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Abstract

We study how a wide class of Abelian Yang-Baxter deformations of the AdS5 × S5 string
behave at the quantum level. These deformations are equivalent to TsT transformations
and conjectured to be dual to beta, dipole, and noncommutative deformations of SYM.
Classically they correspond to Drinfeld twists of the original theory. To verify this expec-
tation at the quantum level we compute and match (1) the bosonic two-body tree-level
worldsheet scattering matrix of these deformations in the uniform light-cone gauge, and
(2) the Bethe equations of the equivalent model with twisted boundary conditions. We
find that for a generalization of gamma deformations of the BMN string the we are able
to express the S matrix either through a Drinfeld twist or a shift of momenta. For de-
formations of the GKP string around the null-cusp solution we encounter calculational
obstacles that prevent us from calculating the scattering matrix.
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1 Introduction

In the difficult arena of exact results in quantum field theory and string theory the discovery
and development of integrability has provided astonishing insights [1,2]. One of the prime
examples is the free string on AdS5 × S5, receiving attention due to its role in the AdS/CFT
correspondence. Taking this maximally supersymmetric sigma model as a starting point, less
symmetric deformations that still preserve integrability attracted attention. Many of these can
be phrased as Yang-Baxter (YB) deformations [3–5], see [6] for a recent review.

The YB deformations of the AdS5 × S5 string have a multitude of different interpreta-
tions in terms of string theory and AdS/CFT. The so-called inhomogeneous deformations –
building on solutions of the modified (or inhomogeneous) classical Yang-Baxter equation –
lead to trigonometric quantum deformations of the symmetry algebra [7–9]. In contrast, the
homogeneous deformations – based on solutions of the (homogeneous) classical Yang-Baxter
equation (CYBE) – are expected to correspond to Drinfeld twists of the symmetry bialgebra.
This expectation is due to a one-to-one correspondence between solutions to the CYBE and
such Drinfeld twists [10,11]. It is supported by a calculation of the classical monodromy matrix
for various models [12,13].

A subclass of homogeneous YB deformations are the Abelian deformations. Their quantum
theory and its relation to the Drinfeld twist will be the focus of this paper. Abelian deformations
give superstring models, i.e. they are Weyl-invariant [14]. Further, they are the most studied
variety of YB deformations. Examples include the gravity dual of canonical noncommutative
SYM [15–17], Dipole type backgrounds [18,19], Schrödinger geometries [18,20], and most
famously the real β deformation [21–23]. For this last deformation it was also shown that
it can be equally well described by taking the undeformed model and introducing twisted
boundary conditions for the string [22].

Coming to pure AdS5 deformations, in [24] it was conjectured that Abelian deformations
depending on the AdS5 Cartan generators are dual to super Yang-Mills (SYM) theory on non-
commutative spacetimes. The argument was later extended in [25] to arbitrary homogeneous
YB deformations, guided by the expected Drinfeld-twisted symmetry of the deformations and
the fact that noncommutative SYM shows the same behavior of its symmetry algebra.

Concretely, a Drinfeld twist of the symmetry algebra typically changes the S matrix of the
model to

S→ F21SF−1 , (1.1)

where F is the twist matrix that in the case of Abelian deformations with deformation matrix r
schematically takes the form

F = exp(ir) . (1.2)

2

https://scipost.org
https://scipost.org/SciPostPhysCore.5.2.028


SciPost Phys. Core 5, 028 (2022)

More detail will be presented in section 2.3. The central theme of this paper is to calculate the
S matrix for a big class of Abelian deformations and check if the expected statement of the last
two equations holds.

Studies of the quantum theory have been previously done for the three-parameter generaliza-
tion of the real β deformation in two different ways: Firstly, the authors of [26,27] approached
the problem through the use of the undeformed model with twisted boundary conditions. They
implemented these twisted boundary conditions through inserting an appropriate twist matrix
into the transfer matrix. Secondly, the works [28,29] took the Drinfeld twist perspective and
directly implemented one part of the three-parameter deformation at the level of the Lagrangian.
This deformed Lagrangian was then used to calculate the perturbative T matrix; the result
matched the tree-level term of the proposed Drinfeld twist (1.1) of the full S matrix [29].
The authors then used this twisted S matrix to construct the Bethe equations [28]. For this
one-parameter deformation this gives the same result as the twisted boundary conditions
construction of the first papers. In the present paper we want to use the same two angles
to examine the quantum theory of various Abelian deformations. The choice of Abelian
deformations we can treat this way is limited through a complication arising from gauge fixing.

Concrete quantization and S matrix calculations of the AdS5 string require a gauge-fixing
procedure. This inevitably interferes with the symmetry structure of the AdS5 × S5 string:
The full symmetry algebra is psu(2,2|4); after light-cone gauge fixing, for example, only
su(2|2)⊕2

ce ⊂ psu(2, 2|4) is still realized linearly, for the most-used gauge choice of the BMN string.
The problem is that it is only for a gauge-fixed model with a smaller linearly realized symmetry
algebra, that an S matrix can be determined. Now, as argued above, upon deformation we
expect a Drinfeld twist of the full algebra. It is however unclear how the gauge-fixing procedure
interacts with the Drinfeld twist and in particular if the reduced S matrix inherits the twisted
structure from the full theory. Hence, the central question of this paper is

How does gauge fixing affect the expected Drinfeld twist of the S matrix?

The one existing calculation of [29] shows that the twists survives for a particular one-parameter
γ deformation. However this particular deformation does not interact with the light-cone
coordinates of the gauge-fixing, nor does it affect the AdS5 part of the geometry. With this paper
we want to lift these restrictions and answer the question for all possible Abelian deformations
built from the six Cartan generators of the light-cone symmetry algebra su(2|2)⊕2

ce .1

As was done in the two above mentioned works on γ deformations we approach the quantum
versions of the deformed models from two angles. Firstly, we directly compute the tree-level
scattering matrix from the Yang-Baxter-deformed and gauge-fixed Lagrangian. Secondly, we
use the fact that Abelian deformations are equivalently described by the undeformed model
with twisted boundary conditions [12, 22, 33, 34]. These can be implemented with a twist
matrix in the Bethe equations, which then can be compared to the Bethe equations directly
derived from the Drinfeld-twisted S matrix. In the end we will therefore have two independent
checks of the deformed S matrices: a perturbative one of the tree-level term, and an all-loop
one of the Bethe equations.

Our result for the form of the gauge-fixed S matrix is twofold. For most deformations we
find the expected Drinfeld twist, while for a subset of deformations we get an S matrix with
shifted momentum dependence.

Drinfeld twist The first case happens for all deformations with r matrices built from the shift
generators for the AdS5 isometry directions ψ1,2, the S5 isometry directions φ1,2, and

1The inhomogeneous η deformation is also compatible with the BMN light-cone gauge, and moreover can be
combined with the present Abelian deformations. The S matrices for various inhomogeneous deformations were
studied in [7,9,30–32]. The S matrix for the combined deformation presumably readily follows from these results
combined with our present ones.
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the light-cone isometry direction x+. For such a deformation matrix r the gauge-fixed S
matrix is then of Drinfeld-twisted form (1.1) with twist

F = exp
� i

2h r
�

(1.3)

and string tension h. This S matrix matches both the perturbative T matrix of the deformed
Lagrangian and the Bethe equations of the model with twisted boundary conditions. The
shift generators for ψ1,2 and φ1,2 act linearly on the fundamental excitations of the S
matrix; while the shift generator for x+ acts in the twist like the negative worldsheet
Hamiltonian, P+ = −Hws, which matches the expectation from the calculation of the
uniform light-cone gauge. Section 3.1.1 contains the full discussion of this case.

Momentum shift The second case occurs for all terms of the r matrix that include the generator
P− of the light-cone isometry direction x−. For example for an r matrix r = P− ∧ Pν,
where Pν is one of the remaining five Cartan generators, the deformed S matrix takes the
shifted form

S(p1, p2) = S0(p1 − P1
ν , p2 − P2

ν ) , (1.4)

where S0 is the undeformed S matrix and P i
ν acts on the i-th particle. It appears impossible

to express this shift as a Drinfeld twist, as we will explain below. Again this S matrix
matches both the perturbative T matrix of the deformed Lagrangian and the Bethe
equations of the model with twisted boundary conditions. This behavior of deformations
with generator P− does not match the expectation from the uniform light-cone gauge
calculations. The full discussion can be found in section 3.1.2.

Besides these main results we discuss how the S matrix in the model with twisted boundary
conditions needs to receive a correction term that is similar in nature to the momentum shift
from above. It accounts for the twist in the boundary condition for the x+ coordinate and
originates from a necessary modification of the gauge-fixing prescription. More details are
given when we discuss the uniform light-cone gauge in section 2.4 and the calculation for the
model with twisted boundary conditions in section 3.2.

The second part of the paper looks at a second gauge-fixed model, the GKP string. While
the BMN string has its light-cone directions used for gauge fixing lying in AdS5 and S5, the GKP
string has its light-cone directions lying only in AdS5. This choice leads to a different gauge-fixed
theory, which was previously used to calculate the perturbative scattering matrix around its so
called null-cusp solution [35,36]. We investigated the behavior of Abelian YB deformations
in this theory. However we encountered difficulties: both the perturbative treatment of the
deformed model and the twisted boundary condition picture presented difficulties. Already in
the undeformed case the expansion around the non-trivial null-cusp solution required a compli-
cated field redefinition to eliminate an explicit worldsheet dependence of the Lagrangian. This
construction does not survive the deformation of the model, leaving the deformed Lagrangian
explicitly worldsheet-depended and further introducing worldsheet-dependence into the ex-
pressions for the shift generators; this prohibited us to determine any S matrices. Section 4
gives details.

In the next section we start with an introduction to various well-known concepts used
throughout the paper, after which we will head into the actual calculations for the BMN string
in section 3.

2 Prerequisites

Here we will present all basic definitions and derivations that are needed throughout the
different sections of the paper. This includes Abelian Yang-Baxter deformations, Drinfeld twists
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of symmetry algebras, the uniform light-cone gauge and the derivation of the Bethe equations
through the transfer matrix.

2.1 Yang-Baxter deformed string on AdS5 × S5

Usually the string and its Yang-Baxter deformation are written in the coset formulation. We
are only interested in the bosonic part of the theory, so we directly use the bosonic non-linear
sigma-model formulation. The undeformed string action is

−
h
2

∫

d2σ (
q

−det(hγδ)h
αβ − εαβ)GMN∂αx M∂β xN , (2.1)

where h is the string tension, hαβ and εαβ the worldsheet metric and epsilon tensor, and GMN
and x M the AdS5 × S5 metric and coordinate fields.

The Yang-Baxter deformation was introduced through the insertion of an R operator into the
coset action [5,8]. Here we prefer to work directly at the level of the geometry, and introduce
it through the two-tensor r (that we also call r matrix) as follows

−
h
2

∫

d2σ (
q

−det(hγδ)h
αβ − εαβ)(G̃MN + B̃MN )∂αx M∂β xN ,

with G̃ + B̃ =
�

G−1 + r
�−1

.

(2.2)

We represent r on the tangent bundle through the Killing vector representation of psu(2, 2|4) on
super AdS5×S5. The quantities G̃+B̃ describe the metric and B field of the deformed background.
The two-tensor r is antisymmetric and solves the homogeneous classical Yang-Baxter equation

[r12, r13] + [r12, r23] + [r13, r23] = 0 . (2.3)

2.2 Abelian Yang-Baxter deformations and related concepts

Out of the many possible solutions to the CYBE we want to focus on the simplest case, the
Abelian solutions, generating Abelian YB deformations. They are defined as

r =
∑

µν

Γµν Aµ ∧ Aν Aµ, Aν ∈ psu(2,2|4) ,

=
∑

µν

Γµν
�

Aµ ⊗ Aν − Aν ⊗ Aµ
�

,
�

Aµ, Aν
�

= 0 .
(2.4)

One well known example of such an Abelian deformation is the real β deformation corre-
sponding to the Lunin-Maldacena background [21]; we will discuss its S matrix below. For this
deformation the interesting observation was made that it can be equally well described by a
TsT-transformed model [22].

Relation to TsT transformations This relation to TsT transformations is a general result for
all Abelian YB deformations [34].2 Assume xA and xB are target space coordinates whose shift
symmetry gets generated by A and B respectively, i.e. xA→ xA+ε under the action of εA. Then
an Abelian YB deformation with r = Γ A∧ B corresponds to a TsT transformation with steps

1. T dualize in xA ,

2. shift xB → xB + Γ x̃A ,

3. T dualize in x̃A ,

where x̃A is the T dual of xA. The general case of r being a sum of terms is equivalent to a
sequence of such TsT transformations.

2In general, homogeneous deformations are equivalent to non-abelian T duality transformations [37,38].
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Relation to twisted boundary conditions Another discovery through the example of the
β -deformed string is that a YB deformation with again r = Γ A∧B can be equally well described
through the undeformed string with twisted boundary conditions [22]3

xA(Rσ)− xA(0) =:∆xA = −ΓB ,

xB(Rσ)− xB(0) =:∆xB = +ΓA ,
(2.5)

where Rσ is the circumference of the worldsheet cylinder. Here A and B are operators that
read off the charges of the classical field configuration, or quantum state, under consideration.
In other words, the boundary conditions are field configuration (state) dependent. We can
generalize linearly to multi term r =

∑

µν Γµν Aµ ∧ Aν through

∆xµ = −
∑

ν

ΓµνAν . (2.6)

2.3 Drinfeld twists

As we expect that Abelian deformations correspond algebraically to Drinfeld twists, let us give
their basic definition here: Consider the quasitriangular Hopf algebra H over the universal
enveloping algebra U(g) of a Lie algebra g. Denote the coproduct, counit, and antipode of H
with (∆,ε,σ), and its R matrix by R. For details we refer to [39].

Now a Drinfeld twist F =
∑

i f i⊗ fi is an invertible element of U(g)⊗U(g) such that [10,40]

(F ⊗ 1)(∆⊗ 1)F = (1⊗ F)(1⊗∆)F ,

(ε ⊗ 1)F = (1⊗ ε)F = 1⊗ 1 .
(2.7)

It can be used to define a modified (or twisted) quasitriangular Hopf algebra HF with

∆F (X ) = F∆(X )F−1 ,

σF (X ) = uσ(X )u−1 , with u=
∑

i f iσ( fi) ,

εF (X ) = ε(X ) ,

RF (X ) = F21RF−1 , with F21 =
∑

i fi ⊗ f i .

(2.8)

The last relation will be of major interest to us, since the R matrix can typically be viewed
as the scattering matrix of a physical integrable model. We expect the symmetry algebra of the
homogeneous YB-deformed models to be Drinfeld twisted and therefore, generically, their S
matrices to be related to the undeformed ones as the R matrices are in equation (2.8). This
expectation stems from the one-to-one relation between Drinfeld twists and solutions to the
CYBE [10,11], see also [25]. In particular, for Abelian solutions r the corresponding twist is

F = exp
� i

2h r
�

. (2.9)

We have introduced the inconsequential numerical factor 1
2h to ensure a direct match with the

perturbative YB calculation. Note that in this special case F21 = F−1.
One important subtlety here is that we only expect the full symmetry algebra psu(2,2|4)

to be Drinfeld twisted, while only su(2|2)⊕2
ce acts linearly on the S matrix of the gauge-fixed

model. Hence we should distinguish the abstract formal psu(2, 2|4) R matrix which we would
expect to be Drinfeld twisted as described above, from the su(2|2)⊕2

ce -invariant S matrix of the
gauge-fixed model. For the latter it is not a priori obvious that, or how, it inherits this twist –
clarifying this issue is the subject of this paper.

3See [12] for an explicit discussion from a Yang-Baxter model perspective.
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2.4 Uniform light-cone gauge

For the quantization and calculation of the S matrix we fix a uniform light-cone gauge.4 For this
we pick two light-like isometry directions x± to form a light cone – in sections 3 and 4 we will
explicitly state two different choices; these will lead to the BMN and GKP string respectively. For
now we assume we made a choice and work out the general theory. In particular we allow for
twisted boundary conditions of the light-cone directions, i.e. ∆x± 6= 0. The uniform light-cone
gauge is then fixed by going to the first-order formalism and setting

x+ = τ+∆x+
σ

Rσ
, p− = 1 , (2.10)

where p− is the conjugate momentum for x−.
The extra ∆x+ term modifies the usual result for the gauge-fixed Lagrangian. As argued in

appendix A (set ξ= ∆x+
Rσ

) the gauge-fixed Lagrangian takes the form

L∆x+
gf = L0

gf /. ∂σx → ∂σx −
∆x+

Rσ
∂τx ∀ fields x , (2.11)

where /. denotes replacement (as in Mathematica syntax) and L0
gf is the usual gauge-fixed

Lagrangian we get for ∆x+ = 0.
The two light-cone charges get affected by the gauge-fixing as follows: P+ becomes related

to the worldsheet Hamiltonian Hws through

P+ = −Hws (2.12)

and with the gauge-fixing condition eq. (2.10) the generator P− becomes

P− =

∫ Rσ

0

dσ p− = Rσ . (2.13)

The Virasoro constraint C1 is

C1 = pM x ′M = p+x ′+ + p−x ′− + pa x ′a

= p+
1

Rσ
∆x+ + x ′− + pa x ′a

!
= 0 ,

(2.14)

where the index a runs over the directions transverse to the light cone. Integrating over σ
gives the level matching condition:

0=

∫

dσC1 =
∆x+

Rσ
P+ +∆x− − Pws (2.15a)

=⇒ Pws =∆x− +
∆x+

Rσ
P+ , (2.15b)

where we used ∆x− =
∫

dσ x ′− and the total worldsheet momentum Pws = −
∫

dσ pa x ′a.

Alternative algorithm using T duality There is an alternative way of fixing the light-cone
gauge. Instead of going to the first-order formalism and setting the momentum p− = 1, we can
also stay in the second-order formalism and use the isometry property of x− to T dualize in it.
After that, in the T-dual theory, we set x̃− to be a winding mode with x̃− = σ. This gives the
exact same theory as the first-order procedure, but directly in the Lagrangian formalism.

4We closely follow the review [41].
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2.5 Bethe equations

We want to compare the quantum theory of the YB-deformed models and the equivalent model
with twisted boundary conditions. This is easily done at the level of the Bethe equations, as
the boundary conditions can be implemented by an appropriate twist matrix here. We derive
the Bethe equations by using the transfer matrix, following the asymptotic Bethe ansatz as
presented in e.g. [42]. The transfer matrix is defined by5

t(pA) = TrA MA
∏

j SAj(pA, p j) , (2.16)

where the subscript A indicates the action on an auxiliary particle and j runs over all particles
on the Bethe chain. The twist matrix MA encodes possible twisted boundary conditions [26–28].
It is given by

MA = exp

 

i
∑

µ 6=±

∆xµPA
µ

!

, (2.17)

where µ runs over all isometry directions that are twisted and PA
µ only acts on the auxiliary

particle.
The full Bethe equations follow from requiring that the eigenstates |ψ〉 of t satisfy

e−ipkRσ |ψ〉= −t(pk) |ψ〉 , ∀k . (2.18)

Observe that t(pk) becomes, using S12(p, p) = −P12,

t(pk) = TrA MA

∏

j

SAj(pk, p j)

= −TrA MAPAk

∏

∧

j 6=k
Sk j(pk, p j)

= −Mk

∏

∧

j 6=k
Sk j(pk, p j) .

(2.19)

Here the modified product is defined as

∏

∧

j 6=k
Sk j = Skk+1 . . . SkN Sk1 . . . Skk−1 , (2.20)

where N is the total number of particles on the Bethe chain. With this, the Bethe equations
become

eipkRσMk

∏

∧

j 6=k
Sk j(pk, p j) |ψ〉= |ψ〉 , ∀k . (2.21)

In this paper we will not need the auxiliary Bethe equations describing the explicit diagonaliza-
tion of the transfer matrix.

3 Deformed BMN string

We are now coming to the main section of the paper. We first discuss the perturbative calculation
of the scattering matrix of the Abelian Yang-Baxter deformations. The result will split in two
classes, depending on the presence of the light-cone generator P− in the r matrix. After that we

5We use the letter p for both conjugate momenta and physical worldsheet momenta. We hope its meaning is
clear from the context.
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treat the deformation through the equivalent perspective of twisted boundary conditions. We
find a match of both calculations at the level of their Bethe equations. This shows that, if P− is
not present in the r matrix, the Drinfeld-twisted structure of Abelian deformations is preserved
after gauge-fixing and quantization.

Let us start by stating our coordinate choices. For the BMN string we choose to parametrize
AdS5 × S5 through the coordinates and metric

ds2 = −(1+ρ2)dt2 +
1

1+ρ2
dρ2 +

ρ2

1− x2
dx2 +ρ2(1− x2)dψ1

2 +ρ2 x2 dψ2
2

+ (1− r2)dφ2 +
1

1− r2
dr2 +

r2

1−w2
dw2 + r2(1−w2)dφ1

2 + r2w2 dφ2
2 .

(3.1)

We want to choose the light-cone directions to lie in AdS5 and S5. For the light-cone directions
to lie in AdS5 and S5, we pick t and φ, with corresponding isometry generators Pt and Pφ , to
form the light-cone coordinates

x− = φ − t , φ = x+ + 1
2 x− ,

x+ = 1
2(φ + t) , t = x+ − 1

2 x− ,

P− =
1
2(Pφ − Pt) , Pφ =

1
2 P+ + P− ,

P+ = Pφ + Pt , Pt =
1
2 P+ − P− .

(3.2)

We will exclusively use x± and P± from now on. When YB deforming the model we want to
preserve the isometries needed for gauge-fixing. This is the case when the generators in the r
matrix commute with P±. The maximal subalgebra that does so is su(2)4 ⊕R⊕R. Its Cartan
generators are the same as the ones of the full algebra and correspond to the six isometry
directions explicit in the metric

{Pφ1
, Pφ2

, Pψ1
, Pψ2

, P+, P−} , (3.3)

see appendix B for their explicit definition. We are now going to look at Abelian deformations
built from these Cartan generators.

3.1 Abelian Yang-Baxter deformations

We pick Cartan generators Pµ, Pν from the set (3.3) and combine them into a multiparameter r
matrix

r =
∑

µν

Γµν P̂µ ∧ P̂ν , (3.4)

where the antisymmetric matrix Γµν = −Γνµ contains the various deformation parameters.
The hat on the generators indicates that they live in the Killing vector representation, see
appendix B. The indices µ,ν run over all six isometry directions. We use this r matrix to deform
the Lagrangian as described in section 2.1 and gauge fix it as described in section 2.4. We then
switch to coordinates Y aȧ and Zαα̇ that are eigenstates of P̂φ1,2

and P̂ψ1,2
. Their definition is

listed in eq. (B.2) in the appendix. Next we expand the gauge-fixed action to quartic order in
fields, and lastly we use the result to compute the 2→ 2 tree-level T matrix, which is related to
the full S matrix through an expansion in 1

h

S = 1+
i
h

T + . . . . (3.5)

Details of the calculation are laid out in appendix C and [9]. The results for the different parts
of the r matrix split into two classes, depending on whether one of the P̂µ,ν is P̂− or not.
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3.1.1 Deformations not including P−

One-parameter γ deformation We start with the simple one-parameter case

r = Γ P̂φ1
∧ P̂φ2

. (3.6)

This corresponds to the one-parameter version of the γi deformation whose scattering matrix
has been presented in [29]. After following the steps as laid out before our calculation produces
a deformed T matrix of the form

T Γ = T0 + T̂ , (3.7)

where T0 is the T matrix of the undeformed model [41,43]6 and the extra term is

T̂ = −Γ Pφ1
∧ Pφ2

. (3.8)

With the action of Pφ1,2
from eq. (B.7) this gives when acting on two-particle states

T̂
�

�Y11̇Y12̇

�

,= −
�

�Y11̇Y12̇

�

, T̂
�

�Y12̇Y11̇

�

,= −
�

�Y12̇Y11̇

�

,

T̂
�

�Y11̇Y21̇

�

,= +
�

�Y11̇Y21̇

�

, T̂
�

�Y21̇Y11̇

�

,= +
�

�Y21̇Y11̇

�

,

T̂
�

�Y22̇Y12̇

�

,= +
�

�Y22̇Y12̇

�

, T̂
�

�Y12̇Y22̇

�

,= +
�

�Y12̇Y22̇

�

,

T̂
�

�Y22̇Y21̇

�

,= −
�

�Y22̇Y21̇

�

, T̂
�

�Y21̇Y22̇

�

,= −
�

�Y21̇Y22̇

�

,

(3.9)

and 0 otherwise. In [29] eq. (2.16) the four terms on the right-hand side where not presented
explicitly, but they follow from the expression given in eq. (2.14) there. The full T Γ matrix
matches the tree-level expansion of a Drinfeld-twisted full S matrix, as conjectured in [28] and
described in section 2.3

SΓ = F21S0F−1 , with F = exp
�

i
2h
Γ Pφ1

∧ Pφ2

�

. (3.10)

General multi-term r matrix Let us generalize to an arbitrary and possibly multi-parameter
deformation. We choose the r matrix

r =
∑

µν6=−

Γµν P̂µ ∧ P̂ν , (3.11)

where Γµν is an antisymmetric tensor of deformation parameters. The indices µ,ν run over
{φ1,φ2,ψ1,ψ2,+}. We discuss the case µ= − in the next section.

Now we can compute the perturbative T matrix following the steps laid out at the beginning
of this subsection. Using the fact that combining Abelian Yang-Baxter deformations is a linear
operation we disassembled the r matrix in its individual pieces and calculated the resulting T
matrices for each term separately. Assembled back together we get the perturbative result

T Γ = T0 −
∑

µν6=−

ΓµνPµ ∧ Pν , (3.12)

with the generators acting as given in appendix B. The result is clearly not factorizable in the
sense of eq. (2.111) of the review [41].

Again this matches the tree-level expansion of a Drinfeld-twisted full S matrix

SΓ = F21S0F−1 , with F = exp

 

i
2h

∑

µν6=−

ΓµνPµ ∧ Pν

!

. (3.13)

6Even though the definition of Y aȧ and Zαα̇ that the review [41] and we use differs from the definition in [43],
the various bosonic T matrices all coincides.
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It seems justified to assume that this is indeed the form of the full S matrix. However as
mentioned we want to test this assumption by comparing to the equivalent model with twisted
boundary conditions. We will do this comparison at the level of the Bethe equations. Hence
we are now going to use this assumed form for the full YB-deformed S matrix to derive the
corresponding Bethe equations.

Bethe equations In section 2.5 the Bethe equations were laid out for the undeformed model.
Starting again from the transfer matrix t(pA) and using SΓ for the S matrix we get

t(pA) = TrA

∏

j

SΓAj = TrA

∏

j

F jAS0
Aj F
−1
Aj

≡ TrA

∏

j

(F−1
Aj )

2
∏

j

S0
Aj ,

(3.14)

where we used that under spectral equivalence ≡ we have [28,44]

S12F13 ≡ F13S12 ,

F12F13 ≡ F13F12 .
(3.15)

We define and further simplify

NA :=
∏

j

(F−1
Aj )

2 =
∏

j

exp

 

−i
∑

µν6=−

ΓµνPA
µP j
ν

!

= exp

 

−i
∑

µν6=−

ΓµνPA
µ

∑

j

P j
ν

!

= exp

 

−i
∑

µν6=−

ΓµνPA
µPν

!

,

(3.16)

where P j
ν only acts on the j-th particle and Pν on all particles. Again as argued in eq. (2.19) we

get
t(pk) = TrA NA

∏

j

SAj(pk, p j)

= −TrA NAPAk

∏

∧

j 6=k
Sk j(pk, p j)

= −Nk

∏

∧

j 6=k
Sk j(pk, p j) ,

(3.17)

leading to the Bethe equations, cf. eq. (2.21)

eipkRσ exp

 

−i
∑

µν6=−

ΓµνPk
µPν

!

∏

∧

j 6=k
S0

k j(pk, p j) |ψ〉= |ψ〉 , , ∀k . (3.18)

The level-matching condition takes the usual untwisted form

Pws =
∑

j

p j = 0 . (3.19)

We see that we get twisted Bethe equations from the twisted S matrix. In section 3.2 we will
compare this to the Bethe equations derived from the model with undeformed Lagrangian but
twisted boundary conditions on the fields. As shown there the final equations coincide.

11

https://scipost.org
https://scipost.org/SciPostPhysCore.5.2.028


SciPost Phys. Core 5, 028 (2022)

The case Pµ,ν = P+ A comment is in order for the case that r contains P+. From the general
calculations of the light-cone gauge, we know that P+ = −Hws, see section 2.4. The perturbative
calculations performed in the present section explicitly verify that this expectation also holds at
the level of the Drinfeld twist. The generator acts on single particle states |p〉= a†(p) |0〉 of all
particles types as

P+ |p〉= −ωp |p〉 , (3.20)

where ωp =
p

1+ p2 is the worldsheet energy. See appendix B for more details.

3.1.2 Deformations including P−

Next we turn to all terms of the r matrix that contain P−. Let us start with the one-parameter
case and extend to the general case at the end. We pick the r matrix

r = Γ P̂− ∧ P̂ν , ν ∈ {+,φ1,φ2,ψ1,ψ2} , (3.21)

and perform the steps mentioned at the beginning of this section. This leads to a deformed T
matrix of the form

T Γ (p1, p2) = T0(p1 − Γ P1
ν , p2 − Γ P2

ν ) . (3.22)

We assume that we can extend this result to the full S matrix

SΓ (p1, p2) = S0(p1 − Γ P1
ν , p2 − Γ P2

ν ) . (3.23)

Again, we want to check this assumption and the Bethe equations following from it against the
equivalent model with twisted boundary conditions. Before deriving the Bethe equations we
want to derive the form of the full YB-deformed S matrix in eq. (3.23) in an alternative, more
general way.

General argument for a momentum shift Assume that the coordinate xν corresponding to
Pν is an isometry direction (as it is for the present case). As a first step towards showing the
claim (3.23) we observe that the deformed gauge-fixed Lagrangian can be expressed in terms
of the undeformed one with a simple substitution

LΓgf = L0
gf /. ∂σx → ∂σx + Γ P̂ν(x) , ∀ fields x . (3.24)

The argument goes as follows: As explained at the end of section 2.4, gauge fixing takes the
form of a T-duality transform in x− followed by fixing x+ = τ and x̃− = σ. Let us denote these
operations as T−, ι+, ι− respectively and write for the gauge-fixed Lagrangian

Lgf = ι+ι−T−L . (3.25)

Further, an Abelian YB deformations can be expressed as a TsT transformation, as explained in
section 2.2. We express this transformation as

LΓ = T−sΓ x̃−T−L0 , (3.26)

where sΓ x̃− denotes the shift xν→ xν + Γ x̃−. Now combining these two steps the gauge-fixed
deformed Lagrangian is

LΓgf = ι+ι−T−LΓ = ι+ι−T−T−sΓ x̃−T−L0

= ι+ι−sΓ x̃−T−L0

= ι+sΓσι−T−L0 ,

(3.27)
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where we used that T dualizing twice is a no-op, i.e. T−T− = 1. Further, in the last step we
inserted x̃− = σ into the shift, which hence becomes

xν→ xν + Γσ . (3.28)

To finish the argument and identify the undeformed gauge-fixed Lagrangian L0
gf we need to

distinguish two cases:

xν = x+ We give a detailed explanation what happens when we set x+ = τ+Γσ in appendix A.
The bottom line is that due to the general form of the T-dualized Lagrangian we are
able to express the change happening due to the extra Γσ factor also as a replacement
∂σ→ ∂σ− Γ∂τ applied to the undeformed gauge-fixed Lagrangian. Stated as an equation
this means

LΓgf = L0
gf /. ∂σx → ∂σx − Γ∂τx , ∀ fields x . (3.29)

Now using P̂+(x) = −Ĥws(x) = −∂τx , see eq. (B.14), this is exactly our sought for
statement (3.24):

LΓgf = L0
gf /. ∂σx → ∂σx + Γ P̂+(x) , ∀ fields x . (3.30)

xν = φ1,2 or ψ1,2 In this case we can pull ι+ through the shift and identify L0
gf

LΓgf = sΓσι+ι−T−L0 = sΓσL0
gf . (3.31)

Next we use that xν is an isometry direction, and hence only appears with derivatives
acting on it. Effectively the shift (3.28) therefore becomes

∂τxν→ ∂τxν ,

∂σxν→ ∂σxν + Γ .
(3.32)

To find out how this shifts acts on arbitrary fields, even after a change of coordinates,
e.g. to Y aȧ and Zαα̇, we rewrite it using the translation operator P̂ν:

∂σx → ∂σx + Γ P̂ν(x) , ∀ fields x . (3.33)

In this form the statement indeed holds for all fields x of the gauge-fixed Lagrangian in
arbitrary coordinates and allows us to express eq. (3.31) as

LΓgf = L0
gf /. ∂σx → ∂σx + Γ P̂ν(x) , ∀ fields x . (3.34)

We arrive at the claimed statement that the deformed Lagrangian can be recovered from the
undeformed one by a simple shift of ∂σx .

Now for the claimed form of the scattering matrix SΓ , to which LΓgf contributes in two ways.
Firstly, the quadratic part gives the classical free solutions, i.e. the dispersion and asymptotic
wave functions. The shifted form of the Lagrangian, here in momentum space (x(σ)→ x(p)),

LΓgf = L0
gf /. px(p)→ px(p) + iΓ P̂ν(x(p)) (3.35)

tells us that the deformed dispersion relation for classical solutions is

ωΓ (p) =ω0(p+ iΓ P̂ν(x)) (3.36)

and similar for the wave function, which is however p independent for the bosons in the present
case. When transitioning to the quantum theory, the charges do not act by Poisson brackets
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anymore, but rather directly as quantum operators. To get their action on asymptotic states
we therefore have to multiply7 by a factor of i, leading to the deformed dispersion relation for
scattering states8

ωΓ (p) =ω0(p− Γ Pν) . (3.37)

The second contribution ofLΓgf is through its remaining interaction terms, that give us SΓ through
their Feynman rules. Due to the nature of these rules the simple shift of ∂σ or alternatively the
momenta translates to

SΓ ({pi ,ω
Γ
i }) = S0({pi − Γ P i

ν,ω
Γ
i }) , (3.38)

where {pi ,ωi} denotes the set of momenta and energies of all scattering particles. Again we
multiplied the charges by a factor of i. Inserting eq. (3.37) gives

SΓ ({pi}) = SΓ ({pi ,ω
Γ
i (pi)}) = S0({pi − Γ P i

ν,ω
0
i (pi − Γ P i

ν)})

= S0({pi − Γ P i
ν})

(3.39)

as claimed. Note that this analysis may miss subtleties in the quantum theory as it was solely
happening at the level of the classical Lagrangian.9

Expressing SΓ in terms of S0 comes with an interesting consequence: The undeformed
scattering matrix for four particles can be expressed as

S0(p1, p2, p3, p4) = S0(p1, p2)
�

δ(p1 − p3)δ(p2 − p4) +δ(p1 − p4)δ(p2 − p3)
�

, (3.40)

reflecting the momentum conserving property of integrable scattering. Now with relation (3.39)
this becomes for the deformed scattering matrix

SΓ (p1, p2, p3, p4) = S0(p1 − Γ P1
ν , p2 − Γ P2

ν )

×
�

δ(p1 − Γ P1
ν − (p3 − Γ P3

ν ))δ(p2 − Γ P2
ν − (p4 − Γ P4

ν ))

+δ(p1 − Γ P1
ν − (p4 − Γ P4

ν ))δ(p2 − Γ P2
ν − (p3 − Γ P3

ν ))
�

.

(3.41)

Hence we observe that not the momenta pi but their shifted versions pi−Γ P i
ν are conserved. The

physical momenta pi itself jump proportionally to the charge difference.10 For a discussion how
this point derives in the perturbative calculation from evaluating the delta functions responsible
for total momentum and energy conservation, see appendix C. The shift in the momenta also
affects the Yang-Baxter equation, which is now satisfied in shifted form, as obviously inherited
from the regular Yang-Baxter equation satisfied by the undeformed S matrix. Crossing and
unitarity are compatible with the shift.

Bethe equations The Bethe equations are11

eipkRσ
∏

∧

j 6=k
SΓk j(pk, p j) |ψ〉= |ψ〉 , ∀k . (3.42)

7The canonical quantization of P̂( · ) = { · , P} leads to −i[ · , P]. As we want P to act directly on scattering states
|ψ〉, we are only interested in the second term of the commutator multiplied by i.

8Directly calculating the dispersion relation from the quadratic terms of the YB-deformed Lagrangians gives the
same result, as described in appendix C. For the case ν= + the relation for ωΓ becomes recursive, as P+ gives ωΓ ,
see eq. (B.14). The solution is given in eq. (C.6).

9We would like to thank Ben Hoare for pointing this out.
10Standard total momentum conservation in not affected by this due to conservation of the charge Pν.
11In the present case of a shifted momentum dependence of the S matrix we need to replace t(pk) by t(pk− Γ Pk

ν
)

when deriving the Bethe equations from the transfer matrix in eq. (2.18).
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Further expressing SΓ in terms of S0 and introducing the shifted momenta p̄k = pk − Γ Pk
ν gives

ei(p̄k+Γ Pk
ν )Rσ
∏

∧

j 6=k
S0

k j(p̄k, p̄ j) |ψ〉= |ψ〉 , ∀k (3.43)

or alternatively, using P− = Rσ,

eip̄kRσ exp
�

iΓ Pk
ν P−

�

∏

∧

j 6=k
S0

k j(p̄k, p̄ j) |ψ〉= |ψ〉 , ∀k . (3.44)

The level matching turns into

Pws =
∑

j

p j = 0 =⇒
∑

j

p̄ j = −Γ Pν . (3.45)

General multi-term r matrix We can generalize this result to a linear combinations of
deformations

r =
∑

ν

Γ−ν P̂− ∧ P̂ν , (3.46)

where ν ∈ {φ1,φ2,ψ1,ψ2,+}. For such a deformation the scattering matrix is

SΓ (p1, p2) = S0(p1 −
∑

ν

Γ−νP1
ν , p2 −

∑

ν

Γ−νP2
ν ) . (3.47)

The Bethe equation and level matching become in turn

eip̄kRσ exp

�

−i
∑

ν

Γν−Pk
ν P−

�

∏

∧

j 6=k
S0

k j(p̄k, p̄ j) |ψ〉= |ψ〉 , ∀k , (3.48)

∑

j

p̄ j = −
∑

ν

Γ−νPν , (3.49)

where in the first line we used the antisymmetry of Γ−ν. This result will also be compared to the
Bethe equations derived from the model with undeformed Lagrangian but twisted boundary
conditions on the fields in section 3.2. Again the final equations coincide.

Can the shift be expressed as a Drinfeld twist? We want to try to express the shifted S
matrix through a standard Drinfeld twist. For this we rewrite

SΓ (p1, p2) = S0(p1 − Γ P1
ν , p2 − Γ P2

ν )

= e−Γ (P
1
ν
∂
∂ p1
+P2

ν
∂
∂ p2
)S0(p1, p2)e

Γ (P1
ν
∂
∂ p1
+P2

ν
∂
∂ p2
) .

(3.50)

Now compare this to the hypothetical Drinfeld-twisted S matrix

SDrinfeld = e−i Γh (P1
−P2
ν−P1

ν P2
−)S0(p1, p2)e

−i Γh (P1
−P2
ν−P1

ν P2
−) . (3.51)

The important difference is that in the Drinfeld-twisted expression the generators of each term
act on particle 1 and 2, while in the actual expression they both act on the same particle. Hence
it appears impossible to express the shift as a Drinfeld twist.
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3.2 Twisted boundary conditions

Performing an Abelian deformation on the model is classically equivalent to introducing twisted
boundary conditions, see section 2.2. In this section we use this as an independent test of
the results of the previous subsection. We will compute the Bethe equations for the model
with undeformed Lagrangian but twisted boundary conditions and compare them to the Bethe
equations for the deformed Lagrangian with untwisted boundary conditions obtained previously,
finding perfect agreement.

The boundary conditions corresponding to the r matrix (3.4) are

∆xµ = −
∑

ν

ΓµνPν . (3.52)

They imply the twist in the Bethe equations, as described in section 2.5,

MA = exp

 

i
∑

µ6=±

∆xµPA
µ

!

. (3.53)

Further we have to take into account that the presence of an ∆x+ requires us to modify the
gauge fixing. As stated in eq. (2.10), we have to set x+ = τ+ ∆x+

Rσ
σ. This matches the situation

described in appendix A with ξ= ∆x+
Rσ

. This means that the gauge-fixed Lagrangian is of the
shifted form

L∆x+
gf = L0

gf /. ∂σx → ∂σx −
∆x+

Rσ
∂τx . (3.54)

The S matrix becomes by the same argument as in section 3.1.2

S∆x+ = S0({pi −
∆x+

Rσ
P i
+}) (3.55)

and the level matching is, as derived in eq. (2.15b),

Pws =
∑

j

p j
!
=∆x− +

∆x+

Rσ
P+ . (3.56)

Now usually when calculating the S matrix in the decompactification limit we send Rσ→∞.
However doing so in the present case and discarding the 1

Rσ
terms in the S matrix and level

matching would produce a mismatch with the YB case.12 To remedy this mismatch we keep
the 1

Rσ
terms. As the asymptotic Bethe ansatz should account for all non-exponential Rσ

dependence, and further assumes that the scattering particles are well-separated, these terms
become important – it is not necessary to take the strict decompactification limit in the level-
matching and S matrix.

With this reasoning the Bethe equations become

eipkRσ exp

 

i
∑

µ 6=±

∆xµPk
µ

!

∏

∧

j 6=k
S0

k j({pi −
∆x+

Rσ
P i
+}) |ψ〉= |ψ〉 , (3.57)

which through introducing the shifted momenta

p̄k = pk −
∆x+

Rσ
Pk
+ (3.58)

12Explicitly we would miss the ei∆x+Pk
+ term in the Bethe equations (3.59b). Interestingly, in it the 1

Rσ
canceled

with the Rσ in eipkRσ .
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becomes

eip̄kRσ+i∆x+Pk
+ exp

 

i
∑

µ6=±

∆xµPk
µ

!

∏

∧

j 6=k
S0

k j(p̄k, p̄ j) |ψ〉= |ψ〉 (3.59a)

=⇒ eip̄kRσ exp

 

i
∑

µ6=−

∆xµPk
µ

!

∏

∧

j 6=k
S0

k j(p̄k, p̄ j) |ψ〉= |ψ〉 (3.59b)

=⇒ eip̄kRσ exp

�

−i
∑

µ 6=−
ν

ΓµνPk
µPν

�

∏

∧

j 6=k
S0

k j(p̄k, p̄ j) |ψ〉= |ψ〉 . (3.59c)

The level-matching becomes

∑

j

p j =
∑

j

p̄ j +
∆x+

Rσ

∑

j

P j
+

!
=∆x− +

∆x+

Rσ
P+

=⇒
∑

j

p̄ j =∆x− = −
∑

ν

Γ−νPν .
(3.60)

Let us compare to the Yang-Baxter deformations.

Comparison with YB deformations not including P− To compare to the case where the
r matrix does not contain P−, we set Γ−ν = Γν− = 0. Then the Bethe equations (3.59c) and
level-matching condition (3.60) become

eip̄kRσ exp

 

−i
∑

µν6=−

ΓµνPk
µPν

!

∏

∧

j 6=k
S0

k j(p̄k, p̄ j) |ψ〉= |ψ〉 , (3.61)

∑

j

p̄ j = 0 . (3.62)

This matches exactly the results for the YB deformation obtained in eqs. (3.18) and (3.19).

Comparison with YB deformations including P− Now for the case where the r matrix does
contain P−, we set Γ−ν = −Γν− to be the only non-zero entries. This gives

eip̄kRσ exp

 

−i
∑

µ 6=−

Γµ−Pk
µP−

!

∏

∧

j 6=k
S0

k j(p̄k, p̄ j) |ψ〉= |ψ〉 , (3.63)

∑

j

p̄ j = −
∑

ν

Γ−νPν , (3.64)

which again matches the results (3.48) for the YB deformation obtained earlier.

4 Deformed GKP string

The second part of the paper focuses on deformations that are most suitably analyzed in a
different gauge. This results in a model that is related to the GKP string. Our efforts to calculate
the S matrix for the deformations of this model we encountered unsolvable difficulties. Their
nature will be apparent after we describe the S matrix calculation in the undeformed case and
see how it generalizes to the deformed models.
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However, let us start by giving the choice of light-cone directions we start with this time
We want the them to lie purely in AdS5, and hence start with the AdS5 metric

ds2 =
1
z2

� 3
∑

i=0

(dx i)2 + dz2

�

(4.1)

and ignore the S5 part; it will not play any role in the following discussion. As light-cone
directions we choose x0 and x3 with corresponding isometry generators P0 and P3. With this
the light-cone coordinates and generators are

x− = x3 − x0 , x3 = x+ + 1
2 x− ,

x+ = 1
2(x

3 + x0) , x0 = x+ − 1
2 x− ,

P− =
1
2(P3 − P0) , P3 =

1
2 P+ + P− ,

P+ = P3 + P0 , P0 =
1
2 P+ − P− ,

(4.2)

and again we will work with these instead of x0 and x3 from now on. Before we turn to the YB
deformations in a second, we will review the S-matrix calculation in the undeformed case first.

4.1 Calculation of the undeformed S matrix

We present the undeformed calculation as it was done in [35,36]. It will highlight why we will
not be able to calculate an S matrix in the deformed case.

We start by taking the non-linear sigma model for the background eq. (4.1), Wick rotate,
and gauge fix as described in section 2.4.13 Then we introduce the complex coordinate

x = x1 + ix2 x̄ = x1 − ix2 . (4.3)

Now we observe that the gauge-fixed model has the following two solutions

• The ground state solution
z = const , x , x̄ = 0 , (4.4)

which however gives a massless theory. Due to complications arising in the calculation
and interpretation of massless S matrices in two dimensions [45] this classical solution is
not widely used as a starting point for quantization in the literature.

• The null-cusp solution

z =
s

τ

σ
, x , x̄ = 0 , (4.5)

which gives a massive theory, and is related to the GKP string. We will use this solution
as the starting point for the calculation of an S matrix.

The classical solution (4.5) depends on the worldsheet coordinates. Therefore, expanding
around it leads to an inhomogeneous Lagrangian, i.e. one that also depends on the worldsheet
coordinates. This makes the momentum space methods in the usual perturbative calculation of
the S matrix useless. To circumvent this problem we redefine the string coordinates to

z→
s

τ

σ
z , x →

s

τ

σ
x , (4.6)

13The authors of [35] choose the alternative gauge
p
−g gαβ = diag(−z2, z−2). Our choice results in the same

action in the undeformed case.
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and the worldsheet coordinates to

t = lnτ , s = lnσ , dt ds =
dτdσ
τσ

, τ∂τ = ∂t , σ∂σ = ∂s . (4.7)

Now we have the Lagrangian

L=
�

�∂t x + 1
2 x
�

�

2
+

1
z4

�

�∂s x − 1
2 x
�

�

2
+
�

∂tz +
1
2z
�2
+

1
z4

�

∂sz −
1
2z
�2

, (4.8)

that we can expand around the null-cusp solution (4.5), which now reads

z = 1 , x = 0 , (4.9)

and calculate the S matrix as was done in [36].
The crucial point in the success of this calculation is that the rescaling eq. (4.6) removes

the worldsheet dependence of the Lagrangian introduced by the null-cusp solution (4.5). As
we will see, this is no longer given for the various deformed cases we consider next.

4.2 Abelian Yang-Baxter deformations

For the Yang-Baxter deformation we pick two generators Pµ, Pν from the set

{P+, P−, Px , Px̄ , P12} , (4.10)

where P± generate shifts in x±, Px generates shifts in x , Px̄ generates shifts in x̄ , and P12 rotates
the x1-x2 plane. The coordinates x , x̄ are thus eigendirections of P12. We combine two of these
generators into the r matrix

r = Γ Pµ ∧ Pν (4.11)

with deformation parameter Γ . We use the r matrix to deform the Lagrangian as described in
section 2.1, and then proceed as in the previous section 4.1: We gauge fix it as described in
section 2.4 and pick the classical solution derived from the null-cusp solution eq. (4.5). But
then we fail to find a rescaling à la eqs. (4.6) and (4.7) that renders the Lagrangian independent
of the worldsheet coordinates. In the following we discuss why for a few examples of different
Pµ ∧ Pν.

Px ∧ Px̄ The deformed metric and B field are given by

ds2 =
1
z2

dx+ dx− +
z2

z4 + Γ 2
dx d x̄ +

1
z2

dz2 ,

B =
iΓ

z4 + Γ 2
dx ∧ d x̄ .

(4.12)

As in the undeformed case we gauge fix and Wick rotate arriving at the Lagrangian

L= 1
2

�

z4

z4 + Γ 2
|∂τx |2 +

1
z4 + Γ 2

|∂σx |2 + (∂τz)2 +
1
z4
(∂σz)2

�

−
1
2

Γ

z4 + Γ 2
(∂τx∂σ x̄ − ∂σx∂τ x̄) .

(4.13)

The null-cusp solution (4.5) is still a valid solution. If we now rescale the fields x , x̄ and zi by
the null-cusp expression

Æ

τ
σ and change to the worldsheet coordinates s and t as in eq. (4.7),

19

https://scipost.org
https://scipost.org/SciPostPhysCore.5.2.028


SciPost Phys. Core 5, 028 (2022)

we get the Lagrangian

L= 1
2

�

z4

z4 + Γ 2/ τ
2

σ2

�

�∂t x + 1
2 x
�

�

2
+

1

z4 + Γ 2/ τ
2

σ2

�

�∂s x − 1
2 x
�

�

2
+ (∂τz + 1

2z)2 +
1
z4
(∂sz −

1
2z)2

�

−
1
2

Γ/ τσ

z4 + Γ 2/ τ
2

σ2

�

(∂t x + 1
2 x)(∂s x̄ − 1

2 x̄)− (∂s x − 1
2 x)(∂t x̄ + 1

2 x̄)
�

.

(4.14)
We see that the Lagrangian is not homogeneous, i.e. it has worldsheet-dependent terms, and
therefore does not allow a direct computation of the S matrix. We were also not able to find
another field redefinition that removes these terms.

P−∧P12 Analogously to the BMN case, we get a deformed Lagrangian that is a shifted version
of the undeformed one

LΓ = L0 /. {∂σx → ∂σx + Γ x ,∂σ x̄ → ∂σ x̄ − Γ x̄} (4.15)

due to the fields x and x̄ being eigenvectors of P12. The null-cusp solution (4.5) still gives a
valid solution. After rescaling by

Æ

τ
σ and changing to the worldsheet coordinates s and t the

gauge-fixed Lagrangian becomes

LΓ =
�

�∂t x + 1
2 x
�

�

2
+

1
z4

�

�∂s x − 1
2 x ± Γes x

�

�

2
+
�

∂t x + 1
2 x
�2
+

1
z4

�

∂s x − 1
2 x
�2

. (4.16)

We see that the Lagrangian is not homogeneous, i.e. it has worldsheet-dependent terms, and
therefore does not allow a direct computation of the S matrix. Note that due to the coordinate
rescaling we cannot apply the reasoning of section 3.1.2 to derive an S matrix with shifted
momenta from the replacement (4.15). We were also not able to find another field redefinition
that removes these terms. The only field redefinition we found to be useful is

x → exp(−Γes)x , x̄ → exp(Γes) x̄ . (4.17)

However this completely removes the deformation from the Lagrangian and shifts it into the
boundary conditions of the model, giving back the undeformed model with twisted boundary
conditions that we expect from the discussion at the end of section 2.2. In the original
σ coordinates we would be able to express the deformation through a shift of the σ-momenta.
However in these coordinates we do not know the S matrix. In the new s coordinates we do not
know how to handle the deformation sensibly, as it does not give a simple shift, even though
the S matrix is known.

P− ∧ P+ Again the deformed gauge-fixed Lagrangian can be retrieved from the undeformed
one, this time with the replacement14

LΓ = L0 /. ∂σ→ ∂σ − iΓ∂τ . (4.18)

After this shift the deformed Lagrangian has the modified null-cusp solution
√

√τ+ iΓσ
σ

. (4.19)

14The factor of i is due to the Wick rotation.
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Rescaling by this expression instead of
Æ

τ
σ and changing to the worldsheet coordinates s and

t, the gauge-fixed Lagrangian becomes

LΓ = 1
2

1
1+ iΓes−t

�

��

1+ iΓes−t
�

∂t x + 1
2 x
���

1+ iΓes−t
�

∂t x̄ + 1
2 x̄
�

+
1
z4

�

∂s x − 1
2 x − iΓes−t∂t x

��

∂s x̄ − 1
2 x̄ − iΓes−t∂t x̄

�

+
��

1+ iΓes−t
�

∂tz +
1
2z
�2
+

1
z4

�

∂sz −
1
2z − iΓes−t∂tz

�2�
.

(4.20)

Again the Lagrangian is not homogeneous, i.e. it has worldsheet-dependent terms, and therefore
does not allow a direct computation of the S matrix. We were also not able to find another
field redefinition that removes these terms.

Summary It seems that the undeformed Lagrangian is of a particular fine-tuned form that
subsequently allows the redefinitions eqs. (4.6) and (4.7) to remove any worldsheet dependence
introduced through expanding around the null-cusp solution (4.5). Any YB deformation
destroys this fine tuning: Expanding around the (modified) null-cusp solution inevitably
introduces a worldsheet dependence that we were not able to remove by further coordinate
redefinitions. This worldsheet dependence then renders the momentum space methods of the
usual perturbative calculations useless and we are not able to compute a scattering matrix. Of
course we cannot exclude that it is possible to find a coordinate redefinition that circumvents
these problems.

5 Conclusion

We approached the question posed in the introduction How does gauge fixing affect the expected
Drinfeld twist of the S matrix? from two different angles. Firstly, we directly calculated the tree-
level T matrix from the deformed Lagrangian. Secondly, we determined the Bethe equations
for the equivalent undeformed model with twisted boundary conditions. For the BMN string
we find the following S matrices that are in accordance with both approaches:

r matrix not including P− We find an S matrix with Drinfeld twist as in eq. (3.13)

SΓ = F21S0F−1 , with F = exp
�

i
2h

∑

µν ΓµνPµ ∧ Pν
�

, (5.1)

for r matrices (3.11) that contain the non-light-cone shift generators Pφ1,2
, Pψ1,2

or the
light-cone shift generator P+. The latter acts as the worldsheet Hamiltonian, P+ = −Hws,
on the spectrum of the gauge-fixed string.

r matrix including P− We find an S matrix with momentum dependence shifted

SΓ (p1, p2) = S0(p1 −
∑

ν Γ−νP1
ν , p2 −

∑

ν Γ−νP2
ν ) , (5.2)

see eq. (3.47), for r matrices (3.46) that contain the light-cone generator P−.

The first result extends what is known about the one-parameter γi deformation to more
Abelian Yang-Baxter deformations. In particular it matches perfectly with the Drinfeld-twisted
structure found previously for homogeneous Yang-Baxter deformations. The momentum shift
induced by deformations involving the light-cone x− direction has not been observed before
to our knowledge. Interestingly, the resulting S matrix satisfies not the usual, but a shifted
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version of the (quantum) Yang-Baxter equation.15 Of course, our notion of a deformation
involving x− is dependent on the choice of light-cone gauge (coordinates), and hence for e.g.
single-parameter γi deformations, it is always possible to fix a light-cone gauge such that the
deformation does not involve x−. In other words, the momentum shift of the S matrix must be
equivalent to a proper Drinfeld twist at the level of the full energy spectrum at least.16 This
spectral equivalence is not manifest in the Bethe ansatz built on the su(2|2)⊕2

ce S matrix, but in
the quantum spectral curve for e.g. the γi deformation, the deformation parameters and charges
enter in a “symmetric” fashion [46]. Of course, for general multi-parameter deformation it is
impossible to avoid the momentum shift in the S matrix.

The second part of the paper is concerned with the GKP string, see section 4. We tried to
calculate the S matrix and Bethe equations as well, however have to report a negative result. Our
attempts failed because of a worldsheet-dependent field redefinition x →

Æ

τ
σ x that is necessary

already in the undeformed case but does not generalize to the deformed one. More precisely,
while the redefinition is not able to remove all worldsheet dependence from the Lagrangian –
making perturbative calculations impossible – it also causes the symmetry charges to become
worldsheet-dependent themselves. This prevents us from writing down sensible twisted Bethe
equations. So neither the direct perturbative approach, nor the twisted-boundary-condition
approach can be straightforwardly applied.

In future work if would be interesting to investigate the following issues. For Abelian
deformations of the BMN string we treated all possible r matrices consisting of two bosonic
generators that preserve the light-cone isometries needed for gauge-fixing. This leaves us
with r matrices that contain fermionic generators. It would be interesting to study such
fermionic Abelian deformations to clarify if they preserve the light-cone isometries and what
their physical interpretation is. Going beyond the BMN case, we would like to resolve the issues
of the deformed GKP string and find a way to derive its scattering matrix. Another problem
of great interest is the treatment of Abelian (and general YB) deformations which break the
light-cone isometries and hence make the usual light-cone gauge fixing impossible. Finding a
way to nevertheless be able to compute the scattering matrix of these models, or an alternative
quantization approach, would be invaluable for a wide range of applications. Moreover, more
general deformed sigma models are still actively being uncovered, see e.g. [6,47,48], and it
would be insightful to investigate them from an integrable S matrix perspective where possible.
Lastly a connection to the field theory side, in particular a calculation of the spectrum in
(Cartan-twisted) noncommutative SYM and subsequent matching would be highly desirable
for extending the known AdS/CFT dictionary.
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A The effect of fixing x+ = τ+ ξσ

In the light-cone gauge we usually set x+ = τ. In this appendix we want to discuss how setting
x+ = τ+ ξσ, with ξ a free parameter, affects the gauge-fixed Lagrangian and the S matrix.
This situation occurs for the r = P− ∧ P+ YB deformation of section 3.1.2 and for the model
with twisted boundary conditions of section 3.2.

Effect on the Lagrangian Recall that light-cone gauge fixing can be done in the first-order
Hamiltonian formalism or alternatively in the second-order Lagrangian formalism, by T du-
alizing in x− and fixing x+ = τ and x̃− = σ in the resulting Lagrangian. Let us now look at
exactly this T dualized Lagrangian before fixing x+ and x̃−. After fixing the worldsheet metric
it takes the form [49]

LT-dual = −2
p

G − E , (A.1)

where
G = det

�

Gαβ
�

, E = εαβ Eαβ ,

Gαβ =�gMN∂αx M∂β xN , Eαβ =�BMN∂αx M∂β xN ,
(A.2)

and �gMN and �BMN are the T-dual metric and B field. The indices M ,N ∈ {+,−, a} where a
designates the transverse coordinates; and the indices α,β ∈ {τ,σ}. We want to show now
that the effect of setting x+ = τ+ξσ can equally be achieved by keeping x+ = τ but replacing
∂σxa→ ∂σxa − ξ∂τxa. We rewrite17

E = Eτσ − Eστ =�BMN∂τx [M∂σxN] ,

G = GττGσσ − GτσGστ
=�gMN�gOP

�

∂τx M∂τxN∂σxO∂σx P − ∂τx M∂σxN∂σxO∂τx P
�

=�gMN�gOP∂τx M∂σxO∂τx [N∂σx P]

=
1
2
�gMN�gOP∂τx [M∂σxO]∂τx [N∂σx P] ,

(A.3)

where in the last step we used the symmetry of �gMN . We see that the derivative terms come
only in combinations ∂τx [M∂σxN]. Further �gMN is independent of x+ because we require that
x+ is an isometry direction. So to compare the effect of setting x+ = τ+ξσ to the replacement
of derivatives we just need to check the different ∂τx [M∂σxN] terms.

• For ∂τx [+∂σxa] = ∂τx+∂σxa − ∂τxa∂σx+ setting x+ = τ+ ξσ gives the same result as
keeping x+ = τ and replacing ∂σxa→ ∂σxa − ξ∂τxa.

• For ∂τx [a∂σxν] = ∂τxa∂σxν − ∂τxν∂σxa nothing changes in both cases; any extra terms
cancel.

• For ∂τx [−∂σx M] = ∂τx−∂σx M − ∂τx M∂σx− the first term becomes zero upon setting
x− = σ. Therefore the ∂σx M term does not contribute at all.

We see that for G and E fixing x+ differently has the same effect as the mentioned replacement,
so we write for the full Lagrangian (A.1) after inserting x+ = τ and x̃− = σ

Lξgf = L0
gf /. ∂σx → ∂σx − ξ∂τx , ∀ fields x , (A.4)

17Define x [MN] = x MN − xN M .
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where L0
gf is the usual gauge-fixed Lagrangian we get for x+ = τ, i.e. ξ= 0. The Lagrangian

only contains the transverse fields.

Effect on the S matrix We can write the relation from eq. (A.4) in momentum space by
replacing every occurrence of the worldsheet momenta18

Lξ = L0 /. px̃ → px̃ + ξω x̃ , (A.5)

which then gives by the same argument as presented in section 3.1.2 the S matrix

Sξ({pi}) = S0({pi + ξωi}) = S0({pi − ξP i
+}) . (A.6)

B Action of P ’s

The Cartan generators {Pφ1
, Pφ2

, Pψ1
, Pψ2

, P+, P−} of the symmetry algebra of the BMN string
split in two groups: two generators P± associated with the light-cone directions and four
generators Pψ1,2

, Pφ1,2
not associated with them. We give their explicit action in turn. The

latter correspond to shift isometries in the variables ψ1,2,φ1,2 respectively. Their actions on
the coordinate fields is therefore given by

P̂φ1
(φ1) = 1 , P̂φ2

(φ2) = 1 ,

P̂ψ1
(ψ1) = 1 , P̂ψ2

(ψ2) = 1 ,
(B.1)

and 0 otherwise. Next we introduce the coordinates Y aȧ, Zαα̇ which are eigenstates of these
operators. They are defined as19

Y 11̇ =
1
r

�

1−
p

1− r2
�p

1−w2e−iφ1 , Y 12̇ =
1
r

�

1−
p

1− r2
�

we−iφ2 ,

Y 22̇ =
1
r

�

1−
p

1− r2
�p

1−w2e+iφ1 , Y 21̇ =
1
r

�

1−
p

1− r2
�

we+iφ2 ,

Z33̇ =
1
ρ

�

−1+
Æ

1+ρ2
�p

1− x2e−iψ1 , Z34̇ =
1
ρ

�

−1+
Æ

1+ρ2
�

xe−iψ2 ,

Z44̇ =
1
ρ

�

−1+
Æ

1+ρ2
�p

1− x2e+iψ1 , Z43̇ =
1
ρ

�

−1+
Æ

1+ρ2
�

xe+iψ2 .

(B.2)

The action of the shift operators becomes

P̂φ1
(Y 11̇) = −iY 11̇ , P̂φ2

(Y 12̇) = −iY 12̇ ,

P̂φ1
(Y 22̇) = +iY 22̇ , P̂φ2

(Y 21̇) = +iY 21̇ ,

P̂ψ1
(Z33̇) = −iZ33̇ , P̂ψ2

(Z34̇) = −iZ34̇ ,

P̂ψ1
(Z44̇) = +iZ44̇ , P̂ψ2

(Z43̇) = +iZ43̇ .

(B.3)

The corresponding Noether charges for the gauge-fixed model are

Pµ =

∫

dσ pM P̂µ(x
M ) , (B.4)

18Note that ∂τ→ iω and ∂σ→−ip.
19This corresponds to a choice of Y aȧ and Zαα̇ as in the review [41].
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with pM =
∂Lgf,2

∂ (∂τx M ) the conjugate momenta for the gauge-fixed, free Lagrangian. The charges
act through the Poisson bracket, giving back the original generators

P̂µ( · ) =
�

· , Pµ
	

. (B.5)

As we turn to the quantum theory, we use the mode expansions of appendix C to express the
charges through annihilation and creation operators:

Pφ1
=

∫

dp
�

a†
11̇

a11̇ − a†
22̇

a22̇
�

,

Pφ2
=

∫

dp
�

a†
12̇

a12̇ − a†
21̇

a21̇
�

,

Pψ1
=

∫

dp
�

a†
33̇

a33̇ − a†
44̇

a44̇
�

,

Pψ2
=

∫

dp
�

a†
34̇

a34̇ − a†
43̇

a43̇
�

,

(B.6)

where the p dependence of the operators is hidden. Using [aM Ṁ (p), a†
NṄ
(q)] = δM

N δ
Ṁ
Ṅ
δ(p− q)

with M Ṁ, NṄ running over the indices of Y aȧ and Zαα̇ we calculate the action on single particle
states |Yaȧ〉 ≡ a†

aȧ(p) |0〉 (and similar for Zαα̇)

Pφ1

�

�Y11̇

�

= +
�

�Y11̇

�

, Pφ2

�

�Y12̇

�

= +
�

�Y12̇

�

,

Pφ1

�

�Y22̇

�

= −
�

�Y22̇

�

, Pφ2

�

�Y21̇

�

= −
�

�Y21̇

�

,

Pψ1

�

�Z33̇

�

= +
�

�Z33̇

�

, Pψ2

�

�Z34̇

�

= +
�

�Z34̇

�

,

Pψ1

�

�Z44̇

�

= −
�

�Z44̇

�

, Pψ2

�

�Z43̇

�

= −
�

�Z43̇

�

.

(B.7)

Now for the two light-cone charges. The charge P− after light-cone gauge fixing (see
section 2.4) is

P− =

∫ Rσ

0

dσ pM P̂−(x
M ) =

∫ Rσ

0

dσ p− = Rσ , (B.8)

as we set p− = 1.
As is expected from the light-cone gauge-fixing procedure (see [41]) and also follows from

direct calculation of the YB-deformed T matrices of section 3.1.1, the action of P+ is

P+ = −Hws , (B.9)

where Hws is the worldsheet Hamiltonian. It and the worldsheet momentum are the generators
of worldsheet time and space translations respectively. Their action on arbitrary coordinate
fields is20

Ĥws(x(τ,σ)) = ∂τx(τ,σ) , −P̂ws(x(τ,σ)) = ∂σx(τ,σ) , (B.10)

in position space or

Ĥws( x̃(ω, p)) = iω x̃(ω, p) , P̂ws( x̃(ω, p)) = ipx̃(ω, p) , (B.11)

in momentum space. The associated Noether charges are

Hws =

∫

dσ pM∂τx M =

∫

dpωp a†
M Ṁ

aM Ṁ ,

Pws = −
∫

dσ pM∂σx M =

∫

dp p a†
M Ṁ

aM Ṁ ,

(B.12)

20We define Pws with an extra sign to account for the sign difference in our choice of Fourier modes ei(ωτ−pσ).
This ensures that Pws =

∑

j p j .
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where again we made use of the on-shell mode expansions of appendix C and hide the p
dependence of the quantum operators. Applied to single particle states |p〉= a†(p) |0〉 of all
particles types, this gives

Hws |p〉=ωp |p〉 , Pws |p〉= p |p〉 . (B.13)

For the generator P+ this implies the following two relations that are needed in the main text:

P̂+( x̃) = −ω x̃ , P+ |p〉= −ωp |p〉 . (B.14)

C Details of the perturbative calculation

To calculate the perturbative T matrix we use standard Feynman diagram methods. We
implemented the procedure in Mathematica with the help of the packages FeynRules [50] and
FeynArts [51]. A detailed description of our implementation can be found in app. B of [9]. The
data that is different for the calculations of the present paper is the mode expansion, dispersion
relation and the kinematical factor.

r = Γ Pµ ∧ Pν , Pµ,ν 6= P− The deformation does not affect the quadratic Lagrangian, only the
quartic interaction terms, hence we can use the same data as in the undeformed case.
The mode expansion takes the form (where X M Ṁ stands for Y aȧ and Zαα̇)

X M Ṁ (τ,σ) =
1

4
p
π

∫

dp
p

ωp

�

ei(pσ−ωpτ)aM Ṁ (p) + e−i(pσ−ωpτ)εMNεṀ Ṅ a†
NṄ
(p)
�

,

with ωp =
Æ

1+ p2 . (C.1)

The kinematic factor, that expresses the momentum and energy conservation and reduces
the T matrix dependence from four external momenta to two, is also unchanged

T (p1, p2) =

∫

dp3 dp4δ(p1 + p2 − p3 − p4)δ(ω1 +ω2 −ω3 −ω4) T (p1, p2, p3, p4)

=
ω1ω2

|p1ω2 − p2ω1|
(T (p1, p2, p1, p2) + T (p1, p2, p2, p1)) . (C.2)

r = Γ P− ∧ Pν , ν ∈ {φ1,φ2,ψ1,ψ2} Here the quadratic Lagrangian gets deformed; to be pre-
cise it gets shifted by the expression given in eq. (3.24). This affects the dispersion
relation, makes it dependent on the particle species and leads to

X M Ṁ (τ,σ) =
1

4
p
π

∫

dp





ei(pσ−ωpτ)

Ç

ωM Ṁ
p

aM Ṁ (p) +
e−i(pσ−ωpτ)

Ç

ωNṄ
p

εMNεṀ Ṅ a†
NṄ
(p)



 ,

with ωM Ṁ
p =ω0(p− Γ PM Ṁ

ν ) =
q

1+ (p− Γ PM Ṁ
ν )2 , (C.3)

where PM Ṁ
ν are the eigenvalues of |X M Ṁ 〉 for Pν, see eq. (B.7). The kinematic factor gets

likewise affected by this effective replacement p→ p− Γ Pν:

T (p1, p2) =

∫

dp3 dp4δ(p1 + p2 − p3 − p4)δ(ω1 +ω2 −ω3 −ω4) T (p1, p2, p3, p4)

=
ω1ω2

�

�(p1 − Γ P1
ν )ω2 − (p2 − Γ P2

ν )ω1

�

�

(C.4)

×
�

T (p1, p2, p1 − Γ (P1
ν − P3

ν ), p2 − Γ (P2
ν − P4

ν ))

+ T (p1, p2, p2 − Γ (P2
ν − P3

ν ), p1 − Γ (P1
ν − P4

ν ))
�

.
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The expressions in the last two lines come from the fact that instead of the usual p1 = p3
and p2 = p4 we get

p1 − Γ P1
ν = p3 − Γ P3

ν and p2 − Γ P2
ν = p4 − Γ P4

ν (C.5)

and similarly with 3↔ 4.

r = Γ P− ∧ P+ Again the Lagrangian gets shifted. This time this results in the replacement
p→ p+ Γω. We use the mode expansion

X M Ṁ (τ,σ) =
1

4
p
π

∫

dp
Æ

ω̃p

�

ei(pσ−ωpτ)aM Ṁ (p) + e−i(pσ−ωpτ)εMNεṀ Ṅ a†
NṄ
(p)
�

,

with ωp =
pΓ +

p

1− Γ 2 + p2

1− Γ 2
and ω̃p =

Æ

1− Γ 2 + p2 . (C.6)

The dispersion ωp is the positive energy solution to the shifted relativistic dispersion
equation

−ω2 + (p+ Γω)2 = −1 . (C.7)

The kinematic factor becomes

T (p1, p2) =

∫

dp3 dp4δ(p1 + p2 − p3 − p4)δ(ω1 +ω2 −ω3 −ω4) T (p1, p2, p3, p4)

=
ω̃1ω̃2

|(p1 + Γω1)ω2 − (p2 + Γω2)ω1|
(T (p1, p2, p1, p2) + T (p1, p2, p2, p1)) .

(C.8)

As discussed in section 3.1.2, in both cases that include P−, the interaction Lagrangian, dispersion
relation, and kinematic factor all play together nicely to produce the deformed T matrix

T Γ (p1, p2) = T0(p1 − Γ P1
ν , p2 − Γ P2

ν ) , (C.9)

where T0 is the undeformed result of [41,43].
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