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Abstract

We introduce a systematic mathematical language for describing fixed point models and
apply it to the study to topological phases of matter. The framework is reminiscent of
state-sum models and lattice topological quantum field theories, but is formalised and
unified in terms of tensor networks. In contrast to existing tensor network ansatzes for
the study of ground states of topologically ordered phases, the tensor networks in our
formalism represent discrete path integrals in Euclidean space-time. This language is
more directly related to the Hamiltonian defining the model than other approaches, via
a Trotterization of the respective imaginary time evolution. We introduce our formalism
by simple examples, and demonstrate its full power by expressing known families of
models in 2+1 dimensions in their most general form, namely string-net models and
Kitaev quantum doubles based on weak Hopf algebras. To elucidate the versatility of our
formalism, we also show how fermionic phases of matter can be described and provide
a framework for topological fixed point models in 3+1 dimensions.
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1 Introduction

The phase of a physical model is central to understanding its qualitative properties. Studying
quantum phases of matter has been a major task in physics ever since quantum many-body
theory was first formulated. This work addresses the question of classifying phases, that is,
predicting which phases exist and providing models for each phase. Intuitively speaking, a
phase of matter is an equivalence class of models under local restructuring of the degrees
of freedom, as well as continuous changes which do not change the thermodynamic-limit
behaviour of the model. Over the last more than a quarter of a century, condensed matter
physicists have discovered a wealth of new exotic phases of matter, some of them reflecting
collective states of interacting quantum systems that share little resemblance with the solids,
liquids and gases of our commonplace experience. The study of quantum phases of matter has
gained considerable momentum since the discovery of phases other than symmetry-breaking
phases, known as topologically ordered phases [1].

The equivalence of two models under local restructuring of the degrees of freedom implies
that any quantity we can measure, any defect we can embed, any coupling to another model
we can write down, etc., corresponds to a quantity, defect, coupling, etc. for the other model.
As a consequence, models in the same phase share many important properties, such as, e.g.,
their potential usability for the storage and processing of quantum information, their simu-
latability by a classical computer, or their behaviour concerning thermalisation. That is to say,

3

https://scipost.org
https://scipost.org/SciPostPhysCore.5.3.038


SciPost Phys. Core 5, 038 (2022)

the quest for a solid understanding of phases of matter draws also inspiration and motivation
from practical and technological considerations.

The aim of this work is to classify phases of matter directly on a microscopic level us-
ing so-called fixed-point models, i.e., models that are exactly solvable due to having a zero
correlation length. We hence do not aim at proving a classification directly from a non-fixed-
point definition of phases, but make use of two clear assumptions: First, we assume that every
phase possesses a fixed-point model, and second, we assume that the fixed-point model can be
topologically extended, which means it can be defined on arbitrary manifolds and is invariant
under a notion of homeomorphism. We formalise this using the language of tensor-network
path integrals, which are tensor networks living in Euclidean spacetime. The single defining
feature of tensor-network path integral fixed-point models will be the fulfilment of tensor-
network equations representing a combinatorial analogue of homoemorphisms of spacetime
manifolds. The focus of this work is the systematic construction and comparative study of
tensor-network path integral fixed-point ansatzes, referred to as liquids. Different topological
liquids provide ansatzes for fixed-point models in different dimensions, as well as for different
microscopic degrees of freedom and different geometries of the tensor-network path integral
in spacetime. Liquid models can not only describe bulk phases, but also phases of boundaries,
domain walls, anyon worldlines, and arbitrary other defects.

Let us contrast and compare our formalism with existing approaches to the classification of
phases of matter. In particular in the more mathematically inclined community one approach
is to study abstract data not describing the model directly but only its defects, corresponding to
what is known as a (non-fully extended axiomatic) topological quantum field theory (TQFT) [2].
Most famously, this includes modular tensor categories (MTCs) describing the anyon data for
topological phases in 2+ 1 dimensions [3], but also cobordism data for invertible phases [4].
Those approaches have been specifically successful in targeting also chiral phases. However,
they have the problem that it is hard to know whether given defect data is realised by any
microscopic model, and if so, whether it uniquely specifies the microscopic phase. In contrast,
our work directly addresses explicit microscopic realisations of phases while also providing a
high level algebraic classification. Another well established approach is to study microscopic
commuting-projector fixed-point models such as the Levin-Wen string-net models [5]. While the
importance of providing explicit fixed-point Hamiltonians is undisputed, the latter suffer from
the short coming that the choice and justification of several properties of those Hamiltonian
(as e.g. rotation or reflection symmetries of the input data) models is a bit ad-hoc and does
not follow entirely from fundamental assumptions as is shown by the fact that for any con-
struction there is a whole series of subsequent work generalising the latter step by step. In
contrast, in our formalism, the models only have one single simple defining property, namely
topological invariance, and with a bit of geometric intuition it is straight forward to see what
the most general form of a construction is. A third approach is given by state-sum constructions,
or equivalently lattice TQFT [6]. There one starts with some algebraic structure (such as a fu-
sion category for the Turaev-Viro-Barrett-Westbury construction [7,8]), and then constructs a
discrete partition function with weights depending on local variables on a triangulation. This
clearly has the most similarity with our approach, but there are also several differences. First,
we use the language of tensor networks to formalise state-sums, which equips us with a rig-
orous and clear diagrammatic notation to express different state-sum ansatzes. Second, we
turn the line of reasoning around: Instead of starting with an algebraic/categorical structure,
we start by directly writing down the equations corresponding to topological invariance, and
only compare the result with existing algebraic structures to get inspiration for possible solu-
tions to the equations. Third, we systematically look at the construction of new fixed-point
ansatzes (liquids) which are not directly based on triangulations. A last approach is the study
of so-called MPO-injective PEPS [9]. Even though our approach is based on tensor networks
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as well, the kind of tensor network is quite different from our approach: Whereas projective
entangled-pair states (PEPS) parametrise a (ground) state of a quantum system by a tensor
network in physical space with open physical indices and virtual indices contracted between
the tensors, our tensor-network path integrals in Euclidean spacetime describe a model by its
imaginary-time evolution and have open indices only at a spacial boundary.

There are two main goals and achievements of our manuscript. The first is to establish the
general formalism, and the second is to provide concrete results obtained within the formal-
ism. Let us start with the first area, which is the main focus of this paper, and gives it partly
the character of a review, even though for that, the presentation differs quite significantly
from other literature. One major point is that our approach does not require any sophisticated
maths, all we need is finite arrays of real or complex numbers, Einstein summations and Kro-
necker products. Therefore, we hope that this text is understandable for a very broad physics
and mathematics audience. Moreover, we would like to stress that the logical structure of the
formalism is extremely simple, and the only properties defining our fixed-point ansatz is topo-
logical invariance, along with a Hermiticity condition for standard quantum mechanical mod-
els, as well as a combinatorial spin-statistics relation [10] for models with fermionic degrees of
freedom. Therefore, our line of reasoning makes it easy to understand and generalise existing
fixed-point constructions as far as possible. We also demonstrate how to construct new fixed-
point ansatzes with a little bit of creativity and geometric intuition. A central technical tool in
our formalism are so-called liquid mappings which formalise diagrammatic relations between
different fixed-point ansatzes and allow us to formalise a notion of equivalence. Different, but
equivalent fixed-point ansatzes capture the same phases, but the models representing a phase
might be simpler or practically more useful in one ansatz compared to another. However, it
is also possible to construct new fixed-point ansatzes which potentially capture more general
phases, as we argue in follow-up work [11,12]. This might give rise to a unified microscopic
description of phases with gapped boundary and phases without. We also make it easy to
switch between different types of matter of physical description, such as classical/quantum,
with/without symmetries, fermionic, etc., by simply interpreting the tensor-network diagrams
using a different tensor type [13].

Some more concrete achievements are the following. We propose a very simple fixed-
point path integral on cellulations corresponding to the Kitaev quantum double for weak Hopf
algebras, which has not been known previously. In Refs. [14, 15] a generalisation of quan-
tum double commuting-projector models to (weak) Hopf algebras was formulated, and their
commuting-projector properties were derived. However, a very direct explanation of why
weak Hopf algebras are used in the first place, and which extra properties we should demand,
is still lacking. We provide such an explanation, showing that a combinatorial topological in-
variance is the only property needed to write down all the axioms of those models correctly.
Our approach yields a direct geometric/topological interpretation for the axioms of weak Hopf
algebras and makes it very clear which additional axioms we need to impose, such as both the
algebra and co-algebra being special symmetric Frobenius algebras. Complicated Hopf alge-
bra calculations using Sweedler’s notation become much more human-readable using tensor-
network notation, and can furthermore easily be verified using the geometric/topological in-
terpretation we provide. Finally, the equivalence of string-net and quantum double models
boils down to simple geometric constructions mapping cellulations to triangulations and vice
versa. On a different note, it was also realised in Ref. [16] that in a way classifying topological
phases on a certain level of abstraction is as simple as to write down Pachner-move invariant
simplex tensors. However, there were two things lacking so far to make this point of view
precise, namely the role of the branching structure as well as additional weights such as the
ones coming from the quantum dimensions in the Turaev-Viro-Barrett-Westbury state-sum. We
give a precise argument of why a branching-structure dependence is necessary to get all non-
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trivial fixed-point models, and an exact explanation of where potential weights come from
can be found in follow-up work [11]. We develop a technique to incorporate changes of the
branching structure into the general topological invariance, without getting a huge number of
complicated tensor-network equations. To this end, we extend the liquid from triangulations to
cellulations involving certain non-simplex cells, and introduce branching-structure invariance
via small auxiliary moves involving those non-simplex cells. We demonstrate this technique
in 1+ 1, 2+ 1, and 3+ 1 dimensions. As a last point, we propose a new fixed-point ansatz in
3+ 1 dimensions. It corresponds to an algebraic structure consisting of a (special symmetric
Frobenius) algebra and a fusion category, such that the algebra and category are related in a
way similar to how the algebra and co-algebra are related in a bi-algebra.

An outline of this work is as follows. While this paper clearly focuses on fixed-point mod-
els, Section 2 describes the relation between our fixed-point path integrals to realistic models
coming from condensed-matter physics. To this end, we propose several new definitions and
conjectures on phases in tensor-network path integrals and their relation to Hamiltonian mod-
els via Trotterization. Section 3 then introduces the first examples of liquids as fixed-point
ansatzes, omitting all but the necessary technical details. Sections 4, 6, and 5 then step by
step add technical details and new concepts while still remaining within the simple case of
1+1 dimensions. Section 8 applies the obtained concepts to develop two fixed-point ansatzes
in 2+ 1 dimensions closely related to the string-net and quantum double models. Section 9
demonstrates how fermions are incorporated into the setting, by both using fermionic tensors
and introducing a combinatorial spin structure. Finally, in Section 10, we write down two new
fixed-point ansatzes in 3+ 1 dimensions.

2 Phases in tensor-network path integrals

2.1 Physical systems as tensor networks

At the heart of our approach are tensor networks. A tensor (in the conventional sense) is
simply a multi-dimensional array Ai, j,l,.... Each of the indices i, j, l, . . . can take a finite number
of values, e.g., i ∈ {0, . . . , ni−1}, where ni is called the bond dimension of the index. The values
can be real or complex numbers. The following two operations on tensors are everything one
needs to know to understand the tensor-network aspect of this work. On the one hand, the
tensor product is the entry-wise product of two arrays, yielding an array with indices from both
arrays, acting as

(A⊗ B)i, j,...,k,l,... = Ai, j,... · Bk,l,... . (1)

On the other hand, the contraction is the Einstein summation over two indices with the same
bond dimension, yielding a tensor with those two indices removed, acting as

Ai, j,l,... 7→ ([A]i,l) j,... =
∑

x

Ax , j,x ,... . (2)

Following the familiar Penrose notation, a tensor can be graphically represented by a box with
one line sticking out for each index, e.g.,

A i

j

k
. . .

. (3)

A computation using tensor products and contractions can be represented by a network-like
diagram. For every (copy of a) tensor, we draw (a copy of) the corresponding shape at an
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arbitrary location (possibly rotated or reflected). For every contraction between two indices,
we connect the corresponding lines. E.g., the computation

∑

x ,y,z,w

Ax ,y,i,zA j,y,x ,wBw,z,k (4)

could be represented by

A A

B

i j

k

. (5)

In general, we might also use shapes without labels for tensors. For a more detailed introduc-
tion into tensor networks and the corresponding notation, see, e.g., Section 2.1 in Ref. [17].
We will refer to a purely combinatorial structure of a tensor-network diagram as a network.
The lines corresponding to the contractions will also be called bonds, and the uncontracted
indices are called open indices. Sometimes it will be instructive to distinguish between a ten-
sor itself (consisting of the actual data, i.e., the explicit array), a tensor variable occurring in
a tensor-network diagram without any data (such as A and B for the diagram above), and a
tensor copy occurring in a diagram (such as either of the two copies of A in the diagram above,
or the single copy of B). In cases where there is unlikely going to be confusion, we will often
refer to all three things as tensor. Similarly, we can distinguish between different bond dimen-
sions (the actual number), and bond dimension variables which will sometimes be indicated by
different line styles for the indices in networks. Indices of tensor variables associated to the
with the same bond dimension variable must have the same bond dimension (but not neces-
sarily vice versa), and can therefore be contracted with each other. We will often sloppily refer
to the different bond dimension variables simply as different bond dimensions and believe this
will rather avoid than create confusion.

It is important to stress that we do not use tensor networks in the usual way they are used
to describe many-body systems, namely for representing a (ground) state of a local Hamilto-
nian. For a quantum many-body model in d spacial dimensions, the latter are d-dimensional
tensor networks in physical space, known as PEPS (or MPS for d = 1) [18]. The degrees of
freedom correspond to open (uncontracted) physical indices, whereas virtual indices are con-
tracted neighbouring tensors. In contrast, the tensor networks we use are tensor-network path
integrals. Those are tensor networks which do not have a distinction between virtual and phys-
ical indices, and open indices only occur at places where we choose to cut the network at a
one dimension lower open boundary. A diagram of such a tensor network could look like

, (6)

with open indices only at the 1-dimensional open boundary but no open indices inside the
2-dimensional bulk. For the tensor-network path integrals we have in mind, all the tensors are
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the same, i.e., the model is translation invariant and given by a single tensor, or at least by a
finite system-size independent number of tensors. This allows us to speak of a thermodynamic
limit and of phases of matter.

Tensor-network path integrals provide a unified way to formalise basically any physical
model with a notion of space and locality. For describing the real-time dynamics of a many-
body quantum model, those tensor networks are simply geometrically local quantum circuits
living in spacetime, which are a discrete analogue of the continuous real-time evolution un-
der a Hamiltonian. Also the classical statistical evolution of a local Markovian process can be
formalised by such a spacetime tensor network. It is easy to see that also thermal classical sta-
tistical thermal systems such as the classical Ising model are described by tensor-network path
integrals living in space only, without any need for approximation. With approximation, this
holds also for thermal quantum states. Moreover, ground state properties of a quantum model
are captured by a tensor-network path integral approximating the imaginary-time evolution
living in Euclidean spacetime. Also very different types of models like fermionic or single-
particle models can be captured by tensor-network path integrals, if we do not use arrays of
complex numbers for the individual tensors, but consider more general tensor types [13].

What does it mean for a model to be represented by a tensor-network path integral? Ul-
timately, the predictions we obtain from a model are the results of local measurements. For a
quantum model, the results are the statistics of the measurement outcomes, which are proba-
bility distributions and thus themselves tensors. Also the measurements themselves are speci-
fied by tensors, in the quantum case the positive operator valued measures (POVM) correspond-
ing to the measured observables. The outcome tensor can be obtained from the POVM tensor
and the tensor-network path integral in a simple way: We insert the measurement tensors
into the tensor-network path integral and evaluate it. E.g., a POVM acting on one degree of
freedom is given by a vector of density matrices, hence a 3-index tensor. If we want to obtain
the joint probability distribution over outcomes of a 2-point measurement of the thermal state
of a local spin Hamiltonian in 1 spatial dimension, we have to evaluate a tensor-network like
the following,

, (7)

with periodic boundary conditions. The two red tensors are the POVMs, and their classical
indices stay open. The resulting tensor describes the probabilities of pairs of measurement
outcomes at both places. Every row of tensors corresponds to the imaginary time evolution
with a fixed inverse temperature β , so the described thermal state has inverse temperature 4β .
If we scale the network in both the horizontal spatial direction and the vertical time direction,
we will obtain ground-state measurement outcomes in the thermodynamic limit.

The tensor-network path integrals which can exhibit topological phases are those describ-
ing (classical or quantum) thermal models, but most importantly those representing ground
state properties via the imaginary-time evolution.

2.2 Trotterization

As mentioned in the previous section, tensor-network path integrals can approximate the real-
or imaginary time evolution under a local quantum many-body Hamiltonian. This can be
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done via Trotterization, which is a standard technique in the field of numerical tensor-network
methods using PEPS or MPS. Here we do not use Trotterization to calculate the time evolution
applied to a state, but to obtain a tensor-network path integral for the time evolution itself.
In this section, we will concentrate on the simple case of a 1-dimensional quantum spin chain
with a translation-invariant nearest-neighbour Hamiltonian

H =
∑

i

hi,i+1, (8)

where hi,i+1 is a Hamiltonian acting on two degrees of freedom, applied the spins i and i + 1.
Global properties such as e.g. the boundary conditions are not relevant for the following con-
siderations, which are applied to some small patch in the bulk of the translation-invariant
model. The generalisation of the presented methods to higher dimensions or other local ge-
ometries of Hamiltonian terms is straight-forward.

We can divide the Hamiltonian terms into the ones acting on even-odd site pairs and those
acting on odd-even site pairs as

H =
∑

i

h2i,2i+1 +
∑

i

h2i+1,2i+2 = H1 +H2. (9)

All terms within H1 act non-trivially only on non-overlapping sets of spins and therefore com-
mute. The same holds for H2. H1 and H2 however do not commute, and therefore

ei t(H1+H2) 6= ei tH1 ei tH2 . (10)

We can still use the following Suzuki-Trotter expansion

ei t(H1+H2+...) = lim
n→∞

�

ei t
n H1 ei t

n H2 . . .
�n

(11)

to obtain

ei tH = lim
n→∞

�

∏

i

ei t
n h2i,2i+1

∏

i

ei t
n h2i+1,2i+2 . . .

�n

. (12)

Consider the expression on the right-hand side for a fixed n. It is a product of local operators
acting on a chain of degrees of freedom. ei th/n is a linear operator acting on two spins, so it is
a tensor with 4 indices, two for both input and output of the operator,

ei t
n h → . (13)

With this interpretation, the product of operators becomes a tensor network. E.g., for n = 3,
we get the network

. (14)

The tensor network we are looking for should have the same notion of locality structure as
the continuum time evolution. That is, every tensor should correspond to a finite space-time
volume ∆x ×∆t. So it does not make sense to directly take the above tensor network, as the
time interval corresponding to a tensor scales like 1/n. In addition, this tensor network has a
trivial limit for n→∞

= ei t
n h n→∞

−−−→ 1= . (15)
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Instead, we have to pick a fixed∆t, Trotterize ei∆tH for some n and divide the resulting tensor
networks into spatial unit cells. Evaluating the whole tensor-network patch inside the unit cell
yields the tensor Pn of the tensor network we are looking for. E.g., for n= 3 and∆x consisting
of 4 sites, we can choose

P3

v′w′x ′ y

vwx y

abcde f a′b′c′d ′e′ f ′ =

v w x y

w′ x ′ y
′

v′
f ′

a
b
c
d
e

a′
b′
c′
d ′
e′
f ′

. (16)

For sufficiently large n, the square lattice tensor network

Pn Pn

Pn Pn (17)

then approximates the (imaginary) time evolution of the local Hamiltonian. However, Pn does
not have a sensible large n-limit as well. If we let n → ∞, the number of indices to block
on the right and left, and therefore the bond dimension of those indices, grows with n. More
precisely, the number of blocked indices grows linearly, and thus the bond dimension increases
exponentially with n.

Luckily, experience from numerical algorithms performing time evolution with MPS/PEPS
suggests that this exponentially growing bond dimension can be truncated to a much smaller
bond dimension with only a very small approximation error. Specifically, in numerical algo-
rithms like iTEBD which apply and truncate the Trotterized time evolution to an MPS, we find
that the state after a fixed time ∆t is well approximated by an MPS with bond dimension in-
dependent of the system size (although for very large ∆t this bond dimension might be very
large). Now the crucial observation is that how large the truncated bond dimension is turns
out not to depend essentially on the number n of Trotter steps in which we decompose ∆t,
even though the bond dimension would grow exponentially in n without truncation. This sug-
gests that also the MPO given by the Trotterized∆t time evolution itself can be truncated from
something growing exponentially in n to something essentially independent of n. In particular,
if we apply the time evolution to each first qu-d-it of a product of bell pairs, then the result is
the MPO describing the time evolution itself.

At this point we would like to stress that this consideration is completely different from
the question whether ground states are well approximated by MPS, which has been famously
conjectured for gapped Hamiltonians, and proven in some formulation in 1 + 1 dimensions.
Ground states are obtained by applying the imaginary time evolution for a time t and then
taking the limit t →∞. In contrast, we only consider a fixed time interval ∆t which we do
not ever think of scaling. For such a constant interval, we believe that the time evolution can
be truncated independent from whether the Hamiltonian has a spectral gap and whether we
consider the imaginary- or real time evolution.

In order to make Trotterization into a precise conjecture, we need to take the continuum
limit n →∞. The tensors Pn for different n have different bond dimensions for the indices
on the left and right, and should be considered as vectors in different vector spaces. In or-
der to take the limit, we need to embed all of those vector spaces into one common infinite-
dimensional vector space. To define convergence, this vector space needs to be equipped with
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a norm. In order to make sense of tensor networks formed from those infinite-dimensional
tensors, we the norm needs to be defined for tensors with multiple infinite-bond-dimension
indices, and the contraction and tensor product should be both well-defined and continuous as
a (bi-)linear functions. In other words, the infinite-dimensional tensors need to form a tensor
type [13]. Possible norms which define a tensor type are, e.g., the entry-wise 1-norm,

‖T‖=
∑

a,b,c,...

|Tabc...| , (18)

or a norm enforcing a 1
n decay in every individual index,

‖T‖= max
a,b,c,...

a · b · c · · · |Tabc...| . (19)

Valid tensors are those infinite-dimensional arrays for which the norm is finite.
In order to perform the embedding of the different Pn into one shared infinite-dimensional

normed vector space, we use the concept of invertible domain walls which will be introduced
more thoroughly in Section 2.5. Roughly, an invertible domain wall between two tensor-
network path integrals A and B is a way to rewrite A as B and vice versa via a small set of
tensor-network equations. In our case, we want to rewrite the square-lattice tensor network
given by Pn into one given by some other ePn. A simple type of invertible domain wall consists
in inserting at every bond a resolution of the identity

II−1

a a′
= a′a′aa , (20)

for some invertible matrix I . Pn and ePn are then related by

ePn

v′

v

a a′ =
Pn

(In)−1In

v′

v

a a′ . (21)

Now, our Trotterization conjecture can be formalised as follows. There are tensors ePn inside
some suitable normed (infinite-dimensional) shared vector space forming a tensor type, and
an invertible domain wall between each ePn and Pn, such that the sequence ePn converges,

ePn→ eP . (22)

The square-lattice (infinite-bond-dimension) tensor network eP then exactly represents the
imaginary time evolution, in the sense that evaluating one row of it yields the exact time
evolution operator. A finite bond dimension tensor network can be obtained by simply cutting
eP at a certain bond dimension, which then yields an approximation.

It is easy to see how to generalise the Trotterization procedure to other geometric setups,
such as higher dimensions, higher spatial support of the Hamiltonian terms, or presence of
boundaries or defects of any kind. First we divide the terms into a constant (system-size
independent) number of subsets, such that the terms in one subset all commute with each
other. Then we proceed using the Suzuki-Trotter expansion applied to the division into subsets,
resulting in a tensor network, which we block and truncate into finite unit cells.

2.3 Gapped-path and local-unitary phases of matter for Hamiltonians

In this section, we quickly review conventional notions of phases in Hamiltonian systems.
So-called quantum phases of matter are defined as equivalence classes of local translation-
invariant gapped Hamiltonians H ∈ H. By gapped, we mean that there is an integer g ≥ 0
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called ground state degeneracy and a real number ε > 0 called the gap, such that for every
system size n (greater than some n0), the g lowest eigenvalues of H are separated from the
rest of the spectrum by at least ε, and among each other by βn such that βn→ 0 for n→∞.
Two gapped Hamiltonians H1, H2 ∈H are considered equivalent if there is a continuous path
of gapped Hamiltonians connecting H1 and H2 [1],

eH : [0,1]→H ,

eH(0) = H1, eH(1) = H2 .
(23)

Recall that H contains only gapped Hamiltonians, so all eH(s) for s ∈ [0,1] must be gapped,
otherwise one speaks of a “gap closing” inducing a “phase transition”. If we aim at comparing
two Hamiltonians with different local Hilbert spaces, we can arbitrarily embed both into a
shared local Hilbert space and use the same definition.

The importance of models with a spectral gap comes from the fact that they are ‘generic’
in the following sense. It is believed that for any direction of perturbation, there is a non-zero
perturbation strength such that the perturbed model remains gapped for all perturbations of
smaller strength. This has been proven so far only for perturbations around fixed-point models
of topological order [19]. Consequently, the set of gapped models is an open subset of the space
of all models, and in any few-parameter family of models (i.e., in any phase diagram), there
are either no gapped models at all or they have a non-zero volume.

For generic local many-body Hamiltonians it is very hard to tell whether they possess a
spectral gap, and the general question of the existence of a gap of a certain size has even
shown to be algorithmically undecidable for certain families of Hamiltonians [20]. However,
there is a very simple family of Hamiltonians for which it is very simple to verify the spec-
tral gap, namely commuting-projector Hamiltonians, where the Hamiltonian is −1 times the
a sum of geometrically local projectors which mutually commute. Such Hamiltonians can be
solved exactly analytically, have zero correlation length, and are therefore often referred to as
fixed-point models. Many topological phases (presumably all with gapped boundary) possess
representatives which are fixed-point models.

The gapped-path definition is rather unconstructive which makes it very hard to classify
phases of matter. To naively show that two Hamiltonians are in a different phase, we would
have to look at all different continuous paths connecting them inside the infinite-dimensional
space of local Hamiltonians, and assert whether an algorithmically undecidable property holds
for the models on each path. There is an alternative definition which is much more construc-
tive: Two Hamiltonians are in the same phase if their ground states are related via a finite-
depth local (generalised) unitary circuit [21] (note that this definition is usually used to define
phases of states on their own, however, we need to be careful to define what a “state” even
means in the context of a thermodynamic limit). This definition replaces the continuous path
over tensors by a single set of tensors (forming the circuit). Furthermore, it makes the phys-
ical meaning of phases very clear: Two states in the same phase are the same up to locally
restructuring their degrees of freedom.

It is important to point out that the two presented definitions are not equivalent. In one
direction, it is easy to see that a local unitary circuit gives rise to a continuous gapped path
by conjugating the Hamiltonian with ei tV from t = 0 to t = 1 where eiV = U for each layer
U of the local unitary circuit. However, conversely, a local unitary circuit cannot change the
correlation length of a model, which is possible via a gapped path. If we want to make this
possible in the local-unitary definition as well, we have to allow for some approximation error
in the local unitary equivalence, which has to decrease with the depth of the circuit or the
size of the support of the individual local unitaries. Alternatively, we can directly use a “fuzzy
circuit”, corresponding to the time evolution under a local time-dependent Hamiltonian [22].
In this case, the equivalence has been shown using the notion of quasi-adiabatic evolution [23].
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Even though the gapped-path definition is more general than the exact local-unitary def-
inition, the latter seems to be working if we restrict ourselves to fixed-point models such as
commuting-projector models. There, two models in the same gapped-path phase are usually
observed to be equivalent via a local unitary circuit, and giving the latter is the most common
way of proving phase equivalence of models.

2.4 Spectral gap and phases in tensor-network path integrals

In this and the next section, we will find natural definitions of phases of matter in terms of
tensor-network path integrals, by transferring the definitions from the previous section to this
setting. Before we start with that, let us first argue why tensor-network path integrals are a
particularly natural representation of quantum systems for the study of quantum phases of
matter. The latter describe the ground state properties of Hamiltonians. Such ground states
can be obtained directly from the Hamiltonian by applying the imaginary time evolution to
some initial state vector |x〉 as

lim
β→∞

e−βH |x〉 . (24)

However, for any finite system size, the lowest eigenvalue will not generically have a g-fold
degeneracy, but the “ground states” will have slightly different energies. So, at a particular
system size, e−βH will not converge to a ground state projector with g-dimensional support,
but to the projector on the lowest eigenstate only. We see that in order to talk about ground
states, we do not only have to scale the imaginary time β , but also simultaneously the system
size n. This simultaneous scaling of both imaginary time and space is elegantly featured by
the imaginary-time evolution tensor-network path integral.

The gapped-path definition of phases carries over to the tensor-network path integrals as
follows. A gapped Hamiltonian H yields a gapped imaginary-time evolution operator e−βH ,
just that now the gap separates the largest-magnitude values from the rest of the spectrum. In
n spacetime dimensions, consider an n−1-dimensional constant-time layer of a tensor-network
path integral, such as

(25)

for a square lattice tensor network in 1+ 1 dimensions. Suppose the tensor-network path in-
tegral comes from Trotterizing an imaginary-time evolution. Then this layer, as an operator
from the bottom indices to the top indices, with N tensors and with periodic boundary condi-
tions connecting left to right, approximates e−βH where β is the chosen discretization step in
time direction. Tensor networks of this form are known as projected entangled pair operators
(PEPO), or matrix product operators (MPO) [18] in n− 1 = 1 dimension, and are often called
transfer operator.

From the tensor-network path integral point of view, this notion of gap seems a bit un-
natural as it specifically involves the transfer operator in imaginary time direction. The path
integral lives in Euclidean spacetime, so space and imaginary time should be treated on equal
footing. Instead of demanding a spectral gap of the imaginary-time transfer operator, it is
natural to demand a spectral gap for the tensor network along any n-dimensional curve in
spacetime, interpreted as an operator from one to the other side. Unfortunately, this has the
technical problem that the indices (and thus the Hilbert spaces) on the two sides of an arbi-
trarily curved transfer operator can be different, and hence we cannot talk about eigenvalues.
In the following, we give a definition which we believe is the natural tensor-network path in-
tegral analogue to the spectral gap of Hamiltonians. It is based on the observation that for a
gapped Hamiltonian for intrinsic robust topological order on a sphere, the normalised opera-
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tor e−βH gets exponentially close to becoming a rank-1 operator in the ‘width’ β of the transfer
operator.

For a more formal definition in n spacetime dimensions, we consider an annulus network A,
i.e., a patch of a translation-invariant tensor network whose topology is Sn−1× [0, 1]. We then
look at its behaviour when its width dA, given by the minimum number of bonds it takes to get
from some open index at the inside- to some open index at the outside boundary, is increased.
Let IA and EA denote the inside boundary and outside boundary of an annulus network A and
let X [A] denote a tensor-network path integral X evaluated on A. We can interpret X [A] as a
linear operator from the open indices on the inside boundary to those of the outside boundary.

Equipped with this terminology, we say that a tensor-network path integral X has a robust
gap with correlation length bounded by some ξ > 0, if the following holds.

• For any interior boundary I , there exists a pre-factor CI and two tensors 〈VI | and |WI〉
whose open indices match those of I .

• For every annulus network A, and every tensor 〈T | with indices matching those of EA,
we have





〈T |X [A]− 〈T |X [A] |WIA
〉 〈VIA

|






< ‖ 〈T |X [A]‖CI e
− dA
ξ .

(26)

Note that the choice of norm in Eq. (26) does not matter as the corresponding vector space
has a finite dimension only depending on I , so we can make up for possible changes of the
norm by adapting CI . Also note that the tensor 〈VI | in the definition is unique, whereas the
choice of |WI〉 is essentially arbitrary. Moreover, the correlation length of X is the smallest ξ
for which X has a robust gap. For tensor-network path integrals coming from a Trotterized
Hamiltonian, a robust gap of the path integral implies a gap of the Hamiltonian. We neither
know a proof nor counter-examples for whether the opposite implication is true.

As we announced, the definition says that X [A] is approximately rank-1. However, we
have formulated it in such a way that for fermionic tensors or tensors with symmetries, it
suffices if X [A] is rank-1 within the fermion-parity-even, or symmetric subspace, since T is
itself a symmetric/fermionic tensor. So the same definition can be used for symmetry-breaking
phases, or fermionic phases such as the Kitaev chain. If X [A] is exactly a rank-1 operator
(possibly in the symmetric/parity-even subspace), then it is easy to see that we can find WIA

and VIA
such that the left hand side is 0. We will define fixed-point models accordingly, as models

for which the correlation length ξ is zero, that is, both sides of Eq. (26) are exactly zero for
all dA larger than some constant. Being a fixed-point model is a very restrictive condition, and
the tensors of such models are often found to satisfy exact algebraic relations, which enable
us to analytically calculate some of their properties.

Equipped with the correct notion of a gap, the definition of phases on the level of tensor-
network path integrals is completely analogue to the Hamiltonian case: Two tensor-network
path integrals X0 and X1 with a robust gap are in the same phase if there is a continuous family
of tensors X (s), s ∈ [0,1], X (0) = X0, X (1) = X1, such that

• X (s) has a robust gap for all s, and

• there is a choice of s 7→ 〈VI | (s) which is continuous.

Note the second condition is necessary, e.g., to detect first order phase transitions, by
which we mean transitions between two symmetry-broken sectors via a non-trivial symmetry-
breaking phase.
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2.5 Invertible domain walls and exact phases

In Section 2.3 we have seen that local unitary circuits provide a natural alternative definition of
phases if we restrict ourselves to fixed-point models. In this section, we will give an analogue
of the local unitary definition for tensor-network path integrals. We will do so by defining a
notion of an invertible domain wall which generalises local unitary circuits, and we will call
equivalence classes under such invertible domain wall exact phases.

To start with, let us consider a particularly simple case of a local unitary circuit between two
ground states of Hamiltonians, namely an on-site unitary. If we conjugate Hamiltonian terms
by a unitary operator, the tensors in the (Trotterized) imaginary-time evolution get conjugated
in the same way. So, if we apply an on-site unitary U⊗N to a 1+ 1-dimensional model as in
Section 2.1, the tensor P in Eq. (17) gets conjugated by U ,

eP
=

P U

U†

. (27)

The unitarity of U can be denoted in network notation by

U
U†
= . (28)

Imagine starting from the conjugated square lattice tensor network. Now, replace every oc-
currence of the conjugated tensor eP by its definition in terms of Eq. (27). This will create a
pair of U and U†, that is, an occurrence of the left hand side of Eq. (28), at every bond of the
original network. We can remove those pairs by replacing each occurrence with the right hand
side of Eq. (28), yielding the non-conjugated network

eP eP

eP eP →
U U

U U

U† U†

U† U†
→

P P

P P (29)

in Eq. (17). To summarise, we have defined two tensor-network equations in Eq. (27) and
Eq. (28). Plugging in those equations locally, we can rewrite the tensor-network path integral
P as eP. It is easy to see that this implies that P and eP are really equivalent for practical purpose
in the sense that for every measurement we take in P, there is an according measurement in eP
which yields the same result: We just need to also conjugate the measurement tensor (POVM)
by U as well. This simple example motivates the following general definition.

An invertible domain wall between two tensor-network path integrals A and B is defined
by the following.

• There is a set of domain wall tensors.

• The tensors of A and B together with the domain wall tensors satisfy a set of tensor-
network equations.

• Using the tensor-network equations we can transform the networks of A into the net-
works of B and vice versa.
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If such an invertible domain wall exists, then A and B are said to be in the same exact phase.
We can also define an invertible domain wall if U is not an on-site operator, but is only

a product of operators acting on constant-size non-overlapping patches. Furthermore, it suf-
fices if U is an isometry rather than a unitary, such that it can also change the local Hilbert
space dimension. Last, we can conjugate by more than one layer of unitaries. So for any
two Hamiltonians related by a finite-depth generalised local unitary circuit, the corresponding
tensor networks are related by an invertible domain wall. But invertible domain walls also
go beyond conjugation by unitaries. Consider the following example for a different invertible
domain wall acting on square lattices. First, we split each tensor into a network consisting of
4 tensors,

eP
= . (30)

The dimension of the bonds between the new tensors can be different, which we reflect by
using a different line style. At every bond of the original network, we will get two of the new
3-index tensors. We replace those two by two other tensors, connected by a bond perpendicular
to the old bond,

= . (31)

Now, at every vertex of the square lattice there are 4 tensors on the adjacent edges. We can
block those into a single tensor again according to

=
P

. (32)

Applying this invertible domain wall, we obtain a network whose tensors are now located at
the positions where the vertices of the old square lattice have been previously,

eP eP

eP eP → → →

P P

P P . (33)

There is a second interpretation of invertible domain walls, other than transforming the
tensor-network path integrals into each other by locally inserting tensor-network equations,
which also explains the name. If we perform the transformation only in a part of the spacetime,
we will obtain regions of A and regions of B, separated by some remaining tensors along
a d − 1-dimensional submanifold. This submanifold constitutes a domain wall between A
and B. Unlike a domain wall in a physical condensed-matter model, the d − 1-dimensional
submanifold does not have to be constant in time direction, but can be arbitrarily curved in
spacetime. By performing the transformations from A to B or vice versa next to the domain
wall, we can arbitrarily move the domain wall around, making it a topological domain wall.
By performing the transformation from A to B in the middle of a A region, we generate a small
bubble of B within A. Also, we can connect two A regions separated by a thin bridge of B
region. Those moves and their analogues in higher dimensions are what makes the domain
wall invertible.

To illustrate the domain-wall picture, a particularly suitable example is given by a simple
MPO separating two square-lattice tensor networks A and B (though the examples already
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given would work as well). This invertible domain wall consists of two additional tensors,

, , (34)

which together with A and B fulfil the equations

B
a

b

c

d

=
A

a

b

c

d

, (35)

a b

w

x

y

z

=
w y

x z
aa bb , (36)

and

= . (37)

The empty right-hand side of the last equation denotes the scalar 1.
As for the examples given before, we can again apply those equations to transform one

tensor-network path integral into the other,

→ → → .

(38)
We first apply Eq. (35) to every tensor of the B-network, then Eq. (36) at every bond of the
original B-network, and then Eq. (37) at every plaquette of the original B-network, yielding
the A-network.

On the other hand, if we apply the equations only on one side, we obtain a domain wall
between the two path integrals,

. (39)

As we see the domain wall does not have to be a straight line, but can be arbitrarily curved.
For our concrete example, there are additional internal bonds of the domain wall (thick lines)
which can be straight or bent. Straight bonds include one normalisation matrix, and bonds
bending around a B-tensor include twice the normalisation matrix. The moves in Eq. (35),
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Eq. (36), and Eq. (37) can be used to move the location of the domain wall. E.g., in our
example, the invertible domain wall can be ‘pulled through’ an A-tensor yielding a B-tensor,

= = = , (40)

where we used first Eq. (37), then twice Eq. (36), and then Eq. (35). Other moves that
make the domain wall invertible, are for example given by creating or erasing small loops
via Eq. (35), and fusing two domain wall lines via Eq. (36).

As for the Hamiltonian definitions, the gapped-path and invertible-domain-wall definitions
for phases in tensor-network path integrals are not equivalent. Again, invertible domain walls
of tensor-network path integrals cannot change the correlation length in contrast to gapped
paths. So, two models in the same gapped-path phase do not have to be related by an invertible
domain wall, and in fact generically they are not.

However, invertible domain walls might very well be more general than local unitary cir-
cuits, and therefore, in contrast to the Hamiltonian definitions, not even the converse might
be true. Namely, it is not a priori clear whether an invertible domain wall between two path
integrals A and B can be turned into a continuous gapped path. In some cases we can find
a model for an invertible domain wall between A and A of the same form, and a continuous
family of domain walls connecting it to a desired invertible domain wall between A and B.
E.g., consider domain walls relating A and B by conjugation with an on-site unitary U . Tak-
ing 1 for U defines an invertible domain wall between A and A, and for every U we can find
a Hermitian H such that U = eiH . Û(s) = eisH then defines a continuous family of invertible
domain walls interpolating between Û(0) = 1 and Û(1) = U . On the other hand, let us restrict
to real tensors which is what we need to model spin systems with a time-reversal symmetry,
and consider an invertible domain wall consisting of on-site orthogonal maps O. If O is has
determinant −1, i.e., it involves a reflection, we cannot interpolate between 1 and O by a
continuous path as before. So in this case, it is unclear whether we can interpolate between
the original model and the O-conjugated model with a gapped path, without breaking the
time-reversal symmetry.

In practice, invertible domain walls are an accepted way for defining phases for fixed-point
models, even though their relation to gapped paths has not been rigorously settled. E.g., the
phase equivalence of certain Levin-Wen models via the Morita equivalence of the underlying
fusion categories is an example of an invertible domain wall.

2.6 Fine-graining/renormalization of tensor-network path integrals

The main body of this work is about the classification of phases via fixed-point models. A priori,
it is unclear whether every phase possesses such a fixed-point model. A vague argument of
why this is the case is provided by the idea of renormalization group (RG) flow. As this term
as such is rather uninstructive and used for too many distinctly different concepts, we will use
to the simpler name fine-graining mapping. Given a tensor-network path integral T , we can
construct a new path integral Tλ by taking blocks whose linear size λ is called the fine-graining
scale, and grouping them together into a single tensor each. E.g., for λ= 3 and a square-lattice
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tensor network in 1+ 1 dimensions, we define a new tensor by

T3

a1a2a3

b1 b2 b3

c1c2c3

d1d2d3

:=

a1

a2

a3

c1

c2

c3

d1 d2 d3

b1 b2 b3

, (41)

forming a new tensor-network path integral,

. (42)

This comes at the expense of the bond dimension of the new tensor network increasing expo-
nentially in λ.

Two points in the new tensor-network path integral with a combinatorial distance d have
a distance λd in the original network. Thus, if the correlation length of the old tensor-network
path integral was ξ, then the new correlation length is ξ/λ. The idea is that by choosing larger
and larger λ, we will eventually arrive at a fixed-point model with ξ= 0. Often, renormaliza-
tion is thought of as an iterative procedure where in each step we block by a factor of 2 (or
another small number), corresponding to only considering the subsequence T2x instead of all
Tλ, which explains the name “fixed-point model” as a fixed point of this iteration.

There are, however, two major difficulties with this idea. First, to arrive at a fixed-point
model, we would need the sequence Tλ to converge. As such, this does not make any sense,
as the different Tλ have different bond dimensions corresponding to different vector spaces.
To make the definition work, we use the same formulation as for the Trotterization limit in
Section 2.2. That is, we choose a norm for the space of infinite-bond-dimension tensors which
is compatible with tensor product and contraction, such that the normalizable tensors form
a tensor type. Then, for every λ we choose an invertible domain wall between each Tλ and
some eTλ which all live in the same infinite-bond-dimension normed space of tensors. A simple
example for this would be applying on-site invertible matrix Sλ to all horizontal and vertical
bonds of the network,

eTλ
a

b

c

d

=
Tλ

SλS−1
b

Sb

S−1
b

ab

c

d

, (43)

but in reality slightly more complex invertible domain walls seem to be necessary (on-site
transformations yield a representation of the renormalization as a tree tensor networks, whereas
nearest-neighbour disentanglers as in MERA correspond to a more complex invertible domain
wall). Now, the question is whether there exists such a sequence of invertible domain walls
such the eTλ converges,

lim
λ→∞

eTλ = eT . (44)
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Note that even though the sequence is defined in an infinite-dimensional normed vector space
of tensors, it is possible that the limit eT has only a finite number of non-zero entries, such that
the resulting fixed-point model is again finite-dimensional. All in all, however, it is an open
question if and under what circumstances we invertible domain walls, such that eTλ converges.

The second problem with fine-graining is that it is not necessarily true that the blocked
model Tλ is in the same (gapped-path) phase as the original model T . There are indeed
examples where fine-graining yields a different phase, namely fixed-point models consisting
of topological defect networks. The simplest example for this is the classical 2-dimensional
anti-ferromagnetic Ising model at zero temperature, given by a square-lattice tensor network
of bond dimension 2,

T
a

b

c

d

=

¨

1 if a = b 6= c = d

0 otherwise
. (45)

After fine-graining with λ= 2, we get a bond dimension 4 tensor, which can be mapped back
to bond dimension 2 via an on-site unitary. The result is the tensor describing the ferromagnetic
Ising model at zero temperature,

T ′2
a

b

c

d

=

¨

1 if a = b = c = d

0 otherwise
. (46)

The anti-ferromagnetic and ferromagnetic phases are different, and the two tensor-network
path integrals cannot be transformed into each other by a gapped path or an invertible domain
wall. Thus, the sequence T ′

λ
cannot converge to a fixed-point model. Instead, T ′

λ
alternates

between a ferromagnetic phase for odd λ and an anti-ferromagnetic phase for even λ. Note
that this phenomenon does not occur if we explicitly allow changes of the unit cell, or equiva-
lently, explicit breaking of translational symmetry in the definition of a phase. That is, models
X (s) of an interpolating continuous gapped path or the invertible domain walls can have a
larger unit cell than the original models, or the tensors of X (s) or a domain wall are allowed to
be alternate with a periodicity larger than 1. Then the anti-ferromagnetic and ferromagnetic
models are in the same phase, and their fixed-points are connected by an invertible domain
wall. The breaking of the translational invariance is usually considered part of the definition
of a phase in the context of topological order. In 3+1 dimensions, fracton phases provide more
interesting examples of networks of topological defects [24]. For those models, T ′

λ
can consist

of a tensor product of many copies of the same model, whose number scales with λ, which is
known as bifurcation [25].

2.7 Topological extendibility and liquid models

Many gapped phases of matter obey a very fundamental property that their path integral can be
defined on arbitrary topological manifolds and is invariant under arbitrary homeomorphisms.
We say “many” since this is not precisely true for all phases, as we will discuss in more detail
later. The topological invariance of the path integral implies different well-known appearances
of topology in the study of such phases, such as a ground-state degeneracy that depends on
the topology of the physical space, and their low-energy description in terms of topological
quantum field theory. Accordingly, such phases of matter are often referred to as topological
phases. Topological invariance will be the one and only property we use to construct and study
fixed-point models in this work.
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The fundamental property of topological invariance can be formalised using the language
of tensor-network path integrals. First of all we note that tensor-network path integrals com-
ing from condensed-matter models or similar are usually defined on a regular, translation-
invariant lattice only. Being able to define the model on spacetime manifolds of arbitrary
topology means that we need to be able to extend its definition from tensor networks living on
square lattices to tensor networks living on irregular lattices, such as arbitrary triangulations.
E.g., the square-lattice tensor network in Eq. (6) could be extended by allowing vertices of the
background lattice where 3 or 5 instead of 3 plaquettes meet,

→ . (47)

Or, we could still demand 4 faces meeting at a vertex, but in addition to 4-gon faces also allow
triangle faces and 5-gon faces, represented by two further tensors,

→ . (48)

Even if the original model had a robust gap, it cannot be guaranteed that also the extended
model has a robust gap. This is because the extended model has more possible network annuli,
i.e., networks of topology Sn−1 × [0, 1], as now also irregular network annuli are allowed in
the definition of a robust gap. We say that a tensor-network path integral with robust gap on
regular, translation-invariant lattices is topologically extendible if there exists an extension to
irregular lattices which also has a robust gap.

As the chosen name suggests topologically extendible tensor-network path integrals indeed
obey topological invariance, which follows automatically from the robust gap. To see this in
n spacetime dimensions, consider two different networks representing an n-ball which look
within a combinatorial-distance-d from the boundary. In other words, we look at two differ-
ent networks filling the interior of the same annulus network of width d. Since the annulus
operator from the inside to the outside has a rank-1 apart from errors exponentially small in
d, the evaluations of the two n-balls are (approximately) equal as well, up to a prefactor. E.g.,
for n= 1+ 1, we have schematically,
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< C◦e
− d
ξ .

(49)

The annulus of width d is in blue, and the two different interiors in red. C◦ is a pre-factor only
depending on the boundary of the red fillings. α is a scalar pre-factor, which is necessary in
the general case, but can be normalized to 1 for many phases (namely for phases without a
chiral anomaly). Thus, the topological extendibility implies that we can arbitrarily change the
irregular network in the middle of some patch of tensor-network path integral, which is the
lattice analogue of homeomorphism invariance.

Now consider a fixed-point model, where the annulus operator is exactly a rank-1 operator,
at least for sufficiently large d. If such a model can be topologically extended (in a way that
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the extended model is still fixed-point), we get exact equations between tensor networks, such
as

= , (50)

corresponding to a re-cellulation

→ . (51)

We have found that the topologically extended fixed-point model is given by a set of tensors
subject to a set of tensor-network equations. The tensor-network equations allow to arbitrarily
deform the networks as long as we preserve the topology, i.e., they are a discrete analogue of
homeomorphisms in the continuum. The approach in this work is to come from the other side:
We start with a set of tensor variables and tensor-network equations which are a continuum
version of topological manifolds, and use it as an ansatz for fixed-point path integrals of topo-
logical order. Focus of this work will be the construction of different such fixed-point ansatzes
and the study of their equivalences on a purely combinatorial level.

To be able to talk on such a combinatorial level, we will introduce a small set of new
vocabulary. We will refer to the combinatorial/diagrammatic structure of a finite set of tensor-
network equations for a finite set of tensor variables as a liquid. The tensor-network diagrams
are called networks, the diagram pairs of the tensor-network equations moves. The actual
choice of tensors fulfilling the equation is referred to as model of the liquid. We will formalize
different fixed-point ansatzes as different liquids, and their models are fixed-point models for
topological phases. In order to prove the equality of different liquids on a diagrammatic level
develop a tool called a (weakly invertible) liquid mapping, which for which we also find many
other important applications in the study of fixed-point models.

All in all, liquid models provide a classification of phases of matter (in terms of tensor-
network path integrals) under three assumptions, which are very plausible but hard to prove:
First, the assumption that the gapped tensor-network path integral can be topologically ex-
tended, which is the core property of topological order. Second, the assumption that the phase
possesses a fixed-point model which is justified by the concept of renormalization. Third, the
assumption that invertible domain walls are equivalent to gapped paths for fixed-point models.
What we obtain is an identification of phases with the solutions to a finite set of tensor-network
equations for a finite set of tensor variables (the liquid model), modulo another set of vari-
ables and equations (the invertible domain wall). So in other words, we identified phases with
instances of some (tensor-network-) linear algebraic structure, and in fact the latter are often
similar to well-known algebraic structures such as weak Hopf algebras or fusion categories.
Note that we do not classify the instances of algebraic structures themselves in the sense of
efficiently enumerating them, and this is also not done by any existing classification apart from
very restricted settings or in 1+1 dimensions. E.g., such a classification for weak Hopf algebras
is far out of reach, and will most likely remain so for the forseeable future. Note that this is
not a fundamental problem since it is only the simplest (low-bond-dimension) models which
are physically relevant, and those can eventually be worked out. In this work, we will not be
concerned with the construction of such new models, but we will be concerned with questions
one level higher, namely the derivation and equivalence of different fixed-point ansatzes.

The tools and the perspective developed in this work gives us a straight-forward way to
derive new fixed-point ansatzes, and understand and generalise existing ansatzes using only
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one single property, namely topological invariance. In fact, it is possible to rigorously argue for
some fixed-point ansatzes that they are universal in the sense that they can emulate all other
fixed-point ansatzes. In Ref. [11], we pursue this line of thought and find new fixed-point
ansatzes that are very different from any previously known ansatz, and have to potential to
capture phases without gappable boundaries. Here, we will focus on applying our formalism
to obtain ansatzes which are more similar to existing models, and deepen the understanding
of the latter as well as generalising them.

Let us close this section by expanding on a comment from the beginning, namely that it
is not true that any gapped (fixed-point) tensor-network path integral can be topologically
extended. Tensor-network path integrals with a robust gap are analogous to gapped Hamilto-
nians with a further condition which referred to as topological quantum order [19]. However,
in this sense the term does not correspond to topological invariance of the path integral, and
so is a misnomer from this point of view. Surely, the name ‘topological’ may be justified from
different perspectives, for example from the fact that phases are path-connected regions in the
topological space of models, or from the use of vector bundles describing the band structure
of non-interacting free-fermion Hamiltonians in momentum space.

All known examples of fixed-point models which do not have topological extendibility
still have a very close relation to models that do. Namely, they are equivalent to a regular
translation-invariant grid of topological defects. A topological defect refers to a submani-
fold (of some fixed dimension) where a tensor-network path integral is altered, subject to
moves (tensor-network equations) which allow for arbitrary topology-preserving deformation
of the embedded submanifold. An example is the classical zero-temperature Ising model par-
tition function in 2 dimensions, and the topological defect consisting in spin flips along a
1-dimensional submanifold. Placing this defect along every horizontal and vertical line of a
square lattice yields the anti-ferromagnetic Ising model which we looked at in Section 2.6.
This tensor-network path integral has a robust gap if we do impose the spin-flip symmetry, but
the rigidly embedded defects hinder it from being topologically extended. Another example is
given by a toric code in 2+1 dimension with the 1+1-dimensional topological duality defect
placed on every plane of a cubic lattice parallel to the x and t axes. The presence of such de-
fects has been called weak symmetry breaking and is present in the abelian topological phase
of the honeycomb model [3]. Again, the presence of those rigidly placed defects hinders the
model to be topologically extendable.

All examples of the above type have the property that they become topologically extendable
when we enlarge the unit cell or equivalently fine-grain at a particular scale. As changing
the unit cell is often considered valid and part of the definition of a phase, those examples
might appear boring to many physicists. However, there are examples of models in higher
dimensions which do not become topologically extendible no matter what size of unit cell
we chose, namely so-called fracton phases which appear in 3 + 1 or higher dimensions. In
Ref. [24], many of those fracton models are shown to be equivalent to grids of topological
defects (called defect networks there). In accordance with our claims it has been conjectured
that such defect networks represent all gapped (“topological”) phases. Note that our tensor-
network path integral picture of grids of defects is a bit more general than the Hamiltonian
picture since we also allow defects which are not parallel to the time direction.

3 Toy examples for liquids

In this section, we introduce many of the relevant concepts at the hand of three simple toy
fixed-point ansatzes, i.e., three different liquids where we keep the amount of technical de-
tails at a minimum. We also discuss the relation of the liquid models to tensor-network path
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integrals linked to physics, and to algebraic structures linked to mathematics.

3.1 Toy liquid in 1+ 1 dimensions

As a first example we consider phases 1+1 dimensions, that is, in one spatial dimension, which
can be topologically extended. Despite the fact that non-trivial intrinsic topological order in
the conventional sense only exists in 2+1 dimensions, this example is well suited to illustrate
important concepts on a diagrammatic level. Moreover, we would like to mention that, if we
impose (on-site) symmetries on the models, we can obtain models for non-trivial symmetry-
breaking phases as well as symmetry protected topological (SPT) phases. For pedagogical rea-
sons, we neglect the following two important technical details in this section. In Section 4
we will see that we need to distinguish the indices of a tensor for a better representation of
topological space-time, and in Section 6 we will see that we need to add an orientation and
Hermiticity move in order to give the models a standard quantum mechanical interpretation.

3.1.1 Square lattice model and extended model

A tensor-network path integral in 1+ 1 dimensions coming from a condensed-matter model,
such as the Trotterization of a quantum spin chain Hamiltonian, looks like

. (52)

This is a (tensor) network formed by copies of a single 4-index tensor variable, with a single
bond dimension variable.

We now assume that the model is a fixed-point model and that it can be extended to
arbitrary triangulations of 2-manifolds. The easiest way to do this is to associate one copy of
a 3-index tensor to every triangle of the triangulations of 2-manifolds, and contract indices
between tensors at adjacent triangles,

. (53)

The 3-index tensor variable alone is an example of a liquid, which we will call the triangle
liquid. So far, the notion of liquid is rather empty, but it will become non-trivial when we later
add moves. The actual tensor determining the value of the 3-index variable is a model of the
liquid. The square-lattice tensor-network path integral is also a model of a liquid, determined
by a 4-index tensor variable, but one to which we will not add any moves. The extended model
is related to the square-lattice model as follows. We can divide each square into two triangles,
and use as square tensor the tensor obtained by contracting two triangle tensors according to

:= . (54)

The pure combinatorics of an equation like is a first example of a liquid mapping from the
square-lattice liquid to the triangle liquid. This means that, conversely, it will map models
of the triangle liquid to models of the square-lattice liquid. Liquid mappings are a central
technical tool of this work. They will be used to formalize various operations in a unified way,
just to name a few,
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• the equivalence between ad hoc topological liquids and their more sophisticated simpli-
fied forms, e.g., in Section 4.4,

• the equivalence between different liquids describing the same type of topological order,
e.g., seen in Section 8.3,

• the relation between topological liquids and known algebraic structures, as described,
e.g., in Section 3.1.2,

• topological deformations, such as reshaping a boundary into a bulk as in Section 3.3.3,
or compactifications or suspensions like the 2D embedding mapping in Section 8.2,

• the relation of liquids to commuting-projector Hamiltonians, as seen,
e.g., in Section 3.1.3.

The key property of the extended model is its topological invariance, which we will for-
mulate in terms of moves, i.e., tensor-network equations for the tensor variables of the liquid.
Those moves need to form a combinatorial analogue of continuum homeomorphisms in terms
of triangulations. This is given by the so-called Pachner moves [26] which act as

←→

←→
. (55)

It is known that any two (combinatorial) triangulations of the same manifold are related by
Pachner moves. Conversely, it is easy to see that Pachner moves preserve the topology of a
triangulation.

Now, tensor-network equations can be obtained by associating tensors to the patches on
the left- and the right hand side of the Pachner moves. Topological invariance of the model
means that the evaluations of the two corresponding tensor networks are equal,

=
←→

=
←→

. (56)

The pure combinatorics of such diagrams will be referred to as moves, which are part of the
liquid. A model of a liquid must fulfil all the equations given by the moves.

3.1.2 Relation to algebraic structures

In this section, we relate the above moves to algebraic structures. An algebra is a linear map
· : V ⊗ V → V , where V is a vector space. A finite-dimensional algebra is represented by its
structure coefficients, which form a 3-index tensor,

. (57)

Here, we think of · as a linear map from the top two indices to the bottom index. So, an algebra
is nothing but a model of the liquid depicted above. An algebra is associative, if

(a · b) · c = a · (b · c) . (58)
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This can be formulated as an equation between two tensor networks, namely

a b
c

d

=

b
a

c

d

. (59)

So, associativity defines a move, and associative algebras are models of the liquid defined
by that move. There are many other examples of algebraic structures which are models of
liquids, such as Frobenius algebras, unital algebras, commutative algebras, Hopf algebras,
representations of algebras, etc. Every model of the triangle liquid can be turned into an
algebra by a liquid mapping from the algebra liquid to the topological liquid

a b

c

:=
ba

c
. (60)

This is true because if we substitute the mapping into the associativity axiom of the algebra
liquid, we obtain the 2-2 Pachner move of the triangle liquid,

a b
c

d

=

b
a

c

d

. (61)

Thus, every model of the triangle liquid yields an algebra which is automatically associative.
In general, a liquid model from a source to a target liquid associates a target network to every
source tensor variable such that the mapped moves of the source liquid are moves of the target
liquid (or can at least be derived from the latter as we will explain later).

We often observe that topological liquids have liquid mappings from well-known algebraic
structures. However, often there is no inverse liquid mapping from the topological liquid to the
algebraic liquid. This means that models of topological liquids define some algebraic structure,
but the algebraic structure misses some additional axioms which are needed for a topological
fixed point model. This is mostly due to the fact that the networks in the moves of algebraic
structures always allow for a global “flow of time”, as from the top to bottom in the algebra
diagrams above. Liquids describing topological fixed-point models however do not have this
flow of time since their networks represent Euclidean spacetime.

3.1.3 Commuting-projector Hamiltonians and stacking

We have already introduced the notion of a liquid mapping to formalise the relation between
the square-lattice model and the triangle-liquid model, and between the algebra-liquid and
the triangle liquid. Here, we will give two more examples for operations which can be neatly
formalised by a liquid mapping, namely the construction of a commuting-projector Hamilto-
nian, and the operation of embedding two non-interacting copies of a model into the same
space-time. Both will lead to generalisations of the notion of liquid mapping we introduced
so far.

If we apply the Trotterization procedure in Section 2.1 to any Hamiltonian, we never di-
rectly obtain a fixed-point model. This is because the first excited state always has a finite
energy, corresponding to a finite “correlation length in time direction”. However, as men-
tioned in Section 2.3, we do not need Trotterization if we have a commuting-projector model.
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In this case, we can directly take the limit β →∞ for the individual Hamiltonian terms, ob-
taining a local ground state projector. For a spin chain with nearest-neighbour Hamiltonian,
this projector is a 4-index tensor,

ba

dc
(62)

acting as an operator from the bottom to the top two indices. The imaginary time evolution
is represented by a product of these operators P at different places, which yields a network of
the form

. (63)

In order to relate this tensor-network path integral (given by a 4-index tensor) with a triangle-
liquid model (given by a 3-index tensor), we have to choose an according liquid mapping which
transforms the network above into the network representing a triangulation of the plane. One
such mapping is, e.g., given by

ba

dc
:=

ba

dc
. (64)

The fact that the local ground state projector forms a commuting-projector model corresponds
to two tensor-network equations. The projector property is

ba

dc

=
ba

dc
, (65)

and the commutativity is
ba

dc

e
f
=

b

a

d

c

e

f

. (66)

So commuting-projector models themselves are models of the above commuting-projector liq-
uid with two moves. If we plug the mapping Eq. (64) into the move Eq. (65), we get

c d

a b

=
c d

a b
. (67)

This is not a move of the triangle liquid. However, it is equivalent to a sequence of moves,

c d

a b

=

c
d

a
b
=

c d

a b
. (68)
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In the first step we applied the 2-2 Pachner move, and in the second step the 1-3 Pachner move.
We will refer to moves equivalent to sequences of moves of a liquid as derived moves, and the
corresponding sequences as derivations. We will generalise our notion of a liquid mapping by
allowing the mapped moves to be derived moves of the target liquid.

As another example of a liquid mapping, consider “stacking two copies” of a model, i.e.,
embedding both models in the same space(-time) in a non-interacting way. If a model has
topological invariance, then so will the stacked model. Stacking is nothing but a mapping
from a liquid (here the 1+ 1 dimensions topological liquid) to itself

bb′aa′

cc′
:=

ba

c

b′a′

c′
. (69)

This provides a slight generalisation of the concept of a liquid mapping introduced so far, as
every open index on the left hand side corresponds to two open indices on the right hand
side. In the notation, this was indicated by using as labels on the left the concatenation of the
corresponding labels on the right. If we apply this mapping to any network, we will obtain two
copies of that network. E.g., the mapped 2-2 Pachner move gets mapped to a move relating
two disconnected networks consisting of two tensors each on each if its sides. Obviously, this
mapped move can be derived by applying the 2-2 Pachner move separately to each copy.

3.1.4 Models

As we have seen in Section 3.1.2, models of the triangle liquid correspond to associative alge-
bras, for which a few additional axioms hold1. Such algebras fall into discrete families, up to
basis changes. One family of algebras which also yield topological models is given by the alge-
bra of complex functions over an x-element set under point-wise multiplication, for arbitrary
x . This corresponds to the choice

ba

c
=

ba

c
=

¨

1 if a = b = c

0 otherwise
, (70)

for 0 ≤ a, b, c < x , which will also be referred to as the delta tensor, and denoted by a small
dot. Delta tensors can be defined for an arbitrary number of indices, with entry 1 if all the
index values are equal and 0 otherwise.

If we evaluate such a model on a network representing a triangulation of a sphere, we get
the number x . So we see that every family yields a different topological invariant and thus all
families correspond to different phases. If we equip the tensor with the regular representation
of Zx acting on every index independently (or any other permutation representation of a group
without non-trivial closed subsets) those models are fixed-point models for symmetry-breaking
phases. E.g., for x = 2, the liquid is equivalent to the ordered-phase fixed point of the 1+ 1-
dimensional Ising model. This is a chain of qubits with a nearest-neighbour Hamiltonian

H =
∑

i

hi = −
∑

i

Zi Zi+1 . (71)

This is a commuting-projector Hamiltonian given by the local ground state projector

lim
β→∞

e−βh ∼
1
2
(1− Z0Z1) . (72)

1We are not yet fully precise here, but in the end the models will be equivalent to something like commutative
special Frobenius algebras.
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So using the notation from Section 3.1.3, we get

ba

dc
=

¨

1 if a = b = c = d

0 otherwise
. (73)

Indeed, this is exactly what we get if we plug the model in Eq. (70) into the commuting-
projector mapping in Eq. (73).

3.1.5 Phases and invertible domain walls

In this section, we will illustrate how the definition of a phase in terms of invertible domain
walls from Section 2.5 applies to models of topological liquids. The algebra of functions over
a 2-element set yields a model as we have seen in Section 3.1.4. Another model of the liquid
is given by the Z2 group algebra

Z2

ba

c
=

¨

1p
2

if a+ b+ c = 0 mod 2

0 otherwise
. (74)

The two algebras are isomorphic via a basis change known as the Hadamard transformation

H
ba =

1
p

2

�

1 1
1 −1

�

. (75)

Basis changes are a very specific example of invertible domain walls, and thus the two liquid
models are in the same phase. Concretely, we have

Z2
HH

H

ba

c

= δ
ba

c
. (76)

H happens to be its own inverse

H H
ba = aa bb . (77)

Now, start with a network of the δ liquid model, e.g.,

δ δ . (78)

Then, applying Eq. (76) from right to left to a network of the δ liquid model, we obtain a
network like

Z2 Z2

H

H

H

H
H H

. (79)

Finally, applying Eq. (77) from left to right to all pairs of adjacent Hadamard tensors, we obtain

Z2 Z2

H

H

H

H

. (80)

As we have seen, using Eqs. (76), (77), we can transform any δ-tensor network into the accord-
ing Z2-tensor network. If the network has open indices, we will end up with some residual
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Hadamard transformations near this open boundary. We found that the Z2-model and the
δ-model are related by an invertible domain wall, and thus in the same phase.

As another example, consider the model

x
ba

c
= 2(−3/2) (∀a, b, c) . (81)

We will show that this model is in the same phase as the trivial model where each tensor is
the number 1. We notice that the tensor above is the tensor product of three times the same
vector

x
ba

c
=

ba

c

, (82)

where
a =

1
p

2
(∀a) . (83)

Furthermore, this vector is normalized, i.e. (note that the empty network evaluates to the
scalar 1),

= . (84)

The above two moves again define an invertible domain wall. We start with a tensor network
of the x-model

x x , (85)

and then apply Eq. (82) from left to right to every x tensor,

. (86)

Finally, we apply Eq. (84) to every pair of vectors, which yields the empty network everywhere
except for at a potential boundary

. (87)

So we see that this model is in the same phase as the trivial model, again via a very simple
invertible domain wall.

3.2 Non-triangular toy liquid in 2+ 1 dimensions

In the next example, we explore a simple topological fixed-point ansatz, i.e., a topological
liquid, in 2 + 1 dimensions. Again, a condensed-matter model yields a tensor-network path
integral on a regular (e.g., cubic) lattice by Trotterization of a Hamiltonian imaginary-time
evolution or by other means and again, we assume that for each phase there exists a fixed-
point model which can be topologically extended to arbitrary triangulations of 3-dimensional
manifolds. The most straight-forward construction analogous to the triangle liquid would be
to associate one tensor to every simplex and to formulate the topological invariance analogous
to the 1+1-dimensional case as invariance under 3-dimensional Pachner moves. In this section
we will instead sketch a less standard formulation of topological invariance that is based on
a different way to combinatorially discretise a manifold and is referred to as face-edge liquid.
Here, we again focus on the concept and omit technical detail, while in Section 8.2 all technical
details are added and we discover that this liquid can be identified with quantum double
models. The equivalence between the standard simplex based liquid and the non-standard
liquid presented here is then shown in Section 8.3.
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3.2.1 The face-edge liquid

For the face-edge liquid we allow arbitrary cellulations of a 3-manifold, but we demand that
every face is either a triangle or a 2-gon and that every edge is 3-valent or 2-valent (i.e., it
is adjacent to three or two faces). A moment of thought reveals that every cell complex can
be brought into this form, e.g., a 4-gon can be split into two triangles with a 2-valent edge in
between as

→ . (88)

Dually, a 4-valent edge can be split into two 3-valent edges with a 2-gon face in between,

→ . (89)

There is one 3-index tensor variable associated to every triangle and different 3-index tensor
variable to every 3-valent edge. This means that a model of this liquid is given by two poten-
tially different 3-index tensors. At every pair of adjacent triangle and 3-valent edge, there is
a bond between the two corresponding tensor indices. Since the face and edge tensors are
different, we use two different shapes to represent them,

, . (90)

The 2-gons and 2-valent edges are not explicitly represented by tensors. Instead, the two
edges adjacent to a 2-gon, and likewise the two faces adjacent to a 2-valent edge are directly
connected by a bond. E.g., two 3-valent edges separated by a 2-gon are represented as

. (91)

As in 1+1 dimensions, two combinatorial triangulations correspond to the same manifold
exactly if they are related by 3-dimensional Pachner moves. For the particular combinatorial
network structure chosen here there is an equivalent set of moves, which can be divided into
3 groups. First, there are moves involving only triangles separated by 2-valent edges, which
equal the 2-dimensional Pachner moves for the face tensors only, namely

=
←→

(92)

and the same for the 1-3 Pachner move. Then, moves involving only 3-valent edges separated
by 2-gon faces. In terms of cell complexes, those moves are Poincaré dual to the moves above.
In network notation they look the same apart from that we have to use filled circles instead of
empty circles. Finally, the most important move involves both face and edge tensors. It merges
two triangles with two shared 3-valent edges into a single triangle with one adjacent 3-valent
edge, i.e.,

=
←→

. (93)
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3.2.2 Bi-algebras

As in the 1 + 1-dimensional case, the present liquid has a great similarity to a well known
algebraic structure. To see this, we first note that there is an obvious liquid mapping from
the triangle liquid in 1+ 1-dimensions to the present liquid, in which the triangle (as part of
the 2-dimensional cell complex) is mapped to the triangle (as part of the 3-dimensional cell
complex). Dually to that, there is a liquid mapping in which the triangle is mapped to the
3-valent edge. Thus, by the means of these two mappings every model of the present liquid
gives rise to two associative algebras.

Two associative algebras (more precisely, an algebra and a co-algebra) are called a bi-
algebra, if they fulfil certain additional axioms. The main axiom (which states that the co-
algebra is an algebra homomorphism) is precisely the move in Eq. (93). Thus, the present
liquid is basically the bi-algebra liquid, together with a few additional moves which make it
“more topological”. This observation could be formalized as a liquid mapping from bi-algebras
to the present liquid.

3.2.3 Models

Specifying the tensor type to array tensors, we look for models of the liquid, i.e., solutions to
the move equations. The similarity to bi-algebras greatly helps assessing the situation: First,
we know that bi-algebras fall into a discrete set of families related by basis changes, and so
do the models of the present liquid. Second, there are many known examples for bi-algebras,
many of which also yield models of the present liquid. Thus, in practice, we can look at the
simplest examples of bi-algebras, see whether they can be turned into models of the present
liquid, and check whether some of the models are in the same phase. Moreover, we will see
that it is “rather unusual” for different models to be in the same phase, and that one can usually
show their distinctness by evaluating closed networks.

As a particular example we recall that every group defines a bi-algebra, which can be turned
into a model of the present liquid. Those models are equivalent to the Kitaev quantum double
models [27], which are models for intrinsic topological order in 2+ 1 dimensions. E.g., if we
pick the group Z2, the index configurations are the group elements {0, 1}, and the edge and
face tensors are

ba

c
=

¨

1 if a+ b+ c = 0 mod 2

0 otherwise
,

ba

c
=

¨

1 if a = b = c

0 otherwise
.

(94)

It is easy to see that each tensor satisfies the 2-2 and 1-3 Pachner move, and both tensors
together fulfil the move in Eq. (93). Actually, for the sake of simplicity, we are ignoring a
global factor of 1/2 missing in the 1-3 Pachner move for face tensors. This will be fixed in
Section 8.2.

This model corresponds to a commuting-projector Hamiltonian model known as the toric
code [27] defined for qubits on the edges of a square lattice and Hamiltonian given by

H =
∑

i

Ai +
∑

j

B j . (95)

Here, i runs over all plaquettes of the lattice and each Ai is defined as (suppressing the site
index)

A= −Z0Z1Z2Z3 , (96)
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where 0,1, 2,3 label the 4 edges adjacent to the corresponding plaquette. Dually, j runs over
all vertices and

B = −X0X1X2X3 , (97)

where 0, 1,2, 3 label the 4 edges adjacent to the corresponding vertex. The commuting pro-
jectors themselves can be written as 8-index tensors

PA =
1
2
(1− Z0Z1Z2Z3) → PA

a′ b′ c′ d ′

a b c d

,

PB =
1
2
(1− X0X1X2X3) → PB

a′ b′ c′ d ′

a b c d

.

(98)

They are commuting because adjacent plaquettes and vertices always share two adjacent
edges, and Z0Z1 commutes with X0X1. A tensor network representing the imaginary time
evolution of the model is given by stacking layers of those commuting projectors.

To compare our topological model with the given commuting-projector model, we need a
liquid mapping from the commuting-projector liquid to the topological liquid. A little bit of
geometric imagination shows that the replacement

PA

a′ b′ c′ d ′

a b c d

:=

a
a′

b
b′

c

c′
d

d ′

,

PB

a′ b′ c′ d ′

a b c d

:=

a
a′

b
b′

c

c′
d

d ′

(99)

will turn a stack of commuting projectors into a cellulation of the same space-time. Indeed,
we find that via this mapping, the topological model Eq. (94) is mapped to the commuting-
projector model Eq. (98).

3.3 Toy liquid with boundary in 1+ 1 dimensions

3.3.1 Regular-lattice and extended model

As a third example, let us look at models in 1+ 1 dimensions with physical boundary. From
condensed-matter physics, we get a tensor-network path integrals

(100)

on a regular square lattice with boundary. Formally, this is a liquid model with two tensor vari-
ables represented by two different shapes. Further, the bond dimension between the boundary
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tensors is allowed to be different from the one of the bulk tensors, so the liquid has two dif-
ferent bond dimension variables as well, which are represented by a thicker line style for the
boundary bonds.

We then assume that we have a fixed-point model which can be extended to arbitrary
triangulations of arbitrary manifolds with boundary,

. (101)

The mapping from the square-lattice liquid to the topological liquid is obvious.
In the bulk, topological invariance is still ensured by Pachner moves, which only involve the

triangle tensor, making the triangle liquid from Section 3.1 a sub-liquid of the current liquid.
However, for topological invariance at the boundary, we need add the following additional
move,

= . (102)

The geometric interpretation of this move is to attach/remove a triangle to/from the boundary,
which allows us to arbitrarily deform the boundary without changing the topology.

3.3.2 Representations and models

As the liquids above, our boundary liquid is again very similar to a very well-known algebraic
structure, namely representations. A representation of an algebra A is a linear map

R : V ⊗ A→ V , (103)

satisfying
R(R(x , a), b) = R(x , a · b) . (104)

This equation can written in tensor-network notation, and looks exactly like Eq. (102).
In order to find models of the present liquid, we start with models of the 1+1-dimensional

liquid in Section 3.1, and extend them by a choice of boundary tensor. Let’s start with the
model given in Eq. (70) related to the algebra of functions over some finite set B. For every
x ∈ B, there is the corresponding irreducible representation, which defines a choice of boundary
tensor,

a
=

¨

1 if a = x

0 otherwise
. (105)

The boundary indices without labels are trivial, that is, they have bond dimension 1. For a
2-element set B, this corresponds to a non-symmetric boundary condition of the Ising model,
where any spin near the boundary is fixed to the value x .

3.3.3 Bulk-to-boundary mapping

A 2-manifold with boundary might also be interpreted as a manifold with one puncture for
every boundary circle. Imagine filling each such a puncture with a disk. On the combinato-
rial level, we can do this by adding one additional vertex corresponding to the centre of the
disk, and one additional triangle for every boundary edge, spanned by this boundary edge and
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the central vertex. Consider the boundary-less network for the filled, and the network-with-
boundary for the non-filled triangulation. They can be mapped onto each other by reinter-
preting the triangle tensors for the additional triangles as the boundary edge tensor for the
boundary edges. Such a reinterpretation can be formalised as the liquid mapping

:= , := . (106)

If we apply this mapping to the move Eq. (102) of the boundary liquid, it turns directly into
the 2-2 move in Eq. (56) of the bulk liquid. This example shows two new features of liquid
mappings. 1) For a mapping from a liquid with multiple tensor variables, we have to give one
network for each tensor variable. 2) If the liquid has different bond dimension variables, then
each bond dimension variable of the source liquid is mapped to a bond dimension variable of
the target liquid. In the present example, both the bulk and boundary bond dimension are
mapped to the bulk bond dimension,

:= , := . (107)

In general, each bond dimension variable of the source liquid can be associated with a collec-
tion of bond dimension variable of the target liquid which can contain the same bond dimen-
sion variable multiple times, as we have seen in Eq. (69).

4 Topology and non-commutativity

In this section we will revisit the example of topological order in 1+ 1 dimensions from Sec-
tion 3.1 and discuss an important issue that we have not addressed so far. If we want the
liquid to represent topological manifolds, we need to add more structure to the network. In
particular we will motivate that it is necessary to distinguish the different indices of a tensor
variable and show how this can be implemented concretely. The additional structure makes
the liquid more complicated than the liquid from the previous example. To handle this com-
plexity in the most efficient way, we seek a way to simplify the liquid without losing its ability
to describe topological phases. In doing so, we invoke the concept of liquid mappings and in-
troduce the notion of equivalent tensor liquids. We present what we believe to be the simplest
representative of a topological liquid in 1+ 1 dimensions and classify its phases.

4.1 Distinguishing indices

In Section 3.1, we have represented the triangulation of a manifold by a network which is
really just a trivalent graph, with one node at every triangle,

→ . (108)

We would like the combinatorics of networks and moves to reflect continuum manifolds and
homeomorphisms in a faithful way. However, the network combinatorics introduced so far
does not uniquely encode the full combinatorial information of the triangulation. Imagine
rebuilding the triangulation from the network’s graph by replacing each vertex with a triangle
and gluing the triangles associated to connected vertices along common edges. We encounter
two problems: 1) The combinatorial structure of the graph does not distinguish between the
three adjacent bonds, so we cannot tell which edges of the triangles we have to glue together.
2) Two edges can be glued in two opposite ways. E.g., consider the following graph that
corresponds to two triangles with all edges glued together pairwise,

. (109)
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This graph does not determine the topology of the resulting manifold. If we glue one of the
three edge pairs, we obtain a 4-gon. Depending on how we glue the remaining edges of the
4-gon, we can obtain a sphere, a real projective plane, a torus, or a Klein bottle.

The second problem can be solved by giving each edge an orientation and demanding that
those orientations match when we glue two edges of two triangles. The first problem is solved
by realising that any manifold can be triangulated using only triangles with non-cyclic edge
orientations 2. This is also known as a triangulation with a branching structure. For a fixed
triangle, the non-cyclic edge orientations induce an ordering of its vertices,

0 2

1

0202

0101 1212 . (110)

This allows us to distinguish the three edges and refer to them by their source and target
vertex. In our network notation, we allow rotating/reflecting the shapes of individual tensor
copies, which makes it impossible to distinguish the three indices if the shape is a small circle.
The shape for the tensor variable representing a branching-structure triangle should have less
symmetry, which we implement by next-to-shape markers,

0202

0101 1212

. (111)

The clockwise or counter-clockwise flags allow to uniquely identify the 3 indices of the tensor
with the edges 01, 02 or 12 of the branching structure triangle, as indicated by the red labels.
Note that here and in the subsequent, such red labels are not part of the formal graphical
notation, but serve as an aid to identify the network notation with its geometric interpretation
in terms of cell complexes. Networks using the new shape representing a branching-structure
triangle uniquely specify the triangulation and thus the topology. E.g., the network

(112)

represents a sphere unambiguously.
In our new (and final) notion of networks, the indices of a tensor are always distinct.

However, we can still interpret the old notion, where (some of) the indices have not been
distinguished. Indistinguishability of indices means that we are allowed to permute them,
which is nothing but a move. Now, whenever we choose a shape for a tensor which has
rotation/reflection symmetries due to which we cannot distinguish some of the indices, we
implicitly assume that all the corresponding index permutation moves (or better, a set of moves
generating all the permutation moves) are part of the liquid. Explicitly, we will denote such
permutation moves using cycle notation, e.g.,

c

a b
sym
= (ab) ,

c

a b
sym
= (bc) . (113)

If we instead use a shape without any symmetries, such as the one in Eq. (111), the index
permutations can be denoted as ordinary moves

cc

aa bb
=

cc

bb aa
,

cc

aa bb
=

bb

aa cc

. (114)

2This can be seen by refining a non-oriented triangulation via a construction known as barycentric subdivision,
which can be equipped with a canonical non-cyclic edge orientation.

36

https://scipost.org
https://scipost.org/SciPostPhysCore.5.3.038


SciPost Phys. Core 5, 038 (2022)

If we interpret those moves in terms of triangulations, they correspond to cutting out a triangle
and gluing it in a different way. Such an operation generally changes the topology of the
triangulation. So the liquid we introduced in Section 3.1 has moves which are sufficient to have
topological invariance, but also additional moves which go beyond topological invariance. We
therefore expect that models of this liquid are too restricted and do not contain the most
general fixed point models for topological order.

4.2 Non-simplified liquid

The branching structure/flags also need to be incorporated into the moves of the liquid. There
are different ways a branching structure can be added to the Pachner moves. For the 2-2 Pach-
ner moves (keeping in mind moves are not actually different if they are just rotated/reflected
or we exchanged the left and right side), we count 3 different versions. One of them is

0

3

2

1

↔ 0

3

2

1

. (115)

Another one can obtained by, e.g., inverting the orientation of the 2 − 3 edge. Note that
if we glue the two patches above at their boundary, we obtain the surface of a branching-
structure tetrahedron. In general, every Pachner move corresponds to a decomposition of that
tetrahedron into two parts, and the 3 versions of the 2-2 Pachner move correspond to the 3
different decompositions of the tetrahedron into two faces on each side.

In the new network notation, the move becomes

012

023

0101 1212

23230303

=
013 1230101 1212

23230303

. (116)

The red labels identify the tensors in the network with the triangles in the geometric interpre-
tation. E.g., 023 refers to the triangle in Eq. (115) whose 0-vertex is the vertex 0, 1-vertex is
2, and 2-vertex is 3. Note again that the red labels are only hints for the reader and not part
of the actual notation. Also, the open index labels were chosen in accordance with the names
of the corresponding edges.

Analogously, there are now 4 different versions of the 1-3 Pachner move, corresponding
to the 4 decompositions of the branching structure tetrahedron into two patches with 1 and 3
triangles each. One of them is

↔ . (117)

As some sort of convention, we might also want to introduce the following triangle cancellation
move

0

1

2

↔

0

2

, (118)

implying that a non-cyclic 2-gon can be shrunk to a single edge, which is represented by a free
bond in network notation as

012 012
02l02l 02r02r = 02l02l 02r02r . (119)
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If we glue one edge of the left hand side of Eq. (118) to one boundary edge of any patch
of a triangulation (including itself), this can be undone with Pachner moves. So the Pachner
moves imply that the corresponding tensor is a projector, and contracting any index of any
other tensor of the model with this projector yields the same tensor again. However, they do
clearly not imply the triangle-cancellation move, and formally, the liquids with and without
that move are inequivalent (in a sense that we will make precise soon).

However, when considering ordinary models of the liquid (with real or complex tensors),
Eq. (119) can be viewed as a convention that does not hurt to impose. The projector in
Eq. (119) has a n-dimensional support, and there exists an isometry which identifies this n-
dimensional support with an n-dimensional vector space. Applying this isometry to every
index of every tensor yields a model which is equivalent, as the tensors are invariant under
applying the corresponding projector. In doing so, the tensor corresponding to the projector
itself becomes the identity matrix.

In total, we end up with a liquid with 8 moves that we refer to as the “non-simplified
liquid”. As the moves correspond to equations between tensor networks that we need to solve
in order to find models, it is important that the moves of a liquid are as simple as possible.
In the following, we will find a “simplified liquid” which is equivalent to the non-simplified
liquid, but has less and simpler moves.

4.3 Simplified liquid

The simplified liquid has one additional tensor variable whose geometric interpretation is a
2-gon cell with cyclic edge orientations,

0

1

→ 0101 1010 . (120)

The new tensor will be denoted by a circle as well, however, it can be distinguished from the
triangle tensor due to the different number of indices. Of course, a 2-gon cannot be embedded
non-degenerately into Euclidean space without bending its edges. But this is no cause of a
problem as we are talking about combinatorial/topological cell complexes and not geometric
ones. The 2-gon is rotation symmetric which corresponds to a move

aa bb
sym
= (ab) (121)

justifying the choice of shape. This move can be derived from the moves below, however.
The moves of the simplified liquid only contain one single Pachner move, namely the 2-

2 Pachner move in Eq. (116). All other 2-2 Pachner moves can be derived via additional
moves of the simplified liquid related to symmetries of the triangle. In contrast to the liquid in
Section 3.1, rotating or reflecting the triangle would change the branching structure. However,
the changes of the edge orientations can be undone by gluing the cyclic 2-gon to the involved
edges. This yields, e.g., the (12)-triangle symmetry move

2

1

0 ↔

2

1

0 , (122)

where the nomenclature refers to effectively interchanging the role of the vertices 1 and 2. In
network notation, this is

012 12

0101

0202

2121 =
021

0101

0202

2121 . (123)
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In order to generate the full symmetry group S3 of the triangle, one only needs one further
move, the (01) triangle symmetry move

1

0

2 ↔

1

0

2 . (124)

Again, in network notation, this amounts to

012 01

0202

1212

1010 =
102

0202

1212

1010 . (125)

The 1-3 Pachner moves can be derived from the 2-2 Pachner moves via the triangle can-
cellation move in Eq. (119), which is also part of the simplified liquid. Analogously, there is
the 2-gon cancellation move

0

1

↔

0

1

. (126)

In network notation, we have

aa bb = aa bb . (127)

4.4 Equivalence of the simplified and non-simplified liquid

In this section, we will motivate why the simplified and non-simplified liquids are “equivalent”.
For this, we should be able to rewrite networks of the simplified liquid as networks of the non-
simplified liquid, and vice versa. This can be formalized by two liquid mappings M1 and M2,
going from the non-simplified liquid to the simplified liquid, and back.

Note that the tensor variables of the non-simplified liquid are identified with a subset of
the tensor variables of the simplified liquid. So there is a “trivial” candidate for the mapping
M1, mapping the triangle of the non-simplified liquid to the triangle of the simplified liquid.
In order to show that this defines indeed a liquid mapping, we need to show that the mapped
non-simplified moves are derived from the simplified moves. As the mapping is “trivial”, the
mapped non-simplified moves just look like the non-simplified moves.

• One of the branching-structure 1-3 Pachner moves is derived from the 2-2 Pachner move
in Eq. (116) and the triangle cancellation move in Eq. (119):

aa

bb

cc

(116)
= aa

bb

cc
(119)
= aa

bb

cc

. (128)

• All other versions of branching structure 2-2 Pachner moves are derived from the 2-2
Pachner move in Eq. (116), together with the two triangle symmetry moves. E.g., the
following 2-2 Pachner move

↔ (129)
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is derived by

aa bb

ccdd

(123)
=

aa bb

cc
dd

(116)
=

aa bb

cc
dd

(123)
=

aa bb

ccdd

.

(130)

The bar over the referenced equation denotes that the move is applied from right to left.

• Similarly, all other 1-3 Pachner moves are derived from the move above in Eq. (128),
together with the 2-gon cancellation move and the triangle symmetry moves.

The mapping M2 is only slightly more complicated.

• The triangle part of both liquids and accordingly mapped onto the itself (as part of the
non-simplified liquid).

• A 2-gon cell can be triangulated using two triangles

0

2

→

0

1

2

. (131)

Accordingly, the mapping for the 2-gon is given by

aa bb := aa bb . (132)

Again, we have to find derivations for the mapped simplified moves from the non-simplified
moves. E.g., if we plug the mapping Eq. (132) into the 2-gon cancellation move Eq. (127), we
obtain

aa bb = aa bb . (133)

This can be derived by 1) a 2-2 Pachner move, 2) a 1-3 Pachner move, and 3) the triangle
cancellation move. We will not explicitly give derivations for each mapped move here. Instead,
we would like to remark that the mapped moves (except for the 2-gon and triangle cancellation
moves) correspond to re-triangulations of a disk. It is known that any two triangulations of
the same (piece-wise linear) manifold are related by a sequence of Pachner moves [26]. So, if
we rely on this statement about the geometric interpretation, we know that derivations for all
mapped moves must exist.

So, we have found two liquid mappings going from the non-simplified liquid to the sim-
plified liquid and back. However, this alone does not really mean anything, e.g., between any
two liquids there’s the trivial mapping which maps every bond dimension variable to the empty
collection of bond dimension variables, and every tensor variable to the empty network. What
we additionally need is that that if we go from the non-simplified liquid to the simplified liquid
and back, we end up with the same network. In other words, M2 ◦M1 should be the identity,
and the same should hold for M1 ◦M2.
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We find indeed that M2 ◦M1 is the identity on the triangle, and also M1 ◦M2 is the
identity on the triangle. However, if we apply M1 ◦M2 to the cyclic 2-gon

aa bb
M2:= aa bb

M1
:= aa bb , (134)

we find that it does not map the 2-gon to itself. This is again fine, as the equation between the
very left and the very right is a derived move of the simplified liquid,

aa bb
(119)
= aa bb

(127)
= aa bb

(123)2

= aa bb
(125)
= aa bb .

(135)

If we apply M1 ◦M2 to any model of the simplified liquid, we will get the same model
again. So the models of the simplified liquid are in one-to-one correspondence with the models
of the non-simplified liquid, which motivates the use of the word “equivalent”. We will call two
mappings such that both M2 ◦M1 and M1 ◦M2 are the identity up to moves weak inverses
of another. Two liquids are considered equivalent if there are mappings between them which
are weak inverses of another.

One might think that reducing the number of moves from 8 to 5 is not a significant im-
provement. Let us justify why it actually is. The key task is finding models for our liquid, which
means solving the tensor-network equations given by the moves. As a measure of “complex-
ity” of a liquid it thus makes sense to consider the computational cost of evaluating the two
networks of each move, and in particular its scaling with the index dimension d. This scaling
is always polynomial, but the exponents depend on the move. Very roughly, the exponent will
increase proportionally to the “linear size” of a network. Thus, we have a strong preference
for moves with small networks. For evaluating a 2-2 Pachner move we need of the order of d5

+ and · operations. The same holds for a 1-3 Pachner move. All other moves in this section
have smaller exponents and thus have a vanishing contribution to the overall complexity when
scaling d. So from that perspective we have reduced the complexity from 7 moves to 1 move
rather than from 8 to 5 moves.

4.5 Models

We might look for models of the liquid with complex tensors as tensor type. However, we
will see in Section 6, that such models are unphysical, as they are not Hermitian. In contrast,
models with real tensors as tensor type have a physical interpretation, namely as fixed-point
models for topological order in spin systems protected/enriched by a time-reversal symmetry:
For a spin system, a time-reversal symmetry is an anti-unitary which squares to the identity.
We can always change the basis, such that this anti-unitary is given by complex conjugation in
that basis. Then, obeying the symmetry means that all tensors of the model are only allowed
to have real entries.

4.5.1 Matrix algebra models

The point of this section was to get rid off all index permutation symmetries. For the re-
lated algebra liquid, this corresponds to removing the commutativity axiom. Thus, also non-
commutative algebras yield models of the new liquid, such as the algebra of n × n matrices
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(for any n):

M
a2 b2

a1 b1a0 b0

= (n−1/2)

a1a1

a2a2

b1b1a0a0
b0b0

b2b2

. (136)

However, we observe that this model is not in an interesting phase. If we consider the
network representing some triangulation and use the tensors from Eq. (136), we see that
it decomposes into disconnected loops around vertices and scalars n−1/2 at every triangle.
Each loop evaluates to the scalar n. Physically, a tensor network consisting only of scalars
corresponds to a trivial model without any degrees of freedom.

Another way to motivate that this model is trivial is to see that due to the quantum mechan-
ical interpretation of the model we can generally neglect scalar pre-factors. This is because
the predictions of a quantum model are tensors whose entries are probabilities of measure-
ment outcomes, which have to sum to 1. Alternatively, we can be fine with any tensor and fix
the latter constraint by hand by normalizing with a prefactor. Then, tensors which differ by a
prefactor correspond to the same physical predictions. The measurement-outcome tensors can
be obtained by simply contracting space-time tensor networks containing the time-evolution
tensors of the model as well as state-preparation and measurement tensors [17]. Instead of
neglecting prefactors after contraction, we can already do this at the level of the single ten-
sors constituting the model. As neglecting pre-factors is compatible with Kronecker products
and Einstein summations, “arrays modulo pre-factors” defines another tensor type, which we
will refer to as projective tensors. If we interpret the model in terms of projective tensors, it is
actually formally in a trivial phase.

Mathematically, the evaluation of such a model can be computed as a sum of local numbers
after taking the logarithm of each scalar, which is known as a classical invariant of a manifold.
Simple combinatorics shows that the evaluation is given by nχ , where χ is a classical invariant
known as the Euler characteristic of the manifold.

4.5.2 Quaternion models

Another model is given by the quaternion algebra, whose indices take values in the set {1, i, j,k},

H
cc

bbaa
=



































1/2 if b = 1 and a = c

1/2 if a = 1 and b = c

1/2 if (a, b, c) is even permutation of (i, j,k)
−1/2 if (a, b, c) is even permutation of (i,k, j)
−1/2 if c = 1 and a = b

0 otherwise.

. (137)

If we interpret this algebra as a complex algebra, it is isomorphic to the algebra of 2 × 2
matrices, which would correspond to a physically trivial model again. However, as a real
algebra it is distinct from any matrix algebra or δ-algebra, and corresponds to a non-trivial
phase. This can again be seen by evaluating the model for a closed network representing a
non-orientable manifold, e.g., on the real projective plane, where we get −2. The fact that the
model becomes trivial when we drop the reality constraints indicates that we have a model
for a time-reversal SPT phase, i.e., a phase which becomes trivial after we allow breaking the
symmetry, in contrast to a symmetry breaking phase or a symmetry enriched topological (SET)
phase.
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4.5.3 Cluster Hamiltonian

The quaternion algebra model is equivalent to a commuting-projector model known as cluster
Hamiltonian [28, 29], which is known to represent the only non-trivial SPT phase protected
by time-reversal symmetry in 1+ 1 dimensions [30]. The Hamiltonian is given by

H =
∑

i

−X i−1ZiX i+1 . (138)

Its time reversal symmetry is given by the anti-unitary operator

T = K
⊗

i

Z , (139)

where K denotes complex conjugation. After a change of basis, the time-reversal symmetry
operator is given by complex conjugation in that basis alone:

H =
∑

i

−Yi−1ZiYi+1 =
∑

i

(X Z)i−1Zi(X Z)i+1 ,

T = K .
(140)

The local ground state projector acting on three neighbouring qubits is given by

P = (1− X Z ⊗ Z ⊗ X Z)/2 . (141)

In order to compare the cluster Hamiltonian with our liquid model, we actually have to break
translation invariance, and block pairs of neighbouring qubits. The new local ground state
projector acting on two qubit pairs is given by the product of two old ground state projectors,
i.e.,

Pblocked = (1− X Z ⊗ Z ⊗ X Z ⊗ 1)(1− 1⊗ X Z ⊗ Z ⊗ X Z)/4

= (1− X Z ⊗ Z ⊗ X Z ⊗ 1− 1⊗ X Z ⊗ Z ⊗ X Z − X Z ⊗ X ⊗ X ⊗ X Z)/4 .
(142)

As in Section 3.1, this projector is interpreted as a 4-index tensor

out2out1

in2in1

, (143)

which defines a model of a liquid for rhombus-like cellulations of space-time.
Again, the comparison between the topological liquid model and the commuting-projector

model is done by a liquid mapping. As before, the geometric interpretation is given by refining
the “rhombic cellulation” of spacetime into a triangulation

0

3

2

1

→ 0

3

2

1

. (144)

The only difference is that now the triangulation has a branching structure. In network nota-
tion, we get

1201

3203

:=
013 1320101 1212

32320303

. (145)

To show that the mapping above is in fact an equality for the chosen models, we iden-
tify the basis elements of the quaternion algebra {1, i, j,k} with the two-qubit configurations
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{|0,0〉 , |0,1〉 , |1,0〉 , |1,1〉} and write the tensors appearing in Eq. (145) as a collection of two-
qubit operators from the vector space associated to index a to the vector space associated to
the index b, indexed by the index c

cc

aa

bb

= (1⊗ 1,1⊗ X Z , X Z ⊗ Z , X Z ⊗ X )/2 ,

cc

aa

bb

= (1⊗ 1,−Z ⊗ X Z ,−X Z ⊗ 1, X ⊗ X Z)/2 .

(146)

Summing over the index c yields the right hand side of Eq. (142), which shows that our liquid
model is equivalent to the cluster Hamiltonian model under the chosen mapping.

5 A non-triangle liquid

In this section, we will discuss a first example for a liquid which is not directly based on
triangulations. We will then show how liquid mappings can be used to establish its equivalence
to the triangle liquid on a purely diagrammatic level.

5.1 The edge liquid

The new topological liquid in 1+1 dimensions presented in this section, the edge liquid, corre-
sponds to a different way of combinatorially representing 2-manifolds. As the name suggests,
instead of representing each triangle by a tensor, we associate a copy of a 4-index tensor to
every edge. More precisely, each edge and the associated tensor are decorated with little ar-
rows, which allows us to introduce an orientation later in Section 6 by assigning a clockwise-
or counter-clockwise ‘helicity’,

→ . (147)

An edge with different helicity is represented by the same tensor, just flipped,

→ . (148)

Two edge tensors share a common bond if they are adjacent to a common vertex and a common
triangle. This description also works for cell complexes with arbitrary n-gons as faces instead
of just triangles, e.g.,

. (149)

There are 3 moves. The first move has a geometric representation as taking the endpoint
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of one edge and moving it along another edge,

0 1

2

↔

0 1

2

. (150)

In terms of networks, we have

01

02
c

e f

d

a b

=

01

12
d

e f

c

a b

. (151)

The second move corresponds to removing a ‘dangling’ edge with a vertex that is only
adjacent to this edge,

0

1
2 3

4

↔

0

2 3

4

. (152)

In terms of networks, this is

01
ba

= bbaa . (153)

The third move is dual to the latter and removes a ‘loop’ edge which has the same endpoint
twice,

0

2 3

4

↔

0

2 3

4

. (154)

In terms of networks,

00
b a

= bbaa . (155)

5.2 Equivalence of the liquids

For the triangle liquid, we could make use of a theorem by Pachner to argue that it is a ‘topolog-
ical’ liuid. For the edge liquid, such a formal argument is missing, though it seems conceivable
that the presented deformations of cellulations are as powerful as Pachner moves. Instead of
trying to directly proof a second Pachner theorem for the edge liquid, we take a simpler route
and show its local combinatorial equivalence to the triangle liquid. As in Section 4.4, we prove
this equivalence using two weakly inverse liquid mappings, from the edge to the triangle liq-
uid and back. Starting with the former, we can map a cellulation underlying an edge-liquid
network to a triangulation underlying a triangle-liquid network by replacing every edge by
two triangles,

→ . (156)
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In other words, the triangulation is obtained by subdividing each face into triangles in a ‘pizza-
like’ manner, with a new vertex in the middle. Formally, this liquid mapping from the edge
liquid to the triangle liquid is given by

ba

dc

:=

aa b

c dd

. (157)

Applying the mapping above to the move in Eq. 155, we obtain the equation

aa b

= bbaa , (158)

which can be derived from the complete set of triangle-liquid moves. This is also easily seen
for the other moves of the edge liquid. Thus, under the mapping defined in Eq. (157) a model
of the triangle liquid is mapped to a model of the edge liquid.

Let us now give the opposite mapping from the triangle liquid to the edge liquid. A branch-
ing structure triangulation can be turned into a cellulation by replacing every triangle by two
of its edges,

→ . (159)

Note that an edge of the triangulation might yield two edges of the cellulation, one coming
from both adjacent triangles, enclosing a 2-gon face. It might also yield one or no edges,
depending on the branching structure of the two adjacent triangles. Formally, the mapping is
given by

aa′ bb′

cc′
:=

a′

a b′

b

c c′

. (160)

As indicated by the two-letter labels on the left-hand side, each index of the triangle liquid
corresponds to two indices of the edge liquid. If we want to use this formula to get a triangle-
liquid model from an edge-liquid model, we have to evaluate the right-hand side, and then
block pairs of indices into single indices.

In order to establish that the two mappings above are weak inverses we in fact need to gen-
eralize our notion of a weak inverse. As in Section 4.4, applying both mappings A→ B→ A
to a single tensor does not result in a network consisting of that same tensor again, but to a
larger network. However, in contrast to the mappings in Section 4.4, the resulting network is
not even related to the original 1-tensor network via the moves of the liquid. This is obvious
from the fact that the open indices after applying both mappings are different after applying
both mappings. The same is true for the other composition of the two mappings.

It is still true, however, that the two mappings applied to a network without open indices is
equivalent to the original network again via moves, since this double-mapping is nothing but
a refinement of the triangulation/cellulation. If there are open indices then the networks are
equivalent up to moves everywhere in the interior away from the open indices. Thus, for our
new generalized notion of weak inverse, it suffices if a doubly-mapped network is equivalent
to the original network via moves only away from the open indices.

The two mappings being not literal inverses of another implies that applying both mappings
in the reverse direction to a model of A, we will in general not end up with the same model
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again. Indeed, as one of the mappings involves a blocking of indices, the bond dimension
of the resulting model will be the square of the original bond dimension. However, the two
mappings being weak inverses of another implies that the model and the twice-mapped model
will be related by an invertible domain wall. So even if the original and the resulting models
are different, they are in the same exact phase. Thus, the phases of equivalent liquids, such as
the edge liquid and the triangle liquids, are in one-to-one correspondence. They are therefore
equally powerful for classifying or representing phases of matter. However, the representation
of a phase as model of A might be more convenient than its representation as a model of B,
or vice versa.

6 Orientation and Hermiticity

In this section we will provide a liquid whose models have a standard quantum mechanical
interpretation, by adding an orientation and a Hermiticity move. We will illustrate this at hand
of the triangle liquid from Section 4, but the generalization to arbitrary topological liquids is
straight-forward. The corresponding models are basically equal to 2-dimensional lattice TQFTs
as formulated in Ref. [6].

6.1 Hermiticity and orientation-reversal

Objects like Hamiltonians, state vectors or time evolution operators, which occur in the usual
pure-state formulation of quantum mechanics, are complex tensors. A “physical” Hamiltonian
is Hermitian, which means that interchanging input and output indices of the corresponding
complex tensor is equal to complex conjugation, e.g.,

H

a b

a′ b′

= H∗

a′ b′

a b

:= H

a′ b′

a b
K

. (161)

As complex conjugation is not part of network notation, we introduce the following extension
to network notation. Every part of a network encircled by a line of the following style

K (162)

will be complex conjugated. We will sometimes omit the label K . Complex conjugation com-
mutes with tensor products and contractions, which gives us diagrammatic equivalences such
as

a

b

c

d

e

=

a

b

c

d

e

=

a

b

c

d

e

=

a

b

c

d

e

. (163)

The Hermiticity of the Hamiltonian carries over to the tensors of the tensor network in the Trot-
terized imaginary time evolution, and implies that inverting the time direction is equivalent
to complex conjugation. In a topological manifold there is no “time direction”, but inverting
any direction is still an orientation-reversing map. Thus, a “physical” model of a topological
liquid in complex tensors should have the property that orientation reversal equals complex
conjugation. The networks of the liquids we introduced so far represent manifolds without an
orientation, so it’s impossible to formulate the Hermiticity condition for their models.
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On the other hand, we could say that for liquids without orientation, orientation reversal is
a trivial operation. Thus, for models of such liquids the Hermiticity condition implies that they
are invariant under complex conjugation alone, i.e., purely real. As we have seen Section 4,
such models are indeed physical and correspond to phases with a time-reversal symmetry.

There is the possibility of real models of unoriented liquids to emulate general physical
models (even ones without time-reversal symmetry) by increasing the bond dimension, called
realification (cf. Ref. [17,31]). Realification is an operation that maps every Hermitian complex
model of an oriented liquid to a real model of the corresponding unoriented liquid, such that
the former can be identified with a subset of the latter. However, it is more straight-forward
to add an orientation to the liquid and consider models with complex tensors.

6.2 Non-simplified liquid

An orientation can be added to a triangulation by specifying for each triangle whether it is
oriented “clockwise”, or “counter-clockwise”. Clockwise and counter-clockwise triangles are
represented by two different tensor variables in a network. The clockwise triangle is defined
by the fact that its 01 edge (with respect to the branching structure) is oriented clockwise,

0

1

2

→
02

0101 1212

. (164)

The opposite is true for the counter-clockwise triangle

2

1

0

→
0202

01 12

. (165)

In network notation, the two tensors are distinguishable, as we add an inward arrow marker
to every index corresponding to a clockwise oriented edge. The clockwise triangle has two
clockwise edges, whereas the counter-clockwise triangle only has one. As we allow reflecting
the shapes of individual tensor copies in a network, it would be impossible to distinguish the
two input indices of the clockwise triangle. To fix this problem, we add a little “spiral” to the
circle, which defines what the counter-clockwise direction is.

In an oriented triangulation every edge is a clockwise edge of one triangle, and a counter-
clockwise edge of another triangle. Thus, the networks obey the constraint that every bond is
between an index with an arrow and an index without an arrow. Alternatively, the diagrams
can be interpreted as instances of a slightly refined graphical calculus, where indices are di-
vided into output and input indices, and bonds must always connect one input and one output
index. The refined graphical calculus can be fulfilled by more general data structures, namely
tensor types where each basis has a dual. For all the tensor types in this work (i.e., arrays and
fermionic tensors) the dual will be trivial. Thus, we will not explicitly distinguish input and
output indices.

Each Pachner move exists with two different orientations as well. So naively we would
end up with a liquid with 14 Pachner moves plus the triangle cancellation move (which is
reflection symmetric), which we will call the “non-simplified liquid”. Alternatively, we could
take the simplified unoriented liquid with two copies of every tensor variable and every move
(unless they are reflection symmetric). However, there is a simpler equivalent liquid, as the
next section shows.

48

https://scipost.org
https://scipost.org/SciPostPhysCore.5.3.038


SciPost Phys. Core 5, 038 (2022)

6.3 Simplified liquid

The simplified liquid contains the clockwise triangle in Eq. (164) as a tensor variable, but not
the counter-clockwise triangle. The latter can be constructed from the former by gluing with
a cyclic 2-gon, as shown in Eq. (175). For the cyclic 2-gon, we take both the clockwise and
counter-clockwise version,

0

1

→ 10 01 ,

0

1

→ 0101 1010 . (166)

The moves only contain a single 2-2 Pachner move, namely the one consisting of only
clockwise triangles

aa bb

ccd

=
aa bb

ccd
. (167)

In the oriented case, the triangle only has a Z3 rotation symmetry, generated by the (120)
triangle symmetry move

1

2

0

↔

1

2

0

. (168)

In network notation we have
012 02

1212

0101

2020 =
20112

2020

0101

1212 . (169)

Furthermore, there are two cancellation moves. The triangle cancellation move depicted
in Eq. (118) has one clockwise and one counter-clockwise triangle. The latter is not part of
our tensors, so the oriented triangle cancellation move has the cyclic 2-gon instead a free bond
on the other side:

0

1

2

↔

0

2

. (170)

In network notation, we find
102 120

0202 2020 =
02

0202 2020 . (171)

Second, the oriented 2-gon cancellation move is

aa b = aa bb . (172)

The clockwise 2-gon is rotation symmetric, so we would expect the following symmetry move

aa bb
sym
= (ab) , (173)

which is also implied by the choice of shape. Indeed, this move is directly derived from the ori-
ented triangle cancellation move in Eq. (171). The analogous symmetry move for the counter-
clockwise 2-gon

a b
sym
= (ab) (174)

can be derived from the oriented 2-gon cancellation move. The proof that the non-simplified
and simplified liquids are equivalent is analogous to the non-oriented case.
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6.4 Hermiticity move

As we mentioned above, physical models should obey the Hermiticity condition that orienta-
tion reversal equals complex conjugation. Using the extended network notation introduced
in Eq. (162), this condition can be written down as a move as well. This move equates the
complex conjugated clockwise triangle and the counter-clockwise triangle. The latter can be
constructed from the former by gluing a cyclic 2-gon according to

c

aa bb

=
cc

a b
:=

a

cc

b
. (175)

One would expect that we also need to add the analogous move which relates the clockwise
2-gon and the counter-clockwise 2-gon via complex conjugation. However, this move can be
derived from the moves defined so far. For the sake of demonstrating how to operate with
networks containing (complex conjugation) mappings, we will explicitly give the derivation

aa bb
(171)
= aa bb

(163)
= aa bb

(175)2

= a b

(172)
= a b (169)

= a b
(169)
= a b

(172)
= a b

(171)
= a b

(172)
= a b .

(176)

6.5 Models

As in the unoriented case, the oriented liquid is equal to associative algebras with some extra
axioms, and thus, its models can be classified. Complex models of the oriented Hermitian
liquid are not actually more general than real models of the unoriented liquid: By a change of
basis, each complex model can be brought into a form where it is purely real. Contrary, there
are even less models, in the sense that models which are in different phases as real models can
be in the same phase as complex models.

An example for this is the model coming from the quaternion algebra. As a complex model,
it is equal to the model coming from the 2×2 matrix algebra, after the following basis change:

G := 2−1/2 (1, iX , iZ , iY ) , (177)

where X , Z and Y are the corresponding Pauli matrices, and the four entries correspond to
1, i, j, and k. If we choose an ordering of the four entries of 2× 2 matrices, we can write G
properly as a 4× 4 unitary matrix.

7 Beyond-topological moves

Topological fixed-point models might be further restricted by imposing invariance under moves
beyond topological invariance. In this section, we discuss one simple example for this, namely
the restriction to so-called invertible phases. A model or phase is said to be invertible if “stack-
ing two orientation-reversed copies yields a trivial phase”. Thus, there must be an invertible
domain wall between this double-layered tensor network and the trivial model. One way of
ensuring this is to demand invariance not only under homeomorphisms, but also under the
following surgery operations:
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• A 0-surgery (or, equivalently, a backwards 3-surgery) consists in removing a 2-sphere

↔ . (178)

• A 1-surgery (or backwards 2-surgery) consists in cutting out an annulus and pasting two
disks

↔ . (179)

Two manifolds are related by surgery operations iff they are cobordant, i.e., their disjoint
union can be identified with the boundary of a manifold of one dimension higher. Two layers
of 2-manifold can be removed with the invertible domain wall using surgery operations as

→ → → . (180)

We start by applying 2-surgeries with one disk in each of the two layers, as indicated by the
blue circles. This yields a “double-layer with holes”. For each pair of neighbouring holes
there is a non-contractible loop winding through both of them. Next, we apply a 1-surgery
to the annulus-like neighbourhood of every such non-contractable loop, (whose boundaries
were indicated by blue lines). This yields a collection of disconnected 2-spheres, which can be
removed by 0-surgeries.

Combinatorially, surgery operations can be implemented by the following moves.

• The 0-surgery move

↔ , (181)

where the left hand side depicts a cellulation of a sphere by a clockwise (front) and
a counter-clockwise (back) 2-gon, and the right hand side is the empty manifold. In
network notation, this looks like

= . (182)

• The 1-surgery move

0

1 ↔
0 1

2 3
, (183)

where the left hand side depicts a triangulation of an annulus, and on the right we have
a triangulation of two disks. In network notation, we find

001 011
0000 1111 =

002 113
0000 11 . (184)
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Note that both moves are non-topological, as at least one of their networks (in fact both) does
not represent a disk. In particular, the right hand side of the 1-surgery move consists of two
disconnected components. Also note that it does not matter how exactly we implement the
surgery operation concretely in terms of networks. All equations between networks of the
correct topology are equivalent via the topology-preserving moves. This is true for general
topology-changing moves.

Models of the invertible liquid are models of the topological liquid which fulfil the addi-
tional equations Eq. (182) and Eq. (184). As such only the trivial model (every tensor being
equal to the number 1) fulfils these equations. However, physically it is fine if the equations
only hold up to pre-factors, such that we can ignore Eq. (182) as it is only equates scalars. In
this case, also the model based on the matrix algebra in Eq. (136) is invertible, as plugging it
into Eq. (184) yields

aa
a′a′

cc
c′c′ =

aa
a′a′

cc
c′c′ . (185)

As we have seen in Section 4.5, this model is still in a trivial phase, as the defining tensor is a
tensor product of three identity matrices and thus the resulting network can be reshaped into
a product of independent loops. However, it can become non-trivial if we add symmetries.
That is, we equip each index with a representation of a group (or some form of Hopf algebra,
see Ref. [13]). Tensors with symmetries (of a fixed group) constitute a different tensor type,
as symmetries are consistent with contraction and tensor product.

The tensor in Eq. (136) can be equipped with many different symmetries. In particular
having a representation act twice on each of the two (row and column) index components
independently leaves the tensor invariant, because each of the three identity matrices is in-
variant under that symmetry separately. For that exact same reason though, the model with
such symmetries is still in a trivial phase. So we need a representation that does not split into
a product of two representations on the two index components. One possibility for that is
to take a projective representation on each of the two components, such that both projective
representations together form a proper representation on the composite index. The simplest
group which has a non-trivial projective representations is the Klein 4-group Z2 × Z2. The
projective representation R is given by the Pauli matrices:

R((0, 0)) = 1, R((0, 1)) = X ,

R((1,0)) = Z , R((1,1)) = iY .
(186)

In Section 4.5, we have seen models for SET (or SPT) phases protected by a time-reversal
symmetry. The present model is an example for an SPT phase protected by an ordinary sym-
metry, which is also invertible. Note that projective representations are classified by the second
U(1)-valued cohomology group of the symmetry group, and our liquid models are equivalent
to the isometric MPS in Ref. [32] and to the models in terms of “dimer crystals” in Ref. [30].

8 Non-chiral topological order in 2+ 1 dimensions

In this section, we discuss non-chiral intrinsic topological order for spin systems, i.e., systems
without fermionic degrees of freedom. Whereas global symmetries and fermions (see Sec-
tion 9) can be easily incorporated into our framework, it is an open question whether there
exist models for topological liquids which represent chiral phases. For all liquids presented in
this paper there are mappings from a commuting-projector liquid, and there exist no-go theo-
rems about commuting-projector models describing chiral phases [33]. In our framework we
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can circumvent those no-go theorems as there exist more general liquids which do not yield
commuting-projector models (cf. Ref. [12]), however, concrete examples of models represent-
ing chiral phases remain elusive to date. On the contrary non-chiral topological order is well
captured within our formalism and we illustrate this fact by providing two different, yet equiv-
alent topological liquids that cover the most general known models of non-chiral topological
order.

8.1 Volume liquid

In this section we describe a liquid whose models are similar to fixed point models originally
introduced as a state-sum invariant by Turaev and Viro [7,8]. Later this construction has been
rephrased as a Hamiltonian model for topological order by Levin and Wen [5] referred to
as string-net models. The liquid we present here is a straight forward generalization of the
oriented topological liquid in 1+ 1 dimensions from Section 6 to 2+ 1 dimensions.

8.1.1 The non-simplified liquid

A 3-manifold can be represented by a simplicial complex (a decomposition of the manifold into
tetrahedra) with the following 3-dimensional Pachner moves. The 2-3 Pachner move replaces
two tetrahedra glued together at a single face with three tetrahedra glued together such that
each pair of tetrahedra shares one common face and all three tetrahedra share a common edge

↔ . (187)

The 1-4 Pachner move replaces a single tetrahedron with 4 tetrahedra, such that every pair
shares a common face, every collection of three tetraheda shares a common edge and all
tetrahedra share a common vertex

↔ . (188)

A triangulation is represented by a network with one 4-index tensor at every tetrahedron,
and one bond between each pair of tetrahedra sharing a face. In order to obtain a liquid with
models for a very general class of topological phases, we have to take care of the following
details.

To properly represent 3-dimensional manifolds combinatorially, we need to distinguish the
different faces of a tetrahedron. On a geometrical level this can be achieved by introducing
a branching structure. That is, analogously to the 2-dimensional case, we add an orientation
to all edges which is not cyclic around any triangle. The branching structure allows us to
uniquely label the vertices of a triangle,

0 1

2

→ TT
012012

, (189)

which represents a bond dimension variable T . This ensures that there is only one way to glue
two triangles. It also allows us to uniquely label the vertices of the tetrahedron, yielding a
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tensor variable with distinct indices

0 1

2 3

→
0123

123123

TT

023023 TT
013013

TT

012012TT . (190)

In network notation the 4 indices are distinguished by their location relative to the small black
“arrow” inside the square which allows an unambiguous identification despite the fact that we
are allowed to rotate and reflect the shape in the diagrams.

We want the models to have a pure-state quantum mechanical interpretation. Thus, we
have to work with complex tensors, and we need to introduce an orientation. The orientation
allows us to distinguish between the counter-clockwise tetrahedron above (whose 01 edge of
the 012-triangle is oriented counter-clockwise), and the clockwise tetrahedron which is repre-
sented by the different tensor variable

0

1

2

3

→
0123

123123

TT

023023 TT
013013

TT

012012TT . (191)

In order to access even more general models, we choose a slightly more complicated net-
work representation of the triangulation. For every edge encircled by tetrahedra we chose one
favorite adjacent face shared by one tetrahedron-pair and insert a 2-index tensor at the cor-
responding bond. Those tensors correspond to three different variables (called edge weights),
depending on whether the edge is the 01, the 02, or the 12 edge of its favourite face repre-
sented by

0 1

2

→ 012

backbackTT frontfront TT , (192)

0 1

2

→ 012

backbackTT frontfront TT , (193)

0 1

2

→ 012

backbackTT frontfront TT . (194)

We can imagine to “inflate” the triangle on the left-hand side of Eq. (192), Eq. (193), and
Eq. (194) and into a pillow-like volume with three corners, whose boundary consists of two
triangles, one in the back and one in the front. We might think of the edge weight as being
contained in the volume. Here and in the following, we will mark edges at the boundary of a
volume, which contain an edge weight, with a tick.

It turns out that if we would write down the liquid without edge weights, we would only
get models for symmetry breaking order, and none for (actual, irreducible) topological order 3.
However, there are simpler ways to decorate the liquid, which already have non-trivial models,

3The edge weight are closely related to the quantum dimensions in the conventional fusion-category framework
of non-chiral topological order. No edge weights would mean that all quantum dimensions and the total quantum
dimension are 1.
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yet not the most general ones. E.g., it suffices to add a 0-index tensor 4 associated to every
vertex, in order to get models for all discrete (Dijkgraaf-Witten [34]) gauge theories.

After the refinements above, we do not have a single 2-3 and 1-4 Pachner move, but one
move for each choice of orientations, branching structure, and possitions of the edge weights.
A list of all moves can be obtained in a straight-forward fashion and here we only present
one specific example of a 2-3 Pachner move with the special property that all tetrahedra are
oriented counter-clockwise. This move will be relevant in the next section, where we present
a simplified, yet equivalent liquid. In terms of cell complexes, it looks like

0

1

2

3

4 ↔ 0

1

2

3

4 . (195)

We observe that the geometric depiction does not reveal where we put the edge weight of the
inner 13 edge on the right hand side. However, this information is contained in the corre-
sponding network notation

0124

0124

024

124014

012

023

234

034
=

0123 1234

0134

134

123

013

012 023 234124

034014

. (196)

Apart from the 2-3 and 1-4 Pachner moves, we impose the following full tetrahedron cancel-
lation move analogous to the triangle cancellation move in Eq. (119). Geometrically, it consists
in taking a volume glued from a clockwise and a counter-clockwise tetrahedron at three of
their faces, and shrinking it down to a single face

0 2

3

1

↔

0

1

2

. (197)

In network notation, this face is represented by a free bond

0123b 0123 f

013

123

023

012b 012 f = 012b012b 012 f012 f . (198)

As in the 1+ 1-dimensional case, the volume on the left hand side of Eq. (197) would be rep-
resented by a projector in a real/complex model, and the move corresponds to the convention
of restricting everything to the support of that projector.

4The corresponding scalar would be the inverse total quantum dimension in the fusion-category formulation.
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8.1.2 The simplified liquid

The liquid presented in the preceding section is quite complicated, as it consists of a large num-
ber of slightly different versions of Pachner moves. In the following we present an equivalent
“simplified” liquid with only one single Pachner move, together with many simple additional
moves. The simplified liquid has a geometric interpretation as well – networks do not corre-
spond to triangulations, but more generally to cellulations with different faces and volumes.

The simplified liquid consists only of the counter-clockwise tetrahedron and several addi-
tional tensors which can be used to flip the edge orientations, and thus allow us to effectively
reconstruct the clockwise tetrahedron from the counter-clockwise one (cf. Eq. (217)). The
main new ingredient of the simplified liquid is to allow for 2-gon faces. Thus, first of all, we
introduce an additional bond dimension variable D, corresponding to a 2-gon with cyclic edge
orientations

0 1 → DD
0101

. (199)

The 2-gon has a rotation symmetry, so there are 2 different ways to identify two glued 2-gons.
In order to make the gluing unambiguous, we determine one “favourite edge”, marked by the
small half circle, such that those favourite edges have to coincide when gluing.

The new tensors used to flip edge orientations are called flip hats. They correspond to
3-cells whose boundary consists of two triangles and one 2-gon and which appear in four
different variants depending on orientation and the choice of the favorite edge. I.e., there is

• the clockwise 01 flip hat

0 1

2

→
012

0101

DD

102102TT 012012 TT
, (200)

• the counter-clockwise 01 flip hat

1 0

2

→
012

0101

DD

102102TT 012012 TT
, (201)

• the clockwise 12 flip hat

1 2

0

→
012

1212

DD

021021TT 012012 TT
, (202)

• and the counter-clockwise 12 flip hat

1 2

0

→
012

1212

DD

021021TT 012012 TT
. (203)

In addition, there is the 2-gon flip which interchanges favourite edges

0 1 → 01

1010DD 0101 DD . (204)
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The boundary of this volume consists of two 2-gons. The favourite edge of the 2-gon on the
front is the 01 edge, whereas for the 2-gon on the back it is the 10 edge.

At last, we need to introduce the edge weights for the simplified liquid. Of the three edge
weights from the previous section, it suffices to take the 01 edge weight in Eq. (192), since
the other edge weights can be constructed using the tensors above. We additionally introduce
the 2-gon edge weight

0 1 → 01

backbackDD frontfront DD , (205)

which is a volume like the 2-gon flip, but the favourite edge of both the back and front 2-gon
is the 10 edge. According to the name, one of its edges (the 10 edge) carries an edge weight
and is therefore marked by a tick. We show in Eq. (215) that in fact all edge weights can
be constructed from the 2-gon edge weight only, such that the 01 edge weight is merely an
auxiliary tensor.

The moves of the simplified liquid contain only one single Pachner move, which we choose
to be the one with only counter-clockwise tetrahedra in Eq. (196). Instead of the other Pachner
moves, there are a number of simpler moves involving the additional tensor variables, from
which the former can be derived. In the following, we give a selection of those moves in
terms of cell complexes as well as in network notation. The remaining moves can be found in
Appendix C. For the cell complexes we can only easily draw the 1-skeletons which do not in
general unambiguously determine the cellulation. The network notation on the other hand is
clear and completely unambiguous, but does not make the geometric interpretation apparent.

The moves can be divided into three groups. First, there are moves corresponding to sym-
metries of the tensors from which we can derive all other versions of the 2-3 Pachner moves.
E.g., there is the (01)(23) tetrahedron symmetry move for the corresponding permutation of
the tetrahedron vertices. This permutation changes the edge orientations of the (01) and (23)
edge, which is done by using two pairs of flip hats. In the corresponding re-cellulation,

0

1

2 3 ↔ same 1-skeleton , (206)

both sides are glued from one tetrahedron and one flip hat from each of the two pairs. On the
left, the flip hats are glued to the triangles 013 and 123, whereas on the right, they are glued
to the triangles 102 and 032. In network notation, this is

0123

013

123

013

012 023

123

23

01

132

103

=
1032

023

012

102

103 132

032

01

23

023

012

. (207)

Also the flip hats have a symmetry, namely a π rotation around the axis going through the
“tip” of the hat and the centre of the 2-gon. This rotation changes the favourite edge of the
2-gon which can be undone by gluing a 2-gon flip to the 2-gon, as, e.g., in the clockwise 01 flip
hat rotation move

1 0

2

↔

1 0

2

, (208)
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in network notation
102

01
10

012 102

01

=
012

102012

01

. (209)

The second group consists of cancellation moves, which allow us to derive the 4-1 Pachner
moves from the 2-3 Pachner moves. E.g., gluing two flip hats at one triangle and one 2-gon
yields the same pillow-like volume as in Eq. (197), which can be shrinked to a triangle, as in
the oriented 01 flip hat cancellation move

1 0

2

↔

1 0

2

. (210)

Again, the triangle is interpreted as a free bond in network notation

012 012

10

102012b 012 f = 012b012b 012 f012 f . (211)

Similarly, the tetrahedron cancellation move equates two tetrahedra glued at two triangles on
the left hand side with two flip hats glued at the 2-gon on the right hand side,

0 1

2

3

↔ 0 1

2

3

, (212)

0132 0123

013

032

132 023

123

=

023

123

032 023

132 123
. (213)

The third group consists of moves relating the edge weights. In our case there is only one
such move, which can be viewed as the definition of the triangle weight from the 2-gon weight

0 1

2

↔

1 0

2

. (214)

In network notation, this is

012

b f =
012102

10 01

b f . (215)

The complete definition contains a few more moves, for which we refer to Appendix C.
Note that there is also a similar variant of the liquid without an orientation. The tensor vari-

ables are the same, just that we do not distinguish between clockwise and counter-clockwise
versions. The moves are similar, just that there are also tetrahedron symmetry moves corre-
sponding to reflections of the tetrahedron. E.g., there is a (01) tetrahedron symmetry move
with only one single flip hat on each side.
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8.1.3 Equivalence of the simplified and non-simplified liquid

The equivalence of the simplified liquid and the non-simplified liquids is shown via mappings
from one to the other and vice versa. The mappings have to be weak inverses, as introduced
in Section 4.4.

We first present the mapping from the non-simplified liquid to the simplified liquid. The
triangle bond dimension T , the counter-clockwise tetrahedron, and the 01 edge weight are
shared by both liquids and are accordingly mapped onto themselves. The clockwise tetrahe-
dron of the non-simplified liquid can be constructed from the counter-clockwise tetrahedron
and two flip hats

0 2

3

1

→

0 2

3

1

, (216)

yielding the mapping

0132
032

012

013

132

:=
0123

123

023

23

013

012

132

032 . (217)

Likewise, the 02 and 12 edge weights of the non-simplified liquid can be constructed from the
01 edge weight and two flip hats. E.g., the 02 edge weight is obtained by

1 2

0

→

1 2

0

, (218)

yielding the mapping

012

012b 012 f :=
021 021

10

021
012b 012 f . (219)

Let us quickly sketch how the mapped moves of the non-simplified liquid are derived by the
moves of the simplified liquid. First note that using flip hat cancellation moves like Eq. (211),
we can insert pairs of flip hats at triangles between tetrahedra. Then, using symmetry moves
like Eq. (207) individual flip hats can be moved through tetrahedra between different faces
adjacent to a fixed edge. Imagine introducing a pair of flip hats at a face adjacent to an inner
edge, moving one of the flip hats once around that edge, and then removing the pair of flip
hats. This flips the orientation of the inner edge. Via this and similar derivations, we can obtain
all different 2-3 Pachner move from only the single move in Eq. (196). Moreover, consider the
full tetrahedron cancellation move in Eq. (198) and observe that it can be derived from the
tetrahedron cancellation move in Eq. (213) together with a flip hat cancellation move. With the
aid of the just derived full tetrahedron cancellation move, we can bring one of the tetrahedra
on the left hand side of the 2-3 Pachner move in Eq. (196) over to the right hand side, and
obtain a 1-4 Pachner move. Again, we can use the tetrahedron symmetry moves and flip hat
cancellation moves to derive all other versions of the 1-4 Pachner move.

Next, we consider the converse mapping from the simplified liquid to the non-simplified
liquid. A 2-gon can be triangulated by a pair of triangles, and gluing two 2-gons can be replaced
by gluing two triangle pairs instead

0 1 → 0 1
2

. (220)
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So we make the following identification between bond dimensions

DD
0101

:= TT
012012

TT
102102

. (221)

Next, we consider the mapping of the additional tensors. The clockwise 01 flip hat can be
triangulated by two tetrahedra

0 1

2

→

0 1

2

3

. (222)

In terms of networks, we have

012

012102

013,103

:=
1023 0123

123 013

023

103

102 013

012

. (223)

Every time we would glue two 2-gons of the simplified liquid, we now glue two triangle pairs
instead. In doing so, the edges 02 and 12 edge in Eq. (220) (the edges 03 and 13 in Eq. (222))
become inner edges, so we have to add the corresponding edge weights. In general, we will
include the edge weights of the 02 edge (which is the 03 edge in Eq. (222)) on the side with
the clockwise 2-gon and the edge weight of the 12 edge on the side of the counter-clockwise
2-gon. The mapping of the counter-clockwise 01 flip hat is the similar – we just reverse the
orientation and include the 13 edge weight instead of the 03 edge weight

ab
x y

:=

y

b x

a
. (224)

The mapping of the 12 flip hats is defined analogously. At last, the 2-gon flip is mapped to two
open bonds

aa′ bb′ :=
a′a′

bbaa

b′b′
(225)

and the 2-gon edge weight can be emulated by an edge weight for one of the two triangles

aa′ bb′ :=
a a′

bb b′b′
. (226)

All of the simplified moves correspond to re-triangulations, so they must be implied by the
Pachner moves. A technical exception to this are moves involving the 2-gon flip and the can-
cellation moves, for which it is easy to find derivations. E.g., the 2-gon flip cancellation move
in Eq. (343) of Appendix C simply becomes

a′a′aa

b′b′bb
=

a′a′aa
b′b′bb

. (227)

Finally, we have to show that the mappings are weak inverses to each other. The 2-gon
bond dimension of the simplified liquid under the double mapping yields twice the triangle
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bond dimensions. Thus, we have to use the generalized notion of weak inverse introduced in
Section 5.2.

Applied to the case of the twice-mapped 2-gon, we note that every 2-gon in a network
is surrounded by a pair of flip hats and two such pairs of flip hats can never overlap in any
network. Thus we call the network formed by the pair of flip hats non-overlapping. The non-
overlapping network consisting of two flip hats has only triangle open indices, and is indeed
equivalent to itself after mapping twice. The equivalence corresponds to a recellulation of two
flip hats into four tetrahedra

↔ . (228)

Thus, applying the above recellulation to all pairs of flip hats in a network is a sequence
of moves relating a simplified-liquid network with the doubly-mapped simplified-liquid net-
work. We conclude that the mappings are weak inverses of another and that the phases of the
simplified and non-simplified liquid models are in one-to-one correspondence. In fact, even
models themselves are in one-to-one correspondence up to a basis transformation acting on
the 2-gon indices of the simplified liquid.

8.1.4 Hermiticity

If we want to impose Hermiticity, e.g., in order to allow for an interpretation of the liquid
models in terms of a imaginary time evolution tensor network, we have to include a move that
equates the clockwise tetrahedron and the complex conjugated counter-clockwise tetrahedron.
The latter is not a tensor of our simplified liquid, but can be constructed via Eq. (217) as

a

b

c

d

= a

b

c

d

:=

c

b

d

a
. (229)

Also the 2-gon edge weight changes its orientation under complex conjugation

ab = ab . (230)

Note that we do not need to impose a Hermiticity move relating the flip hats and their orienta-
tion-reversed versions. This is because the flip hats always occur in pairs sharing a 2-gon, and
the Hermiticity of each such pair can be derived from the moves above. Also, the Hermiticity
move inverting the orientation of the triangle edge weight can be derived from the moves
above.

8.1.5 Commuting-projector Hamiltonian

Let us briefly show how models of the present topological liquid yield commuting-projector
models, formalized by a liquid mapping from the commuting-projector liquid to the topological
liquid. A convenient layout for commuting-projector models are models on a regular triangular
grid with one degree of freedom on each triangle. There is one Hamiltonian term on each
vertex involving the six degrees of freedom at the surrounding triangles. So, the local ground
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state projector is a tensor with 12 indices,

a
b

c
d

e
f →

a′ b′ c′ d ′ e′ f ′

a b c d e f

. (231)

Commutativity of the projectors centered around neighbouring vertices yields three different
moves, e.g.,

a′ b′ c′ d ′

e′ f ′ g ′ h′ i′ j′

a b c d e f

g h i j
=

a′ b′ c′ d ′ e′ f ′

g ′ h′ i′ j′

a b c d

e f g h i j

. (232)

Additionally, there is the projector move

a′ b′ c′ d ′ e′ f ′

a b c d e f

=

a′ b′ c′ d ′ e′ f ′

a b c d e f

. (233)

The mapping from this commuting-projector liquid to the topological liquid is as follows. A
space-time given by stack of commuting-projector tensors can be transformed into a cellulation
of a space-time volume by replacing each projector tensor with a “double-pyramide” cell. The
latter is a volume whose boundary consists of an identical upper and lower part, both equal
to the patch of six triangles above

0 1

2 3

4 5

6

7

. (234)

As depicted above this volume can be triangulated with six tetrahedra, all sharing the (67)-
edge, yielding the liquid mapping

a′ b′ c′ d ′ e′ f ′

a b c d e f

:=

0467

4567

5167

0267

2367

3167

a

b
c

d

e
f

a′
b′

c′

d ′
e′

f ′

. (235)
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In the next section we will describe how models of the topological liquid can be considered
blocked versions of Turaev-Viro state-sums. With this interpretation, Eq. (235) is nothing
but a formal representation of the well-known relation between the latter state-sum, and the
(suitably generalized) Levin-Wen string-net models.

8.1.6 Relation to the Turaev-Viro state-sum

Models of the liquid presented here are closely related to the Turaev-Viro state-sum construction
[7, 8]. Whereas in the state-sum construction one starts with a fusion category and proves
topological invariance from the properties of the latter, we take the opposite direction, and
start from topological invariance to get to an algebraic structure similar to that of a fusion
category. Bare fusion categories are not exactly the right structure needed for topological
models and many versions of fusion categories with some additional structures exist in the
literature. In Ref. [7], the input data of the state-sum construction is restricted to a specific
class of examples, namely quantized enveloping algebras of sl2. In Ref. [8], the state-sum
construction is formulated for arbitrary spherical fusion categories. It is natural to assume
that the model also works for multi-fusion categories with an adapted sphericality condition
[35]. The string-net models in Ref. [5] are simplified further in order to be more accessible
to the physics community and have additional restrictions such as a very strong notion of
tetrahedral symmetry and vanishing Frobenius-Schur indicators. These restrictions render
them incompatible with general twisted Dijkgraaf-Witten gauge theories [34, 36], but were
partially removed for the Abelian case in Ref. [37].

In contrast, the algebraic structures we obtain in our approach are per construction the
right ones to describe fixed-point models of topological phases with gappable boundary. Find-
ing instances of our algebraic structures (i.e., models of liquids) is not fundamentally harder
than finding instances of well-known algebraic structures such as fusion categories, as both
are solutions to a set of polynomial equations. The only difference is, that for well-known
structures there already exist a hand full of examples in the literature.

We now compare the liquids presented here to the Turaev-Viro state-sum models and show
that they are equivalent up to technical details. Both constructions associate tensors to tetra-
hedra of a simplicial complex. The tensor of our liquid model has four indices associated to
the faces of the tetrahedron, while the tensor in the Turaev-Viro construction is determined by
the so-called F-symbol and the quantum dimension d of a fusion category. It has 10 indices, six
of which are associated to the edges of the tetrahedron, and the remaining four to the faces,
i.e.,

[F ab
cd ]

iαβ
jγδ(d j)

−1 →

013

023

123

012

0301

2312

02

13 . (236)

Just as in our liquid, if two tetrahedra are adjacent to the same face, the corresponding face
indices of the tensors are contracted. However, the number x of tetrahedra adjacent to a single
edge can be more and less than 2, and we contract all the edge indices coming from those
tetrahedra by an x-index delta tensor. Moreover, at each edge there is the vector d containing
the quantum dimensions which is connected to the corresponding delta tensor via another
index. With these choices, we see that the pentagon equation for the F -symbol corresponds to
invariance under the 2-3 Pachner move.

The F -symbol is not a tensor in the conventional sense, as one and the same face index
can have different dimensions depending on the values i, j, k of the indices at the surrounding
edges. Those dimensions are collected into an object N i, j

k known as the fusion rules. F can
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be made into an ordinary tensor by fixing the dimension of the face indices to the maximal
possible number in N i, j

k , and filling up the new tensor entries with zeros. In the common

examples (e.g., the toric code or the double Fibonacci model) all N i, j
k are either 0 or 1, so the

face indices can be omitted (i.e., set to dimension 1) and N i, j
k 6= 0 is interpreted as a constraint

on the edge indices instead.
There are two ways to make the Turaev-Viro state-sum into a model of our liquid. The first

is to reshape the tensor F into a proper four-index tensor. To this end, we copy all edge indices
using delta tensors, and block each copy with one of the adjacent face indices

γghi

βde f

αabc

δl jk =

γ

β

α

δ

i

f

b

e

g

l

a

j

dk
h

c

. (237)

Each of the new face indices is a composite of three of the old edge indices and one old face
index. The dimension of this composite is fixed and given by

∑

i, j,k

N i, j
k . (238)

The second possibility is to interpret the F -symbol as a tensor of a different type, called
label-dependent tensors [13]. The data determining such a tensor consists of a set of labels
together with one array (of varying dimension) for each value of the labels. When we interpret
the moves of the liquid using this tensor type, they turn into the equations of the Turaev-Viro
model in their original form.

It is also possible to start from a (conventional) model of the topological liquid and arrive
at a state-sum in the Turaev-Viro form in a natural way by using the fact that complex algebras
(with a few special properties that we have in this case) can be block-diagonalized. For more
details on this procedure we refer to Appendix D.

8.2 Face-edge liquid

In Section 3.2, we have encountered another way to represent 3-dimensional topological man-
ifolds as a liquid, namely by associating tensors to faces and edges instead of volumes. In this
section we look at this construction in more detail. Models of the resulting liquid are very
similar to the Kitaev quantum double model [27] generalized to weak Hopf algebras [14, 15].
They are also similar to the Kuperberg invariant of 3-manifolds [38]. As in the sections above,
the more general version of the liquid in Section 3.2 has edge orientations, which allow us to
distinguish the indices of the face tensors. Dually, we add dual orientations to the faces, that
is, a favourite adjacent volume.

8.2.1 Tensors and moves of the face-edge liquid

Tensor Variables. The tensors of the face-edge liquid are a collection of decorated face and
edge tensors from which all other possible decorations can be generated. One possible choice
is to use the 2-cells of the simplified 1+ 1-dimensional liquid in Section 6 with the following
orientations
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• The clockwise triangle

0

1

2

→
02

0101 1212

, (239)

where the crossed circle in the middle of the triangle represents the dual orientation of
the triangle pointing into the plane and we put an ingoing arrow to the indices corre-
sponding to the two edges which are oriented clockwise when looking along the dual
orientation.

• The clockwise and counter-clockwise cyclic 2-gon

0 1 → 0101 1010 , 0 1 → 01 10 . (240)

• The clockwise 3-valent edge

21

0
→

00

1 2

, (241)

where the circle with the dot represents the dual orientation going out of the plane
and the index corresponding to the face whose dual orientation is counter-clockwise
when looking along the orientation is marked with an ingoing arrow. With this choice
of ingoing/outgoing arrows, every bond in a network representing a piece of 3-manifold
will be between one index with ingoing arrow, and one without.

• The 2-valent edge with clockwise and counter-clockwise dual orientations

10
→ 0 1 ,

10
→ 00 11 . (242)

In order to get models for a large class of topological phases (i.e., presumably all topological
phase with a gappable boundary), we need to introduce one more additional structure in the
network representation of cell complexes – the corner weight. A corner denotes a volume and
an adjacent vertex. At every corner we find an alternating loop of edges and faces connected
by bonds. We introduce a 2-index tensor called the corner weight

, (243)

and require that at every corner a corner weight tensor is placed between exactly one edge-face
pair. For example for the following corner enclosed by three faces and three edges a corner
weight is located between the (13)-edge and the (123)-face

0

1

2

3

→

302

132130

32

13

30

. (244)
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In fact, there are four different corner weight tensors, depending whether the orientation
(dual orientation) of the edge (face) points towards or away from the vertex (volume) of the
corner. However, the other three corner weights can be constructed from the one specific
corner weight given above where both the orientation and dual orientation point towards the
vertex and volume. E.g., the corner weight where the face is pointing away from the volume
of the corner is obtained by inverting the dual orientation by conjugating with the 2-valent
edge

aa b . (245)

Moves. The moves of the face-edge liquid can partially be obtained from the moves of the
oriented 1+ 1-dimensional liquid from Section 6. Networks of the face-edge liquid consisting
only of face tensors separated by 2-valent edges behave like networks representing a cellulation
of a 2-manifold. Thus, it makes sense to take all moves of the 1 + 1-dimensional liquid of
Section 6 as moves for the face tensors of the face-edge liquid. More precisely, we have to
take the version of the 1+1-dimensional liquid with vertex weights from Appendix B, and the
vertex weight is related to the corner weight of the face edge liquid: Every vertex in the two-
dimensional cellulation corresponds to two corners in the three-dimensional cellulation, one
with the volume above and one with the volume below. Thus, we identify the vertex weight
of the 1+ 1-dimensional liquid with two corner weights of the 2+ 1-dimensional liquid

aa b := aa b . (246)

The relation between the face-edge liquid and the 1+ 1-dimensional liquid in Section 6 can
be formalized as a liquid mapping from the latter to the former, which we refer to as the 2D
embedding mapping.

Dually, consider cellulations consisting only of edges that are all connected to the same
2 vertices separated by non-cyclic 2-gon faces. Also these behave like networks of the 1+ 1-
dimensional liquid alone, and so we also impose the moves of Section 6 for the edge tensors
of the presented liquid. Analogously to the previous consideration the 2-dimensional vertex
weight is now given by

aa b := aa b . (247)

Again, the considerations above can be formalized as a mapping referred to as dual 2D embed-
ding mapping.

In addition to the face-liquid moves mapped under the 2D embedding mapping and the
dual 2D embedding mapping, we only need a few additional moves which relate face and edge
tensors. The most important move is the corner fusion move, which we have already seen in
Section 3.2 in a simplified form. Including orientations, dual orientations, and corner weights,
it is given by

0

1

2

←→
0

1

2

, (248)

which, in network notation, becomes

012b

012 f

12

01

02b

02 f

1212

0101
=

02 012

02b

02 f

1212

0101

. (249)

Additionally, there are moves which effectively change the orientation of edges and dual
edges. For example the dual orientation of a triangle can be changed via cyclic 2-valent edges

66

https://scipost.org
https://scipost.org/SciPostPhysCore.5.3.038


SciPost Phys. Core 5, 038 (2022)

0

1

2

←→

0

1

2

. (250)

As the counter-clockwise triangle is not a tensor, we have to construct it using a cyclic 2-gon.
This yields a move

012
01 12

02

12

0202

01

=
021

12
01

0202

12

(251)

called the dual orientation flip move. Dually, we can flip a clockwise edge into a counter-
clockwise edge by gluing cyclic 2-gons, yielding the orientation flip move

bb

c

aa

=
aa

c

bb

. (252)

At last, the Hermiticity moves are simply the 1+ 1-dimensional Hermiticity moves from Sec-
tion 6.4 mapped under the 2D embedding mapping and the dual 2D embedding mapping.

8.2.2 Relation to quantum double models

As mentioned in Section 3.2, the moves above are very similar to the bi-algebra axioms, and
even more similar to the axioms of weak Hopf algebras. The latter (as any algebraic structure)
define a liquid themselves. As such the two liquids are not exactly equivalent, in particular,
because the weak Hopf liquid allows for a consistent flow of time, a feature missing in the
face-edge liquid. There is only a liquid mapping from the weak Hopf liquid to the present
topological liquid [31]. Thus, every model of the face-edge liquid defines a weak Hopf algebra,
but not vice versa.

This suggests that models of the face-edge liquids are equivalent to Kitaev quantum dou-
bles for weak Hopf algebras [15]. Indeed, using the commuting-projector mapping shown in
the simplified form in Eq. (99), we find that the obtained Hamiltonians are equal. However,
weak Hopf algebras are not precisely the right algebraic structure needed to obtain topolog-
ical models. On the contrary the face-edge liquid yields topological models by construction.
Comparing our formalism to the axioms of weak Hopf algebras, we see that the weak Hopf
algebras in question need to fulfill a few additional properties. E.g., both the algebra and
the co-algebra need to be (special) Frobenius (and *-algebras in the Hermitian case), and the
antipode must be involutive. The need for technical details of this kind is apparent from our
formalism, while it is not straight-forward to see in existing approaches to fixed-point models.

8.3 Equivalence of the face-edge and volume liquid

The volume liquid from Section 8.1 is “topological” due to the known fact that simplicial com-
plexes with Pachner moves are a combinatorial analogue of (piece-wise linear) topological
manifolds modulo homeomorphism in the continuum. For the face-edge liquid in Section 8.2,
there is no such argument we can rely on. However, we can verify that the latter is topologi-
cal by showing that it is equivalent to the volume liquid. Note that from our perspective, the
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connection to continuum topology is merely a guiding intuition and all that matters is that the
liquid defines a sensible notion of deformability to which physical models can be extended.

In this section, we present two weakly inverse mappings between the volume and the
face-edge liquids, sketch why they are well-defined and why they are indeed weak inverses
of each other. The mapping from the face-edge liquid to the volume liquid has a geometric
interpretation. It can be seen as refining a cellulation such that each volume of the refined
cellulation corresponds to either an edge or a face of the original cellulation. The mapping is
given by the following prescription.

• Every face is replaced by a “double pyramid”, that is, we add one vertex x “above” and
one vertex y “below” the face, and connect all vertices with x and y . For edges with
counter-clockwise orientation the corresponding edge of the double pyramid carries an
edge weight. E.g., for the clockwise triangle, an edge weight is associated to the 02-edge

0

1

2

→ 1

y

0

x

2 . (253)

This volume can be triangulated by two tetrahedra. In network notation we have

012

cc′

aa′aa′ bb′bb′

:=

012x

012y

012

a

a′

c

c′

b

b′
. (254)

The clockwise 2-gon is mapped to a volume which can be glued from two flip hats

0 1 → 1

y

0

x

, (255)

with the following network notation

01
aa′aa′ bb′bb′ :=

01y

01x

a

a′
b

b′
. (256)

The counter-clockwise 2-gon is defined analogously, just that edge weights are included
for both the 01- and the 10-edge.

• Every edge is replaced by a volume constructed as follows. The two vertices adjacent to
the edge (x and y in the figure below) are connected by edges that replace the adjacent
faces (a, b, c in the figure) and edge weights are associated to all edges for which the
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corresponding faces have clockwise dual orientation. An additional vertex is added be-
tween each pair of edges and connected to the vertices. For the 3-valent edge we obtain

x

y

cb

a
→

x

y

021 aabbb ccc . (257)

The volume above has the following triangulation in network notation

aa′aa′

cc′ bb′

:=

x012

y012

x y02 x y12 x y01

a b c

a′ b′
c′

. (258)

With a bit of geometric imagination one can verify that all volumes from the two points above
fit together and form a “refining” without any holes and overlaps. If an edge is adjacent to a
face in the original cellulation, the two corresponding volumes after refining share a pair of
triangles. Thus, the face-edge bond dimension is mapped to two triangle bond dimensions, that
is, every index in a face-edge network corresponds to a pair of indices in a triangle network,

:= T T . (259)

At last we check that the edge weights of the refined cellulation are distributed correctly
over the tensors of the face-edge liquid. The edge weights of edges that separate pairs of
triangles constituting composite indices are already included into the triangle and face tensors.
They contain the weight if the second triangle in the pair has two clockwise edges. The other
edges correspond to corners of the original triangulation and thus those edge weights are
mapped to corner weights

aa′ bb′bb′ :=
aa bb
a′ b′

. (260)

In order to prove that the above recipe defines a liquid mapping, we would have to give
derivations for all the mapped moves. This is a straight-forward and purely combinatorial
procedure. However, it is quite tedious and lengthy, thus we only give a quick argument why
the mapping is well-defined: The mapping is constructed such that all mapped moves are
retriangulations. As it is known that any retriangulation corresponds to a sequence of Pachner
moves, it is clear that all mapped moves can be derived.

The mapping from the volume liquid to the face-edge liquid also has a geometric intuition
in terms of a refining, such that every edge and face of the refined cell complex can be unam-
biguously associated to a volume of the original cell complex. To this end, we first split each
triangle into two triangles separated by a pillow-like volume, such that every n-valent edge
becomes 2n-valent. Then, we replace every such 2n-valent edge into n 4-valent edges which
are cyclically connected by n trivial (non-cyclic) 2-gons. Like this, each original volume turns
into one face for each of its faces, and one 4-valent edge for each of its edges.
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Applying this to the tetrahedron we get a network consisting of 4 triangles and 6 4-valent
edges. As we will see below, this network is equivalent to a simpler one which has one face (the
012 face below) missing and the adjacent edges being only 3-valent. As the counter-clockwise
triangle is not explicitly part of our liquid, we have to construct it using the cyclic 2-gon

0

1

2

3 →

0

1

2

3 . (261)

In network notation this is

a0a1a2

b0 b1 b2

c0c1c2

d0d1d2 :=
023

123103

23

13

03

02

1210

b0b0d2

a1a1

b1

d1

a0a0

c1c1 a2

d0

c0c0

b2b2

c2
. (262)

Regarding the bond dimension variables, we note that a triangle has three edges and thus the
triangle bond dimension is mapped to three times the face-edge bond dimension. Therefore
in the above equation one index on the left corresponds to three indices on the right,

T := . (263)

Let us sketch how the mapped moves can be derived from the moves of the face-edge
liquid. The edge orientations and dual face orientations can be changed arbitrarily by insert-
ing/moving around cyclic 2-gons and 2-valent edges using the 2-gon cancellation move in
Eq. (172) and triangle symmetry move in Eq. (169) for either the edge or face tensors. So,
for simplicity, we will neglect those orientations in the following considerations and focus on
the derivation of the 2-3 Pachner move. We work with the geometric intuition that tensors are
associated to the triangles and edges of a 3-manifold triangulation. Internally, n-valent edges
have to be decomposed into 3-valent edges. However, the different decompositions are all
equivalent using the (dually mapped) 2-dimensional moves, and we assume that these moves
are applied implicitly. For the remaining considerations it is convenient to introduce some
terminology.

• The corner fusion move depicted in Eq. (248) from left to right is denoted by C(012|02),

• the 2-2 Pachner move, as depicted in Eq. (115), from left to right, by P2(012|023),

• and the following move

0

1

2

↔

0

1

2

. (264)

which replaces a single triangle by two duplicates separated by a pillow-like volume by
T (012).
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The last move is derived by using the triangle cancellation move to bring one triangle in the
corner fusion move in Eq. (248) from the right to the left.

Next, we consider two variants of tetrahedra that are relevant in the 2-3 Pachner move
and apply a sequence of the moves above in order to remove several of their faces.

• For a tetrahedron with 3-valent edges where in the mapped network all four triangles
and all six edges are represented by tensors

0

1

3

2
(265)

we can remove the face 012, such that only the triangles 013, 123, 023, and the edges
03, 13, 23, are represented by tensors. This can be done by the sequence of moves

T (123)→ C(123|12)→ P2(012|123)

→ C(013|03)→ T (023) ,
(266)

where the bars denote the move in the opposite direction.

• Start with a tetrahedron where all faces and edges are represented by triangle tensors
and 3-valent edge tensors, except for the edge 12 which is a trivial 2-valent edge and
thus not represented by an tensor. We can remove both the 012- and the 123-face, such
that only the triangles 013, 023, and the edge 03 are represented by 3-index tensors.
This can be done by the following sequence of moves

P2(012|123)→ C(013|03)→ T (023) . (267)

Note that it is precisely the move derived in Eq. (266) which allows us to add/remove the
012 face on the right hand side of the tetrahedron mapping in Eq. (262). If we now apply the
face-edge mapping to the 2-3 Pachner move, each triangle will be doubled (taking the version
of the mapping including the 012 triangle). We can apply the move T in Eq. (264) to reduce
each triangle pair to a single triangle. Next, we can apply the moves derived in Eq. (266) and
(267) to remove all interior triangles and edges on the left and right, which yields an equation
between twice the same network. Applying this procedure in the opposite direction, we have
found a derivation of the mapped 2-3 Pachner move from the moves of the face-edge liquid.

We still have to show that the two mappings are weak inverses to each other. The mappings
change the bond dimension variables, such that applying both mappings maps every open in-
dex to six open indices. Thus, we have to use the generalized notion of weak inverse first
mentioned in from Section 5.2. We won’t explicitly show that the two mappings applied in se-
quence (in both orders) are equivalent to via moves acting on non-overlapping patches. How-
ever, it is easy to see that the composition of the two mappings defines a topology-preserving
refinement of the cellulation, which can be undone by moves.

9 Fermions

In this section we will demonstrate how fixed-point models with fermionic degrees of freedom
can be formalized as liquid models. In the first part we will introduce fermionic tensors,
the tensor type which is the domain of fermionic liquid models. In the second part we will
discuss the kind of liquid that fermionic systems typically extend to, namely combinatorial
representations of spin manifolds. In the third part, we will illustrate the formalism in 1+ 1
dimensions, by giving a liquid which has a model corresponding to the Kitaev chain.
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9.1 Fermionic tensors

In Section 2.1, we have demonstrated how quantum spin systems can be formulated in terms
of tensor networks. In many condensed matter models we also have fermionic degrees of
freedom. We could just use a Jordan-Wigner transformation to write the fermionic system
as a spin system. However, such a transformation is generally non-local, and even in 1 + 1
dimensions where it is local in principle, it changes the homogeneity of the model. That is, a
translation-invariant fermionic system (with periodic boundary conditions) does not translate
into a translation-invariant spin system/tensor network.

We can still write fermionic systems as tensor networks. However, the “tensors” cannot be
just arrays, as for spin systems, but have to take the canonical anti-commutation relations for
fermions into account. A fermionic operator acting on n modes labelled 0, . . . , n− 1, can be
expanded as

∑

s0,...sn−1
s′0...,s′n−1

As0,...,sn−1

s′0,...,s′n−1

(c†
0)

s0 · · · (c†
n−1)

sn−1 |0〉 〈0| (cy)
s′n−1 · · · (c0)

s′0 ,

(268)

where the si and s′i are either 0 or 1 depending on whether the fermionic degree of freedom
is occupied or not. We observe the following.

• The operator must preserve fermion parity. That is, A can have non-zero entries only
when

∑

i

si +
∑

i

s′i = 0 , (269)

where the summation is understood mod 2.

• In order to specify the operator, we have to both specify A, but also the ordering of
creation and annihilation operators, in the case above 0′, . . . , n − 1′, n − 1, . . . , 0. The
same fermionic operator may also be written down with any other ordering, just that
then also the coefficients A change. E.g., if we exchange 0 and 1 at the end of the
ordering above, the anti-commutation of c0 and c1 tells us that we have to modify A by

(A′)s0,...,sn−1

s′0,...,s′n−1
= As0,...,sn−1

s′0,...,s′n−1
(−1)s0s1 . (270)

More generally, we can consider degrees of freedom with i configurations without a fermi-
onic charge, and j configurations with a fermionic charge, instead of only having only one
charge-free (non-occupied) and one charged (occupied) configuration. This motivates the
following definitions:

A fermionic tensor is an equivalence class of pairs (A, O), where A is an array, and O is an
ordering of its indices (compare also Ref. [39]). The i+ j configurations of each index of A are
divided into i even configurations, writing |x |= 0 ∈ Z2 for 0≤ x < i, and j odd configurations,
writing | j|= 1 ∈ Z2 for i ≤ x < i + j. A has to have even parity, that is

Ai, j,... = 0 if |i|+ | j|+ . . . 6= 0 . (271)

Two pairs (A, O) and (A′, O′) are equivalent if O′ and O are related by a transposition of two
consecutive indices x and y , and A and A′ are related as

O′ = τx y(O) ,

(A′)s0,s1,... = As0,s1,...(−1)|sx ||sy | .
(272)

A conventional fermionic operator acting on n modes can be represented by a fermionic tensor
with 2n indices, each with only one even and one odd configuration.
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The tensor product of two fermionic tensors is the tensor product of arrays, together with
the concatenation of orderings:

(A1, O1)⊗ (A2, O2) = (A1 ⊗ A2, O1 ∩O2) . (273)

The order in which we concatenate O1 and O2 does not matter, as the minus signs collected
from exchanging all indices of A1 with all indices of A2 is trivial due to the even parity constraint
in Eq. (271). The contraction of two indices x and y of a fermionic tensor (A, O) consists of
the following steps.

• Go to a representative where y comes right after x in O.

• Contract x and y in A.

• Remove x and y from O.

Roughly, the philosophy of this work is that, once we have chosen a particular liquid, we
can interpret the same equations in terms of fermionic tensors to obtain fermionic fixed point
models. However, fermionic tensors do not obey exactly the same graphical calculus as array
tensors. There are two small differences.

The first difference is that contracting indices x and y for a fermionic tensor is different
from contracting y and x , as we explicitly specified that y is after x in O. If we instead
wanted y to be before x , we would have to exchange them yielding a factor of (−1)|sx | in
A before the contraction, and hence a different result. The ordering in the contraction can
be incorporated into the graphical calculus by associating a bond direction to each bond in a
network, represented by an arrow, e.g.,

A . (274)

Note that also the open indices have a bond direction. An inwards pointing bond direction
means we multiply by the fermion parity (−1)|x |, where x is the configuration of the open
index. An outwards bond direction is assumed by default.

The second difference is that contracting two index pairs a, a′ and b, b′ one after the other
is different from blocking them into a single index pair ab, a′b′ that is contracted. In order to
perform the former contractions, we would have to order the indices like aa′bb′, which differs
from aba′b′ by a sign of (−1)|b||a

′|. This can be fixed by dividing the indices into input indices
and output indices, only allowing contractions between one input and one output index, and
choosing the opposite order for the index parts when we block input indices versus output
indices. In this case, the input/output structure can also be used to choose a canonical bond
direction from input to output.

9.2 Liquids with spin structure

It would be very much in the spirit of this work to take, e.g., the liquid in Section 6, look for
models in fermionic tensors, and interpret them as fixed point models for fermionic topological
phases in 1+ 1 dimensions. If we have an orientation, the input/output structure can be cho-
sen according to whether the corresponding triangle edge is clockwise or counter-clockwise.
However, it turns out that the correct choice of contraction directions is a bit involved.

In Section 6, we have seen that if we want to consider fixed-point models with complex
tensors describing ordinary quantum spin systems, the latter should be defined on oriented
manifolds and we should impose a relation between the orientation and complex conjugation,
namely Hermiticity. If we use fermionic tensors for fixed-point models of fermionic quantum
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matter, the situation is similiar: These models should be defined on spin manifolds and we
should impose a close relation between the spin structure and the fermion parity. What results
might be regarded a fixed-point lattice version of the spin-statistics relation known in quantum
field theory.

In order to get a liquid whose networks represent spin manifolds, we need a combina-
torial representation of a spin structure [10]. A spin structure is a Z2-valued 1-cochain η,
whose boundary is the second Stiefel-Whitney class, represented by a 2-cocycle ω2. In an
n-dimensional simplicial complex, η can be represented as a subset (or Z2 colouring) of n−1-
simplices, and ω2 as a subset (or colouring) of n − 2-simplices. The boundary relation is
obvious: The Z2-colour of an n − 2-simplex in the boundary of η is the sum of Z2-colours
of adjacent n − 1-simplices. A formula for computing ω2 in terms of the combinatorics of a
simplicial complex is given in Ref. [40].

The relation between the combinatorial spin structure and the fermionic tensor network
is simple: At every fermionic bond crossing a n− 1-simplex of the spin structure, we have to
insert the (−1)Pf operator. Equivalently, we reverse the bond direction, which is otherwise
chosen to point towards the left relative to the branching-structure direction of the edge and
the underlying orientation.

9.3 The liquid in 1+ 1 dimensions

In this section we describe a topological liquid with spin structure in 1 + 1 dimensions, and
discuss its models using fermionic tensors.

9.3.1 Spin structures in 1+ 1 dimensions

In 1+ 1 dimensions, ω2 is a Z2-colouring of vertices, and the formula for the colouring of a
vertex v in a simplicial complex is given by

ω2(v) = 1+#E0(v) +#T0(v) (mod2) , (275)

where #E0(v) is the number of edges starting in v, and #T0(v) is the number of triangles which
have v as their 0th vertex (when numbering them according to the branching structure).
η is a collection of edges, which form a pattern of lines whose (modulo 2) endpoints are

ω, and which are closed otherwise. Consider, e.g., the following patch of triangulation with a
combinatorial spin structure η

, (276)

where the ω2-vertices were marked red, and the η-edges were marked blue.
While ω2 is fixed, there are many possible choices of η. The precise choice is irrelevant to

a large degree, as different choices are considered equivalent if they are related by homology
moves. A homology move changes η by adding the boundary of a triangle (modulo 2), e.g.,

↔ . (277)
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Equivalence classes of η-triangulations under homology moves (as well as Pachner moves) are
in one to one correspondence with spin manifolds. If the manifold is spinnable, there are as
many equivalence classes as there are first homology classes of the manifold, though there is
no canonical identification between the two. Otherwise, there are none. In 1+ 1 dimensions,
all oriented manifolds are spinnable. Of course, the spin structure also has to be incorporated
into the Pachner moves. As the latter exchange a disk with a disk, and a disk has trivial 1-
homology, all different ways of adding η to a Pachner move are equivalent.

9.3.2 The liquid

A triangulation with orientation and η-chain is represented by a liquid (with bond directions)
in the following way: As in the non-spin case, there are tensors for the clockwise and counter-
clockwise triangles. The bond direction at an edge which is not part of η is towards the left
when looking along the branching-structure orientation of that edge (in order to know what
“left” means we need the underlying global orientation). At an edge which is part of η, it is
the other way round. With this encoding, the equations corresponding to homology moves are
automatically fulfilled by any model, as simultaneously flipping all bond directions around a
fixed tensor does not change anything due to the global even-parity constraint fulfilled by any
fermionic tensor.

As in previous sections, we are looking for a simplified liquid, whose networks can be in-
terpreted as cellulations with other types of faces. In order to do the same for η-triangulations,
we have to think about how to equip arbitrary cellulations with spin structure.

The generalisation of chains and boundaries to arbitrary cellulations is obvious. A gen-
eralised rule for ω2 is the following: For every type of face, we have to specify one special
corner, and we replace #T0(v) in Eq. (275) by the number of adjacent faces for which v is in
the special corner. We denote the special corner by a small angle, e.g., the special corner of
the branching-structure triangle is the 0-vertex

. (278)

Consider the sum of the ω2 colourings of all vertices of a triangulation of a manifold with
boundary. Every vertex, every edge and every triangle contributes exactly 1 to this sum, so
we see that we obtain the Euler characteristic (modulo 2) of the manifold. If we want to use
a different type of face, we have to define it via a η-triangulation. As the Euler characteristic
(modulo 2) of a disk is 1, η will always have an odd number of “open ends” at the boundary
of the new face. Without loss of generality, we can choose one single open end at the special
corner.

The simplified liquid is very similar to the non-spin case in Section 6, just that we have to
include bond directions determined by the spin structure. The tensors and their interpretations
as faces (with special corners) are the following.

• The clockwise triangle

0 2

1

→
1202

01

. (279)

• The clockwise cyclic 2-gon. Note that this tensor looses its rotation symmetry due to the
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spin structure (it gets replaces by a modified symmetry move though, see Eq. (291)),

0

1

→ 1001 . (280)

• The counter-clockwise cyclic 2-gon

0

1

→ 1001 . (281)

The moves are the same as in Section 6, just that we have to add a choice of η on the left
and right.

• The spin 2-2 Pachner move

0

3

2

1

↔ 0

3

2

1

. (282)

This move does not change ω2, so we can choose η to be trivial. In network notation,
we get

012

023

01 12

2303

= 013 123

01 12

2303

. (283)

• The spin triangle cancellation move

0

1

2

↔

0

2

. (284)

This move adds/removes the interior vertex 0 with odd ω2-colour, and changes the ω2-
colour of the boundary vertex 0. The minimal choice of η which corrects this, is the 10
edge on the left. In network notation,

102 120

02 20 = 02
2002 , (285)

the bond direction corresponding to that edge is reversed.

• The spin (012) triangle symmetry move

0

1

2 ↔

0

1

2 . (286)
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Again, nothing changes with ω2, so η can be chosen empty. In network notation, again,
we find

102

21

02 10
21

20

= 210 10

20

21

. (287)

• The spin 2-gon cancellation move

0

1

↔

0

1

. (288)

Here we chose the position of the special corners such that again ω2 does not change.
In network notation, this is

a b = aaa bbb (289)

The special corner of the spin 2-gon spoils its index permutation symmetry,

0

1

↔

0

1

. (290)

As the position of the special corner changes,ω2 changes for both vertices 0 and 1, so we have
to add an η-edge between them on one side. In network notation, we have to add an inwards
arrow to one of the open indices

a b = aa b . (291)

Note that, analogous to the non-spin case in Section 6, this symmetry move is derived directly
from the spin triangle cancellation move in Eq. (285). From there, the analogous move for the
counter-clockwise 2-gon,

a b = aa b , (292)

is derived via the 2-gon cancellation move in Eq. 289.

9.3.3 Hermiticity

The Hermiticity condition is another point where it appears natural to distinguish between
particle and hole sectors. If we express a fermionic Hamiltonian as an ordinary operator in
Fock space, we would expect this operator to be Hermitian, e.g.,

H

a b

a′ b′

= H

a′ b′

a b
K

, (293)

where H is the array tensor representing a fermionic tensor with respect to the index ordering
abb′a′. However, if we read the above equation for H as a fermionic tensor, then the index
orderings on the two sides are reverse to each other, giving a reordering sign of

(−1)|a|(|b|+|b
′|+|a′|)+|b|(|a′|+|b′|)+|b′||a′| = (−1)|a|+|b|+|a||b|+|a

′||b′| . (294)
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Thus, the Hermiticity condition for a fermionic tensor should equate the orientation-reversed
tensor with its complex conjugate where we also reverse the index ordering. This operation
is compatible with contraction and tensor product since it also exchanges input and output
indices.

Fermionic liquid models should be invariant under exactly this Hermiticity operation. That
is, in our triangle-liquid example, the counter-clockwise triangle tensor should be obtained
from the clockwise triangle tensor by complex conjugation and inversion of index ordering.

9.3.4 Models

Let us look for models of the liquid using fermionic tensors which fulfil both the spin-statistics
relation and the fermionic Hermiticity relation. To this end, we choose a fixed index order-
ing for each tensor, and see what the equations mean for the array tensors representing the
fermionic tensors with this ordering. Then we look at what minus signs we pick up from re-
ordering the indices on both sides of the equation in order to perform the contractions, and
equate the two sides. A choice of orderings that turns out to be particularly convenient is

21

0
, 10 , 10 . (295)

In order to compute the reordering sign appearing in the fermionic liquid moves, we can
proceed as follows. We start by concatenating the index sequences of the individual tensor
copies in an arbitrary order. Then, we use index transpositions to move indices that are to
be contracted next to each other, and then remove them. We record the minus signs collected
when we perform the index transpositions on the way. We do this for both sides of an equation.
In the end, we move the indices, such that the orderings on each side of the equation are equal.
Of course, we can also cancel reordering signs on both sides.

In the following, we use a short-hand notation for sign calculations in contractions. E.g.,
(bc + ab)|x ′abd xc|(x x ′) denotes an intermediate step in the computation of the reordering
sign, with index ordering x ′abd xc, where we still need to contract x and x ′ (in that order),
and we already collected a sign of (−1)|b||c|+|a||b|. For the spin 2-2 Pachner move we get the
following

|x ′abd xc|(x x ′) = |da y y ′bc|(y y ′),

(d x)|abdc|= |dabc|,
(d x + cd)|abcd|= (d)|abcd|,

|abcd|= |abcd| .

(296)

We find that all the reordering signs on the left and right cancel. The other reordering signs
are computed in Appendix E. Interestingly, also all other signs cancel. Note that this would not
have been the case without the spin structure modification. Vanishing of the reordering sign is
not a general property of fermionic liquid models, though. First of all, we would have obtained
non-trivial reordering signs, if we had chosen a different index ordering in Eq. (295). Second,
the fact that we can find an index ordering for which the reordering signs vanish seems to be
specific to the 1+ 1-dimensional case, and we do not find the same to be true in dimensions
2+ 1 or higher.

The vanishing of the reordering signs implies that the models of the liquid in fermionic ten-
sors are in one-to-one correspondence to the models in array tensors which have a Z2-grading.
Note that the latter are agnostic of the bond directions, and the liquid we get after dropping
those is equal to its non-spin analogue in Section 6.3. A fixed array tensor model might allow
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for different inequivalent Z2-gradings, corresponding to different fermionic models. Techni-
cally, there always exists a grading by considering every configuration as even. Those models
are trivial though, in the sense that they do not have any fermionic charges.

We point out that despite there being a one-to-one correspondence, fermionic spin-topolo-
gical and Z2-graded topological models are still different models. In particular, the one-to-
one correspondence will break down when we add other (non-topological) moves, such as
invertibility, or commutativity.

9.3.5 Kitaev chain

In this section we consider the simplest fermionic model describing the only non-trivial phase
of the spin-structure triangle liquid, which turns out to be equivalent to the Kitaev chain. The
Z2-graded algebra that it is based on is probably the simplest one one can think of, namely
the group algebra of Z2 itself. Written as arrays for the fixed index ordering in Eq. 295, the
tensors of the model are given by

ab

c
=

1
p

2
·δa+b,c =

1
p

2

��

1 0
0 1

��

0 1
1 0

��

,

ba = δa,b =

�

1 0
0 1

�

,

ba = δa,b =

�

1 0
0 1

�

.

(297)

Here, a, b and c are understood as elements of Z2 and in the expressions for the triangle
tensor a and b label rows and columns, while c = 0,1 refers to the first and second matrix,
respectively. It can be easily seen that the model is also Hermitian: All tensors are real, only
supported in the particle sector (by construction, as we used plain fermionic tensors), and
invariant under orientation reversal. Thus, the model is invariant under K , R, and orientation
reversal separately, and certainly under all three operations together.

The Kitaev chain [41] to which this model is equivalent, is a fermionic chain with a nearest-
neighbour Hamiltonian of Majorana fermionic operators

H = −
∑

i

(ci + c†
i )(ci+1 − c†

i+1) . (298)

It is a commuting-projector model, with the projector given by

P =
1
2
(1+ (c0 + c†

0)(c1 − c†
1))

=
1
2

�

|0〉 〈0|+ c†
0 |0〉 〈0| c0 + c†

1 |0〉 〈0| c1 + c†
0c†

1c1c0 − c1c0 + c†
1c0 + c†

0c1 − c†
0c†

1

�

.
(299)

Applying the expansion in Eq. (268) yields

As0s1

s′0s′1
=

1
2
δs0+s1,s′0+s′1

(−1)s0s1+s′0s′1 . (300)

A becomes a fermionic tensor with index ordering s′0s′1s1s0.
In order to compare this commuting-projector model with our liquid model, we use a

liquid mapping identifying a projector with a rhombus-like cell of space-time, similar to the
construction in Section 4.5.3,

0

1

2

3

→ 0

1

2

3

. (301)
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The shown cellulation of the rhombus yields the mapping

ba

cd

:=
a b

cd

. (302)

In order to evaluate the network on the right-hand side, we first compute the reordering
sign we get when we bring the indices into the ordering dcba, starting from the orderings
in Eq. (295), to find

|dax y ′x ′c y b|(x x ′)(y y ′) = x |da y ′c y b|(y y ′) = x + y b|dacb|
= x + y b+ a(c + b)|dacb|= dc + ab|abcd| .

(303)

So for the chosen index ordering, the array representing the fermionic tensor is given by

∑

x

(
1
p

2
δd+x ,a)(

1
p

2
δc+x ,b)(−1)dc+ab =

1
2
δa+b,c+d(−1)dc+ab , (304)

which exactly equals the array in Eq. (300).

10 Topological order in 3+ 1 dimensions

In this section, we sketch two liquids for topological order in 3+ 1 dimensions. One is a very
straight-forward liquid based on simplicial complexes, and the other one is analogous to the
face-edge liquid in 2+ 1 dimensions, with volumes and faces being represented by tensors.

10.1 The 4-cell liquid

In this section, we will sketch what is probably the most straight-forward generalization of the
volume liquid in 2+1 dimensions to 3+1 dimensions: There is one 5-index tensor for every 4-
simplex of a (branching structure) triangulation of a 4-manifold, and if two 4-simplices share
a 3-simplex, the corresponding tensors are connected by a bond.

The liquid we will sketch describes topological manifolds without an orientation, for rea-
sons of variety and because the resulting liquid is a little more simple. The main tensor of the
liquid is the 4-simplex

0

1

23

4
→

1234

0234

01340124

0123
. (305)

In 4 dimensions, there are 3-3, 2-4, and 1-5 Pachner moves for this tensor, and there are many
different versions of those moves due to the edge orientations. One particular 3-3 Pachner
move is given by

0

12

3

4 5

↔ same 1-skeleton . (306)
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In network notation, this is

01234

01245

02345

0123

1234
0134

1245

01450125

0345

2345
0235

=

12345

01345

01235

12342345

1245

0134
0345

0145

0123

0125

0235
. (307)

As in the lower-dimensional cases, we can restrict to only this single 3-3 Pachner move if
we introduce additional bond dimensions, tensors, and moves, which have geometric interpre-
tations in terms of more general cellulations. The 3-cells for the additional bond dimensions
are just the 3-cells for the additional tensors of the 2+1-dimensional volume liquid, e.g., there
are two flip hat bond dimensions, and a 2-gon bond dimension. As in 2+ 1 dimensions, we
need cancellation moves which allow us to derive 2-4 and 1-5 Pachner moves from the 3-3
Pachner moves, and symmetry moves which allow us to derive Pachner moves with differ-
ent edge orientations. Permuting the vertices of the 4-simplex changes the edge orientations
though, so we have to glue tensors called 4-flip hats in order to flip them back. A 4-flip hat is
given by 4-cells consisting of two flip hats and two tetrahedra, e.g.,

0

1 2

3
→

0123 1023

012 013
. (308)

We can flip an edge of a 4-dimplex by gluing three 4-flip hats to three boundary tetrahedra
sharing that edge. E.g., the (01) 4-simplex symmetry move equates a 4-simplex mirrored at the
01 edge with one whose 01 edge was flipped. More precisely, we use a more powerful version
of this move where one of the three 4-flip hats was brought to the other side:

0

1

23

4
↔ same 1-skeleton . (309)

In network notation, this gives

01234

0123 0134

1234 0234

0124

1023 1034
012 014

=

10234

0124

0234 1234

10341023

0124

014

012

. (310)

We get 3 different versions of the tensor in Eq. (308), depending on how we choose the ori-
entations of the edges adjacent to the vertices 2 and 3. Using those, we also get a (12)-,
(23)- and (34) tetrahedron permutation move, which generate the whole 4-simplex symmetry
group. Moreover, the 4-flip hats have symmetries which however change the favourite edge
of the involved 2-gon, and we need additional tensors for changing the latter.
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The most important example of a cancellation move is the 4-simplex cancellation move

0

1

23

4
↔

0

1

23

4
. (311)

The left hand side consists of two 4-simplices, glued at two of their tetrahedra, whereas the
right hand side consists of 3 4-flip hats glued at their tetrahedra in a cyclic fashion. In terms
of networks, we find

01234 10234

0123

10230134

1034

0124 1024 =
0123

0134

0124

0123

0134
1023

1034

0124

1024
. (312)

There are also cancellation moves for the 4-flip hat, and so on.
In order to get the most general physical phases with gappable (i.e. topological) boundary,

we would also have to introduce face weights analogous to the edge weights in 2+ 1 dimen-
sion. Any face in (the interior of) a 4-dimensional cellulation corresponds to a cycle of 4-cells
adjacent at 3-cells. E.g., the loop on the left side of Eq. (307) corresponds to the 024 face, and
the one on the right side to the 135 face. Into each such loop we have to insert exactly one
face weight.

We do not guess the bond dimensions, tensors, and moves from scratch, but follow some
systematics, which we will outline briefly. The different bond dimensions correspond to differ-
ent 3-cells, and the tensors to different 4-cells of those cellulations. The moves are equations
between two different cellulations of the 4-ball, and if we glue both sides of a move together,
we get a cellulation of a 4-sphere, which can be seen as the boundary of a 5-cell.

In order to find those 3-cells, 4-cells and 5-cells, we need an operation called the stellar
cone, which transforms a n-cell into a n + 1-cell by the following procedure. First, add an
additional vertex called central vertex. Then, for every boundary x-cell, add an x+1-cell which
is spanned by this x-cell and the central vertex (the original n-cell together with the central
vertex span the n+1-cell itself). If there is a branching structure, there are two different choices
of orientation for the new edges. Either they are all pointing towards the central vertex, or
away from it.

In general, in the n-dimensional n-cell liquid, we can take as x-cells the stellar cones of the
x−1-cells, which are the same as the x−1-cells of the n−1-dimensional n−1-cell liquid. E.g.,
the 3-3 Pachner moves yield a 5-simplex, which is the stellar cone of the 4-simplex representing
a tensor. The 4-flip hat tensor is the stellar cone of the flip hat, which is a bond dimension of
the present liquid, as well as a tensor of the 3-dimensional volume liquid (Eq. (200)), as well as
the (01) triangle symmetry move of the unoriented 2-dimensional face liquid (Eq. (125)). At
the same time, the 4-flip hat is the (01) tetrahedron symmetry move of the unoriented version
of the 3-dimensional volume liquid. As another example, both the (01) 4-simplex symmetry
move as well as the 4-simplex cancellation move yield the same 5-cell which the stellar cone
of the 4-flip hat.

As the last example shows, the 5-cells can be decomposed into two 4-ball triangulations in
different ways. We certainly do not want to choose all those decompositions, as, e.g., different
decompositions of the 5-simplex yield all different variants of the 4-dimensional Pachner moves
already. However, it always suffices to take a single Pachner move (one of the ones with the
most open indices), together with symmetry cancellation moves from which we can derive all
others.
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The idea that fixed-point models for topological order in general dimensions can be de-
scribed by “Pachner-move invariant simplex tensors” is rather straight-forward, and has been
explicitly spelled out, e.g., in Ref. [16]. Our contribution here is to give a framework which
allows us to arrive at a refined set of moves, containing only a single Pachner move together
with a collection of simpler “auxiliary moves”. An example for a model is the so-called Kashaev
invariant, for which the 4-simplex tensor has explicitly been spelled out in Ref. [42].

10.2 The volume-face liquid

In this section, we sketch a less straight-forward topological liquid in 3+ 1 dimensions. It is
similar to the face-edge liquid in 2+1 dimensions, in that we associate tensors to d−1-cells and
d−2-cells in a d-dimensional cellulation. There is one tensor at every volume and one tensor at
every face. If a volume and a face are adjacent, the corresponding tensors share a bond. Note
that in a 4-dimensional cell complex, a face can be adjacent to more or less than two volumes.
Faces adjacent to exactly 2 volumes are not represented by tensors; instead, the two volumes
are directly connected by a bond. When restricting to networks with such trivial faces, we get
a mapping from 3-dimensional cell complexes to 4-dimensional cell complexes, which we will
call the volume mapping. It makes sense to use the volumes of the simplified volume liquid
in 2+ 1 dimensions (Section. 8.1) as volume tensors, and make all of the 2+ 1-dimensional
moves into volume-only moves of the 3+ 1-dimensional liquid.

10.2.1 The liquid

A face in a 4-dimensional cell complex is Poincaré dual to another face. The adjacent volumes,
and thus indices, correspond to the edges of that dual face. The full shape of the face is spec-
ified by both the shape of the face itself and the shape of the dual face. E.g., when we have
a triangle face, whose dual face is a 4-gon, we will call this a 4-valent triangle. Similar to
2-valent faces, pillow-like volumes whose boundary consists of two equal faces are just repre-
sented by a direct bond between those faces. Restricting to cell complexes with triangle faces
(with different dual faces), separated by such trivial pillow-like volumes, yields a mapping
from 1+ 1 to 3+ 1-dimensional cell complexes, which we will call the triangle face mapping.
So it makes sense to take the triangle and cyclic 2-gon as dual shapes for the triangle faces, to-
gether with all the mapped 1+1-dimensional moves. Analogously, we get a 2-gon face mapping
by restricting to cyclic 2-gon faces with different dual faces. We will draw the 2-dimensional
liquid formed by the 2-gon faces as filled circles.

Each edge is equipped with an orientation, and each volume is equipped with a dual ori-
entation, i.e., a favourite adjacent 4-cell. Those orientations allow us to pick a 01 edge and a
01 volume of a non-cyclic and dually non-cyclic 3-valent triangle. Considering the face itself
and its 01 edge inside its 01 volume, we can decide whether the face is clockwise or counter-
clockwise relative to the global orientation.

Analogous to the face-edge liquid in 2 + 1 dimensions, we need to introduce a 2-index
corner weight tensor in order to get models for a very general class of phases

. (313)

At every pair of edge and adjacent 4-cell, there is an alternating cycle of face and volume
tensors. We demand that, in a network representing a 4-manifold, there is one weight ten-
sor inserted at every such cycle. More precisely, the weight tensors are of different tensors
depending on the edge-4-cell pair and the face and volume between which they are inserted.
The tensor depends on whether the face is a 2-gon or a triangle, whether the edge is the 01,
02, or 12 edge of the triangle or the favourite or non-favourite edge of the 2-gon, and whether
the dual orientation of the volume points towards or away from the 4-cell. The corner weight
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depicted above is for the favourite edge of a 2-gon, with the volume pointing towards the 4-
cell. All other corner weights can be constructed from this single one. E.g., the favourite edge
2-gon corner weight for the volume pointing away from the 2-gon is obtained by

aa b . (314)

Or, following Eq. (215), the corner weight for the 01 edge of the triangle is obtained by

bb f := b f . (315)

Similarily, the corner weights for the 02 edge and the 12 edge

, (316)

can be constructed, e.g., following Eq. (219) for the case of the 02 edge.
Edges of 2+1-dimensional cell complexes stay edges under the volume mapping, and then

have two adjacent 4-cells. Thus, the edge weights of the 2+ 1-dimensional volume liquid can
be constructed from two corner weights of the present 3+1-dimensional liquid. For the 2-gon
edge weight, we get

a b := aa b . (317)

Or, for the 01 edge weight

a b := aa b . (318)

Vertices in 1+ 1-dimensional cell complexes become 4-cells under the triangle face mapping,
and are then adjacent to three edges. Thus, the vertex weight of the 1+1-dimensional triangle
face liquid can be constructed from three corner weights

aa b := aa b . (319)

Similarily, the vertex weight of the 1+ 1-dimensional 2-gon face liquid consists of two corner
weights

aa b := aa b . (320)

So far, we got one copy of the 3-dimensional volume liquid, and two copies of the 2-
dimensional face-liquid. We now need moves which connect the tensors of those liquids, by
“pulling faces through volumes”. Roughly, every such move can be constructed from a quadru-
pel consisting of a volume V , a dual face FD, a special face of the volume, and a special edge of
the dual face. The move involves one V volume tensor for each edge of FD, and one FD-valent
FV face tensor for each face FV of V . The volume and face tensor corresponding to the special
edge and face are on one side of the move, and all the others on the other side.

As an example, pick for V the 01 flip hat (with one of the triangles as special face), and
for FD the triangle (with the 02 edge as special edge). The corresponding pull-through move
is given by

a

b
c

d

= c

d
b

aa

. (321)

Here, the empty circles represent the triangle face tensors, and the full circles represent the
2-gon face tensors (both 3-valent in this case). Note that the two 1 + 1-dimensional liquids
formed by the triangle and 2-gon tensors do not form a 2 + 1-dimensional face-edge liquid
together, as in Section 8.2.
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As another example, pick for V the 12 flip hat, and for FD the cyclic 2-gon. We get a move
that pulls the 2-valent face-atoms through the flip hat and thereby changes its orientation,

a

cbb
=

aa

b c

. (322)

As a further example, pick for V the tetrahedron, and for FD the triangle. We get

a

b

c

d

e
=

d

e

b

aa

cc

. (323)

Unfortunately, the pull-through moves as described above are not quite enough to have
a fully topological liquid (such that there is an invertible mapping to the 4-simplex liquid
sketched in the section above). We also need to allow moves where V has two special faces,
such that the left hand side consists of a volume tensor with two face tensors. However, this
move would not be topological (that is, it would prevent a mapping back from the 4-simplex
liquid to the present liquid). In order to make it topological, we need to add a “projector onto
two neighbouring triangles”, which we can build from 4 flip hats,

a

b

dff

c

e
=

c

d

e

f

b

aa

. (324)

10.2.2 Models

A well-known class of fixed-point models for topological phases in 3+1 dimensions are second
order gauge theories. Analogously to ordinary gauge theories being based on a gauge group, a
second order gauge theory is based on a 2-group. A 2-group is concretely defined by what is
called a crossed module. The latter consists of two groups G and H, with a homomorphism

h : H → G (325)

from H to G, and an action
α : G ×H → H (326)

of G on H.
Following Ref. [43], a more condensed representation of (equivalence classes of) 2-groups

is given by a group Π1, a commutative group Π2 (arising from G and H as the kernel and
co-kernel of h), an action α, and a Π2-valued group 3-cocycle of Π1 with action α, that is, a
map

β : Π1 ×Π1 ×Π1→ Π2 , (327)

such that
β(ab, c, d) + β(a, b, cd)
= α(a,β(b, c, d)) + β(a, bc, d) + β(a, b, c) ,

(328)
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where we denoted group multiplication in Π2 additively.
Like the fusion category models of the 2+1-dimensional volume liquid, 2-group models of

the present liquid are most conveniently formulated using label-dependent tensors. The labels
are the elements of Π1, and might be thought of as being located at the edges of the complex.
The dimension of the indices at a face is either |Π2| if the edge labels around the face multiply
up to 1, and 0 otherwise. All face tensors are given by delta functions (in every valid edge
label configuration), e.g.,

a b

cc
=

a b

c
. (329)

where a, b and c are elements of Π2. If we denote the label of, e.g., the 03 edge of the
tetrahedron by e03, then tetrahedron is given by

c

d

a

b =











1
|Π2|

if α(e01, a)− b+ c − d

= β(e01, e12, e23)
0 otherwise

. (330)

The edge weights are all identity matrices. The flip hats can be obtained from the tetrahedron
by the mapping in Eq. (223). The resulting dimension of the 2-gon index is |Π1||Π2|2. Of
course, we can also interpret the edge labels as indices, copy them and block them into the
face indices to obtain ordinary tensors.

11 Summary and conclusion

In this work we introduced a systematic graphical language which allows us to think about
fixed-point models for (topological) phases for various scenarios in a unified way, and stimu-
lates and facilitates the search for new families of fixed-point models corresponding to com-
binatorial representations of space-time. The following diagram summarises central concepts
of our framework and their relations.

model

network move

tensor
type

class of
phases

liquid

phase

algebraic
structure

instance of
alg. struct.type of

data

type of
matter/description

represents
deformability

building
blocks

contains
different

associates
data to

strongly constrains
by equationsmodulo local

restructuring

classify
according to

similar to

solution
to axioms

similar
to axioms

often
inspire

deforms
(331)

There are five main goals we attempt to achieve with the formalism introduced. The first
goal is to sort the vast body of existing literature on fixed-point models by introducing a sim-
ple, systematic, and unified mathematical language. All of those models are based on algebraic
or categorical structures defined by a set of equations. In our point of view, all those equa-
tions are manifestations of one central property, namely topological invariance in Euclicean
space-time. All other properties, such as commuting-projector Hamiltonians, or PEPS repre-
sentations with virtual symmetries, are direct consequences of the topolgical invariance, but
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not the other way round. That is why we believe that topological invariance should be the
point to start with. Instead of “guessing” an algebraic or categorical structure used as an input
to fixed-point construction, we go the other way round, deriving algebraic structures from the
topological invariance. Tensor networks with their familiar Penrose notation appear as the
natural mathematical language, as they represent at the same time combinatorial represen-
tations of the space-time topology (and their moves) as well as the path integral itself (and
its equations). We would also like to mention that unlike “string diagrams” in conventional
algebra or category theory, tensor networks are not formulated with an inherent flow of (real-
)time, and thus more natural to represent path integrals in Euclidean space-time. One of the
central technical tools that we have developed in this work for the systematic study of different
fixed-point ansatzes are liquid mappings. The most important use of liquid mappings in this
paper was to define a notion of equivalence of liquids.

The second goal is to obtain a deeper understanding of existing families of models, and
formulate them in their most general form. For some known state-sum constructions and
fixed-point models, the explanation in the literature for why they take on exactly the form
they have, is insufficient. Our work addresses these issues. In particular, we explain the role
of an orientation, and show the necessity to add a branching structure to state-sums based on
triangulations. It is easy to see that every topologically invariant path integral with topological
boundary can be coarse grained into a Pachner-move invariant simplicial tensor network. We
show how to get from many Pachner-move equations (due to different branching structures)
to a single one by extending the construction to more general cellulations. In Appendix D, we
show how to arrive at the usual Turaev-Viro form of the state-sum. Furthermore, we introduce
a new path integral picture for weak Hopf algebra based quantum doubles. Quantum double
models have been mostly studied from the perspective of commuting-projector Hamiltonians
[14,15]. The commutativity follows from the weak Hopf axioms, however, a direct motivation
for why weak Hopf algebra related structures are the correct input for those models was still
lacking. We demonstrate that those structures directly emerge from a combinatorial version of
topological invariance. In particular, the central bi-algebra axiom corresponds to a topological
move which “pulls an edge through a face” as in Eq. (249).

The first two goals have been addressed to a large extent in the present paper by working
out concrete examples. The other three goals will be worked out in future publications. The
third goal is that we can systematically construct new combinatorial representations of topo-
logical manifolds, yielding new classes of models. Using our formalism, this can be achieved
quickly with a bit of geometric intuition and creativity. Let us sketch one example for an alter-
native liquid/fixed-point ansatz in 2+1D. Consider cellulations where all vertices are coloured
red, blue, or green, and all faces are triangles with one red, one blue, and one green ver-
tex. Now, associate tensors to the volumes and contract between volumes sharing a face. The
simplest volume compatible with the colouring is the octahedron,

. (332)

The major topological moves are given by mapping between the different ways of decomposing
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a “diamond” into octahedra, e.g.,

= . (333)

Octahedron tensors obeying the moves form a new family of models, one of which turns out
to be a path integral representation of the well-known colour code. If we add appropriate edge
weights, the “tricoloured” liquid will be equivalent to a standard triangular liquid, so the two
families of models describe the same phases. In particular, the colour code is known to be
phase-equivalent to two copies of the toric code. It is, however, a different microscopic model
and has advantages (and disadvantages) over the latter for error-correction purposes. Having
different microscopic realisations of the same phases is important for engineering those phases
(e.g., for building a quantum computer), and our framework yields a method of systematically
constructing such new realisations.

A fourth goal is to make the study of phases of matter more accessible to automatisa-
tion. The standard task on the combinatorial/graphical level of liquids is to find derivations of
moves from a given set of moves. This is needed for the verification of liquid mappings, which
is important for showing that certain liquids are equivalent. We think that it is possible to au-
tomatise the process of finding derivations numerically. Of course, in the general case, finding
derivations is an undecidable and certainly hard problem, as tasks like theorem proving can
be relatively easily encoded in finding derivations. However, the networks we deal with do
not represent arbitrary logical statements, but patches of low-dimensional manifolds. Surely,
proving the equivalence of manifolds based on triangulations is a hard and undecidable prob-
lem as well in general, but this is only if we scale the complexity of the topology. In our case,
the manifold patches have a simple and constant topology (two balls if we are dealing with
topological liquids), and we merely scale the size of the triangulation and not the complexity
of the topology itself.

The standard task on the level of models is, of course, finding models. For conventional
array tensors, but also for fermionic tensors or tensors with symmetry, the moves turn into
polynomial equations for the tensor entries. In principle, even though with a possibly high
computational effort, we can find roots to those equations by iterative numerical optimization
methods, such as non-linear conjugate-gradient, or Gauss-Newton methods. The cost of each
iteration scales with as a high-degree polynomial (depending on the algorithm and on how
complicated the liquid is) in the bond dimension, and the volume of initial conditions for which
the iteration actually converges to a global minimum might be small. However, we expect, that
only the simplest phases, i.e., the ones realizable with a low bond dimension, are physically
relevant. Roughly speaking, the higher the bond dimension needed to realize the phase, the
more unlikely it will be to encounter it in nature, and the harder it will be to experimentally
realize it. So for practical purposes, we can restrict to small bond dimensions where numerical
methods might still be feasible. Note that also for known families of fixed-point models, their
equations boil down to polynomials. However, due to the systematics of our language we do
not have to write a separate algorithm for every different family of fixed-point models, but can
take the latter as an input to a single algorithm.

As a fifth goal, we would like to mention that, apart from obtaining new models for the
same phases, our formalism has the potential to go beyond known constructions and obtain
fixed-point models for new phases. There are liquids that are not equivalent to the standard
ones, which means that the corresponding path-integral tensor networks cannot be coarse-
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grained into a standard simplicial form [12]. This does not directly imply that the more general
liquids have models for more general phases, but it does indicate that this is at least possible.
An exciting candidate for more general phases are chiral phases in 2+1D which are lacking any
fixed-point description so far. The generalised liquid models are compatible with the absence
of both a topological (i.e. gapped) boundary and commuting-projector Hamiltonians, features
characteristic for chiral phases.

In addition to these broad goals, there are the following three concrete ways to generalize
the scope of the formalism, some of which have been mentioned briefly in the main text.

First, we have focused on liquids for topological order in the bulk. Boundaries, anyons,
and other sorts of defects are described by liquid models as well, as we have sketched for
boundaries in Section 3.3. E.g., there is a liquid describing anyons within the 3-dimensional
face-edge liquid, whose models turn out to be similar to representations of quantum doubles
of weak Hopf algebras. Or, there is a liquid describing boundaries of the 3-dimensional vol-
ume liquid, whose models are similar to modules of fusion categories. We have already seen
the possibility to add extra structures like orientations in Section 6 or spin structures in Sec-
tion 9, and the possibility to add beyond-topological moves, such as the ones that guarantee
invertibility of the model in Section 7. A much more novel pursuit would be the formalisa-
tion of conformal, not topological, field theories in terms of liquid models. To this end, one
would need a semi-combinatorial representation of conformal manifolds, together with moves
preserving the conformal structure 5.

Second, all of our liquid models are microscopic physical models defined by a concrete
local partition function. This is in contrast to the description of phases via more abstract
and indirect invariants, such as (non-fully extended) axiomatic TQFT, giving rise to structures
like (non-special) commutative Frobenius algebras in 1 + 1 dimensions, or modular tensor
categories in 2 + 1 dimensions. All these structures can be formulated as liquids as well, as
long as they have a finite set of generators and relations (which roughly appears to be the case
for TQFTs extended down to at least the circle). The relation between those more abstract
invariant liquids and the concrete microscopic liquids is formalised by a liquid mapping from
the former to the latter. The most famous example for this is the quantum double, or Drinfeld
centre of fusion categories, or Hopf algebras.

Third, another point that was not the focus of this work is the role of tensor types. We saw
that models with symmetries, fermions, or models which are deformable only up to pre-factors,
can be incorporated by using different tensor types. We also saw that physics imposes a fixed
relation of certain tensor types with certain kinds of extra structures added to liquids, such as
complex tensors with orientation via Hermiticity, or fermionic tensors with spin structures via
a spin statistics relation. What we did not mention so far is that certain restrictions to “exactly
solvable” classes of models can also be formulated as tensor types, such as non-interacting
(i.e., Gaussian, quadratic, free) fermionic models, or models that can be formulated within
the stabilizer formalism. It is the hope that this work stimulates such further endeavours.

Acknowledgements

We thank the DFG (CRC183 project B01, for which this is an internode Berlin-Cologne pub-
lication, and EI 519/15-1) and the Studienstiftung des Deutschen Volkes for support. Many
thanks goes to A. Nietner, M. Kesselring, and N. Tarantino for lots of inspiring and fruitful
discussions.

5In contrast to topological manifolds, equivalence classes of conformal manifolds do not form a discrete set, but
a continuous space. Still, the dimension of this space is finite for fixed topology, so it should suffice to additionally
assign continuous variables to some places of the triangulation, such as one at every vertex.
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A Overview over the main definitions

Since all the relevant concepts were introduced in the main text in a step by step way, it is
useful to summerise them in this appendix.

A liquid consists of a finite set of tensor variables and bond dimension variables, and finite
set of tensor-network equations for those variables. Those are equations between two networks
whose open indices and their bond dimension variables match, and are called moves of the
liquid. A model of the liquid associates to every bond dimension variable a bond dimension
and to every tensor variable a tensor, such that all the equations given by the moves hold.

Moves can be composed to yield other moves, and such a composition is called a derivation
of the resulting move. A liquid mapping from a source liquid A to a target liquid B associates 1)
to every bond dimension variable of A a collection of bond dimension variables of B and 2) to
every tensor variable of A a network of B, such that every index of the A-tensor variable corre-
sponds to an according collection of open indices of the B-network. Applying this replacement
to all tensor copies in a move of A, we obtain another move, called the mapped move. The
mapped moves have to be derived moves of B. The mapping can be applied to a model of B
to yield a model of A. The compatibility of the mapping with the moves precisely ensures that
the moves hold for th eA-model if they hold for the B-model.

For two liquid mappings A→ B and B → A let us refer to their composition A→ B → A
as the double mapping. Two such mappings are weakly inverse to another if we can form an
invertible domain wall between a model and the double mapping of the model, i.e., a network
and its double mapping are equivalent up to moves apart from near the open indices. The
same has to hold for the other double mapping, the composition B→ A→ B. Liquids A and B
for which there exists a pair of mappings weakly inverse to another are equivalent in the sense
that the phases they capture are in one-to-one correspondence.

B Vertex weights for the triangle liquid

In this appendix, we discuss the following variant of the above liquid, which is slightly more
general. The main reason for introducing this variant is that it shows up as sub-liquid of a
2+ 1-dimensional liquid in Section 8.2.

• The variant has one more tensor variable, called the vertex weight

. (334)

• The weighted oriented triangle cancellation move replaces the oriented triangle cancella-
tion move

aa bb = aa bb . (335)

• There is the additional weight commutation move

aa

cc

b
=

b

cc

aa
. (336)

Every vertex of the triangulation corresponds to a loop of bonds in the network. Each vertex
weight is bound to one such loop, that is, it can be moved around that loop using the weight
commutation and other moves. Topological manifolds are represented by networks, where
each loop has exactly one vertex weight bound to it. Vertices/loops with more or less vertex
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weights can never be removed, as the weighted cyclic triangle cancellation move involves ex-
actly one vertex weight. Thus, they should be thought of as some kind of singularity. The
position of the vertex weight corresponds to an edge in the triangulation, which can be inter-
preted as the “favourite edge” of the corresponding vertex. The weight commutation move
makes the evaluation of networks independent of those favourite edge decorations.

The variation is “more general” than the original liquid, in that there is a liquid mapping

a bb := aa bb (337)

from the variant to the original liquid, but no obvious inverse mapping. Indeed, the models
of the variant (in real array tensors) are slightly more general. E.g., for each α ∈ R 6, there is
the following model where all tensors are scalars: The triangle is the scalar α−1/2, the 2-gons
are the scalar 1, and the vertex weight is the scalar α. One can easily see that the evaluation
of this model on a space-time manifold M is αχ(M), where χ is the euler characteristic. Note,
however, that as a physical model using projective tensors (as explained in Section 4.5), this
model is immediately trivial. In fact, using this tensor type, we do not get any new phases
compared to the liquid without vertex weights.

C Remaining moves for the volume liquid in 3 dimensions

In this appendix, we complete the moves of the simplified 2+ 1-dimensional liquid from Sec-
tion 8.1.2. In order to generate the full orientation-preserving symmetry group of the tetrahe-
dron, we have to add the (012) tetrahedron symmetry move

c a
x

y

d

b

= a b
y

x

d

c

. (338)

We also need the remaining symmetry moves of the flip hats, i.e., for ones for the counter-
clockwise 01, the clockwise 12 and the counter-clockwise 12 flip hats

a b

x
= ba

x
, (339)

a b

x
= ba

x
, (340)

a b

x
= ba

x
. (341)

Regarding the cancellation moves, we need to add the cancellation move for the 12 flip hats

a b = aa bb (342)

and the 2-gon flip cancellation move

a b = aa bb . (343)
6If we drop the hermiticity move, this is a model also for complex α.

91

https://scipost.org
https://scipost.org/SciPostPhysCore.5.3.038


SciPost Phys. Core 5, 038 (2022)

D From the face-edge liquid to Turaev-Viro models

In this section, we describe how to reshape complex models of the 3-dimensional face-edge
liquid into state-sums of Turaev-Viro form. First of all, we further extend the liquid by introduc-
ing the non-cyclic 2-gon as a further bond dimension variable. The latter can be triangulated
with two triangles

0 1 → 0 1
2

, (344)

so, the new bond dimension is defined by

CC
0101

:= TT
012012

TT
102102

. (345)

Note that the favourite edge is needed to determine the ordering of the two triangles. We also
need it to define when a 2-gon is clockwise or counter-clockwise. With the new 2-cell bond
dimension, we can construct banana-like volumes whose boundaries consist of non-cyclic 2-
gons glued at edges, e.g.,

, . (346)

The boundary of the volume on the right consists of 3 2-gons, two in the front and one in
the back. If we want to construct this new tensor, we have to replace every 2-gon by two
triangles as in Eq. (344), and triangulate the resulting volume. Precisely the same volume was
triangulated in Eq. (257), and thus the corresponding tensor is the same as the edge tensor of
the equivalent face-edge liquid, defined in Eq. (258). So bananas define a (mapping from a)
1+ 1-dimensional face liquid.

The 01 hat can be triangulated by two tetrahedra

0 1

2

→

0 1

2

3

. (347)

In network notation, we have

ab

x y
:=

0123 f 0123b
x y

a b

. (348)

This tensor defines a topological boundary for the banana liquid. Consider the following re-
cellulation from two flip hats glued at a triangle on the left to one flip hat and a banana glued
at a 2-gon on the right

0 1

2

→ same 1-skeleton . (349)

This corresponds to the move whose simplified version is depicted in Eq. (102)

a b

x y
=

a b

x y
. (350)
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Note that there is also a counter-clockwise version of the 01 hat, for which the 13 instead
of the 03 edge carries an edge weight. Also, there are the 02 and the 12 hats (together with
their counter-clockwise counterparts), which are the same apart from different edge orienta-
tions of the 02 and 12 edges in Eq. (347). The topological moves further imply that those
representations commute, thus they form a single representation of the product of the three
algebras.

Consider an arbitrary 3-volume with boundary, the network P representing it, and an ar-
bitrary edge on the boundary of the volume together with the two adjacent triangles, e.g.,

0

3

2

1

→
P
. . .

130 132

. (351)

We can glue two hats at their 2-gons, and then glue the resulting “double-hat” to the two
adjacent faces above. This corresponds to a topological move

0

3

2

1

↔ 0

3

2

1

(352)

Which hats we take depends on the edge orientations. In our case, we get a move

P
. . .

130 132

=
P
. . .

132130

132130

. (353)

This is as far as we get on the combinatorial liquid level, and now we have to make use of
the fact that we’re looking for models of the liquid in complex tensors. All the algebras and
representations in question have extra properties due to the topological moves which make
them block-diagonalizable. That is, we can go to a basis where the algebra is given by

αabαab

β cd γe f
=

α

γβ

aa

cc

bb

ff

eedd

, (354)

and the representation is given by

αab

β cx γd y
=

α

γβ

aa

cc

bb

dd
yyxx

. (355)

Here, α,β , . . . are called irreducible representation indices, a, b, . . . are called block indices, and
x , y multiplicity indices. Note that this is a fake tensor network notation, as the dimension
of both block and multiplicity index are allowed to dependent on the value of the irreducible
representation indices.

As we saw above, the vector space of the triangle is equipped with a representation of three
times the banana algebra. Going to the block-diagonal basis, we can decompose the vector
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space into three indices corresponding to irreducible representations of the banana algebra,
three block indices, and one joint multiplicity index. The irreducible representation and block
indices can be associated to the three edges of the triangle each. Note that the dimension of
each block index depends on the dimension of the corresponding irreducible representation
index, and the multiplicity index depends on the values of all three irreducible representation
indices (this dimension becomes the N ab

c ).
All we need to show is that 1) we can get rid of the block indices and 2) the two irreducible

representation indices at an edge coming from the two adjacent triangles can be unified into
one. To this end, we look at Eq. (353) with the representations in their block-diagonal form

P
. . .

α βbax y

=

P
. . .

βα aa bb yx

=
eP
. . .

α βaa bb yx

. (356)

Applying these procedure to all edges, we get a tensor eP with irreducible representation indices
at all edges and multiplicity indices at all faces. Now, we plug the above equation into the
network representing a cellulation. For each edge of the cellulation, we get 1) a completely
disconnected loop of block indices, and 2) a loop of delta tensors connected to the tensors at
the adjacent volumes. The loop 1) can be contracted to a scalar which can be incorporated
into the edge weight, and the loop 2) can be contracted to a single delta tensor, e.g., for an
edge with 3 adjacent volumes we get

a b

c

= m

a b

c
, (357)

where m consists of the multiplicities of the different irreducible representations.

E Reordering signs for the remaining fermionic moves

In this appendix, we compute the reordering signs for the remaining moves of the 1 + 1-
dimensional fermionic liquid, and find that they all cancel out.

• For the spin triangle cancellation move Eq. (285)

|y ′x ′ax y b|(x x ′)(y y ′) = |ab|,
(a+ x + y)|ba|= |ab|,

|ab|= |ab| .
(358)

• For the spin (012) triangle symmetry move Eq. (287)

|y ′cxax ′b y|(x x ′)(y y ′) = |abc|
(ax)|bcx x ′a|= |abc|,
(a)|bca|= |abc|,
|abc|= |abc| .

(359)

• For the spin 2-gon cancellation move Eq. (289)

|ax bx ′|(x x ′) = |ba|,
|ab|= |ab| .

(360)
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