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Abstract

We study the entanglement contour and partial entanglement entropy (PEE) in quantum
field theories in 3 and higher dimensions. The entanglement entropy is evaluated from
a certain limit of the PEE with a geometric regulator. In the context of the entanglement
contour, we classify the geometric regulators, study their difference from the UV regu-
lators. Furthermore, for spherical regions in conformal field theories (CFTs) we find the
exact relation between the UV and geometric cutoff, which clarifies some subtle points
in the previous literature. We clarify a subtle point of the additive linear combination
(ALC) proposal for PEE in higher dimensions. The subset entanglement entropies in the
ALC proposal should all be evaluated as a limit of the PEE while excluding a fixed class of
local-short-distance correlation. Unlike the 2-dimensional configurations, naively plug-
ging the entanglement entropy calculated with a UV cutoff will spoil the validity of the
ALC proposal. We derive the entanglement contour function for spherical regions, annuli
and spherical shells in the vacuum state of general-dimensional CFTs on a hyperplane.
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1 Regulators for entanglement entropy in quantum field theories

The ideas of quantum information theory have intersected more and more deeply with our
understanding of quantum field theory, string theory and quantum gravity. One of the most
important quantities is the entanglement entropy, which captures the bipartite entanglement
in a pure state |Ψ〉. Dividing a quantum system into A ∪ Ā, the entanglement entropy be-
tween A and Ā can be calculated by the von Newmann entropy of the reduced density matrix
ρA = TrĀ|Ψ〉〈Ψ|,

SA = −TrρA logρA . (1)

In condensed matter physics, the entanglement entropy has been used to distinguish new
topological phases and characterize critical points, e.g., [1–5]. In high energy physics the
Ryu-Takayanagi (RT) formula [6, 7] relates quantum entanglement to spacetime geometry
in the context of AdS/CFT [8–10] (the most well studied holography), which states that the
(d+1)-dimensional gravity theories with asymptotically AdS boundary is equivalent to certain
d-dimensional conformal field theories on the boundary. Hence the entanglement entropy
becomes an important tool to study quantum gravity via holography, and furthermore the
holography itself. Many important progresses along this line are cited and summarized in the
following review articles [11–16] and the recently published book [17].

Unlike its definition, the calculation of the entanglement entropy is a formidable task.
Furthermore, the entanglement entropy in quantum field theory is divergent because of the
collection of the endless short-distance correlations, hence cannot be well-defined without a
regulator. The role of the regulator is to subtract the divergent short-distance correlations
from the entanglement entropy. However, the way we perform the regularization is highly
non-unique. This will result in different values for the regularized entanglement entropy un-
der different regularization schemes. The discussion on different types of regulators in the
previous literature is far from clear. The mixing between the regulators has already caused
ambiguities in our understanding of the entanglement entropy in quantum field theories. In
this paper, we will classify two different types of regulators, study their differences and show
how they exactly match with each other in the special cases where the matching is possible.

The first type of regulator is to regulate the entanglement entropy at a small scale δ.
Roughly speaking this regulator excludes all short-distance correlations below the scale δwhen
we “count” the entanglement between the region A and its complement Ā. This regulator is
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Figure 1: The δ neighborhood of a point P consists of all the points whose distance
from P is smaller than δ (see the region inside the dashed red circle). In the left
figure, the UV regulator excludes the correlation between P and those inside the
overlap between its δ neighborhood and Ā. While in the right figure, the geometric
regulator exclude the correlation between P (in certain cutoff region) and all the
degrees of freedom inside Ā

depicted in the left figure of Fig. 1. For any point whose distance from the boundary of A is
smaller than δ, we exclude the correlation between degrees of freedom at this point and those
inside a subregion of Ā, which is the overlap between its δ neighborhood (region inside the
red dashed circle) and Ā. This type of regulator is familiar to us and the cutoff δ is usually
called the UV cutoff. They have been applied in the replica trick [3, 4, 18] in quantum field
theories and the Ryu-Takayangi (RT) formula [6,7,19] for holographic CFTs, which are among
the most important ways to evaluate the entanglement entropy. The RT formula provides a
simple and elegant way to calculate entanglement entropies in the context of AdS/CFT. More
explicitly, for a subregion A in the boundary CFT and a minimal surface (or more generally an
extremal surface) EA in the dual AdS bulk spacetime, where EA is anchored on the boundary
∂ A of A, the RT formula states that the entanglement entropy of A is measured by the area of
EA in Planck units

SA =
Area(EA)

4G
, (2)

which provides a simpler routine to calculate entanglement entropy. In AdS/CFT the radius
coordinate z represents the scale along the RG flow and the boundary is settled at z = 0. The
minimal surface EA is cut off at z = δ hence the entanglement entropy, which is related to its
area, is regulated at the scale δ.

The second type of regulator is the geometric regulator. This type of regulator is based on
quantities that capture certain types of correlation between two spacelike separated regions A
and B. Usually the two regions do not share boundaries and A∪B is in a mixed state. It can be
purified by another system C , hence A∪ B ∪ C is in a pure state (see the left figure of Fig. 2).
Let us write this quantity as C(A, B). To be a good candidate to regulate the entanglement
entropy, firstly C(A, B) should be well defined hence is free from divergences, and secondly
C(A, B) should possess the property of normalization,

C(A, B)|B→Ā→ SA . (3)

In the above prescription we let B approach Ā while keeping A fixed. A more general configu-
ration is to let both sides of the entangling surface approach. Consider an entangling surface
that divides the total system into A∪ Ā. Then we consider two regulated regions Areg ⊂ A
and Āreg ⊂ Ā and C being an infinitely narrow strip that contains the entangling surface be-
tween A and Ā (see the right figure of Fig. 2). The normalization is then given by the following

3

https://scipost.org
https://scipost.org/SciPostPhysCore.5.2.020


SciPost Phys. Core 5, 020 (2022)

Figure 2: The quantity C(A, B) approaches the entanglement entropy under the ge-
ometric regulator. In the right figure, the black solid line is the boundary between
the region A and its complement Ā. We regularize these two regions to be Areg and
Āreg , while the white region is the cut-off region Acut ∪ Ācut which should contain the
boundary. The red dashed lines are the boundaries between regularized regions and
the cutoff regions.

requirement,

C(Areg , Āreg)|Areg→A, Āreg→Ā→ SA . (4)

The width of the strip C should be lower bounded by a small constant ε to avoid divergence in
C(Areg , Āreg). Note that, this type of regulator is very sensitive to how Areg (Āreg) approaches
A (Ā) as well as the geometric information of the entangling surface. Usually we will set
the width of the region C , as well as the distance between the entangling surface and the
boundaries of C , to be a constant.

The geometric regulators (4) are definitely different from the UV cutoff which exclude
short distance correlation below a certain scale everywhere. The geometric regulators not
only exclude the short-distance correlations within C but also the long-distance correlations
between the degrees of freedom in C and those inside A∪ B (see the right figure in Fig. 1).
In other words, one may regard the UV cutoff to be a cutoff in the energy-momentum space
while the geometric cutoff to be a cutoff in spacetime.

So far, there are two different quantities that have been proposed to be a natural regulator
for entanglement entropy under the geometric regulator (4),

• the mutual information (MI) 1
2 I(A, B)1 [22];

• the reflected entropy 1
2SR(A, B) [23];

The treatment in [22] using MI is quite careful and successful for disk regions in 2+1 dimen-
sional theories. They fix the width of C to be an infinitesimal constant ε, then they find that
I(Areg , Āreg) has a similar expansion as the entanglement entropy, with an area term at the or-
der O(ε−1) and an universal term c0. By carefully putting the entangling surface at the middle
of the strip C , they demonstrated that the contribution from the high energy physics to the MI
I(Areg , Āreg) will not pollute the universal term c0 in entanglement entropy. Hence they find
a well-defined way to determine the universal term c0 in the entanglement entropy of a disk
with a UV cutoff.

Also there is a similar prescription using the reflected entropy in [23]. The entanglement
wedge is the region bounded by A, B and the RT surface EA∪B. Let the mixed state ρAB be

1Although the mutual information could be considered as a regulator for the entanglement entropy, it contains
information that are not encoded in the entanglement entropy [20,21].
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Figure 3: The boundary field theory is in a pure state and the complement of A∪ B
is infinitesimal. The blue lines consist of the RT surface EA∪B and the brown line ΣAB
is the minimal cross section of the entanglement wedge WAB.

purified by an identical system A∗B∗ with the same copy of Hilbert space and partition, the
reflected entropy is then defined as the entanglement entropy SR(A, B) = SAA∗ (see [23] for
details). It was proved that half of the reflected entropy SR(A, B) is given by the area of the
minimal cross section of the entanglement wedge (EWCS) ΣAB,

1
2

SR(A, B) =
Area(ΣAB)

4G
. (5)

The way how the reflected entropy acts as a natural regulator for entanglement entropy SA is
shown in Fig. 3. Let C be the complement of A∪B and the whole system on the AdS boundary
A∪ B ∪ C is in a pure state. The RT surface EA∪B is given by the two blue minimal surfaces,
while ΣAB is given by the solid brown minimal surface vertically anchored on EA∪B. When we
take the distance between A and B to be infinitesimal, the EWCS approaches the RT surface
EA and is terminated by EA∪B at a small z = δ.

Based on the recent studies on the so-called entanglement contour [24] or partial entangle-
ment entropy (PEE) [25–27], in this paper we propose the PEE to be the third quantity that
can be taken as a natural regulator for the entanglement entropy under a geometric regulator.
The entanglement contour characterizes the contribution from any site inside A to the entan-
glement entropy SA. The additivity and normalization make the PEE a natural regulator for
the entanglement entropy. The geometric regulator excludes the contribution from those de-
grees of freedom near the boundary, which is the origin of the divergence. For example in the
right figure of Fig. 1 we exclude the contribution from all the points whose distance from the
boundary is smaller than ε. The evaluation of the entanglement entropy from PEE in d ≥ 3 is
the main topic of this paper.

The main structure of the paper is in the following. In section 2, we will briefly introduce
the concept of entanglement contour and PEE and review recent progress along this direction.
Furthermore, we will discuss the relation between the PEE and the so-called extensive mutual
information (EMI). In section 3, we discuss how to use the entanglement contour to evaluate
the entanglement entropy by taking a geometric cutoff. Unlike the previous studies, here we
focus on the entanglement contour in higher dimensions (d ≥ 3), where a subtlety to apply the
ALC proposal for PEE needs to be clarified. In section 4 we derive the entanglement contour
function for static spherical regions in vacuum CFT in arbitrary dimensions. We firstly derive
it via the Rindler method [28], then we re-derive the contour function via the fine structure
analysis of the entanglement wedge generalized from [25]. In section 5, based on the ALC
proposal (12) and the entanglement contour function for spherical regions, we propose a pre-
scription to derive the entanglement contour for annuli and spherical shells. In section 6, we
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consider the special case of spherical region and give an exact matching between the UV cutoff
and geometric cutoff, hence exactly matching the entanglement entropy evaluated by the RT
formula and the one evaluated by the Rindler method. In section 7, we summarize the main
points of this paper.

2 The entanglement contour and partial entanglement entropy

The entanglement contour firstly introduced in [24] is a function that captures how much the
degrees of freedom at each site of A contribute to the total entanglement entropy SA. It gives a
local measurement of the spatial structure of quantum entanglement. We denote this function
as sA(x), where x denotes the points in the region A. By definition in d-dimensional theories it
satisfies the following basic requirement

SA =

∫

A
sA(x)d x (d−1) . (6)

Instead of studying the contour function directly, it is more convenient to study the partial
entanglement entropy (PEE) sA(Ai) for any subset Ai of A, which captures the contribution from
Ai to SA and is defined by

sA(Ai) =

∫

Ai

sA(x)d x (d−1) . (7)

In this paper we evaluate the entanglement entropies as a limit of the PEE. Also based on the
additive linear combination proposal [25, 26] and the entanglement contour for some highly
symmetric regions, we can evaluate the entanglement entropy or entanglement contour for
certain subregions with less symmetries, like annuli and spherical shells.

However, the fundamental definition based on the reduced density matrix for the PEE
is still missing. According to its assumed physical meaning, the PEE sA(Ai) should capture
certain type of the correlation between the subregion Ai of A and any complement system Ā
that purifies A. In order to manifest its role as certain correlation between two regions, it is
more convenient to write is in the following way

sA(Ai) = I(Ai , Ā) . (8)

Be careful not to confuse the PEE I with the MI I . The expression sA(Ai) is more convenient
to show the contribution distribution for SA, while I(Ai , Ā) is more convenient to show the
correlation structure between spacelike separated regions.

The physical meaning of the PEE indicates that it should satisfy certain physical require-
ments2, which we write in terms of I(A, B) in the following:

1. Additivity: if B∩C = ; and both of B and C are spacelike separated from A, by definition
we should have

I(A, B ∪ C) = I(A, B) + I(A, C) . (9)

2. Invariance under local unitary transformations: I(A, B) should be invariant under any
local unitary transformations inside A or B.

3. Symmetry: for any symmetry transformation T under which T A= A′ and T B = B′, we
have I(A, B) = I(A′, B′).

2The requirements 1-6 are firstly given in [24], while the requirement 7 is recently given in [27].
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4. Normalization: I(A, B)|B→Ā→ SA .

5. Positivity: I(A, B)≥ 0 .

6. Upper bound: I(A, B)≤min{SA, SB} .

7. The permutation symmetry between A and B: I(A, B) = I(B, A) .

The requirement of the upper bound can be derived from the requirements 1, 4 and 5
hence is not independent. The requirement 7 is based on the assumption that I(A, B) is a
measure of the correlation between A and B. This requirement gives non-trivial constraints for
the PEE. For example consider the configuration in the left panel of Fig. 2, the requirement 7
implies,

sA∪C(A) = sB∪C(B) . (10)

The additivity significantly simplified the entanglement structure of the system. All PEEs
are just a double summation of the elementary PEEs between two arbitrary sites,

I(A, B) =
∑

i∈A, j∈B

I(i, j) , (11)

where I(i, j) is the PEE between the ith and jth site. In continuous systems like QFTs, the
summation is replaced by integration and the PEE I(i, j) is replaced by the function I(x,y),
where x and y are points in A and B respectively. In this paper we will focus on the entanglement
contour or PEE in d-dimensional theories with d ≥ 2.

The Gaussian formula [24,29–35] applies to the Gaussian states in free theories. This is the
first attempt to construct the entanglement contour. In the context of holography, a geometric
construction [25, 36] gives an one-to-one correspondence between points on the boundary
region A and the points on the RT surface EA, hence gives the entanglement contour function for
A. We will introduce this holographic picture later in section 4. In the following, we will briefly
introduce the ALC proposal and the EMI formula for the PEE. So far the PEE calculated by all
the existing proposals are highly consistent with one another, see for example [25,27,35,36].
It implies that the PEE should be unique and well-defined.

The additive linear combination proposal for PEE

In [25,26], a simple proposal for the partial entanglement entropy is given, which claims that
the PEE is given by a linear combination of entanglement entropies of certain subsets in A. It
was shown [25–27,37] to satisfy all the above 7 requirements using only the general properties
of entanglement entropy. It can be applied to generic theories, but a definite order is required
for the degrees of freedom in A in order to satisfy the additivity.

• The additive linear combination proposal (ALC): Given a region A and an arbitrary subset
α, when there is a definite order inside A, thus it can be partitioned into three non-
overlapping subregions A= αL ∪α∪αR (one can consider the typical example where A
is an interval divided into three subintervals) unambiguously, where αL (αR) is denoted
as the subset on the left (right) hand side of α. In this configuration, the ALC proposal
claims that

sA(α) =
1
2

�

SαL∪α + Sα∪αR
− SαL

− SαR

�

. (12)
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The ALC proposal can be used to calculate the entanglement contour for one dimensional regions
in a generic theory, since there is a natural order along the spatial direction [25,26].

In higher dimensions, the natural order disappears. One may give an order to all the
degrees of freedom inside A by hand. However, the PEE calculated by the ALC proposal depends
on the order we give. Since the order is highly non-unique, the PEE calculated by the ALC
proposal becomes ambiguous. In higher dimensions the ALC proposal only applies for highly
symmetric configurations, where the contour function only depends on one coordinate as the
order can be naturally defined along that coordinate. See Fig. 5 for an example in 3-dimensions
where the entanglement contour only depends on the radial coordinate.

The extensive mutual information formula for PEE

Note that, the requirements 2-7 are also satisfied by half of the MI 1
2 I(A, B). Furthermore the

additivity and positivity indicates that the PEE satisfies other two properties satisfied by the
MI, the monotonicity

I(A, BC) = I(A, B) + I(A, C)≥ I(A, B) , (13)

and the Markov property (saturated)

I(A, BC) + I(A, C D) = I(A, C) + I(A, BC D) . (14)

In summary the physical requirements for the PEE coincide with the known ones for the MI
plus the additivity.

In [38] the authors showed that, in Pincaré invariant theories the 7 requirements have a
unique solution. If we further impose the conformal invariance this solution is explicitly given
by the following formula

I(A, B) = κ(d)

∫

∂ A
dσA

∫

∂ B
dσB

(nA · nB)(n̄A · n̄B)− (nA · n̄B)(n̄A · nB)
|xA− xB|2(d−2)

, (15)

where ∂ A and ∂ B are the co-dimensional two boundaries of A and B, σA (σB) is the area
element on ∂ A (∂ B), nA and n̄A are unit vectors orthogonal to the surface ∂ A and to each
other nA · n̄A = 0. The constant κd could be determined by the requirement of normalization.
The formula can also be arrived at by assuming the twist operators to be exponentials of free
fields on the boundaries ∂ A and ∂ B [39].

This formula (15) was originally used to describe the EMI, which is assumed to be the MI
that is additive and may exist in some unknown theories. However, in [40] it was shown that
even though the EMI satisfies all known requirements of MI in QFT, it does not correspond to
the MI of any actual QFT or limit of QFT3. This then implies that the known properties satisfied
by MI are not enough to confine their solution to be the MI of actual QFTs. In [27] the EMI
formula was also written as a linear combination of the subset entanglement entropies. This
linear combination coincides with the ALC proposal rather than the MI. Hence from our point
of view, in general CFTs it is more natural to interpret the EMI formula (15) as the PEE rather
than the MI.

The EMI formula for the PEE has many advantages compared with the ALC proposal. Firstly,
it does not rely on the natural order for all the degrees of freedom inside A. Secondly, it applies
to a connected region in general dimensions with arbitrary shape. The disadvantage is that
it only applies to CFTs while the ALC proposal applies to general theories. The calculations
of I(A, Ā) for CFTs in various configurations have been carried out [41–44] using the EMI

3Except the free fermions in two dimensions [38].

8

https://scipost.org
https://scipost.org/SciPostPhysCore.5.2.020


SciPost Phys. Core 5, 020 (2022)

formula, and the results reproduce (not exactly) the expected behavior for the entanglement
entropies compared with those evaluated with a UV cutoff.

The bit threads configuration [45] also gives a natural picture for the entanglement contour
in holographic theories. For a given region A and a bit thread configuration, the PEE sA(Ai) can
be read by counting how many bit threads emanating from Ai eventually cross the RT surface
EA and anchor on Ā. Nevertheless, the bit threads configurations that give the maximal flux
through A are highly non-unique [45]. This conflicts with our expectation that the entangle-
ment contour should be unique. We suggest that further requirements should be imposed to
bit threads in order to give the right entanglement contour. This is recently explored in [46] by
applying the locking theorem [47,48] of bit threads to construct a concrete locking scheme for
the RT surfaces in the entanglement wedge. Other exploration of entanglement contour based
on a specific bit thread configuration can be found in [37,49,50].

The entanglement contour gives a finer local measure for the entanglement structure. It
has been shown to be particularly useful to characterize the spreading of entanglement when
studying dynamical situations [24,34,37,51]. The modular flow in two dimensions can be gen-
erated from the PEE [26]. The entanglement contour is also a useful probe of slowly scrambling
and non-thermalizing dynamics for some interacting many-body systems [52]. Holographi-
cally, the PEE [25, 36] corresponds to bulk geodesic chords which is a finer correspondence
between quantum entanglement and bulk geometry [36,53]. Under some balanced condition,
the PEE also gives the area of the entanglement wedge cross section [54]. The balanced PEE
can be considered to be a generalization of the reflected entropy [23] to generic purifications
of the bipartite system [54]. The first law of the entanglement contour, which captures local
perturbation of the entanglement structure, was studied in [55]. In [51,56], the entanglement
contour captures the spatially fine-grained picture of the entanglement structure of Hawking
radiation, and is shown to be vanished for certain regions when the non-trivial island appears,
hence gives more information than the page curve.

3 Entanglement entropy from entanglement contour and the ALC
proposal in higher dimensions

3.1 PEE as a natural regulator of entanglement entropy

Since the distance between the degrees of freedom in Areg and those in Āreg are bounded
from below, the PEE I(Areg , Āreg) should be free from divergence. In the special cases where
A= αL ∪α∪αR with the subsets in a natural order (for example when A is a segment), I(Ā,α)
can be given by the ALC proposal (12). Like the MI, the divergent area terms cancel with
each other. Also, if we let αL and αR approach the empty space, the PEE will recover the
entanglement entropy SA. Furthermore, it was recently pointed out in [51] that the linear
combination in the ALC proposal is just a conditional mutual information

I(Ā,α) =
1
2

I(α, Ā|αL) =
1
2

I(α, Ā|αR) , (16)

which is a well-defined quantity in quantum information.
Because of the additivity and normalization, it is quite natural using the PEE to evaluate

the entanglement entropy under the geometric regulator (4). This is similar to the prescription
of [22] using the MI, but the way the PEE approaches the EE should be different from the MI
as they are different quantities. Since the PEE sA(Ai) is defined to capture the contribution
from the subset Ai to SA, it is straightforward to claim that the entanglement entropy SA can
be recovered by collecting contributions from all the degrees of freedom inside A, i.e. taking
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the limit Ai → A for sA(Ai). Note again that the geometric regulator not only excludes the
short distance correlation across the boundary, but also the long range correlations between
the cutoff region and Areg ∪ Āreg .

In the previous literature, the entanglement entropies evaluated from the geometric regu-
lator are usually used to reproduce the results with a UV cutoff. Our discussion on the differ-
ence between the UV regulator and the geometric regulator implies that this matching does not
have a clear physical motivation. Subtleties or ambiguities will appear when we try to do the
matching. For example, the ambiguity to reproduce the entanglement entropy evaluated from
the RT formula using the Rindler method already appears in [28, 57]. In holographic CFTs
the Rindler transformations map the static spherical region 0 < r < R to the Rindler space
0 < u <∞ with infinitely far away boundaries (see section 4 for details). Since the Rindler
transformations are symmetries of the theories, the entanglement entropy for the spherical
region equals to the thermal entropy of the Rindler space. Due to the translation symmetries
in the Rindler space, the entropy density (which is a contour function) is a constant that can be
evaluated holographically. The thermal entropy is then regulated by introducing a cutoff for
the volume of the Rindler spacetime. This is indeed a geometric regulator for the entropy via
the PEE. More explicitly we exclude the contribution from the region u> umax . The region in
the original spacetime that is mapped to u> umax is just R−ε < r < R, where ε is determined
by umax and is infinitesimal when umax is infinitely large. If one take this ε to be the UV cutoff
δ, the results from the Rindler method will not be consistent with those from the RT formula
with the RT surface cut off at z = δ.

Also, in the appendix D.1 of [22], the authors considered a free massless scalar with d = 3
and studied the entanglement entropy for a disk region via the Rindler method. In this case,
the entropy density in the Rindler spacetime can be obtained via the heat kernel method.
Again one can evaluate the entanglement entropy by regulating the volume of the Rindler
spacetime with umax . When mapping back to the original spacetime, this prescription is just
evaluating the entanglement entropy from the PEE with a geometric regulator ε. Expanding
the entanglement entropy with respect to ε, we will find that the term c0 at the order O(ε0) is
not the universal term cscalar

0 in the entanglement entropy with a UV cutoff [57,58]. Instead,
they are related by the following relation,

c0 =
3
2

cscalar
0 . (17)

In [28, 57], this ambiguity was hidden by choosing another cutoff for the volume of the
Rindler spacetime, which we call u′max . It is determined by the requirement that the cutoff
points with u = u′max on the horizon in the Rindler bulk spacetime are mapped to the points
on the RT surface with z = δ. This choice reproduces the entanglement entropy from the RT
formula. However, it is not natural in the Rindler method as it contains further input from
holography. On the field theory side the points with u = u′max are mapped to the points with
r = R− ε with ε 6= δ. In other words, in order to reproduce the entanglement entropy with a
UV cutoff δ, we should collect the contribution from the degrees of freedom in 0< r < R− ε,
with ε and δ related by a relation that is not well understood.

In summary, in a generic configuration entanglement entropies regulated by the UV and
geometric cutoff will not match with each other. The point we want to stress is that the mis-
matching does not indicate that the entanglement entropy regulated by the geometric regu-
lators is not correct. We should not mix between the UV and geometric cutoffs. However, in
some special configurations it is meaningful to conduct this matching. This happens when the
geometric information in the geometric regulator can be characterized by a single parameter.
For example, the spherical regions and infinitely long strips with the width of the cutoff regions
being a constant ε. See section 6 for an explicit example.
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3.2 Subtleties in the ALC proposal in higher dimensions

Now we evaluate the entanglement entropy using PEE with a geometric regulator,

SA = I(Areg , Āreg)|Areg→A,Āreg→Ā . (18)

The geometric regularization has the following disadvantages.

• Firstly, the value of the regularized SA depends on how we take the limit, and furthermore
there exists an infinite number of different ways to take the limit.

• Secondly, one can take a similar geometric regularization for SĀ. We may expect the
existence of a “natural” regularization of SĀ in accordance with the one of SA thus the
universal relation SA = SĀ can be satisfied. However, this “natural” regularization for SĀ
is not obvious to us.

• At last in the ALC proposal (12), the left hand side is a finite PEE independent from
the regularization scheme, while the right hand side is a linear combination of diver-
gent entanglement entropies need to be regularized. Although the divergent part of
the entanglement entropies will cancel with each other either we use the UV regulator
or different geometric regulators, the remaining finite terms will indeed depend on the
regularization schemes when we use geometric regulators. The validity of (12) needs a
suitable choice for the regulators.

In 2-dimensional theories, these disadvantages will not manifest since the boundaries are
only points with no geometric information. In higher dimensions, they will severely spoil the
validity of the ALC proposal. In order to avoid the above disadvantages, we will focus on the
configurations satisfying the following requirements:

1. The configuration should have enough symmetries, thus the contour functions only de-
pend on one coordinate.

2. The cutoff region should also respect the symmetries.

3. We will take the suitable regulator for the validity of the ALC proposal. More explicitly,
the subset entanglement entropies should all be evaluated from the PEE under the same
geometric regularization scheme. In other words we should exclude the same class of
local partial entanglement while evaluating all the subset entanglement entropies in
(12).

The first and second requirements gives a natural order for the degrees of freedom in the
system hence eliminate the ambiguities. More importantly this geometric regularization can
be characterized by a single parameter, thus the entanglement entropy evaluated under these
regulators can possibly match with those regularized by UV cutoff (see section 6). We call these
configurations the quasi-one-dimensional configurations. The third requirement is substantial
for the validity of the universal relation of SA = SĀ and solves the subtlety of (12).

How can the relation SA = SĀ be satisfied? We divide the region A= Areg ∪Acut , where Acut

represents the degrees of freedom near the boundary whose contribution is excluded. Also
we conduct a similar decomposition Ā = Āreg ∪ Ācut for Ā. According to the normalization
requirements SA = sA(Areg)|Areg→A, the entanglement entropy SA (or SĀ) can be evaluated by
the PEE under the limits Areg → A (or Āreg → Ā),

SA = sA(A
reg) = I(Areg , Ā) = I(A, Ā)− I(Acut , Ā) , (19)

SĀ = sĀ(Ā
reg) = I(Āreg , A) = I(A, Ā)− I(Ācut , A) . (20)
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It is clear that the above regularization for A and Ā excludes different types of short distance
PEE, hence in general SA 6= SĀ. More explicitly, in the first case Ācut is taken to be vanished,
while in the second case Acut is vanished.

If we want to keep SA = SĀ, it is more natural to fix the region Acut ∪ Ācut when evaluating
the entanglement entropy in both sides, thus

SA = I(Areg , Āreg) = I(Āreg , Areg) = SĀ . (21)

Then the universal relation SA = SĀ is just a limit of the relation (10), where A, B, C can be
taken as Areg , Āreg and Acut∪Ācut respectively. One can take either Acut or Ācut to be vanished as
long as the boundary is contained in Acut ∪ Ācut , hence the divergent contribution is removed.
Although the entanglement entropy is still scheme dependent, the relation SA = SĀ will always
hold as long as the class of short distance PEE we exclude is fixed.

This requirement also solves the subtlety when applying (12). Decomposing the subsets
α,αL ,αR in (12) into the regularized region and cutoff region, for example α = αreg ∪ αcut ,
then the subset entanglement entropies can be written as a PEE, for example,

SαL∪α = I(αreg
L ∪αcut

L ∪α
reg ∪αcut , Āreg ∪ Ācut ∪αreg

R ∪αcut
R ) . (22)

Due to the additivity, the above expression can furthermore be decomposed as a summation of
the PEEs between smaller divided regions, for example I(αreg

L , Āreg). Similarly, we decompose
the other subset entanglement entropies in (12), then we have

1
2

�

SαL∪α + Sα∪αR
− SαL

− SαR

�

= I(α, Ā) , (23)

which exactly reproduces the left hand side of (12) which is totally scheme independent with
no subtlety when α does not share boundaries with A. We summarize that, the validity of (12)
requires that, firstly we should evaluate the subset entanglement entropies using geometric
regulator; secondly, the cutoff region should be the same while evaluating all the subset en-
tanglement entropies.

So far we do not need the configurations to be quasi-one-dimensional. However, in order to
apply the ALC proposal and compare with the known results with a UV cutoff, we will require
the whole configuration, including the theory, regions and regularization scheme, to respect
enough symmetries. For example, see the configuration in Fig. 4 with rotation symmetries.

We should always keep in mind that the subset entanglement entropies in the ALC proposal
should be evaluated by certain limits of the PEEs with the fixed cutoff region. Plugging the
entanglement entropies calculated by, for example the RT formula, into (12) will spoil the
validity of this proposal.

Figure 4: Here both of the region and the geometric regulator respect the rotation
symmetries.
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3.3 Derivative version of the ALC proposal

Figure 5: In the above figure we set A= A1 ∪ A2 ∪ A3 to be an annulus whose inner
and outer radio is R1 and R2. It is divided into three smaller annulues by the two
purple circles.

Here we derive a derivative version of the ALC proposal. We take the spherical shells as a
typical example for the quasi-one-dimensional configurations. For example see Fig. 5, where
the cutoff regions do not show up. The whole configuration respects the rotation symmetries,
and the entanglement contour sA(r) only depends on the radius coordinate. In order to get
the contour function from the ALC proposal, we chose A2 to be an infinitely narrow shell that
covers the region r → r + dr with dr → 0. The area of the (d − 2)-dimensional spherical
surface with unit radius is denoted by

Ωd−2 =
2π

d−1
2

Γ
� d−1

2

� . (24)

Under the limit dr → 0, according to (12) we have

sA(A2) = sA(r)r
d−2Ωd−2dr =

1
2

�

(SA1∪A2
− SA1

)− (SA3
− SA3∪A2

)
�

. (25)

Since the inner boundary of A1 is fixed, SA1
can be written as a function of the radius of its outer

boundary SA1
(r). We can take SA1∪A2

− SA1
as a perturbation of SA1

, i.e. SA1
(r + dr)− SA1

(r).
Similarly SA3

− SA3∪A2
= SA3

(r + dr)− SA3
(r), where we fixed the outer boundary of A3. Then

it is easy to see that,

sA(r) =
1

2rd−2Ωd−2
∂r

�

SA1
(r)− SA3

(r)
�

, (26)

which is the derivative version of the ALC proposal (12). It has been discussed in [37] for
2-dimensional cases.

4 Entanglement contour for spherical regions in CFTs

In this section we derive the entanglement contour for spherical regions in general dimensional
CFTs in the context of AdS/CFT. The derivation will be carried out with the Rindler method
and the fine structure of the entanglement wedge respectively. This contour function is not
only interesting by itself, but also the key ingredient for our derivation of the entanglement
entropy and entanglement contour for spherical shells in the next section.
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The entanglement contour functions for static spherical regions in d-dimensional CFTs has
been proposed in an earlier paper [37] based on certain explicit constructions [59] of bit thread
configurations [45] on the gravity side4. This specific bit thread configuration [59] requires
the bit threads to follow the bulk geodesics normal to the RT surface. However, the bit threads
configurations are highly non-unique and different configurations will give different contours.
Nevertheless, the proposal in [37] coincides with our results.

4.1 Entanglement contour from the Rindler method

The Rindler method is developed in [28] to calculate holographic entanglement entropies for
static spherical regions in the context of AdSd+1/CFTd . Here we focus on the story on the field
theory side, where a static spherical region A is considered in the vacuum state of a CFT on a
d-dimensional hyperplane B. The Rindler method constructs the conformal transformation R
that maps the causal development DA of A to a Rindler spacetime B̃ with infinitely far away
boundary. Since the mapping R is a symmetry transformation, the entanglement entropy SA
is mapped to the thermal entropy SB̃ of the Rindler spacetime. Furthermore, according to
the requirements of PEE, the entanglement structure should also be invariant under R. More
explicitly if B̃i in B̃ is the image of the subset Ai of A under the Rindler transformation R, then
we should have

sA(Ai) = sB̃(B̃i) . (27)

Taking Ai to be an arbitrary site inside A, the above relation gives a unique mapping between
the entanglement contour function of B̃ and the one of A.

The state in the Rindler spacetime B̃ is a thermal state with translation symmetries along
all the spatial directions. Again according to the symmetry requirements, the contour function
in B̃ is just a constant. So we can directly get the contour function sA(r) by mapping the flat
contour in B̃ back to the region A, using the inverse mapping of R5.

In the following we list the metrics on B and B̃, and the Rindler transformation R6 between
them [28],

B : ds2 = −d t2 + dr2 + r2dΩ2
d−2 , (28)

B̃ : ds2 = −dτ2 + R2
�

du2 + sinh2 udΩ2
d−2

�

, (29)

R :
¦

t = R
sinh(τ/R)

cosh u+ cosh(τ/R)
, r = R

sinh u
cosh u+ cosh(τ/R)

©

. (30)

Here R is the radius of the spherical region A. For simplicity we only consider static configura-
tions, thus we set t = τ= 0. The Rindler transformation R then reduces to,

R : r = R tanh
�u
2

�

. (31)

It is clear from (31) that the region 0 ≤ u <∞ in B̃ covers the spherical region 0 ≤ r < R,
which is just the region A we consider.

Like the entanglement entropy, the thermal entropy SB̃ is also divergent due to the infinite
volume of B̃. The next key step of the Rindler method is to regularize SB̃ by regularizing the

4Actually, the relation between the entanglement contour and the bit thread configuration was first pointed out
in a talk by Erik Tonni [60].

5The above argument can explain the idea [31, 61] of identifying the inverse of the local weight function,
which multiplies the local operator T00 in the corresponding modular Hamiltonian KA, as the entanglement contour
function, i.e., KA∝

∫

x∈A
T00

sA(x)
d x d−1.

6To map from B to B̃, the Rindler transformation R should be followed by a Weyl transformation that eliminates
the overall prefactor of the metric in B̃. We did not write it down because it is spurionic [62] thus does not change
the thermal partition function in B̃.
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volume of B̃. In other words we only collect the contribution from the region 0 ≤ u ≤ umax
where umax is the cutoff the volume of B̃. This regulator definitely belongs to the geometric
regulator using PEE. The cutoff region in B̃ is mapped to the region R− ε < r < R, which is
the cutoff region in the original spacetime B. According to (31), umax and ε are related by,

R− ε= R tanh
�umax

2

�

. (32)

Then we work out the contour function sA(r) based on the flat contour function sB̃(u) of
B̃, which is given by

sB̃(u) = C =
SB̃

Volume(B̃)
. (33)

Holographically, the thermal entropy SB̃ equals to the thermal entropy of a (d+1)-dimensional
hyperbolic black hole7 [28]

ds2 =
dρ2

ρ2/L2 − 1
− (ρ2/L2 − 1)dτ̃2 +ρ2(du2 + sinh2 udΩ2

d−2) , (34)

where L = Reβ is the AdS radius, τ̃= e−βτ and β is a constant. Using Wald’s entropy formula
the thermal entropy of the hyperbolic black hole is then given by

SB̃ =
c
6

∫ umax

0

du (sinh u)d−2Ωd−2 . (35)

Here c
6 = a∗d

2Γ (d/2)
πd/2−1 and a∗d is a central charge that characterizes the number of degrees of

freedom in the dual CFT8 [28,71]. Since

Volume(B̃) =

∫ umax

0

du Rd−1(sinh u)d−2Ωd−2 , (36)

we have

C = c
6

1
Rd−1

. (37)

Since the thermal entropy SB̃ equals to the entanglement entropy SA, we have

SA =

∫ R−ε

0

drsA(r)r
d−2Ωd−2 = C

∫ umax

0

duRd−1(sinh u)d−2Ωd−2 . (38)

Plugging (31) (32) and (37) into the above equation we get the contour function for (d − 1)-
dimensional balls with radius R,

sA(r) =
c
6

�

2R
R2 − r2

�d−1

. (39)

7Here we use holography to calculate the thermal entropy SB̃ . The prescription works also for non-holographic
CFTs since there are other methods for the evaluation of the thermal entropy. When d = 2, SB̃ can be calculated
by Cardy-formula without holography. In higher dimensions the thermal entropy can also be evaluated via the
heat kernel approach [63], see for example [22,64]. Furthermore, the Rindler method is also generalized to other
2-dimensional field theories like the warped CFT and field theories invariant under the BMS3 group (BMSFT)
in [65, 66] where the thermal entropy of the Rindler space can be calculated using Cardy-like formulas (see also
[67–70]) as well as holography.

8When d is even, a∗d is just the coefficient of the A-type trace anomaly in the CFT.
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As a consistency check, we consider the d = 2 case. According to (39) we have

SA = 2

∫ r=R−ε

r=0

sA(r)dr =
c
3

log
2R
ε
+O(ε) , (40)

which exactly matches with the entanglement entropy for an interval with length l = 2R eval-
uated by the RT formula or the replica trick. As we have mentioned before, in 2-dimensional
theories, the mixing between the two types of regulators only affects the entanglement entropy
at order O(ε), hence can be omitted. Later we will see that this effect can not be omitted in
higher dimensions.

4.2 Entanglement contour from the fine structure of the entanglement wedge

In the context of AdS3/CFT2, a holographic picture for the entanglement contour of a single
interval was given in [25]. It was shown that the entanglement wedge can be sliced by the
modular slices9, which are two-dimensional surfaces defined as the orbits of the boundary
modular flow lines under the bulk modular flow (the blue surface in the left figure in Fig. 6).
Each modular slice intersects with the interval A on a point P and its RT surface EA on another
point P̃. It was argued that when we apply the replica trick on both of the boundary CFT and
the bulk spacetime, cyclically gluing the point P induces a replica story on the corresponding
modular slice and turns on the conic defect at P̃, which turns on the nonzero contribution to SA
from P̃ following the Lewkowycz-Maldacena prescription [72]. In other words, for any point
P in A, its contribution to SA is represented by its partner point P̃ on EA. Later we will show
that the pair of points P and P̃ are connected by a geodesic normal to EA. This one-to-one
correspondence between the points on A and EA perfectly matches our interpretation of the
entanglement contour. In the same sense, the points in any subinterval Ai in A has partner
points forming a geodesic chord Ei on EA. So the PEE sA(Ai) is just given by

sA(Ai) =
Area (Ei)

4G
. (41)

See the right figure in Fig. 6 for a graphical description of this correspondence and see [25,26]
for more details. Also the similar construction is conducted for WCFT in [36] in the context
of AdS3/WCFT correspondence [67,73].

Here we generalize the above construction to static spherical regions A in higher dimen-
sions. For spherical regions, the modular Hamiltonian is local and generates a local geomet-
rical flow, which we call the modular flow. The modular flow in the Rindler spacetime is
parametrized by the Rindler time. One can extend the Rindler transformations in the bound-
ary field theory to the bulk. The bulk Rinder transformations will map the entanglement
wedge WA of A to a hyperbolic black hole ÞAdSd+1 (34), which can be written as a slicing of
AdS2 spacetime,

ÞAdSd+1 = AdS2 ×Hd−1 . (42)

Here Hd−1 is the (d−1)-dimensional hyperbolic plane. Under the bulk Rindler transformation
the region, A is mapped to a time slice Ã on the boundary of the ÞAdSd+1, while the RT surface
EA is mapped to the horizon ρ = L of the hyperbolic black hole, which we denoted by ẼA.
Since ÞAdSd+1 corresponds to a thermal state, the modular Hamiltonian is just the ordinary
Hamiltonian inÞAdSd+1. In other words the bulk modular flow inWA maps to the time evolution

9Like the Rindler method, the fine structure analysis for the entanglement wedge can also be generalized to the
warped CFT and BMSFTs [36].
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Figure 6: Figures extracted from [54], licenced under CC-BY 4.0. The left figure
shows the slicing of the entanglement wedge with modular slices (the blue surface
with red boundaries). The right figure shows a time slice of the entanglement wedge
and the correspondence between the partial entanglement entropies and geodesic
chords on EA. The purple lines are where the modular slices intersect with the time
slice.

in ÞAdSd+1. The modular slices in ÞAdSd+1 are simply the AdS2 slices at a fixed point on the
hyperbolic plane Hd−1.

The bulk and boundary modular flow in WA can be obtained from the Rindler time in
ÞAdSd+1 by the inverse Rindler transformations, which is a complicated task. Instead of con-
structing the modular slices directly in WA [25], here we study fine structure in the Rindler
ÞAdSd+1 at first. This gives a fine correspondence between the points on Ã and those on ẼA. This
is much simpler since the modular slices in ÞAdSd+1 are just the AdS2 slices. Any pair of points
Ã and ẼA have the same coordinates in Hd−1. This simple fine correspondence in ÞAdSd+1 is
just what maps to the fine correspondence in WA.

Since we consider the static configurations, we take a time slice for both the original and
Rindler spacetime. The modular slices in ÞAdSd+1 intersect with the time slice at lines along the
ρ coordinate (see the dashed purple lines in the right figure of Fig. 7). The fine correspondence
in ÞAdSd+1 straightforwardly shows that the contour function in Ã is flat, which is consistent

Figure 7: The left figure is extracted from [54], licenced under CC-BY 4.0. Here we
have chosen a time slice and fixed all the angular coordinates in the original Poincare
AdSd+1 as well as the hyperbolic black hole ÞAdSd+1 (34). The dashed purple lines are
the intersection between modular slices and the time slice, they are also geodesics
normal to the RT surface EA and the horizon of the hyperbolic black holes ẼA. .
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with our previous statement based on the symmetry requirement. These intersection lines can
also be determined by the following two properties, firstly they intersect with the horizon ẼA

vertically, secondly they are also geodesics in ÞAdSd+1. These two properties are kept by their
images when mapping back to WA. In other words, any point P on A and its partner point P̃
on EA are connected by static geodesics normal to EA (see the dashed purple lines in the left
figure of Fig. 7).

We set the radius of the spherical region A to be R, its RT surface in Poincaré AdSd+1
10 is

then given by

EA : z2 = R2 − r2 . (43)

Using those static geodesics normal to EA, we find that the points with radius r in A correspond
to the points on the RT surface EA with radius r̄ via the following relation

r =
r̄R

p
R2 − r̄2 + R

. (44)

Note that the above relation is independent from the spacetime dimension d.
According to the fine correspondence, we have

sA(r)r
d−2Ωd−2dr =

1
4G

√

√

√ R2 r̄2(d−2)

(R2 − r̄2)d
Ωd−2d r̄ , (45)

where the left-hand side is the PEE of a thin annulus at r with the width dr while the right hand
side is the area of the subregion on the RT surface corresponding to that annulus. Plugging
the fine correspondence relation (44) into the above equation, we immediately get

sA(r) =
1

4G

�

2R
R2 − r2

�d−1

, (46)

which reproduces the result (39) from the Rindler method.

5 Entanglement entropy and entanglement contour for annuli and
spherical shells

Again, in this section we consider the vacuum state of a CFTd on a hyperplane with Poincaré
symmetry. Based on the contour function for spherical regions (39) and the ALC proposal, in
this section we derive the entanglement contour and entanglement entropy for annulus and
spherical shells in CFTd . Firstly we consider the region A to be a disk and its partition into a
concentric smaller disk A1 and an annulus A2, see Fig. 8. Note that, since there are only two
relevant subsets, the ALC proposal (12) reduces to the following equation,

SA2
= SA+ SA1

− 2sA(A1) . (47)

Our strategy to derive the entanglement entropy for annuli is the following

1. Calculate the partial entanglement entropies sA(A1) and evaluate the entanglement en-
tropies SA and SA1

based on the contour function for the spherical region (39). When
evaluating SA (or SA1

), we integrate the contour function from r = 0 to a radius that is
slightly smaller than the radius of A (or A1). This corresponds to the choice of the cut-off
region shown in Fig. 8. Furthermore we fixed the width of all the cutoff regions to be
an infinitesimal constant ε.

10Here we use the following metric ds2 = 1
z2

�

−d t2 + dr2 + r2dΩ2
d−2 + dz2

�

where z is the radius coordinate in
the bulk.
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Figure 8: We consider a disk region A which is divided into a concentric smaller disk
and an annulus A= A1∪A2. The white region bounded by the solid circle boundaries
and the red dashed circles are the cutoff regions when we evaluate the entanglement
entropies SA and SA1

in the ALC proposal. The cutoff region for Ā is taken to be empty.

2. Evaluate the entanglement entropy of the annulus SA2
using (47). Since the validity of

the ALC proposal requires the cutoff region to be the same, the SA2
we get in such a way

is also regularized by the cutoff regions shown in Fig. 8.

3. Then we consider another configuration where an annulus A is subdivided into two
smaller annuli A1 and A2, see Fig. 9. In order to use the entanglement entropy for
annulus we get in the previous step, we choose the cutoff regions at all the boundaries
as in Fig. 9. More explicitly, for either of the two annuli the cutoff region at the outer
boundary is inside the annulus, while the cutoff region at the inner boundary is outside
the annulus, which is the same as Fig. 8. Plugging the entanglement entropy for annuli
into the derivative version of the ALC proposal, then we get the entanglement contour
function for annuli.

4. Based on the contour function for annuli, we evaluate the entanglement entropy for
annuli with other choice of the cutoff regions.

Let us begin with Fig. 8. We set the radius of A to be R2 and the radius of A1 to be R1. The
entanglement contour function for disks is given by (39) with d = 3. So we can easily get the
regularized entanglement entropy for disks A and A2,

SA =

∫ R2−ε

0

c
6

�

2R2

R2
2 − r2

�2

2πr dr =
2πc

3
(R2 − ε)2

ε(2R2 − ε)
,

SA1
=

∫ R1−ε

0

c
6

�

2R1

R2
1 − r2

�2

2πr dr =
2πc

3
(R1 − ε)2

ε(2R1 − ε)
. (48)

The PEE sA(A1) is calculated by

sA(A1) = I(A1, Ā) =

∫ R1

0

c
6

�

2R2

R2
2 − r2

�2

2πr dr =
2πcR2

1

3
�

R2
2 − R2

1

� . (49)

Then according to (47) we can straightforwardly get the entanglement entropy of any annulus
with outer and inner radius being R2 and R1 respectively,

Sannulus =
2πc

3

�

(R2 − ε)2

(2R2 − ε)ε
+
(R1 − ε)2

(2R1 − ε)ε
−

2R2
1

R2
2 − R2

1

�

. (50)
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Figure 9: The partition of an annulus A= A1∪A2 with rotation symmetry. The white
thin annuli are the cutoff regions at each boundary. The width of all the cutoff annuli
is set to be ε.

Note again that, the above result is evaluated under the special choice of the cutoff region
shown Fig. 8.

Then we turn to the configuration in Fig. 9 where A changes to be an annulus. Again we
denote the outer and inner radius of A to be R2 and R1. We divide A into two thinner annuli
A1 and A2 by a circle r = R which satisfies R1 ≤ R≤ R2. Since we will use the formula (50) to
evaluate the entanglement entropies for the subsets A1 and A2, the cutoff regions have been
properly set and fixed as in Fig. 9. Again all the cutoff regions are narrow annuli with the
same width ε. Under this configuration we immediately get,

SA1
=

2πc
3

�

2R2
1

R2
1 − R2

+
(R− ε)2

(2R− ε)ε
+
(R1 − ε)2

(2R1 − ε)ε

�

, (51)

SA2
=

2πc
3

�

2R2

R2 − R2
2

+
(R2 − ε)2

(2R2 − ε)ε
+
(R− ε)2

(2R− ε)ε

�

. (52)

Since R1 and R2 are fixed, SA1
and SA2

are functions of R. Then we plug the above equations
into (26) and get the contour function for a general annulus with its outer and inner radius
being R2 and R1,

sannulus(r) =
1

4πr
∂R

�

SA1
− SA2

�

|R→r =
2c
3

 

R2
2

�

r2 − R2
2

�2 +
R2

1
�

r2 − R2
1

�

2

!

. (53)

We want to stress that, unlike the entanglement entropy the contour function is scheme inde-
pendent. We will always get the contour function (53) as long as the cutoff regions are fixed
while applying the ALC proposal. As was checked in a later paper [27], the PEE (49) coincides
with the one evaluated by the EMI formula (15). The results (50) and (53) for the vacuum
state of CFT are derived based on (49) and the ALC proposal which is also consistent with the
EMI formula. One can also check that they can be reproduced by the EMI formula.

We can take two interesting limits. Firstly, when the inner boundary R1→ 0, the annulus
becomes a disk. As expected the contour function (56) with R1 = 0 recovers the contour
function for spherical regions (39) with d = 3. Secondly, let us set R2 = R1 + L and take the
limit R1→∞ while keeping L finite. Under this limit the annulus becomes a strip of width L,
and the contour function (53) gives the contour function for strips. Let us define x = R1 +

L
2
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hence x = 0 locates at the center of the strip, the contour function is then given by,

sst r ip(x) =
2c
3

�

1
(L − 2x)2

+
1

(L + 2x)2

�

. (54)

Using the entanglement contour function (53), we can also evaluate the entanglement en-
tropy for annuli under other regularization schemes. We consider a regularized region

Areg : {R1 + ε1 ≤ r ≤ R2 − ε2} , (55)

and calculate its contribution to SA. In other words we calculate the PEE sA(Areg) = I(Areg , Ā),
with the cutoff region in Ā vanishes. This is different from our previous schemes. Under the
limit ε1,ε2→ 0, we get the regularized entanglement entropy for annuli,

SA = sA(A
reg) =

∫ R2−ε2

R1+ε1

2πrsA(r)dr (56)

=
2πc

3

�

R2
2

2R2 ε2 − ε2
2

−
R2

2

R2
2 − (R1 + ε1) 2

R2
1

2R1ε1 + ε2
1

−
R2

1

(R2 − ε2) 2 − R2
1

�

.

Expanding the above result with respect to ε1,2, we get

SA =
c
6

�

2πR2

ε2
+

2πR1

ε1
− 4π

�

R2
2 + R2

1

�

�

R2
2 − R2

1

� +O(ε1) +O(ε2)

�

, (57)

which satisfies the area law and has a universal O(1) term independent from the choice of ε1
and ε2.

It is easy to extend the above discussion to higher dimensions. Based on the contour
function (39) for balls in general dimensions, we can evaluate the entanglement entropy for
a (d − 1)-dimensional spherical region A with radius R2 in CFTd ,

SA =

∫ R2−ε

0

sA(r)Ωd−2rd−2dr

=
c
6
π

d−1
2

�

2−
2ε
R2

�d−1

2 F̃1

�

d − 1
2

, d − 1;
d + 1

2
;
(R2 − ε)2

R2
2

�

, (58)

where 2 F̃1 (a, b, c, z) = 2F1 (a, b; c; z)/Γ (c) is the regularized hypergeometric function and
ε→ 0 is geometric cutoff. We consider A1 as a smaller concentric spherical region with radius
R1 < R2, and A2 as the spherical shell characterized by R1 < r < R2. Then SA1

is also given by
(58) with R2 replaced by R1. The PEE for sA(A1) is given by

sA(A1) =

∫ R1

0

sA(r)Ωd−2rd−2dr

=
c
6
π

d−1
2

�

2R1

R2

�d−1

2 F̃1

�

d − 1
2

, d − 1;
d + 1

2
;

R2
1

R2
2

�

. (59)

According to (47) we get the SA2
under the regularization scheme shown by a higher dimen-

sional extension of Fig. 8,

SA2
=

c
6
π

d−1
2

�

�

2−
2ε
R2

�d−1

2 F̃1

�

d − 1
2

, d − 1;
d + 1

2
;
(R2 − ε)2

R2
2

�

+
�

2−
2ε
R1

�d−1

2 F̃1

�

d − 1
2

, d − 1;
d + 1

2
;
(R1 − ε)2

R2
1

�

− 2d
�

R1

R2

�d−1

2 F̃1

�

d − 1
2

, d − 1;
d + 1

2
;

R2
1

R2
2

��

. (60)
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Figure 10: This figure shows the entanglement contour function sshel l(r) for spherical
shells with c = 1, R1 = 4, R2 = 6 in d = 3, 4,6, 10 dimensional spacetime.

Then we consider the configuration as a higher dimensional generalization of Fig. 9. Applying
the similar strategy, we can calculate the entanglement contour function for spherical shells
with the inner and outer radius being R1 and R2 via the derivative version of the ALC proposal
(26),

sshel l(r) =
2d−2c

3

�

�

R2

R2
2 − r2

�d−1

+

�

R1

r2 − R2
1

�d−1�

. (61)

The above result is obviously consistent with our previous result (53) when d = 3. Fig. 10
shows the contour functions for spherical shells in different dimensions.

6 Comparison between the UV and geometric regulators

As we mentioned previously, the entanglement entropy can be evaluated as a limit of PEE with
geometric regulators, which are totally different from the UV regulators. It is quite interesting
to see how these two kinds of schemes are related to each other. The UV cutoff is usually cap-
tured by a single parameter δ that labels the scale where we stop counting the entanglement.
While the geometric cutoff contains much more information about the geometry of the bound-
ary and cutoff region, which is described by more than one parameter. In general these two
schemes cannot be identified by any relations, unless in the special cases where the geometric
information can be captured by one parameter. These include the quasi-one-dimensional con-
figurations with the cutoff regions also respecting the symmetries. In the following, we will
consider the match between these two kinds of schemes for spherical regions and annuli. We
succeed for the spherical regions but fail for the annuli.

6.1 An exact relation between the UV and geometric cutoff for spherical regions

The fine structure of the entanglement wedge gives us a perfect tool to establish the relation
between these two regularization schemes. According to the fine structure we established
previously, the contribution from any point P in the spherical region is given by its partner point
P̃ on the RT surface. The z coordinate of P̃ furthermore implies that this contribution from
P can be effectively taken as a contribution from a definite energy scale. In other words, the
contour function in the spatial space indeed corresponds to a contour function in the energy-
momentum space due to this fine correspondence. This is quite special. If we let P approach
the boundary with an infinitesimal distance ε, the z coordinate of its partner point P̃ will
also approach an infinitesimal value δ, which is related to ε under the fine correspondence.
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Imposing a geometric cutoff for the spherical region at the radius coordinate with ε equates
to imposing a UV cutoff at δ.

Then we work out the explicit relation between δ and ε. In the case of static spherical
region with radius R, let us consider the points with r = R−ε in the spherical region, according
to the fine correspondence (44) we have

R− ε=
r̄R

p
R2 − r̄2 + R

, r̄ =
p

R2 −δ2 , (62)

where r̄ is the radius coordinate of the partner points on the RT surface with the z coordinate
denoted as δ. This gives an exact relation between the geometric and UV cutoffs

ε=
R
�

R+δ−
p

(R2 −δ2)
�

R+δ
= δ−

δ2

2R
+
δ3

2R2
−

3δ4

8R3
+

3δ5

8R4
+O

�

δ6
�

. (63)

Note that the above relation is independent of d hence works in general dimensions.
At the leading order ε∼ δ, hence the leading area contribution takes the same formula in

both of the two regularization schemes. Also in two dimensional theories, the entanglement
entropy using the two schemes have the same formula because the difference in sub-leading
order only affects the entanglement entropy at the order O(ε). This justifies the validity of the
ALC proposal in 2-dimensional theories in the previous literature, by directly plugging into the
proposal with the subset entanglement entropies calculated with a UV cutoff.

However, as we mentioned before, in higher dimensions the entanglement entropy evalu-
ated by the Rindler method is expected to deviate from the one evaluated from the RT formula
at all orders except the leading one. The Rindler method has been quite extensively studied
in the previous literature, including several important developments about our understanding
of the holographic entanglement entropy and have a great impact in the community. For ex-
ample the first derivation of the RT formula for some special cases [28] in AdS/CFT and the
original extension of the RT formula to holography beyond AdS/CFT [65] [66]. The devia-
tion also happens to those entanglement entropies [41–43] evaluated from the EMI formula
(15) [27,38].

The concept of the entanglement contour or the PEE is relatively new to the commu-
nity, while the Rindler method and the EMI formula are proposed before the study of the
entanglement contour. Subtleties about the deviation have already shown up in many pa-
pers [22, 28, 38, 43]. When d > 2, then entanglement entropy generically has the following
expansion

SA = cd−2

�

R
δ

�d−2

+ cd−3

�

R
δ

�d−3

+ cd−4

�

R
δ

�d−4

+ · · ·

¨

(−1)
d
2−14c0 log R

δ , even d ,

(−1)
d−1

2 2πc0 , odd d ,
(64)

where R characterize the size of the region, ci are constants and δ is the cutoff. If one naively
takes the geometric cutoff ε as the UV cutoff δ, then the entanglement entropy evaluated under
the two different regularization schemes will deviate at all orders except the leading one. The
deviation at the universal term is even more disturbing because it was proposed to give the
c-function of the theory [71,74]. It is realized in Ref. [22] that the cutoff should be modified
in a certain way [57] in order to match the universal term from the Rindler method to the one
from the holographic calculation. However the physical meaning behind this modification was
not well understood and the prescription can only reproduce the universal term rather than
the entanglement entropy in d > 3.

In this paper, we clarify the difference between the geometric and UV cutoff. Furthermore,
we build the exact relation (63) between them for spherical regions in CFTs in the context
of entanglement contour and its holographic picture. Plugging (63) into the entanglement
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entropy (58) (with R2 replaced by R) for spherical regions, we get exactly the holographic
entanglement entropy for spheres with radius R,

Shol
sphere =

cπ
d−1

2

�

R2

δ2 − 1
�

d−1
2

2F1

�

1
2 , d−1

2 ; d+1
2 ; 1− R2

δ2

�

3(d − 1)Γ
� d−1

2

� . (65)

This gives a perfect interpretation for the deviation.

6.2 Exploration for annulus

In this subsection we compare (56) with the holographic entanglement entropy calculated by
the RT formula [75–79]. Again let us consider the region A2 in Fig. 8, there are two minimal
surfaces for the annulus.

• Two-disk phase: the extremal surface is disconnected and is the union of the RT surfaces
of the two disk A and A2, i.e., EA2

=EA∪ EA1
.

• Hemi-torus phase: the extremal surface is a connected surface of a hemi-torus. The area
of this surface is calculated in [75,79].

The holographic entanglement entropy SA2
is then given by the minimal surface with smaller

area. Note that both of the two areas are infinite, it does not make sense to compare their size
unless they are regularized. The standard regularization scheme used in the RT formula is to
take a cutoff at z = δ in the AdS bulk. Note that this is not the geometric regularization we
discussed in this paper. Under this scheme if we adjust the ratio R2/R1, the minimal surfaces
switch between these two phases at a critical value of the ratio R2/R1 ≈ 2.4. When R2/R1 is
larger than the critical value, the minimal surface will be in the two-disk phase.

In the two-disk phase the entanglement entropy Sh1
A2
= Sholo

A + Sholo
A1

, which expands as

Sh1
A2
=

c
6

�

2πR1

δ
+

2πR2

δ
− 4π+O(δ)

�

. (66)

Note that the MI crossing the annulus vanishes in this phase,

I(A1, Ā) = 0 . (67)

In the hemi-torus phase the holographic entanglement entropy has the following expansion
[75,76,78,79]

Sh2
A2
=

c
6

�

2πR1

δ
+

2πR2

δ
−

4π
p

2κ2 − 1

�

E(κ2)− (1−κ2)K(κ2)
�

+O(δ)
�

, (68)

where κ is a constant determined by the ratio R2/R1

log
R1

R2
= 2κ

√

√1− 2κ2

κ2 − 1

�

K
�

κ2
�

−Π
�

1− κ2|κ2
��

, (69)

and E,K are incomplete or complete elliptic integrals11. If we naively take ε1 = ε2 = ε = δ,
then the entanglement entropy (57) with a uniform geometric cutoff differs from both holo-
graphic entanglement entropies (66) and (68) at the universal term. This is expected as we

11The incomplete elliptic integrals of the first, second and third kind are defined respectively by

F(x |m)≡
∫ x

0

dθ
p

1−m sin2 θ
, (70)

E(x |m)≡
∫ x

0

p

1−m sin2 θdθ , (71)

Π(n, x |m)≡
∫ x

0

dθ

(1− n sin2 θ )
p

1−m sin2 θ
. (72)
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stressed that the geometric regulator and the UV regulator exclude different types of correla-
tions.

Since we choose the geometric regularization scheme that respects the symmetries, the
geometric cutoff ε could be related to the cutoff δ in some way, as in the case of the spherical
regions that we previously discussed. However, this relation in the case of annulus is more
complicated. Firstly, the modular flow is not known, hence we do not know how to conduct
the fine structure analysis of the entanglement wedge. The exact relation between the two
kinds of cutoff cannot be explored following the prescription in the spherical region cases.
Secondly, the two boundaries of the annulus are not symmetric, which means that the cutoff
relations for the outer and inner boundaries are different.

For simplicity we consider the case of stripes in d = 3, where the second complication
is avoided and the relation between δ and ε should be the same for both of the boundaries.
Integrating the contour function (54) from− l

2+ε to l
2−ε, we get the geometrically regularized

entanglement entropy for strips with width l,

Sst r ip =
c
3

L
�

1
ε− l

+
1
ε

�

=
c
3

L
�

1
ε
−

1
l
+O (ε)

�

, (74)

where L is the infinite volume along the extensive direction and ε is the geometric cutoff on
both of the two boundaries. On the other hand, setting δ to be the UV cutoff on both of the
boundaries, we get the holographic entanglement entropy

Shol
st r ip =

c
3

L

 

1
δ
−

2πΓ
�3

4

�2

Γ
�1

4

�2

1
l

!

. (75)

If the two results match with each other, the relation between ε and δ should have the follow-
ing expansion

ε= δ+

 

2πΓ
�3

4

�2

Γ
�1

4

�2 − 1

!

δ2

l
+O

�

δ3
�

. (76)

Then we give two candidate prescriptions to determine the relation between ε and δ simi-
lar to the case of the spherical regions. Due to the translational symmetry along the extensive
direction, we can fix the extensive coordinate and consider a cross section of the entanglement
wedge, hence the RT surface reduces to a curve in the (z, x) plane. The first prescription is
to use the geodesics in AdS that are normal to the RT surface to determine the fine corre-
spondence. More explicitly, we consider a geodesic emanating vertically from some point with
z = δ on the curve, this geodesic will intersect with the boundary at x = l

2 −ε. Then we get a
relation between ε and δ that has the following expansion

ε= δ−
πΓ
�3

4

�2

6Γ
�5

4

�2

δ3

l2
+O

�

δ5
�

, (77)

which is different from the expected relation (76). Another disadvantage for the geodesic
prescription is that it is not possible to build a family of non-intersecting geodesics normal to
the RT surface of the strip when d > 3 [59].

And the complete elliptic integrals of the first, second and third kind are given by

K(m) = F(
π

2
|m) , E(m) = E(

π

2
|m) , Π(n, m) = Π(n,

π

2
|m) . (73)
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The second prescription is to use the curves as the cross-section of the RT surfaces of strips
to establish the fine correspondence. Note that these cross-section curves are not geodesics in
the bulk. Again these curves are also required to be normal to the RT surface of the strip we
consider. Then we find the following relation

ε=

p
πΓ
�7

4

�

3Γ
�5

4

� δ−
2πΓ

�3
4

�2

3Γ
�1

4

�2

δ3

l2
+O

�

δ5
�

. (78)

Here δ and ε differ even at the leading order, hence is obviously inconsistent with the expected
relation (76).

More details about how the vertical geodesics or cross-section curves of the RT surfaces
can be found in Ref. [59]. However the inconsistency between (76) and (77)(78) implies
that neither of the two prescriptions gives the expected fine correspondence between the two
cutoffs.

6.3 Geometric regulator via the reflected entropy and the PEE

As we mentioned in section 1, the reflected entropy is also a natural candidate to regulate the
entanglement entropy. The reason is that when the complement of A∪B becomes infinitesimal,
the area of the EWCS ΣAB that holographically dual to the (half of the) reflected entropy,
approaches the RT surface EA with a cutoff where it anchored on disconnected RT surface
EA∪B. Here we show that this configuration is indeed equivalent to a geometric regulation via
the PEE. The key point which support this equivalence is that the EWCS intersect with EA∪B
vertically, hence EA∪B can be considered as the geodesic connecting a pair of points related by
the fine correspondence. In other words, the EWCS corresponds to a PEE. The explicit relation
between the EWCS and the PEE is studied in [54].

Figure 11: The extension of the EWCS ΣAB intersect with the boundary at two points
P1 and P2 which divide the complement of A∪ B into A′1 ∪ B′1 and A′2 ∪ B′2.

It was shown in [54] that in the canonical purification of the mixed state ρAB the reflected
entropy equals to the so called balanced entanglement entropy (BPE),

1
2

SR(A, B) = BPE(A, B) . (79)

Also in the case of Fig. 11 we have

1
2

SR(A, B) = BPE(A, B) = I(A, B ∪ B′) = I(B, A∪ A′) . (80)

Here A′ = A′1∪A′2 and B′ = B′1∪B′2 are disconnected regions, and the partition (the position of
the two brown partition points) of the complement of A′ ∪ B′ is determined by the following
balance condition

sAA′(A
′
1) = sBB′(B

′
1) , sAA′(A) = sBB′(B) . (81)
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The above requirements are called the balance requirements. We also have sAA′(A′2) = sBB′(B′2)
regarding the fact that the total system is in a pure state. When A′ ∪ B′ approaches the empty
space, according to (80) the BPE(A, B) will approach the entanglement entropy SA or SB with
the cutoff region settled to be A′ or B′.

In the holographic case of Fig. 11, the position of the partition points are just where the
extension ofΣAB anchored at the boundary. The equivalence between the BPE and the reflected
entropy goes beyond the holographic cases. More importantly the BPE can be defined for
generic purifications (like the one in Fig. 11) hence can be considered as a generalization of
the reflected entropy beyond the canonical purification.

7 Conclusion

We give a classification to the geometric regulators under which we can evaluate the entan-
glement entropies by taking certain limits for a well-defined information theoretical quantity.
The quantity we used in this paper is the partial entanglement entropy. We showed that the
geometric regulators exclude different types of correlations from the UV regulators, including
both of the short and long distance correlations. This hence implies that the inconsistency be-
tween entropies evaluated by the two types of regulators is expected in general configurations.
They only match at the leading order. In d ≥ 3 where the sub-leading terms in the expansion
of entanglement entropy do not vanish, the mixing between the regulators will cause severe
confusion. The entanglement entropy with a geometric regulator is very sensitive to the cutoff
region we chose, which usually include geometric information that cannot be characterized by
a single parameter. This sensitivity is expected and should not be understood as an ambiguity
of the entanglement entropy under the geometric regulators.

Like the MI, the PEE is free from divergence and satisfies the property of normalization.
Furthermore, the additional property of additivity makes the PEE a natural quantity to evaluate
the entanglement entropy under a geometric regulator. We demonstrated that the evaluation
of the entanglement entropy using the Rindler method or taking certain limits for the EMI and
the reflected entropy are indeed examples of evaluating entanglement entropy using the PEE
with a geometric regulator. On the other hand the Rindler method and the EMI formula are
also useful to derive the entanglement contour in general dimensional CFTs.

The generalization of the ALC proposal to higher dimensions for quasi-one-dimensional
configurations is a natural step to consider, since all the reasons for the holding of the pro-
posal [25,26,37] in 2 dimensions still hold in higher dimensions. However, there is an impor-
tant subtlety, which is crucial for the validity of the proposal in higher dimensions. Unlike the
2-dimensional configurations, the subset entanglement entropies in the ALC proposal should
all be evaluated as a limit of the PEE with a fixed cutoff region. Naively plugging the entangle-
ment entropies calculated with a UV cutoff into the ALC proposal will spoil the validity of the
proposal. Though the power of the ALC proposal is limited by this subtlety in higher dimen-
sions, it can still be useful. For example, based on the contour function for spherical regions
and the ALC proposal, we derived the contour function for annuli and spherical shells in the
vacuum state of a CFT in general dimensions.

Another subtlety arises when we consider the MI across an annulus. For example, we
consider the configuration in Fig. 8 and assume that the total system is in a pure state, thus
SA2
= SĀ∪A1

. Following the ALC proposal, the linear combination that gives the PEE I(A1, Ā)
coincide with (half of) the MI,

I(A1, Ā) =
1
2

�

SA+ SA1
− SA2

�

=
1
2

�

SĀ+ SA1
− SA1∪Ā

�

=
1
2

I(A1, Ā) . (82)

Since the contour function sA(r) for the disk A is non-vanishing everywhere the linear combi-
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nation for I(A1, Ā) should always be positive for any value of the ratio R2/R1. On the other
hand it is well known that the MI I(A1, Ā) vanishes when the ratio R2/R1 is larger than the
critical value. Then we come up with a puzzle that the same linear combination of entan-
glement entropies will have different values, that depends on whether it is interpreted as the
PEE or the MI. Naively plugging into the holographic entanglement entropies into the ALC
proposal will give us the MI. While the PEE is evaluated under some suitable geometric reg-
ulators. An important lesson we can learn from this is that, any quantity written as a linear
combination of divergent entanglement entropies should also address the corresponding reg-
ularization scheme for the entanglement entropies. The quantity is determined by both the
linear combination and the regularization scheme.

The fine structure analysis of the entanglement wedge gives a holographic picture for the
entanglement contour. For the spherical regions in holographic CFTs, this picture effectively
relates the contribution to SA from a certain site in A to the contribution from a certain scale. In
these quasi-one-dimensional cases with a cutoff region respecting the symmetries, the geomet-
ric information of the geometric regulator indeed can be characterized by a single parameter
as in the UV regulator. Following this correspondence, we found the exact matching between
the entanglement entropy calculated by the RT formula and the one from the Rindler method
in general dimensions. Also we got an explicit relation between the UV cutoff δ and the ge-
ometric cutoff ε. This correspondence gives a thorough interpretation for the inconsistency
between the universal terms from the Rindler method and the RT formula.

We fail in exploring the relation between the UV and geometric cutoffs for annuli. It is not
clear whether the modular Hamiltonian for the annulus is local or not. When the ratio R2/R1
is above the critical value, the PEE and the MI given by the same linear combination deviates
with each other. This difference may be understood from a thorough study about the relation
between the UV and geometric regulators. Like the RT surface of the annulus, this relation
between the two types of regulators may also undergo a phase transition at the critical point.
We hope to come back to this point in future publications.
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