.7(4)|1〉 − 0.6(3)| − 2〉

NaNdSe2 ψ0+ = 0.49(4)| − 7/2〉 − 0.55(8)| − 1/2〉 − 0.68(4)|5/2〉 3.03+0.09
−0.07 0.2+0.2

−0.2
ψ0−= −0.49(4)|7/2〉 − 0.55(8)|1/2〉+ 0.68(4)| − 5/2〉

NaSmSe2 ψ0+ = −0.4(3)| − 1/2〉+ 0.9(2)|5/2〉 0.16+0.44
−0.06 1.11+0.13

−0.89
ψ0−= −0.4(3)|1/2〉 − 0.9(2)| − 5/2〉

NaTbSe2 ψ0+ = 0.33(3)| − 3〉+ 0.88(2)|0〉 − 0.33(3)|3〉
ψ0−= −0.33(2)|4〉+ 0.88(2)|1〉+ 0.32(3)| − 2〉

NaDySe2 ψ0+ = 0.51(3)| − 7/2〉 − 0.55(2)|5/2〉 − 0.46(5)|11/2〉 8.9+0.3
−0.4 1.5+0.6

−0.6
ψ0−= −0.51(3)|7/2〉+ 0.55(2)| − 5/2〉 − 0.46(5)| − 11/2〉

NaHoSe2 ψ0+ = −0.3(2)| − 4〉+ 0.481(9)|2〉+ 0.76(6)|5〉 0.0 7+2
−4

ψ0−= −0.3(2)|4〉+ 0.481(9)| − 2〉 − 0.76(6)| − 5〉
NaErSe2 ψ0+ = −0.18(2)|3/2〉+ 0.337(15)|9/2〉 − 0.92(2)|15/2〉 0.0 16.70+0.13

−2.32
ψ0−= 0.18(2)| − 3/2〉+ 0.337(15)| − 9/2〉+ 0.92(2)| − 15/2〉

NaTmSe2 ψ0+ = 0.663(4)| − 6〉 − 0.219(3)|3〉+ 0.663(4)|6〉
ψ0−= 0.680(3)|6〉 − 0.194(11)| − 3〉 − 0.680(3)| − 6〉

NaYbSe2 ψ0+ = −0.47(5)| − 7/2〉+ 0.5(2)| − 1/2〉+ 0.76(9)|5/2〉 3.1+0.2
−0.6 1.3+1.7

−0.9
ψ0−= 0.47(5)|7/2〉+ 0.5(2)|1/2〉 − 0.76(9)| − 5/2〉

7

https://scipost.org
https://scipost.org/SciPostPhysCore.5.1.018


SciPost Phys. Core 5, 018 (2022)

400 350 300
 ( eV)

1.0

1.5

2.0
(a)

   real
solution

   alt.
solution

8 10 12
 ( eV)

(b)

300 250 200
 ( eV)

(c)

0.00 0.05 0.10
 ( eV)

1.0

1.5

2.0
(d)

4 2 0 2
 ( eV)

(e)

0 1 2
 ( eV)

(f)

Figure 4: χ2
red for the simulated NaYbSe2 data in Fig. 3. Each red point is a solution

within ∆χ2 < 1, and each panel shows a fitted CEF parameter. The “real” solution
is shown with the small blue circle, while the small green triangle shows an alterna-
tive solution with different anisotropy. Thus the fit is underdetermined by neutron
scattering alone.

Table 5: Point charge model CEF parameters for Yb2O3 with uncertainties.

B0
2 = −3.3± 0.2 B−3

4 = 0.0± 0.4 B0
4 = 0.0± 0.8

B3
4 = −0.9± 1.0 B−6

6 = −0.0± 0.7 B−3
6 = −0.0± 0.05

B0
6 = 0.0± 1.11 B3

6 = −0.0± 0.02 B6
6 = 0.0± 0.05

point charge calculations are at least approximately close to the real material Hamiltonians,
these results give direction on where to find strongly quantum delafossite materials.

3.4 Bixbyite Yb2O3

In D3 symmetry, the Yb3+ ions appear to have the largest CEF uncertainties. This problem will
in principle get worse as the number of crystal field parameters increases in lower symmetry
structures. As an example, we considered the first Yb3+ site in Bixbyite Yb2O3. This material
has two symmetry inequivalent Yb3+ sites, but we consider the first site which has C3 symme-
try: a three-fold axis about [111] but no mirror planes. This symmetry allows for nine CEF
parameters: B0

2 , B−3
4 B0

4 , B3
4 , B−6

6 B−3
6 B0

6 , B3
6 , and B6

6 .
To estimate uncertainty, we follow the same procedure outlined above. The simulated data

and best fits are shown in Fig. 5, the best fit CEF parameters are in Table 5, and the calculated
g tensor is gx x = 1.4+1.5

−0.9, gzz = 7.0+0.4
−4.1. In this case the anisotropy is easy axis—opposite of

the pyrochlore and delafossite—but as expected, the uncertainties are even larger. Indeed, the
uncertanties of the CEF parameters in Table 5 are so large that most of the CEF parameters
are zero to within uncertainty—hardly useful for any detailed modeling.

This is not surprising given the number of independent parameters: in this case, we are
fitting 12 parameters (nine CEF parameters, a scale factor, and two Lorentzian widths) to 10
observed quantities (three transition energies, five transition intensities, and two Lorentizan
widths), which technically is an underdetermined problem. That we are able to perform a
fit at all is evidence that the fitted parameters are not totally independent, allowing for finite
uncertainties. Thus, a Yb3+ CEF model with nine independent parameters definitely needs
more information than just neutron scattering peaks to constrain a CEF fit.
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Figure 5: Yb2O3 simulated scattering and fits. (a) shows the crystal structure of
Yb2O3. (b) and (c) show the point charge model simulated scattering at 10 K and
200 K, respectively. The three curves show three fits: the bottom (grey) shows the
original model and best fit, the middle (green) shows the minimum gzz fit, and the
top (red) shows the maximum gzz fit.

4 Discussion and Conclusions

The main conclusion of this numerical study is that uncertainties in CEF fits can be very large
even though the fits may look visually good. This is important because these uncertanties
should be propagated through other calculations that use the g tensor (such as field-polarized
spin wave calculations).

Furthermore, it should be noted that fits to real experimental data will probably have larger
uncertainty than the idealized fits we perform here. In real experiments, there are background
contributions from phonons and the sample environment, the resolution function is often not
precisely known, CEF-phonon coupling affects measured intensities, and peak shapes may be
asymmetric. All of these will worsen the agreement between the model and the data. Thus
the true uncertainties may be much larger than those we estimate here.

This problem is particularly severe for Yb3+ compounds as they only have three excited
levels. This is unfortunate, as Yb3+ receives much attention as an effective J = 1/2 host for
quantum magnetism. In such cases it is necessary to include additional experimental informa-
tion, like electron spin resonance as was done for NaYbS2 [23], nonlinear susceptibility and
high-field torsion magnetometry as was done for CsYbSe2 [24], or saturation magnetization
as was done for YbMgGaO4 [25].

This being said, a secondary conclusion of this study is that not all calculated quantities are
affected equally by CEF parameter uncertainties. The clearest examples of this are Sm2Ti2O7
and Ce2Ti2O7, where the ground state is precisely known despite uncertainty in the CEF model.
This is also true of Yb3+: although the pyrochlore and delafossite fits show large uncertainty
for gzz , the gx x is more constrained. Likewise, the Yb3+ ground state eigenkets have rela-
tively modest uncertainties. Therefore even if the overall anisotropy might be in question,
the fitted CEF model might still give accurate and useful information about the ground state
wavefunction.

In summary, we have shown by simulating and fitting to artificial CEF neutron scattering
data sets that CEF fits can have very large uncertainties. In three-fold symmetric environ-
ments, Yb3+ consistently has the largest uncertainties, highlighting the need for additional
constraints when fitting its CEF levels. However, the uncertainties in calculated quantities are
highly dependent upon the details of the model—some quantities are well-constrained despite
uncertainty in the fitted parameters. In all cases, it is important to explore the full χ2 contour
of a CEF model so that uncertainty can be known.
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