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Abstract

The symmetric and antisymmetric parts of the linear conductivity describe the dissipa-
tive (Ohmic) and nondissipative (Hall) parts of the current. The Hall current is always
transverse to the applied electric field regardless of its orientation; the Ohmic current is
purely longitudinal in cubic crystals, but in lower-symmetry crystals it has a transverse
component whenever the field is not aligned with a principal axis. In this work, we ex-
tend that analysis beyond the linear regime. We consider all possible ways of partitioning
the current at any order in the electric field without taking symmetry into account, and
find that the Hall vs Ohmic decomposition is the only one that satisfies certain basic re-
quirements. A general prescription is given for achieving that decomposition, and the
case of the quadratic conductivity is analyzed in detail. By performing a symmetry anal-
ysis we find that in five of the 122 magnetic point groups the quadratic dc conductivity is
purely Ohmic and even under time reversal, a type of response that is entirely disorder
mediated.
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1 Introduction

A static electric field applied to a conducting crystal generates a current density that may be
written to linear order as

j(1)α = σαβ Eβ , (1)

where a summation over Cartesian index β is implied, and σαβ is understood to be a function
of the externally applied magnetic field H . In general j (1) is not parallel to E, but under certain
conditions it may contain a part that is always perpendicular to E, irrespective of how the field
is oriented relative to the crystal axes. This Hall current is described by the antisymmetric part
of the linear conductivity tensor,

j(1)H,α = σ
H
αβ Eβ , σH

αβ =
1
2

�

σαβ −σβα
�

, (2)

and the remainder j (1)O = j (1) − j (1)H , given by the symmetric part of the conductivity, is the
Ohmic current that gives rise to energy dissipation via Joule heating,

j(1)O,α = σ
O
αβ Eβ , σO

αβ =
1
2

�

σαβ +σβα
�

. (3)

Building on seminal works from the 1970s [1–3], there is at present renewed interest in
nonlinear effects in solids arising from broken symmetries [4]. The nonlinear transport effects
that are being actively investigated include unidirectional magnetoresistance (both induced by
a magnetic field [5–7] and spontaneous [8–10]), and various nonlinear Hall effects [11–24].

Despite the surge of interest in nonlinear currents, a clear discussion of how to extend
the Hall vs Ohmic decomposition to the nonlinear regime is lacking, and confusing or even
incorrect statements can be found in the recent literature. With the present work we aim
to clarify the phenomenology of the nonlinear Hall vs Ohmic decomposition, and to place it
in the broader context of how to partition the nonlinear current into physically well-defined
parts. Although we will focus on the conductivity tensor, our analysis applies equally well to
the resistivity. For simplicity, we will assume throughout that the applied electric field is static.

To motivate the problem, consider the second-order response

j(2)α = σαβγEβ Eγ , (4)

which requires broken inversion symmetry. Contrary to the linear conductivity, the quadratic
conductivity is not uniquely defined since adding to it a correction of the form

∆σαβγ = −∆σαγβ (5)

does not change the physically observable current. We will refer to this freedom in defin-
ing nonlinear conductivities as a “gauge freedom,” and to the unique choice that satisfies
σαβγ = σαγβ as the “symmetric gauge.” Thus, the symmetric gauge is the one where the
conductivity tensor has intrinsic permutation symmetry [25].

By analogy with Eq. (2), one might attempt to define σH
αβγ

as the part of σαβγ that is
antisymmetric in either the first and second indices,

σ
1,2
αβγ
=

1
2

�

σαβγ −σβαγ
�

, (6)

or in the first and third,

σ
1,3
αβγ
=

1
2

�

σαβγ −σγβα
�

. (7)
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(Note that we need to choose between these two options, since imposing both conditions
would render σH

αβγ
totally antisymmetric, resulting in zero current.) Both choices yield Hall-

like transverse currents. However, not only do they give different currents, but those currents
depend on the initial gauge choice for σαβγ. Both problems can be fixed by switching to the
symmetric gauge, σαβγ =

1
2

�

σαβγ +σαγβ
�

, before applying the antisymmetrization (6) or (7).
Since the resulting Hall-like conductivities

σ
1,2
αβγ
=

1
4

�

σαβγ +σαγβ −σβαγ −σβγα
�

, (8)

and

σ
1,3
αβγ
=

1
4

�

σαβγ +σαγβ −σγβα −σγαβ
�

(9)

satisfy σ1,3
αβγ
= σ1,2

αγβ
, they clearly yield the same current (they are related by the gauge trans-

formation ∆σαβγ = σ
1,2
αγβ
−σ1,2

αβγ
). This modified prescription [15,19] is nevertheless still not

quite correct.
As a concrete example, we take the expression for the quadratic conductivity obtained

by solving the Boltzmann equation at H = 0 in the constant relaxation-time approximation.
Denoting the relaxation time as τ, there are contributions of order τ0, τ1, and τ2, with those
of even (odd) order in τ being odd (even) under time reversal T [26] . Neglecting disorder-
mediated contributions (skew-scattering and side jump) one finds [10,11,13,14,21]

σαβγ =
e3

ħh

∫

kn
f0(εn)

�

�

∂αGβγn − ∂βGαγn

�

+ (τ/ħh)∂γΩαβn − (τ/ħh)
2∂ 3
αβγεn

�

, (10)

where
∫

kn ≡ dd k/(2π)d
∑

n in d dimensions and we have dropped k from the integrand, e > 0
is the elementary charge, εn is the band energy, f0 is the Fermi-Dirac distribution function,
and ∂γ ≡ ∂ /∂ kγ. Ω

αβ
n is the Berry curvature, and Gαβn is sometimes called the Berry curvature

polarizability; these two quantities can be expressed in terms of the Berry connection matrix
Aαmn = i〈um|∂αun〉 as follows,

Ωαβn = ∂αAβnn − ∂βAαnn = −2Im〈∂αun|∂βun〉 , (11)

Gαβn = −2Re
εm 6=εn
∑

m

AαnmAβmn

εn − εm
. (12)

The O(τ0) and O(τ1) terms in in Eq. (10) describe respectively T -odd and T -even quadratic
anomalous Hall responses whose net current we denote by j (2)H , and the O(τ2) term is a T -
odd Drude-like quadratic conductivity that has been identified as a mechanism for sponta-
neous unidirectional magnetoresistance [10]. Applying to Eq. (10) each of the prescriptions
in Eqs. (6-9), we obtain

�

j1,2, j1,3, j
1,2
= j

1,3�
= (1, 1/2, 3/4) j (2)H (13)

for the quadratic Hall currents. Prescription (6) gives the full Hall current j (2)H , but that is
accidental: if we make the gauge transformation σαβγ → σαγβ in Eq. (10), the Hall currents

obtained from prescriptions (6) and (7) get swapped:
�

j1,2, j1,3
�

→ (1/2, 1) j (2)H . We mentioned
earlier that the prescriptions in Eqs. (8) and (9) are not quite correct, and indeed they only
recover three quarters of the full Hall current; we will see in Sec. 3 that multiplying the right-
hand sides of those equations by factors of 4/3 does lead to generally valid expressions for the
quadratic Hall conductivity.
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The strategies in Eqs. (6-9), which constitute attempts to generalize to third-rank tensors
the definition in Eq. (2) of an antisymmetric tensor of rank two, fail to yield a proper de-
composition of the quadratic current. On the other hand, higher-order generalizations of the
symmetrization procedure in Eq. (3) are straightforward, since one can symmetrize over all
indices. In the case of the quadratic conductivity one finds

σO
αβγ =

1
6

�

σαβγ +σαγβ +σβαγ +σβγα +σγαβ +σγβα
�

, (14)

and it can be readily checked that the power dissipation is fully accounted for by σO
αβγ

,

j (2) · E = σαβγEαEβ Eγ = σ
O
αβγEαEβ Eγ , (15)

which justifies calling it the quadratic Ohmic conductivity. Accordingly,

σH
αβγ = σαβγ −σ

O
αβγ (16)

describes the dissipationless (Hall) part of the quadratic current response.
Surprisingly we could not find, in the growing literature on nonlinear currents in solids, any

explicit mention of the simple prescription in Eqs. (14) and (16) for separating the nonlinear
Hall and Ohmic conductivities. Let us apply it to the expression in Eq. (10) for the quadratic
conductivity. Since the O(τ0) and O(τ1) terms therein are antisymmetric in two indices, they
drops out from Eq. (14); and since the O(τ2) is already totally symmetric, it becomes the full
σO
αβγ

. Hence, the former terms are Hall-like and the latter is Ohmic.
It should be noted that we have not yet proven that Eqs. (14) and (16) give the only valid

decomposition of the quadratic current into Ohmic and Hall parts. For example, one could
define another partition

σ̃H
αβγ = (1− x)σH

αβγ , σ̃O
αβγ = σ

O
αβγ + xσH

αβγ (x ∈ R) (17)

that is not related to that of Eqs. (14) and (16) by any gauge transformation (5), and again
σ̃H
αβγ

would describe a dissipationless current, with all the Joule heating coming from σ̃O
αβγ

.
In this work, we consider the problem of defining nonlinear Hall and Ohmic conductivities

from a more general perspective. Our starting point is the following question:

What are all the possible ways of partitioning the nonlinear current into physically meaningful
parts, without taking into account neither the symmetries of the system nor specific microscopic
mechanisms?

(We will refer to such partitions as “generic.”) To address this question, we start by formu-
lating in Sec. 2 the necessary criteria for a proper generic partition of the current at arbitrary
order in E. In Sec. 3 we find that there is a unique nontrivial decomposition of the current
at second order that fulfils those criteria, which corresponds precisely to the Hall vs Ohmic
decomposition. (Our criteria do not single out any particular gauges for the partial nonlinear
conductivities; instead, they take the form of necessary and sufficient conditions satisfied by
the partial conductivities in arbitrary gauges.) The Hall vs Ohmic decomposition is generalized
to arbitrary order in Sec. 4. In Sec. 5 we return to the quadratic conductivity to carry out a
systematic symmetry analysis of its Hall and Ohmic parts, and in Sec. 6 we draw conclusions.
In Appendix A we prove that the Hall vs Ohmic partition of the current is the only generic par-
tition possible at every order in E, and in Appendix B we repackage the disorder-free quadratic
conductivity (10) in the manner described in Sec. 5.
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2 Criteria for a generic partition of the current

Our strategy for partitioning the nonlinear current will be as follows. We start from a conduc-
tivity tensor σα0α1...αn

describing the full n-th order response,

j(n)α0
= σα0α1...αn

Eα1
. . . Eαn

, (18)

and search for an operator P̂ that selects part of this current. We want the operator P̂ to act
order by order in the electric field; this means that its action on the full conductivity tensor
should result in a linear combination of versions of that same tensor with different sets of
indices,

�

P̂σ
�

α0α1...αn
=
∑

p

apσαp(0)αp(1)...αp(n)
. (19)

Here the summation is over all possible mappings

{0, 1, . . . , n}
p
−→ {p(0), p(1), . . . , p(n)} , (20)

where p(n) ∈ {0,1, . . . , n} and ap are coefficients to be determined. The part of the current
selected by P̂ can be written symbolically as

�

P̂ j (n)
�

α0
=
�

P̂σ
�

α0α1...αn
Eα1

. . . Eαn
. (21)

We shall require three properties of P̂. The first is that it acts on the current as a projector,
so that

P̂ j (n) = P̂2 j (n) , (22)

the second is that the projected current is invariant under gauge transformations of the full
n-th order conductivity tensor, that is,

∆
�

P̂ j (n)
�

= 0 (23)

whenever∆ j (n) = 0, which in turn holds if and only if∆σα0α1...αn
vanishes under symmetriza-

tion over the last n indices.
Finally, we require that the projected current transforms as a vector under rotations of

the coordinate system, so that P̂ j (n) · E remains invariant under such transformations. This is
justified by the intention to arrive at a generic prescription that is not tied to any particular
crystal symmetry, and not even to a specific number of spatial dimensions. This third constraint
will be satisfied if the summation in Eq. (19) is restricted to permutation mappings p, for which
p(i) 6= p( j) whenever i 6= j. Conversely, if mappings with p(i) = p( j) for some i 6= j are
included, scalar products will not be conserved under rotations.1 Thus, from here on we shall
restrict our attention to permutation mappings, and investigate which operators P̂ can satisfy
the two conditions expressed by Eqs. (22) and (23).

Before proceeding, we note that if we find some operator P̂ that satisfies the conditions
listed above, those conditions will also be satisfied by P̂ ′ = 1̂− P̂. Thus, any nontrivial operator
P̂ defines a decomposition of the current into two parts (by “nontrivial” we mean an operator
such that P̂ j 6= 0 and P̂ j 6= j). We will start by applying the above criteria to the second-order
response, and then we will generalize to higher orders.

1Take, for example, P̂Hσαβ = (σαα + σββ )/2. For an electric field lying on the x y plane this gives
P̂H j (1) · E = E2

xσx x + E2
yσy y + Ex Ey(σx x + σy y), and the result should be the same in a different coordi-

nate system. However, in a coordinate system that differs by a two-fold rotation about the y axis we obtain
P̂H j (1) · E = E2

xσx x + E2
yσy y − Ex Ey(σx x +σy y), which is a different result.
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3 Second-order response

Consider an operator P̂ acting on the quadratic conductivity according to Eq. (19),

P̂σαβγ = a+0σαβγ + a−0σαγβ + a+1σγαβ + a−1σβαγ + a+2σβγα + a−2σγβα , (24)

and on the quadratic current according to Eq. (21),

P̂ j(2)α =
�

P̂σαβγ
�

Eβ Eγ =
�

A0σαβγ + A1σβαγ + A2σβγα
�

Eβ Eγ . (25)

Here Ai = a+i + a−i , and the notation for the coefficients a±i is as follows: the subscript denotes
the position of α in the permutation of the indices αβγ, and the superscript gives the parity of
the permutation.

Our claim is that P̂ yields a proper generic partition of the current only if it satisfies
Eqs. (22) and (23). Let us start with the gauge-invariance condition (23). The projected
current (25) remains unchanged under the gauge transformation (5) if and only if

(A1 − A2)Eβ Eγ∆σβαγ = 0 ; (26)

since this condition must be satisfied for arbitrary E, and since we did not set any rules for per-
mutations involving the first index of ∆σ, it follows that A1 = A2. To impose the idempotency
condition (22), we first apply Eq. (24) recursively to find

P̂2σαβγ = ã+0σαβγ + ã−0σαγβ + ã+1σγαβ + ã−1σβαγ + ã+2σβγα + ã−2σγβα , (27)

where

ã+0 = a+0 a+0 + a−0 a−0 + a−1 a−1 + 2a+2 a+1 + a−2 a−2 , (28a)

ã−0 = 2a+0 a−0 + a+1 a−1 + a+1 a−2 + a−1 a+2 + a+2 a−2 , (28b)

ã+1 = 2a+0 a+1 + a−0 a−1 + a−0 a−2 + a−1 a−2 + a+2 a+2 , (28c)

ã−1 = 2a+0 a−1 + a−0 a+1 + a−0 a+2 + a+1 a−2 + a+2 a−2 , (28d)

ã+2 = 2a+0 a+2 + a−0 a−1 + a−0 a−2 + a+1 a+1 + a−1 a−2 , (28e)

ã−2 = 2a+0 a−2 + a−0 a+1 + a−0 a+2 + a+1 a−1 + a−1 a+2 . (28f)

By analogy with Eq. (25) we have

P̂2 j(2)α =
�

Ã0σαβγ + Ã1σβαγ + Ã2σβγα
�

Eβ Eγ (29)

for the twice-projected current, where the coefficients Ãi = ã+i + ã−i are given by

Ã0 = A2
0 + (a−1 + a+2 )A1 + (a

+
1 + a−2 )A2 , (30a)

Ã1 = A0A1 + (a
+
0 + a−2 )A1 + (a

−
0 + a+2 )A2 , (30b)

Ã2 = A0A2 + (a
−
0 + a+1 )A1 + (a

+
0 + a−1 )A2 . (30c)

Equating (25) and (29), the idempotency condition becomes Ai = Ãi for i = 0,1, 2. Substi-
tuting Eq. (30) for Ãi and then invoking the gauge invariance condition A1 = A2, we are left
with two conditions only,

A0 = A2
0 + 2A2

1 , A1 = (2A0 + A1)A1 . (31)

These equations have four solutions. There are two solutions with A1 = 0,
¨

P̂0 : (A0, A1 = A2) = (0, 0)
P̂1 : (A0, A1 = A2) = (1, 0)

⇒ j (2) = 0+ j (2) , (32)

6
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which as indicated give the trivial “all or nothing” partition of the current. Then there are two
solutions with A1 6= 0,

¨

P̂H : (A0, A1 = A2) = (
2
3 ,−1

3)
P̂O : (A0, A1 = A2) = (

1
3 , 1

3)
⇒ j (2) = j (2)H + j (2)O , (33)

which give the desired Hall vs Ohmic partition. To show that this is the case, we turn to the
condition that defines a Hall-like projected current,

P̂ j (2) · E = 0 , ∀E . (34)

Using Eq. (25) that condition becomes A0 + A1 + A2 = 0, which is satisfied by P̂H but not by
P̂O. This conclude the proof that Eqs. (22) and (23) lead to a partition of the quadratic current
into Hall and Ohmic parts. Remarkably, we found that this is in fact the only gauge-invariant
and idempotent generic partition possible, apart from the trivial one in Eq. (32).

Since we are still free to adjust the six coefficients a±i in Eq. (24) as long as Ai = a+i + a−i
maintain the values given in Eq. (33), the Hall and Ohmic quadratic conductivities are highly
nonunique. This nonuniqueness corresponds precisely to the gauge freedom (5) in defining
σH
αβγ

and σO
αβγ

, and it does not affect the physical currents j (2)H and j (2)O . One way to fulfill the
“Ohmic” conditions in Eq. (33) is by setting all six coefficients in Eq. (24) to 1/6, which leads
to the fully symmetric form for σO

αβγ
in Eq. (14).

Let us now revisit the prescriptions proposed in Eqs. (8) and (9) for defining σH
αβγ

, which
consist in first symmetrizing the fullσαβγ in the last two indices, and then antisymmetrizing the
first index with either the second or the third [15,19]. When applied to a concrete example in
Sec. 2, those prescriptions only recovered three quarters of the full Hall current [see Eq. (13)].
This suggests it may be possible to fix them by multiplying each of Eqs. (8) and (9) by a factor
of 4/3,

σ
H(1,2)
αβγ

=
4
3
σ

1,2
αβγ
=

1
3

�

σαβγ +σαγβ −σβαγ −σβγα
�

, (35)

σ
H(1,3)
αβγ

=
4
3
σ

1,3
αβγ
=

1
3

�

σαβγ +σαγβ −σγβα −σγαβ
�

. (36)

Comparing with Eq. (24) we find

a+0 = a−0 = −a−1 = −a+2 =
1
3

, a+1 = a−2 = 0 (37)

in the case of Eq. (35), and

a+0 = a−0 = −a+1 = −a−2 =
1
3

, , a−1 = a+2 = 0 (38)

in the case of Eq. (36). Since both sets of coefficients satisfy the Hall-like conditions in Eq. (33),
Eqs. (35) and (36) are generally valid expressions for the quadratic Hall conductivity.

4 Higher-order responses

At n-th order in the electric field, the Ohmic conductivity can be chosen as the fully sym-
metrized conductivity tensor obtained by setting ap = 1/(n+ 1)! for all p in Eq. (19),

σO
α0α1...αn

≡ P̂Oσα0α1...αn
=

1
(n+ 1)!

∑

p

σαp(0)αp(1)...αp(n)
. (39)
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This generalizes to arbitrary n the symmetrization procedure of Eqs. (3) and (14) for n = 1
and n= 2, respectively.

Let us now show that with the above choice of Ohmic projector, the Hall projector
P̂H = 1̂ − P̂O satisfies Eqs. (22) and (23). We start again with the gauge invariance condi-
tion. Since the full n-th order current is by definition invariant under a gauge transformation
∆σα0α1...αn

, the Hall part is invariant if and only if the Ohmic part is invariant. It is therefore
sufficient to show that

∆
�

P̂O j(n)α0

�

=
�

P̂O∆σα0α1...αn

�

Eα1
. . . Eαn

(40)

vanishes for arbitrary E. But since∆σα0α1...αn
must vanish under symmetrization over the last

n indices to ensure that ∆ j (n) = 0 (see Sec. 2), it also vanishes under full symmetrization by
P̂O. Next, it is clear that P̂2

Oσα0α1...αn
= P̂Oσα0α1...αn

because symmetrization of tensor that is
already fully symmetric does not change it further. Therefore,

P̂2
H j (n) =

�

1− 2P̂O + P̂2
O
�

j (n) =
�

1− P̂O
�

j (n) = P̂H j (n) . (41)

Finally, from the n-th order generalization of Eq. (15) it follows that j (n)H = j (n) − j (n)O is dissi-
pationless. Thus we have obtained a solution that satisfies Eqs. (22) and (23) at any order in
E, and found that it corresponds to the Hall vs Ohmic partition of the current.

To recapitulate, one can always define the Ohmic part of the n-th order conductivity as
the totally symmetric part, and the Hall part as the remainder. For n = 1, this procedure re-
duces to the standard partition of the linear conductivity according to Eqs. (2) and (3). We
demonstrated in Sec. 3 that for n= 2 the same procedure leads to the only well-defined (idem-
potent and gauge-invariant) generic partition of the quadratic current, and in Appendix A we
generalize that proof to arbitrary n.

5 Symmetry analysis of the quadratic dc conductivity

At linear order in E, the Hall vs Ohmic decomposition is intimately related to time-reversal
symmetry T by virtue of the Onsager reciprocity relation

σαβ(H , M) = σβα(−H ,−M) . (42)

It follows from this relation that the Ohmic part of the linear response is T -even, while the
Hall part is T -odd [27,28]. In the nonlinear regime, both Hall and Ohmic responses can have
T -even and T -odd components; this gives four contributions in total, of which only three are
present in Eq. (10) for the disorder-free σαβγ. The reason why there is no T -even Ohmic term
in Eq. (10) is that in the semiclassical wavepacket formalism there is no correction to the band
energy at first order in the electric field [29]; the leading correction is of second order, and it
contributes to the T -even cubic conductivity [24].

We will see shortly that σαβγ is purely Ohmic and T -even in five of the 122 magnetic
point groups. Since for materials in those point groups the disorder-free part of σαβγ vanishes
identically, their symmetry-allowed quadratic response must be entirely disorder-mediated;
this is consistent with the finding that a skew-scattering contribution to σαβγ is present in all
non-centrosymmetric materials [30]. Contributions from disorder to σH

αβγ
have been studied

recently [15,31,32], but similar contributions to σO
αβγ

have received little attention so far. In
this regard, we note that the expressions for σαβγ obtained in Refs. [15, 30–32] contain not
only Hall-like but also Ohmic parts, which can be separated out using Eqs. (14) and (16).
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Table 1: Decomposition of the quadratic conductivity into Ohmic vs Hall parts and
T -even vs T -odd parts. The Ohmic part is represented by a totally symmetric rank-3
polar tensor [Eq. (14)], and the Hall part by a traceless rank-2 axial tensor [Eq. (44)].
Each entry in the table denotes the corresponding Jahn symbol [33].

Quadratic Ohmic Quadratic Hall

T -even [V3] eV2 (traceless part)

T -odd a[V]3 aeV2 (traceless part)

In preparation for performing a symmetry analysis of σαβγ, let us count the number of
independent coefficients needed to describe the quadratic Ohmic and Hall responses in two-
dimensional (2D) and three-dimensional (3D) space. As σαβγ can be chosen to be symmetric
in the last two indices, it has 6 (18) independent components in 2D (3D). σO

αβγ
can be chosen

to be fully symmetric, and hence it has 4 (10) independent components in 2D (3D), leaving
σH
αβγ

with 6 − 4 = 2 (18 − 10 = 8) independent components in 2D (3D). Those Hall-like

components can be repackaged as an axial vector in 2D, and as a traceless2 rank-2 axial tensor
in 3D. Choosing the latter as

χH
γδ =

1
2
εαβγσ

H(1,2)
αβδ

=
1
2
εαβγσ

H(1,3)
αδβ

, (43)

and using either Eq. (35) or Eq. (36), one finds

χH
γδ =

1
3
εαβγ

�

σαβδ +σαδβ
�

. (44)

The tensor χH remains invariant under gauge transformations of the quadratic conductivity
[Eq. (5)]. This gauge-invariant repackaging of the quadratic Hall conductivity tensor is anal-
ogous to the repackaging εγαβσαβ/2 of the linear Hall conductivity as an axial vector. As an
example, in Appendix B we evaluate χH for the disorder-free quadratic conductivity (10).

According to the preceeding analysis, the quadratic conductivity can be divided quite gen-
erally into an Ohmic part given by a totally symmetric rank-3 polar tensor [Eq. (14)], and a
Hall part expressible as a traceless rank-2 axial tensor [Eq. (44)]. Each of these can be further
decomposed into T -even and T -odd parts, resulting in a total of four contributions whose
Jahn symbols [33] are indicated in Table 1.

Taking the Jahn symbols in Table 1 as input, we have used the MTENSOR program [34]
hosted on the the Bilbao Crystallographic Server (http://www.cryst.ehu.es/cryst/mtensor)
to obtain the symmetry-adapted forms of the four contributions to the quadratic conductivity
in each magnetic point group. The results are summarized in Table 2, where we indicate
the existence or absence of each contribution in each point group. The rows of the table are
organized into four blocks: in the first block the quadratic response is entirely absent, in the
second (third) it is purely Hall-like (Ohmic), and in the fourth both Hall and Ohmic responses
are present. Since we have not invoked specific microscopic mechanisms in setting up Table 2,
our symmetry analysis is purely phenomenological. (If the last column is removed and the
table is rearranged accordingly, it reduces to the table given in Ref. [22], which pertains to the
three terms in Eq. (10) for the disorder-free σαβγ.) Interestingly, all 24 = 16 possibilities are
realized in Table 2. In particular, there are magnetic point groups for which only one of the four

2The fact that χH is traceless went unnoticed in Ref. [15], where it is stated that χH has nine independent
components rather than eight.
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Table 2: Magnetic point groups classified by the existence or absence of the four
symmetry types of quadratic conductivities in a vanishing external magnetic field.

Quadratic Hall Quadratic Ohmic
Magnetic point groups T -odd T -even T -odd T -even
−1, −11′, 2/m, 2/m1′, 2′/m′, mmm, mmm1′,
m′m′m, 4/m, 4/m1′, 4′/m, 4/mmm, 4/mmm1′,
4′/mm′m, 4/mm′m′, −3, −31′, −3m, −3m1′,
−3m′, 6/m, 6/m1′, 6′/m′, 6/mmm, 6/mmm1′,
6′/m′mm′, 6/mm′m′, m−3, m−31′, 432, 4321′,
m−3m, m−3m1′, m−3m′, m′ − 3′m′

7 7 7 7

4/m′m′m′, 6/m′m′m′ 3 7 7 7

4221′, 6221′ 7 3 7 7

422, 622 3 3 7 7

6′/m, 6′/mmm′, m′ − 3′, 4′32′, m′ − 3′m 7 7 3 7

−61′, −6m21′, 231′, −43m1′, −4′3m′ 7 7 7 3

−6, −6m2, -6m′2′, 23, −43m 7 7 3 3

−6′m′2 3 7 7 3

6′22′ 7 3 3 7

−1′, 2′/m, 2/m′, m′mm, m′m′m′, 4/m′, 4′/m′,
4/m′mm, 4′/m′m′m, −3′, −3′m, −3′m′, 6/m′,
6/m′mm

3 7 3 7

11′, 21′, m1′, 2221′, mm21′, 41′, −41′, 4mm1′,
−42m1′, 31′, 321′, 3m1′, 61′, 6mm1′

7 3 7 3

4′22′, 42′2′, 62′2′ 3 3 3 7

4m′m′, −4′2m′, 6m′m′ 3 3 7 3

−6′, −6′m2′ 3 7 3 3

6′, 6′mm′ 7 3 3 3

1, 2, 2′, m, m′, 222, 2′2′2, mm2, m′m2′, m′m′2, 4,
4′,−4, −4′, 4mm, 4′m′m, −42m, −4′2′m, −42′m′,
3, 32, 32′, 3m, 3m′, 6, 6mm

3 3 3 3

contributions is present; clearly, materials belonging to those point groups should be ideally
suited for studying one specific type of quadratic current response. As already mentioned, in
the point groups where that response is purely Ohmic and T -even the quadratic current is
purely disorder mediated.

6 Discussion

In this work we have shown how, given a dc conductivity tensor of arbitrary order n in the
electric field, the current may be uniquely separated into Hall and Ohmic parts,

j (n) = j (n)H + j (n)O , (45)

by taking linear combinations of that tensor with permuted indices. This separation is insensi-
tive to the particular gauge choice for the conductivity, and applying it multiple times gives the
same result as applying it only once. No other generic order-by-order partition of the induced
current fulfills these two requirements. Thus, once we have separated the Hall and Ohmic
parts we cannot make any further subdivisions of the current into physically meaningful parts
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without invoking either the symmetries of the system, or the microscopic processes producing
the nonlinear currents.

The nonlinear Hall effect has sometimes been associated with the transverse part of the cur-
rent [24], and spontaneous unidirectional magnetoresistence with a longitudinal response [8,
9]. The present work provides sharper definitions of Hall and Ohmic nonlinear responses that
are generally valid irrespective of crystal symmetry. For example, spontaneous unidirectional
magnetoresistence should be defined as the T -odd part of the quadratic Ohmic response, which
generally has both longitudinal and transverse components. This is consistent with the analysis
in Ref. [10], where the same conclusion was reached on the basis of a particular mechanism,
namely the nonlinear Drude term in Eq. (10). We hope that the present work will be useful
for identifying the Hall and Ohmic parts of nonlinear responses, both experimentally and in
the context microscopic theories.
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A Uniqueness of the partition at arbitrary order

In this Appendix we prove that the Hall vs Ohmic partition of the current described in Sec. 4
is the only valid generic partition at arbitrary order n in the electric field. We start with the
general expression in Eq. (19) for the action of the operator P̂ on the conductivity,

P̂σα0α1...αn
=
∑

p

apσαp(0)αp(1)...αp(n)
, (46)

where the sum is over all permutations {p(1), . . . , p(n)} of {0,1, . . . , n}. The generalization of
Eq. (25) for the action of P̂ on the current reads

P̂ j(n)α0
=
�

A0σα0α1...αn
+ A1σα1α0...αn

+ . . .

+ Aiσα1...αiα0αi+1...αn
+ . . .+ Anσα1...αnα0

�

Eα1
. . . Eαn

, (47)

where

Ai =
p(i)=0
∑∑∑∑∑∑∑∑∑∑∑∑

p

ap . (48)

Since they fully determine the projected current, the Ai are the only physically meaningful
parameters, and changes in the parameters ap that leave every Ai invariant amount to gauge
transformations.
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Recall from Sec. 2 that a general gauge transformation∆σα0...αn
of the conductivity tensor

must satisfy the condition
∑

q

∆σα0αq(1)...αq(n)
= 0 , (49)

where the summation is over all permutations {q(1), . . . , q(n)} of {1, . . . , n}. As stated in
Eq. (23), we want the projected current to be invariant under all possible gauge transfor-
mations. To make progress, it is sufficient to require at this point invariance under the subset
of gauge transformations ∆σi

α0α1...αn
that are antisymmetric under permutation of the indices

at positions i and i + 1,

∆σi
α0...αi−1αiαi+1ai+2...αn

= −∆σi
α0...αi−1αi+1αiαi+2...αn

, (50)

where 0 < i < n. For such transformations, the gauge invariance condition on the projected
current (47) takes the form

�

Ai − Ai+1

�

∆σi
α1...αiα0αi+1αi+2...αn

Eα1
. . . Eαn

= 0 . (51)

This condition can hold in general if and only if Ai = Ai+1, and by letting the index i run from
1 to n− 1 we get

A1 = A2 = . . .= An . (52)

Therefore, the two parameters A0 and A1 fully determine the projected current.
Let us turn now to the idempotency condition (22). Acting with P̂ on both sides of Eq. (46)

we obtain the following generalization of Eq. (27),

P̂2σα0α1...αn
=
∑

p

ãpσαp(0)αp(1)...αp(n)
=

p2·p1=p
∑∑∑∑∑∑∑∑∑∑∑∑∑∑

p, p1, p2

ap1
ap2
σαp(0)αp(1)...αp(n)

, (53)

and hence the idempotency condition becomes Ai = Ãi for i = 0, . . . , n where, by analogy with
Eq. (48),

Ãi ≡
p(i)=0
∑∑∑∑∑∑∑∑∑∑∑∑

p

ãi =
p(i)=0
∑∑∑∑∑∑∑∑∑∑∑∑

p

p2·p1=p
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

p1, p2

ap1
ap2

. (54)

Solving this equation for arbitrary n is not as easy as solving it for n= 2 [Eq. (30)]. But having
settled the gauge invariance conditions in Eq. (52), we can now pick a convenient gauge for
the coefficients ap. (This entails no loss of generality, because we study the action of P̂ on
the physical current, not on a particular form of the conductivity tensor.) We choose the most
symmetric gauge compatible with Eq. (52), namely, the gauge where all terms in the summand
of Eq. (48) are identical,

ap =

¨

A0/n! , if p(0) = 0

A1/n! , if p(0) 6= 0
. (55)

Substituting in Eq. (54), the idempotency condition Ai = Ãi becomes

Ai =
1

n!2

p(i)=0
∑∑∑∑∑∑∑∑∑∑∑∑

p











p2 · p1 = p
p1(0) = 0
p2(0) = 0
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

p1,p2

A2
0 +

p2 · p1 = p
p1(0) = 0
p2(0) 6= 0
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

p1,p2

A0A1 +

p2 · p1 = p
p1(0) 6= 0
p2(0) = 0
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

p1,p2

A1A0 +

p2 · p1 = p
p1(0) 6= 0
p2(0) 6= 0
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

p1,p2

A1A1











, (56)

with i running from 0 to n. Due to Eq. (52), the n equations with 1 ≤ i ≤ n are identical,
leaving two equations only. These can be written as

A0 =
1

n!2

�

aA2
0 + bA0A1 + cA2

1

�

, A1 =
1

n!2

�

dA2
0 + eA0A1 + f A2

1

�

, (57)
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where the coefficients a to f are the numbers of pairs of permutations p1, p2 of the set
{0, 1, . . . n} that satisfy the conditions

a, d : p1(0) = p2(0) = 0 , (58a)

b, e : (p1(0) = 0 ∧ p2(0) 6= 0) ∨ (p1(0) 6= 0 ∧ p2(0) = 0) , (58b)

c, f : p1(0) 6= 0 ∧ p2(0) 6= 0 , (58c)

together with

a, b, c : p2(p1(0)) = 0 , (58d)

d, e, f : p2(p1(1)) = 0 . (58e)

It now becomes a straightforward combinatorial exercise to obtain

a = n!2 , d = 0 ,
b = 0 , e = 2 · n!2 ,
c = n · n!2 , f = (n− 1) · n!2 ,

(59)

which leads to the following generalization of Eq. (31),

A0 = A2
0 + nA2

1 , A1 = 2A0A1 + (n− 1)A2
1 . (60)

Apart from the trivial solutions P̂0 and P̂1 of the same type as in Eq. (32), these equations have
the solutions

¨

P̂H : (A0, A1 = . . .= An) =
� n

n+1 ,− 1
n+1

�

,

P̂O : (A0, A1 = . . .= An) =
� 1

n+1 , 1
n+1

�

,
(61)

which generalize Eq. (33). It can be readily verified that the solution for P̂O is satisfied by
Eq. (39). And since P̂H fulfills the Hall condition (34) but P̂O does not, we have obtained a
unique partition of the n-th order current into Hall and Ohmic components.

B Repackaging of the disorder-free quadratic Hall conductivity

Inserting Eq. (10) for σαβγ in Eq. (44) for χH
γδ

and writing Ωαβn = εαβγΩ
γ
n one finds

χH
αβ =

e3

ħh

∫

kn
f0(εn)εαγδ∂γG

δβ
n +

e3τ

ħh2

�

Dβα −
1
3
δαβTr(D)

�

, (62)

where

Dβα =

∫

kn
f0(εn)∂βΩ

α
n (63)

is the Berry curvature dipole [14]. The first in Eq. (62) agrees with the expression obtained in
Ref. [23] starting from the gauge-dependent definition χH

γδ
= εαβγσαβδ/2. The second term

agrees with the expression in Eq. (8) of Ref. [15], once that expression is multiplied by the
factor of 4/3 that was discussed in connection with Eqs. (35) and (36). That second term can
be simplified by noting that Tr(D) = 0 for topological reasons [31,35], yielding

χH
αβ =

e3

ħh

∫

kn
f0(εn)

�

εαγδ∂γG
δβ
n + (τ/ħh)∂βΩαn

�

(64)

for the disorder-free quadratic Hall tensor. The first term is T odd and intrinsic (independent
of τ), and the second is T even and extrinsic.
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