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Measurement of interaction-dressed Berry curvature
and quantum metric in solids by optical absorption
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Abstract

The quantum geometric properties of a Bloch state in momentum space are usually
described by the Berry curvature and quantum metric. In realistic gapped materials
where interactions and disorder render the Bloch state not a viable starting point, we
generalize these concepts by introducing dressed Berry curvature and quantum metric
at finite temperature, in which the effect of many-body interactions can be included
perturbatively. These quantities are extracted from the charge polarization susceptibility
caused by linearly or circularly polarized electric fields, whose spectral functions can be
measured from momentum-resolved exciton or infrared absorption rate. As a concrete
example, we investigate Chern insulators in the presence of impurity scattering, whose
results suggest that the quantum geometric properties are protected by the energy gap
against many-body interactions.
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1 Introduction

The geometric properties of a quantum state |ψ(k)〉 in the D-dimensional parameter space
k= (k1, k2...kD) has long been of tremendous interest in many areas of physics. The first and
perhaps most important aspect of this kind is the Berry phase [1], which is a geometric phase
associated with the evolution of the quantum state in a closed trajectory in the parameter space,
and is the mechanism behind numerous phenomena such as quantized Hall conductance [2,3]
and anomalous velocity [4], just to list a few. The integrand in the calculation of Berry phase
is the Berry curvature Ωµν, which has been measured experimentally in cold atoms [5,6] and
solids [7], and is further recognized as the imaginary part of the quantum geometric tensor [8]
Tµν. The real part of Tµν is yet another important geometric quantity called quantum metric [9]
gµν, which has also been measured by means of Rabi oscillations [10]. Generically, how the
quantum state |ψ(k)〉 rotates in the Hilbert space as the parameter changes from k to k+ δk
defines the quantum metric according to |〈ψ(k)|ψ(k+δk)〉|= 1− 1

2 gψµνδkµδkν [10–24]. This
aspect is particularly important to describe quantum phase transitions, since the quantum
metric generally diverges near the critical point kc regardless of any detail of the system,
giving rise to the notion of fidelity susceptibility [25–31].

Despite the ubiquity of Berry curvature and quantum metric behind numerous quantum
phenomena, their very definition becomes rather ambiguous in realistic materials subject to
many-body interactions and at finite temperature. This situation is relevant to the gapped
fermionic systems such as semiconductors, superconductors, or topological insulators that are
subject to various complications like disorder, electron-electron, or electron-phonon interac-
tions. In this case, |ψ(k)〉 is the filled band state at momentum k [32, 33], which however
is no longer an energy eigenstate in the presence of many-body interactions, and moreover
the state is only partially filled at finite temperature due to Fermi statistics. As a result, one
must resort to a more generalized definition for Ωµν and gµν. In addition, if the interaction is
weak, they must be able to be defined perturbatively, and recover the usual definition in the
noninteracting and zero temperature limit.

In this paper, we provide such a generalized formalism for gµν, Ωµν, and Tµν that are
applicable to realistic gapped materials at finite temperature and in the presence of many-
body interactions. Our construction is based on the observation that the momentum-derivative
in the calculation of gµν and Ωµν actually corresponds to the dipole energy caused by an
oscillating electric field [33]. The oscillating field causes the exciton or infrared absorption of
the gapped material, and the frequency-integrated absorption rate in the zero temperature and
noninteracting limit nicely recovers the usual definition of Berry curvature and quantum metric
[17, 34, 35]. Since the absorption rate itself is a well-defined, experimentally measurable
quantity even in the presence of many-body interactions and at finite temperature, it serves as
a generalized definition for the Berry curvature and quantum metric. The absorption rate can
be formulated within a linear response theory of charge polarization susceptibility, in a way
analogous to the theory of exciton absorption rate in semiconductors caused by the minimal
coupling between electrons and the vector field [36,37]. Moreover, our formalism introduces
the spectral functions for the experimental measurements of Berry curvature and quantum
metric, and we will discuss how many-body interactions influence the shape of these spectral
functions.

The structure of the paper is organized in the following manner. In Sec. II A, we introduce
the linear response theory of charge polarization susceptibility in gapped materials, from which
the interaction-dressed Berry curvature and quantum metric naturally emerge. The recovery
to the usual definition of Berry curvature and quantum metric in the zero temperature and
noninteracting limit is demonstrated explicitly in Sec. II B, and the perturbative calculation of
these quantities in the presence of interactions is discussed in Sec. II C. In Sec. II D, we link
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the susceptibility to the exciton and infrared absorption rate, thereby providing a concrete
measurement protocol for the dressed Berry curvature and quantum metric. In Sec. II E, we
use the Chern insulator with impurities as a concrete example to elaborate how the spectral
functions are influenced by interactions. Finally, the results are summarized in Sec. III.

2 Linear response theory of Berry curvature and quantum metric

2.1 Susceptibility formalism for Berry curvature and quantum metric

We begin by recalling that in the noninteracting and zero temperature limit, the quantum ge-
ometric tensor, quantum metric, and Berry curvature of a quantum state |ψ(k)〉 at momentum
k are defined by

Tµν(k) = 〈∂µψ|∂νψ〉 − 〈∂µψ|ψ〉〈ψ|∂νψ〉 ,

gµν(~k) =
1
2
〈∂µψ|∂νψ〉+

1
2
〈∂νψ|∂µψ〉 − 〈∂µψ|ψ〉〈ψ|∂νψ〉 , (1)

Ωµν(~k) = i〈∂µψ|∂νψ〉 − i〈∂νψ|∂µψ〉 ,

where ∂µ ≡ ∂ /∂ kµ. Our interest is to investigate these quantities for the electrons in
gap materials with multiple valence and conduction bands. In the absence of interactions,
the electrons in the material are described by a second-quantized fermionic Hamiltonian
H0(k) =

∑

``′ h``′(k)c
†
`kc`′k, where ` denotes the degrees of freedom of the fermionic basis like

orbitals, spins, etc. After diagonalizing the single-particle Hamiltonian h(k)|nk〉= Enk|nk〉, we
introduce the creation operator c†

nk for the eigenstate |nk〉. Some of these Enk’s may be degen-
erate, such as the spin degeneracy, but this does not affect our formalism. At zero temperature,
all the valence band states Enk < 0 are filled and all the conduction band states Enk > 0 are
empty. Suppose there are N− valence bands, then the fully antisymmetric valence band state
is [32,33]

|ψval(k)〉=
1

p

N−!
εn1n2...nN− |n1k〉|n2k〉...|nN−k〉 , (2)

which may be inserted into Eq. (2) to obtain the corresponding noninteracting gµν andΩµν.
Note that this state is not a physically sensible state in our full Fock space since it ignores all the
other momenta 6= k, but the resulting metric and curvature are meaningful and measurable,
as elaborated below [32,33].

Our aim is to present a linear response theory that links Berry curvature and quantum
metric to optical absorption experiments. In fact, this strategy of formulating Berry curvature
in terms of a certain kind of response caused by some external field has been explored in several
previous works. Shin et al. consider the charge and spin current caused by an oscillating vector
potential, and show that Berry curvature as the anomalous velocity can be extracted from the
time-evolution of Bloch states [38]. Gritsev and Polkovnikov elaborate that Berry curvature
can be extracted from the response of the generalized force caused by adiabatically quenching
a driving parameter, a phenomenon called dynamical quantum Hall effect [39]. Moreover,
the quantized Hall conductance, which may be derived from expanding the Bloch state to
leading order in the external field [40], can also be expressed in terms of a frequency-derivative
of a linear response function at the zero frequency limit [41]. In contrast, our construction
links the Berry curvature to the exciton or infrared absorption experiments performed at finite
temperature, introduces the Berry curvature spectral function that can incorporate any many-
body effects in real materials and be expressed by Feynman diagrams, and moreover elaborates
that quantum metric also emerges out of the same linear response theory, as we shall see below.
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We now consider the application of an external electric field Eµ that couples to the operator
i∂µ, which also plays the role of the generator of the transformation from k to k+ δk on the
momentum space manifold, described by the dipole energy [17,33,42]

δh(k) = −iqEµ∂µ , (3)

where q is the charge of the particle. The change of Hamiltonian in the second-quantization
formalism is

δH(k) =
∑

nn′
〈nk|δh(k)|n′k〉 c†

nkcn′k = −qEµUµ(k) , (4)

which defines the charge polarization operator Uµ

Uµ(k) =
∑

nn′
Ann′
µ (k) c

†
nkcn′k = −U†

µ(k) ,

Ann′
µ (k) = 〈nk|i∂µ|n′k〉 ≡Ann′

µ , (5)

where Ann′
µ is the non-Abelian gauge field defined from the eigenstates. In the presence of

interactions described by a second-quantized Hamiltonian H ′, and denoting the unperturbed
Hamiltonian of the whole system by H0 =

∑

k H0(k), the operators evolve with time according
to Uµ(k, t) = ei(H0+H ′)t Uµ(k)e−i(H0+H ′)t , except Ann′

µ which has no dynamics.
The central quantity in our formalism is the susceptibility χµν of the ensemble average of

the charge polarization operator Uµ

〈Uµ(k, t)〉= χµν(k, t)qEν(t) , (6)

caused by the application of the electric field Eν(t) = Eνe−iωt . Within linear response theory,
the Matsubara version of the susceptibility is calculated by

χµν(k, iω) =

∫ β

0

dτ eiωτχµν(k,τ) = −
∫ β

0

dτ eiωτ〈TτUµ(k,τ)U†
ν(k, 0)〉 , (7)

where iω= integer×2πi/β is the bosonic Matsubara frequency, and the retarded version can
be obtained upon an analytical continuation iω→ω+ iη. We propose the imaginary part of
the symmetrized retarded susceptibility to be the quantum metric spectral function, and the
real part of the antisymmetrized one to be the Berry curvature spectral function

gd
µν(k,ω)≡ −

1
2π

Im
�

χµν(k,ω) +χνµ(k,ω)
�

,

Ωd
µν(k,ω)≡ −

1
π

Re
�

χµν(k,ω)−χνµ(k,ω)
�

, (8)

T d
µν(k,ω)≡

1
2π

�

iχµν(k,ω)− iχ∗νµ(k,ω)
�

,

where the superscript d indicates that these quantities are dressed by interactions. The dressed
quantum metric, Berry curvature, and quantum geometric tensor to be the integration of the
spectral functions over positive frequency, since we aim at capturing the absorption rate

Od
µν(k) =

∫ ∞

0

dωOd
µν(k,ω) , (9)

where Od
µν =

¦

gd
µν,Ω

d
µν, T d

µν

©

.
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2.2 Zero temperature and noninteracting limit

In this section, we justify the definitions of
¦

gd
µν,Ω

d
µν, T d

µν

©

in Sec. 2.1 by showing that they

recover the
�

gµν,Ωµν, Tµν
	

in the noninteracting and zero temperature limit given by Eqs. (2)
and (2). We first write the fully antisymmetric filled band state in the second quantized form
(ignoring the momentum index k) |ψval〉=

∑

n∈v c†
n|0〉 and introduce the projection operators

for the filled band Q− =
∑

n∈v |n〉〈n| and empty band Q+ =
∑

m∈c |m〉〈m|. The inner product
of the derivatives of |ψval〉 is

〈∂µψval|∂νψval〉 =
�

∑

n∈v

〈∂µn|n〉
��

∑

n∈v

〈n|∂νn〉
�

+
∑

n∈v

〈∂µn|Q+|∂νn〉 , (10)

which gives the noninteracting Berry curvature and quantum metric

Ωµν =
∑

n∈v

�

i〈∂µn|∂νn〉 − i〈∂νn|∂µn〉
�

,

gµν =
1
2

∑

n∈v

�

〈∂µn|Q+|∂νn〉+ 〈∂νn|Q+|∂µn〉
�

. (11)

On the other hand, in the noninteracting limit of the Green’s function G→ G(0), the dynamic
fidelity susceptibility is given by

χ(0)µν (k, iω) =
∑

nm

Anm
µ

�

Anm
ν

�† 1
β

∑

ip

G(0)n (k, ip)G(0)m (k, iω+ ip) . (12)

The frequency sum gives the usual Lindhard function, so the unperturbed real frequency sus-
ceptibility is (suppressing k index for simplicity)

χ(0)µν (ω) =
∑

nm

〈∂µn|m〉〈m|∂νn〉
f (En)− f (Em)
ω+ En − Em + iη

. (13)

Let us first consider zero temperature limit such that the Fermi functions are step functions,
which demand En must belong to the valence bands n ∈ v and Em the conduction bands m ∈ c.
Symmetrizing the imaginary part yields

−
1

2π
Im
�

χ(0)µν (ω) +χ
(0)
νµ (ω)

�

T=0
=

∑

n∈v,m∈c

1
2

�

〈∂µn|m〉〈m|∂νn〉+ (µ↔ ν)
�

δ(ω+ En − Em) . (14)

After an integration over frequency, one obtains the zero temperature and noninteracting limit
of the dressed quantum metric gd

µν(k)|H ′=0,T=0 = gµν(k), which recovers that of the filled band
Bloch state in Eq. (11).

To see the Berry curvature, one may consider the combination iχ(0)µν (ω)|T=0− iχ(0)νµ (ω)|T=0
and integrate it over frequency

i

∫

dωχ(0)µν (ω)|T=0 − i

∫

dωχ(0)νµ (ω)|T=0 =

=
∑

n∈v,m∈c

�

i〈∂µn|m〉〈m|∂νn〉 − i〈∂νn|m〉〈m|∂µn〉
�

∫

dω
ω+ En − Em

+π
∑

n∈v,m∈c

�

〈∂µn|m〉〈m|∂νn〉 − 〈∂νn|m〉〈m|∂µn〉
�

. (15)
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The second line above is purely real and the third line purely imaginary, and hence

i
π

Re

�∫

dωχ(0)µν (ω)|T=0 −
∫

dωχ(0)νµ (ω)|T=0

�

=

=
∑

n∈v

�

〈∂µn| (I −Q−) |∂νn〉 − 〈∂νn| (I −Q−) |∂µn〉
�

=
∑

n∈v

�

〈∂µn|∂νn〉 − 〈∂νn|∂µn〉
�

. (16)

Thus the dressed Berry curvature in the zero temperature and noninteracting limit
Ωd
µν(k)|H ′=0,T=0 = Ωµν(k) recovers the noninteracting Berry curvature in Eq. (11).

Figure 1: (a) Feynman diagrams for the self-energy Σ caused by impurity scattering,
and the full Green’s function solved by Dyson’s equation G = G(0)+G(0)ΣG. (b) The
susceptibility χG

µν calculated from the full Green’s function, and (c) χ L
µν calculated in

the ladder diagram approximation.

2.3 Perturbative calculation of dressed Berry curvature and quantum metric

In the presence of interactions H ′, there are various approximations that can be used to calcu-
late the susceptibility. For concreteness, in present work we discuss two most frequently used
approximations, which will be applied to a concrete example in Sec. 2.5. The first uses the full
Green’s function calculated from the Dyson’s equation G = G(0) + G(0)ΣG in the polarization
operator, as indicated in Fig. 1 (a) and (b) using impurity scattering as an example, which
yields

χG
µν(k, iω) =

∑

nm

Anm
µ

�

Anm
ν

�† 1
β

∑

ip

Gn(k, ip)Gm(k, iω+ ip) . (17)

One may use the single-particle spectral function for the full Green’s function
A(k,ω) = −Im G(k,ω)/π to rewrite Eq. (17), yielding [37]

gG
µν(k,ω) =

∑

nm

1
2

n

Anm
µ

�

Anm
ν

�†
+Anm

ν

�

Anm
µ

�†o

×
∫

dεAn(k,ε)Am(k,ε +ω) [ f (ε)− f (ε +ω)] , (18)

and likewisely for ΩG
µν(k,ω), where f (ε) is the Fermi distribution that determines the filling at

finite temperature. One sees that the self-energy broadens the spectral function A(k,ω), and
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subsequently broadens gG
µν(k,ω) andΩG

µν(k,ω) from theδ-functions peaking atω= Emk−Enk,
as explained in Appendix A using a toy model with artificial broadening.

Another frequently used approximation are the ladder diagrams in Fig. 1 (c) that corre-
spond to

χ L
µν(k, iω) =

∑

nm

Anm
µ (k)

1
β

∑

ip

G(0)n (k, ip)G(0)m (k, ip+ iω)Γ nm
ν (k, ip, ip+ iω) , (19)

where the vertex function Γ nm
ν acts like a dressed non-Abelian gauge field. We will use the

intraband impurity scattering as an example, in which Γ nm
ν satisfies the Bethe-Salpeter equation

(BSE) [37]

Γ nm
ν (k, ip, ip+ iω) =

�

Anm
ν (k)

�†
+
∑

k′
W nm

kk′ (iω)G
(0)
n (k

′, ip)G(0)m (k
′, ip+ iω)Γ nm

ν (k
′, ip, ip+ iω) , (20)

where W nm
kk′ (iω) is the impurity scattering vertex. The G(0) may be replaced by the full Green’s

function G in more sophisticated calculations.

2.4 Measurements by exciton or infrared absorption rate

The oscillating electric field is expected to cause particle-hole excitations even at finite tem-
perature, which may be detected by exciton absorption in semiconductors and infrared ab-
sorption in superconductors. In time-dependent perturbation theory with the perturbation
δh(k, t) = −iqE0e−iωt∂µ, one can immediately identify the exciton absorption rate R(k,ω)
obtained from the Fermi golden rule with our quantum metric spectral function [36] (in stan-
dard unit)

R(k,ω) = 2π
�

qE0

ħh

�2

gd
µµ(k,ω) . (21)

The off-diagonal components, for instance gd
x y(k,ω) defined in the x y-plane, can be extracted

by considering two different measurement protocols [17] that applied the same force strength
qE0 in the two directions but with a phase difference ±1

δh(±) =
�

U†
x ± U†

y

�

qE0e−iωt , (22)

which induces the polarization

〈Ux(k, t)± Uy(k, t)〉= χ(±)(k, t)qE0e−iωt , (23)

where χ(±) = χx x ±χx y ±χy x +χy y , and hence subtracting the two absorption rates yields

R(+)(k,ω)− R(−)(k,ω) = 2π
�

qE0

ħh

�2

4gd
x y(k,ω) . (24)

After gd
µν(k) is measured, various differential geometric quantities that characterize the mo-

mentum space manifold like Ricci scalar, Riemann tensor, and geodesics (in the noninteract-
ing limit, it is the trajectory along which the Bloch state rotates the least) can be extracted
according to their usual definitions in terms of gd

µν(k). Likewisely, the Berry curvature can be
extracted by applying the same force in the two directions but with a phase difference ±i [34]

δhc1,c2 =
�

U†
x ± iU†

y

�

qE0e−iωt , (25)

which are precisely the two circular polarizations, causing the polarization

〈Ux(k, t)∓ iUy(k, t)〉= χ c1,c2(k, t)qE0e−iωt , (26)
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where χ c1,c2 = χx x ± iχx y ∓ iχy x +χy y . Subtracting the absorption rates of the two protocols,
i.e., a circular dichroism measurement, yields

Rc1(k,ω)− Rc2(k,ω) = 2π
�

qE0

ħh

�2

2Ωd
x y(k,ω) , (27)

which gives the Berry curvature spectral function.
Experimental techniques that can resolve the momentum and frequency dependence of

exciton absorption rate can directly measure gd
µν(k,ω) and Ωd

µν(k,ω). Note that the usual
exciton absorption experiment measures the spectral function integrated over momentum k
and plotted as a function ofω [36,43–45], but our proposal requires to integrate it overω and
plot it as a function of k. To serve this purpose, we anticipate that the most promising technique
may be time-resolved and angle-resolved photoemission spectroscopy (trARPES) [46–51]. In
this technique, the change of particle number in all the valence bands ∆nv(k,ω, t) and in
all the conduction bands ∆nc(k,ω, t) at k after the electrostatic force B0e−iωt = qE0e−iωt

polarized along µ has been applied for time t is

∆nc(k,ω, t) = −∆nv(k,ω, t) = R(k,ω) t

= N− − z(k)

∫ 0

−∞
dε1

∑

n∈v

An(k,ε1) f
∗(ε1,ω, t) (28)

= z(k)

∫ ∞

0

dε1

∑

m∈c

Ac(k,ε1) f
∗(ε1,ω, t) ,

where f ∗(ε,ω, t) represents a nonequilibrium Fermi distribution function that evolves
with time, and the phenomenological fitting parameter z(k) can be used to ad-
just the experimentally measured An(k,ε) until the spectral sum rule at equilibrium
N− = z(k)

∫ 0
−∞ dε1

∑

n∈v An(k,ε1) f (ε1) is satisfied. Equation (37) provides a measurement
protocol for gd

µν(k,ω) and Ωd
µν(k,ω) in the proposed trARPES experiment, in which one mea-

sures the lost of particle number in the valence bands or the gain of particle number in the
conduction bands after the electric field Eµ with frequency ω has been applied for time t.

2.5 Disordered Chern insulator in a continuum

We proceed to use Chern insulator in a continuum with impurity scattering as a concrete
example. This example is chosen for multiple reasons. Firstly, analytical results for the self-
energy can be given, from which the broadening and shift of single-particle spectral function
and how they subsequently affect the Berry curvature spectral function and quantum metric
spectral function can be clearly demonstrated. Secondly, the noninteracting Chern insulator
has topological order, and therefore how the disorder affects the topological and quantum
geometrical property of the system can be unambiguously understood. Thirdly, this simple
model serves as a good example to demonstrate how the band gap protects the topological and
quantum geometrical properties against many-body interactions, which must be understood
before other factors, such as realistic band structures, spin or orbital degrees of freedom, etc.,
should be investigated. The single particle Hamiltonian of this model is expanded by the
Pauli matrices h(k) = d(k) · σ, with d1 = vkx , d2 = vky , and d3 = M , where v = 1 is the
Fermi velocity and M represents the band gap. The model contains only one filled band and
one empty band, and the modulus of momentum is restricted to 0 ≤ k ≤ π/a such that
the integration in the self-energy is finite, where a = 1 represents a lattice constant. In the
noninteracting and zero temperature limit, the square root of the determinant of the quantum
metric is equal to half of the module of the Berry curvature [11,13–15,52]

q

det gµν = |Ωx y |/2 , (29)
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a relation that is a special case of the so-called metric-curvature correspondence [33] that has
been derived from a universal topological invariant [53]. Whether such a relation still holds
in the presence of interactions would be a good indication of whether the quantum geometric
properties remain unchanged. The Chern insulator in the presence of electron-electron and
electron-phonon interactions has been considered previously [54, 55], but we will consider
the intraband impurity scattering that does not transfer electrons between the two bands.
Details of the calculation is given in Appendix B, including the argument to ignore the ladder
diagrams, so we only focus on the gG

µν(k,ω) and ΩG
µν(k,ω) defined from Eq. (18).

Figure 2: (a) Single-particle spectral function of the Chern insulator with impurity
density ni = 0.1 and impurity potential V = 1, plotted for several diagonal mo-
menta kx = ky = k. Each line is shifted upward for the sake of presentation.
The chemical potential is set at µ = 0.13 and temperature at kB T = 0.03. (b)
The Berry curvature spectral function |Ωd

x y(k,ω)|/2 and quantum metric spectral

function
q

det gd
µν(k,ω), which coincide at large momenta, signifying the metric-

curvature correspondence, but deviate at small momenta due to the reduced band
gap.

Figure 2 (a) shows the single-particle spectral function of this model at different k, where
the impurity scattering shifts and broadens the quasiparticle peak as expected, and the band
gap can be identified from the peak positions. The module of Berry curvature spectral function
|Ωd

x y(k,ω)|/2 and the square root of the determinant of quantum metric spectral function
q

det gd
µν(k,ω) shown in Fig. 2 (b) peak at the band gap, reminisce the feature of exciton

absorption rates. At large momentum and large band gap, the coincidence of the two spectral
functions indicate that Eq. (29) is satisfied, signifying the band gap protects the geometric
properties against the interaction. However, at small momentum, the two spectral functions
deviate significantly, suggesting that interactions can alter the quantum geometric properties in
regions with a small band gap, which is in accordance with our phenomenological explanation
using an artificial broadening given in the supplemental material.

3 Conclusions

In summary, we have presented a formalism of quantum metric and Berry curvature for realistic
gapped materials at finite temperature and subject to many-body interactions. Our formalism
is based on the linear response theory of charge polarization induced by polarized electric
field, which recognizes the real frequency charge polarization susceptibility as the spectral
functions of quantum metric and Berry curvature. The spectral functions are also the exciton
or infrared absorption rate caused by the polarized electric field, suggesting a concrete proto-
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col to measure these quantities even at finite temperature and in the presence of many-body
interactions. The spectral functions integrated over frequency give the dressed Berry curvature
and quantum metric at momentum k, and hence experimental techniques that can measure
exciton absorption rate with a momentum resolution, such as the loss of valence band spectral
weight measured by trARPES, can directly detect these quantities.

The perturbative calculation of the spectral functions is analogous to that in the theory
of exciton absorption rate in semiconductors induced by minimal coupling. Using disordered
Chern insulator as an example, we reveal that the spectral functions are significantly broad-
ened by interactions, as expected. However, within the full Green’s function approximation
and the ladder diagrams approximation, our results suggest that the quantum geometric prop-
erties of the Chern insulator is protected by the energy gap against interactions, in the sense
that the metric-curvature correspondence between Berry curvature and quantum metric re-
mains unchanged if the energy gap is larger than the strength of the impurity scattering. Fi-
nally, as our formalism is broadly applicable to any semiconductors, superconductors, and
topological insulators, we anticipate that the influence of temperature and interactions on the
quantum geometric properties of a variety of gapped material can be investigated ubiquitously
within our linear response theory. On the other hand, we also anticipate that when combining
our linear response theory with the realistic band structures obtained from first-principle calcu-
lations, a lot of technical details may arise, such as Wannierization [38], which are important
issues that await to be explored.

We thank exclusively A. F. Kemper for the discussion about various aspects related to pump-
probe experiments. W. C. is financially supported by the productivity in research fellowship
from CNPq.

Figure 3: (a) The integrals {Inn, Inm, Imn, Imm} that enter the expression of quantum
metric in Eq. (31) for our two-band toy model, plotted as a function of the band gap∆
and artificial broadening η. (b) Schematics of the interband and intraband transition
processes at weak (top) and strong (bottom) interactions, and why in the later case
the dressed quantum metric and Berry curvature deviate from their noninteracting
values.

A Two-band toy model with artificial broadening

In the section, we use a two-band toy model to schematically demonstrate how the broadening
of single-particle spectral function by interaction causes the Berry curvature and quantum
metric to deviate from their noninteracting values. Consider a model that contains only one
filled band state |n〉with energy −∆ and one empty band state |n〉with energy +∆, which give
some form of Anm

µ that is not important at this stage (all of these are functions of momentum
k, but we omit this index for simplicity). The spectral functions are assumed to take the
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Lorentzian shape with an artificial broadening η that comes from some source of scattering

An(ε) =
η/π

(ε +∆)2 +η2
, Am(ε) =

η/π

(ε −∆)2 +η2
, (30)

and we restrict the discussion to zero temperature such that the Fermi functions are step func-
tions f (ε) = θ (−ε). As a result, the quantum metric gG

µµ calculated using spectral representa-
tion, given in Eq. (12) of the main text, contains four terms (

∑

n′ and
∑

m′ both sum the two
bands)

gG
µµ =

∑

n′m′
An′m′
µ

�

An′m′
µ

�†
× In′m′ ,

In′m′ ≡
∫ ∞

0

dω

∫ 0

−ω
dεAn′(ε)Am′(ε +ω) . (31)

Out of the four integrations {Inn, Inm, Imn, Imm}, the {Inm, Imn} represent the interband and
{Inn, Imm} the intraband transitions. In the noninteracting limit limη→0 An(ε) = δ(ε + ∆)
and limη→0 Am(ε) = δ(ε − ∆), only the Inm = 1 gives unity and all others are
zero Imn = Inn = Imm = 0, so the noninteracting quantum metric is simply

gG
µµ = Anm

µ

�

Anm
µ

�†
= 〈∂µn|m〉〈m|∂µn〉= gµµ.

In the presence of interaction η 6= 0, how much Inm deviates from unity and how much
{Inn, Imn, Imm} deviate from zero would give us a sense of how much gG

µµ deviates from gµµ,
which obviously depends on the strength of interaction η and the band gap ∆. Figure 3 (a)
shows the numerical result of {Inn, Inm, Imn, Imm} for this toy model. At large gap ∆ and small
broadening η, the spectral functions An(ε) and Am(ε) are well separated peaks whose shapes
are close to δ-functions, leading to the interband transition amplitude Inm ≈ 1. Because An(ε)
has a negligible weight above chemical potential ε > µ, the intraband transition amplitude is
practically zero Inn ≈ 1. As a result, the dressed quantum metric and Berry curvature roughly
preserve their noninteracting values gG

µν ≈ gµν and ΩG
µν ≈ Ωµν. In contrast, at small gap ∆

and large broadening η, signifying strong interactions, the spectral functions An(ε) and Am(ε)
overlap significantly and each has notable weight above or below the chemical potential, caus-
ing Inm < 1 and Inn > 0. After multiplying by the matrix elements of non-Abelian gauge fields,
these deviations cause gG

µν and ΩG
µν to differ from their noninteracting values. Although this

result is in accordance with the expectation that the band gap protects the quantum geometric
properties against any source of interactions, it should be noted that even for broadening η as
small as 20% of the gap ∆ there is already a notable change of Inm and Inn. For instance, at
∆ = 0.2 and η = 0.04, where the two Lorentzian peaks An(ε) and Am(ε) appeared to be very
apart, the interband transition is already reduced to Inm ≈ 0.878 and the intraband transition
increased to Inn ≈ 0.059.

B Detail of the Chern insulator with impurity scattering

We now detail the susceptibility χµν(k,ω) for Chern insulator in a continuum with impurities.
Parametrizing the 2× 2 Dirac Hamiltonian by

H = d ·σ = d1σ1 + d2σ2 + d3σ3 , (32)

the components are given by d1 = vkx , d2 = vky , and d3 = M . Denoting d =
q

d2
1 + d2

2 + d2
3 ,

the filled band state |nk〉 with energy Enk = −d and the empty band state |mk〉 with energy
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Emk = d are given by

|n, mk〉=
1

p

2d(d ∓ d3)

�

d3 ∓ d
d1 + id2

�

, (33)

where the upper sign is for |nk〉 and the lower sign |mk〉. In this gauge, the non-Abelian gauge
field takes the form

Ann
µ = 〈n|i∂µ|n〉=

d2∂µd1 − d1∂µd2

2d(d − d3)
,

Amm
µ = 〈m|i∂µ|m〉=

d2∂µd1 − d1∂µd2

2d(d + d3)
, (34)

Anm
µ = 〈n|i∂µ|m〉=

d2∂µd1 − d1∂µd2 − id∂µd3 + id3∂µd

2d
q

d2
1 + d2

2

=
�

Amn
µ

�∗
.

In the x y-plane of the continuous Chern insulator, they are

Ann
x =

v2ky

2d(d −M)
, Amm

x =
v2ky

2d(d +M)
, Ann

y = −
v2kx

2d(d −M)
,

Amm
y = −

v2kx

2d(d +M)
, Anm

x =
v2ky + iM v2kx/d

2dvk
=
�

Amn
x

�∗
, (35)

Anm
y =

−v2kx + iM v2ky/d

2dvk
=
�

Amn
y

�∗
.

The bare retarded Green’s function G(0)n (k,ω) = G(0)n (k,ω) does not depend on the azimuthal
angle ϕ but only the module of the momentum k. Assuming only intraband scattering, the
impurity potential V × I2×2 gives the matrix elements

V n
kk′ = 〈nk′|V |nk〉=

V
2d(d − d3)

�

(d3 − d)2 + (d2
1 + d2

2 )e
i(ϕ−ϕ′)

�

,

V m
kk′ = 〈mk′|V |mk〉=

V
2d(d + d3)

�

(d3 + d)2 + (d2
1 + d2

2 )e
i(ϕ−ϕ′)

�

. (36)

The T -matrix of impurity scattering satisfies the self-consistent equation

T n/m
kk′ (ω) = V n/m

kk′ +

∫ 2π

0

dϕ1

2π

∫ π/a

0

k1 dk1

2π/a2
V n/m

kk1
T n/m

k1k′ (ω)G
(0)
n/m(k1,ω)

=
V
2

�

d ± d3

d

�

�

1+ bei(ϕ−ϕ′)
�

(37)

+
�

V
2

�

d ± d3

d

��2
�

1+ b2ei(ϕ−ϕ′)
�

∫ π/a

0

k1 dk1

2π/a2
G(0)n/m(k1,ω) + . . . ,

where b = (d2
1 + d2

2 )/(d ± d3)2. The radial integration of retarded Green’s function can be
performed analytically by

∫ π/a

0

k1 dk1

2π/a2
G(0)n/m(k1,ω) =

∫ π/a

0

k1 dk1

2π/a2

�

1
ω± d

−
iη

(ω± d)2 +η2

�

, (38)

where η is an artificial broadening, whose real and imaginary parts are

Ren/m =
a2

2πv2

�

±
�

M̃ − |M |
�

−ω ln

�

�

�

�

ω± M̃
ω± |M |

�

�

�

�

�

,

Imn/m =
ηa2

2πv2

�

±
ω

η

�

arctan
M̃ ±ω
η

− arctan
|M | ±ω
η

�

−
1
2

ln

�

�

�

�

(M̃ ±ω)2 +η2

(|M | ±ω)2 +η2

�

�

�

�

�

. (39)
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After an impurity averaging, the self-energy is given by impurity density multiplied by the
T -matrix at the same momentum index Σn/m(k,ω) = ni T

n/m
kk (ω), which can then be used to

calculate the spectral function An(k,ω) = −Im Gn(k,ω)/π, yielding

An(k,ω) = −
1
π

ImΣ(k,ω)
(ω− Enk −ReΣ(k,ω))2 + ImΣ(k,ω)2

, (40)

and subsequently the susceptibility χG
µν that uses the full Green’s function.

For the ladder diagrams of the susceptibility, the Matsubara four-fermion vertex that enters
the Feynman diagrams is given by the T -matrix

W nm
kk′ (iω) = ni T

n
kk′(iω)T

m
kk′(iω) , (41)

which does not transfer frequency between the filled band propagator and the empty band
propagator. As a result, the vertex function Γ nm

ν in the ladder diagrams satisfies

Γ nm
ν (k, ip, ip+ iω) =

�

Anm
ν (k)

�†

+
∑

k′
W nm

kk′ (iω)G
(0)
n (k

′, ip)G(0)m (k
′, ip+ iω)Γ nm

ν (k
′, ip, ip+ iω)

=
�

Anm
ν (k)

�†
¨

1+
∑

k′
W nm

kk′ (iω)G
(0)
n (k

′, ip)G(0)m (k
′, ip+ iω) + ...

«

. (42)

The first term in the last line gives the bare susceptibility χ(0)µν . The second order term, after
inserting it back to the expression of ladder diagrams, will contribute to a frequency sum of
four propagators

−
1
β

∑

ip

S(iω, ip) =
1
β

∑

ip

1
ip− Enk

1
ip+ iω− Emk

1
ip− Enk′

1
ip+ iω− Emk′

.

(43)

Performing the frequency sum and subsequently an analytical continuation iω→ω+ iη, and
then taking the imaginary part to get the spectral function, this second order term gives

−
1
π

Im

(

−
1
β

∑

ip

S(iω, ip)

)

iω→ω+iη

=
�

δ(ω+ Enk − Emk)
ω+ Enk − Emk′

+
δ(ω+ Enk − Emk′)
ω+ Enk − Emk

�

f (Enk)
Enk − Enk′

+
�

δ(ω+ Enk − Emk)
ω+ Enk′ − Emk

+
δ(ω+ Enk′ − Emk)
ω+ Enk − Emk

�

f (Emk)
Emk − Emk′

+
�

δ(ω+ Enk′ − Emk′)
ω+ Enk′ − Emk

+
δ(ω+ Enk′ − Emk)
ω+ Enk′ − Emk′

�

f (Enk′)
Enk′ − Enk

+
�

δ(ω+ Enk′ − Emk′)
ω+ Enk − Emk′

+
δ(ω+ Enk − Emk′)
ω+ Enk′ − Emk′

�

f (Emk′)
Emk′ − Emk

, (44)

which vanishes after a frequency integration

−
1
π

∫

dωIm

(

−
1
β

∑

ip

S(iω, ip)

)

iω→ω+iη

= 0 . (45)

We conclude that this second order term does not contribute to the quantum metric or Berry curvature.
The next order in the ladder diagrams is proportional to the impurity density square n2

i , which may be
ignored.
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