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Abstract

We investigate the wave packet dynamics and eigenstate localization in recently pro-
posed generalized lattice models whose low-energy dynamics mimics a quantum field
theory in (1+1)D curved spacetime with the aim of creating systems analogous to black
holes. We identify a critical slowdown of zero-energy wave packets in a family of 1D
tight-binding models with power-law variation of the hopping parameter, indicating the
presence of a horizon. Remarkably, wave packets with non-zero energies bounce back
and reverse direction before reaching the horizon. We additionally observe a power-law
localization of all eigenstates, each bordering a region of exponential suppression. These
forbidden regions dictate the closest possible approach to the horizon of states with any
given energy. These numerical findings are supported by a semiclassical description of
the wave packet trajectories, which are shown to coincide with the geodesics expected
for the effective metric emerging from the considered lattice models in the continuum
limit.
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1 Introduction

Connections between different fields of physics have proven fruitful by opening entirely new
research avenues in recent years. Dualities between gravitational and many-body theories
have become important tools in the study of quantum critical systems [1], while the search
for electronic states following the Dirac equation, prevalent in high-energy physics, led to the
discovery of topological insulators, one of the most major fields in condensed matter physics
in decades. In this context, replicating some of the physics of curved spacetime in condensed
matter settings has been proposed as a promising way of on the one hand understanding
gravitational problems in a simplified setting, and on the other of searching for novel, gravity-
inspired, physical effects within condensed matter theory [2]. In particular, in a seminal work
Unruh proposed the construction of an analog black hole horizon and its radiation using a
fluid flowing with a spatially varying speed profile that is partly subsonic and partly supersonic
[3,4]. Similarly, many proposals for analog gravity setups emulating a broad range of emergent
curved spacetimes have been put forward in a variety of electronic, acoustic, optical and even
magnetic and superconducting settings [2,5–26]. Some of these proposals have already been
implemented in experiments, mainly using Bose-Einstein condensates [27–29]. In all of these
proposed and realised black hole analogues however, the role played by the atomic lattice
(periodic or otherwise) remains largely unexplored, even though it is an essential component
of any condensed matter system.

Recently, it was shown that a black hole analogue may be realized in Weyl semimetals
(WSMs) by tilting the Weyl cone as a function of real space, transitioning from a type-I to
a type-II WSMs [30–37]. The tilt causes part of the band structure close to the Weyl node
to become progressively flatter as the type I-type II transition point is approached. This is a
direct analogy for the tilting of a light cone close to a black hole, in which case the surface
on which the light cone tips across the time axis defines an event horizon, beyond which all
light is trapped [30]. It has been shown that Zn2In2S5 sits precisely at the transition, and was
coined to be a ‘type-III’ Weyl semimetal [34]. Tuning the tilt of the cone across real space
could be achieved using structural distortions, spin textures, or external position-dependent
driving [32,38–42].

To circumvent the difficulty of defining spatial variations in the tilt of Weyl cones, which
themselves require reciprocal space and translational symmetry to be defined, previous studies
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generally assume that the control parameter responsible for tilting changes smoothly, and that
a band structure varying as a function of real space can be defined, despite the absence of
translation symmetry. Here, we take a more rigorous approach, and define a Hamiltonian in
real space with a hopping that varies as a function of position. This has the benefit of allowing
us to explicitly study new effects that arise from the presence of the lattice and the potential
limitations it imposes on the dynamics in the emergent analogue gravitational system.

In a recent paper, we considered generalized nearest-neighbor tight-binding (TB) mod-
els with position-dependent hopping and showed that their low-energy dynamics is similar
to that of a Dirac field with a position-dependent velocity, which mimics the presence of a
background curved spacetime [43]. Rather than the Dirac equation and Weyl nodes in 3D
we considered single band systems in 1D with progressive band-flattening in real space which
are fully tractable numerically, allowing direct comparison with analytical semi-classical treat-
ments of the problem.

Here, we investigate how and when the power-law position-dependent TB models intro-
duced in [43] yield analogues for horizon physics, as witnessed by the critical slowing down
of wave packet dynamics. We derive rigorously the generalized version of the semiclassical
equations presented in [43], and find a formal solution for semiclassical trajectories in the
most general case, accompanied by explicit solutions for the power-law dependencies to com-
pare with the numerical results. Furthermore, we develop an analytical approach to solving
these models and show that all the eigenstates in the models with power-law variation of
the hopping are also localized in a power-law manner. Consistent with the observed wave
packet dynamics, the low-lying states localize on the horizon, whereas high-energy states are
exponentially suppressed in a region near the horizon.

In the following, we first introduce the general model and its low-energy sector with gravi-
tational analogies (Sec. 2). Then, we calculate numerically the time evolution of wave packets
for power-law hopping models in Sec. 3. We derive semiclassical equations of motion along
with their solutions and compare them to numerical results in Sec. 4. This is followed by a
discussion of the eigenstates in Sec. 5, before we conclude in Sec. 6.

2 TB Models and their gravitational analogy

Consider electrons on a one-dimensional lattice of N sites, with nearest-neighbour hopping
only:

Ĥ = −
N−1
∑

n=1

tn

�

â†
nân+1 + â†

n+1ân

�

. (1)

Here, tn is a position-dependent hopping parameter whose amplitude increases with n. This
Hamiltonian has a particle-hole symmetry (PHS) represented by the transformation [44,45]

ân → Ĉ ân Ĉ−1 = (−1)nâ†
n ,

â†
n → Ĉ â†

n Ĉ
−1 = (−1)nân ,

(2)

under which the second-quantized Hamiltonian remains invariant: Ĉ Ĥ Ĉ−1 = Ĥ. The PHS can
also be seen explicitly for the corresponding first-quantized Hamiltonian
Ĥ = −

∑N−1
n=1 tn|n〉〈n+1|+h.c. which anticommutes with the PHS operator P̂ = Û K̂ consisting

of complex conjugation K̂ and the unitary operator Û =
∑N

n=1(−1)n|n〉〈n|

Û =
N
∑

n=1

(−1)n|n〉〈n| . (3)
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We see that {Û , Ĥ} = {P̂, Ĥ} = 0 since the Hamiltonian contains real elements only. We
note that the presence of K̂ in the definition of any PHS operator is required to ensure its
antiunitarity, a property which manifests more clearly by acting with this operator on the wave
functions. In particular, considering a uniform hopping where the plane waves φk(n) = eikn

are the eigenstates with energies εk = −2t cos k, we find P̂φk(n) = ei(π−k)n ≡ φπ−k(n), with
energy opposite to the original state.

The particle-hole symmetry of this model is analogous to charge-conjugation symmetry
in quantum electrodynamics. Therefore, the presence of this symmetry already suggests the
possibility of emerging relativistic aspects, and in particular of a Dirac picture for its low-energy
excitations. On the other hand, the PHS can be broken by adding a potential energy, thus we
concentrate on models with PHS throughout this work.

2.1 Low-energy limit

The low-energy properties of these lattice models mimic those of a Dirac field in curved space-
time. This is made plausible by the observation that approximating the full lattice by dis-
connected (periodic) sections, results in local band structures ε(n, k) ∼ −2tn cos k1. Each of
these has two Fermi points kF = ±

π
2 at half-filling. Accordingly, we can define the local Fermi

velocity vF (n) = ∂kε(n, k = ±kF ) ∼ ±2tn. Motivated by this observation, we construct a pre-
cise correspondence of the low-energy properties of the lattice model to a Dirac field with
position-dependent velocity by introducing the transformation

an =
∑

ν=±
ψ̂ν(xn) eiνkF n . (4)

We additionally take the continuum limit, in which xn ≡ x becomes a continuous variable and
ψ̂ν(xn+1)≈ ψ̂ν(xn) + ∂xψ̂ν(xn). The resulting Hamiltonian is

Ĥ ≈ −
∫

d x t(x)
∑

ν=±

�

ψ̂†
ν (−iν∂x) ψ̂ν − e2iνkF x ψ̂†

ν (−iν∂x) ψ̂−ν + h.c.
�

. (5)

The second term includes fast oscillations e2iνkF x , and can be neglected in the limit of slowly-
varying fields ψ̂ν(x). Therefore, the lattice model is equivalent in the continuum limit to a
model for the 1D massless Dirac field Ψ̂ = (ψ̂+, ψ̂−)T governed by

ĤD =
1
2

∫

d x
�

Ψ̂† [iσz v(x)∂x] Ψ̂ + h.c.
	

, (6)

with a space-dependent velocity such that v(x) = 2t(x), and Pauli matrix σz acting on the
spinor2. By variation we obtain the equation of motion

i∂τΨ̂ = iσz

�

v(x)∂x +
1
2

dv
d x

�

Ψ̂, (7)

1Throughout the paper, we consider the lattice constant a0 = 1 and also work in the natural units with ħh= 1.
2This decoupling is different from what was done in the literature, e.g. in Ref. [46]. There, in section 3.2,

a system with position-dependent Fermi velocity was applied on a spinor using σx , as made clear in Eqs. (11)
and (29). In our case, we use σz and have left movers and right movers that are decoupled —this is the correct
physical basis if one wants to consider the reflection/transmission of such movers at the horizon. This difference,
at first sight, leads to opposite results: while we will show in the following that there is no transmission through
the horizon in our model, Ref. [46] obtains full transmission.

This can be explained by the fact that our situation is a very peculiar case in the formalism of Ref. [46]. The
velocity profile in that paper consists of three regions: two with constant velocities (v+ and v−) and a third region
in between where the velocity goes linearly from v− to v+. In addition, it is clear from Eq. (42) that v− and v+ have
to be of the same sign, so one of them has to be set to zero to have a horizon. When either v+ or v− becomes zero,
one cannot use Peres’ scattering treatment which is also prohibited by Eq. (42) in the paper, because there will be
no state available on that side. Therefore when we have a horizon, his analysis and the result of full transmission
is no longer valid.
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which is identical to that describing the dynamics of a 1D massless Dirac field in the presence
of the background (1+ 1)D metric (see Appendix A)

ds2 = −v2(x)dτ2 + d x2 . (8)

This metric can possess a horizon at positions where v(x) = 0. Based on this property, we
mainly consider power-law variations of the hopping integrals, which yields effective local
velocities of the form v(x) = v0 xγ. In the following section we will study the wave packet
dynamics on lattices with power-law hopping variation and discuss the results in light of their
gravitational resemblances.

It is worth noting that by applying certain coordinate transformations, the general metric
(8) can be put in other forms which are more familiar in the context of general relativity. For
instance, it becomes a generalized Schwarzschild metric

ds2 = −ṽ2(ξ) dτ2 +
dξ2

ṽ2(ξ)
, (9)

by choosing a new spatial coordinate ξ = u(x) such that dξ/d x = v(x) and equating
v(x) = v[u−1(ξ)]≡ ṽ(ξ). Also by apply another temporal transformation

dτ→ dτ−
p

1+ ṽ2(ξ)
ṽ2(ξ)

dξ , (10)

we obtain
ds2 = −ṽ2(ξ) dτ2 + 2

Æ

1+ ṽ2(ξ) dξdτ− dξ2 , (11)

which, considering the particular case of ṽ2(ξ) = α2ξ2−1, reduces to the metric studied earlier
corresponding to a (1+1)D anti-de Sitter spacetime [43].

3 Wave packet dynamics

Motivated by the equivalence between the low-energy dynamics of the position-dependent
lattice model and Dirac particles in a curved space, in this part we explore numerically the
wave packet dynamics on these lattices. We focus on the cases where the hopping grows as a
power-law with position:

tn =
� n

N − 1

�γ

, n= 1 , · · · , N − 1 , (12)

such that the maximum hopping in the system is equal to one. A key aspect of black hole
physics is that an observer at infinity will see a wave packet falling towards a black hole become
sharper and slower as it approaches the horizon, before asymptotically reaching the horizon
shaped as a Dirac distribution. As we expect the velocity of a wave packet in the lattice model
to be associated with the local strength of the hopping, the equivalent of a horizon in the lattice
model may occur where the Fermi velocity approaches zero, i.e. in the vicinity of the bond of
the lattice between site n= 1 and a ‘virtual’ site n= 0.

To compute the time evolution of an initial wave packet in the lattice model we work in
the basis of the diagonalized Hamiltonian and use the expression

|ψ(τ)〉=
∑

`

e−iE`τ |`〉 〈`|ψ(0)〉 , (13)

where |`〉 signifies the `th eigenvector of H, and τ denotes time. We define a Gaussian wave
packet by:

ψn(τ= 0) =
1

4p
πw2

e−
1
2

�

n−n0
w

�2

eip0
n

N−1 , (14)
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Figure 1: Time evolution of a Gaussian wave packet in the lattice model, with γ= 1,
ñ0 = 0.8, and w̃ = 0.05 for a lattice of size N = 1001. The initial momenta are
p0 = −π/2 (top) and p0 = −0.9×π/2 (bottom). In the first case, the wave packet
slows down and localizes at the origin of the lattice, where it disintegrates. In the
second case, it is reflected before reaching the origin.

where w is the width, n0 the initial position and p0 the initial velocity of the wave packet.
Note that, for the sake of simplicity, we introduce the rescaled parameters ñ = n/(N − 1),
τ̃= τ/(N − 1), and w̃= w/(N − 1).

Let us first consider a linearly increasing hopping parameter (γ = 1). In that case, we
find two different possible types of behavior for the wave packet, depending on whether p0 is
equal to or different from −π/2. Example time evolutions of both cases are presented in Fig.
1. In each case, the wave packet starts by sharpening and slowing down as it moves towards
n = 0. Wave packets with p0 6= −π/2 never reach the origin of the lattice, and instead come
to a standstill at non-zero n before moving away from the origin and broadening again. In
contrast, the peak position of wave packets with p0 = −π/2 continues to approach the origin
of the lattice indefinitely. As their peak comes close to n= 0, these wave packets start to form
ripples in their tails, which move away from the origin. Eventually, the wave packet consists
almost entirely of these ripples, but conserves a maximum amplitude at the origin of the lattice.

The observed asymptotic localization of wave packets at the origin coincides with the key
feature expected for wave packet dynamics in the presence of a horizon. One key difference
with what is expected close to a black hole horizon, however, is the formation of ripples. This
feature of the model can be understood as a consequence of the discreteness of the lattice
and the unitarity of time evolution. Indeed, consider two different wave packets both with
p0 = −π/2. If they could asymptotically localise at the origin of the lattice, they would become
indistinguishable from each other, and it would then be impossible to propagate them back
to their distinct original configurations by reversing time. Since this cannot be the case in
our system, which has unitary time evolution, the two wave packets have to develop specific
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Figure 2: Time evolution of a Gaussian wave packet in the lattice model, with
γ = 1/2, ñ0 = 0.8, and w̃ = 0.05 for a lattice of size N = 1001. The initial mo-
menta are p0 = −π/2 (top) and p0 = −0.7×π/2 (bottom). In both cases, the wave
packet is reflected, but it only reaches the origin of the lattice in the first case.

features close to the origin of the lattice, which act as signatures of unitary time evolution.
These features here come in the shape of ripples, propagating away from the origin of the
lattice. Wave packets with p0 6= −π/2 do not exhibit eternal slowdown, pointing to the fact
that the horizon physics can only be probed at a critical initial momentum.

We now turn to the case of γ = 1/2, describing a square-root position-dependence of the
hopping. The time evolution of the wave packet amplitude for two values of p0 is displayed
in Fig. 2. In this case neither of the wave packets localizes at the zero-velocity point, and
both turn around and move out to infinity at late times. Additionally, we don’t observe any
formation of ripples, unlike in the case γ = 1. One similarity with this case, however, is
that wave packets with p0 = −π/2 reach the origin of the lattice, while wave packets with
p0 6= −π/2 reverse direction at a nonzero distance from the origin. All these features suggest
that while the model with γ = 1 gives rise to a horizon, the model with γ = 1/2 does not. In
the next section we will combine numerical results with a semiclassical analysis and show that
indeed γ = 1 is a critical value below which the model does not contain any horizon physics.
In contrast, for γ ≥ 1, the point n = 0 resembles the horizon of a black hole with low-energy
particles eternally slowing down upon approaching it.

4 Semiclassical dynamics

To further analyze the time evolution of wave packets, it is constructive to compare the nu-
merical results to a semiclassical description for the trajectories of the wave packet center of
mass. We introduce a continuous function ψ̃(x) which coincides with the wave function of
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the lattice model at the discrete lattice points, so that ψ̃(xn) =ψn with xn = n/(N − 1).
For a general position-dependent hopping model, the equation for the energy eigenvalue

can be written as the recursive relation

εψn = −tn−1ψn−1 − tnψn+1 . (15)

Assuming that we can expand ψ̃(x) in a Taylor series, we can relate ψn±1 to ψ̃(xn) exactly, by

ψn±1 = ψ̃(xn ±δx) =
∞
∑

m=0

(±δx)m

m!
dmψ(xn)

d xm

=
∞
∑

m=0

(±iδx)m

m!
p̂m ψ̃|xn

= e±iδx p̂ ψ̃(xn) , (16)

where δx = 1/(N −1), and we replaced derivatives using p̂m = (−id/d x)m. We also summed
over odd and even powers separately, which can be done formally by expressing them sum
in terms of sines and cosines of the momentum operator. The result is nothing but the well-
known expression of the translation operator T∆x = e−i∆x p̂. Now assuming tn ≡ t(xn) in
Eq. (15) with a well-behaved function t(x), the eigenvalue equation can be re-written as

i∂τψ̃(x ,τ) = −
�

t( x̂ −δx) e−iδx p̂ + t( x̂) eiδx p̂
�

ψ̃(x ,τ) , (17)

where ψ̃(x ,τ) = ψ̃(x) e−iετ. The right-hand side in Eq. (17) can be interpreted as the contin-
uum Hamiltonian

H̃ = −e−iδx p̂ t( x̂)− t( x̂) eiδx p̂ , (18)

where we used the fact that [t( x̂)eiδx p̂]† = e−iδx p̂ t( x̂) = t( x̂−δx)e−iδx p̂ to write the Hamilto-
nian in manifestly Hermitian form. The corresponding Heisenberg equations of motion (EOM)
for the momentum and position operators read

i
d x̂
dτ
= [ x̂ , H̃] = −δx

�

e−iδx p̂ t( x̂)− t( x̂) eiδx p̂
�

, (19)

i
d p̂
dτ
= [p̂, H̃] = i

�

e−iδx p̂ t ′( x̂) + t ′( x̂) eiδx p̂
�

, (20)

with t ′(x) = d t/d x . Now, neglecting the commutation relations between x̂ and p̂, we obtain
semiclassical EOM for the expectation values x and p:

d x
dτ
≈ 2 t(x) sin p , (21)

dp
dτ
≈ 2 t ′(x) cos p . (22)

Here, we rescaled time and momentum as τ→ τ/δx and p→ p/δx . Differentiating Eq. (21)
and replacing the derivative of p by the right-hand side of Eq. (22) yields

d2 x
dτ2

≈ 2
d

d x
t2(x) , (23)

which is a straightforward second order differential equation for the dynamics of the position.
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4.1 General solutions for the trajectories

In this part, we present the formal solution to the semiclassical Eqs. (21) and (22) for gen-
eral form of the hopping. We first note that defining an auxiliary function F(x) such that
d x/dτ= F[x(τ)], we have

d2 x
dτ2

= F ′[x(τ)] d x
dτ
=

1
2

d
d x

F2
�

�

x=x(τ) . (24)

This allows us to write Eq. (23) in the simplified form

d
d x

�

F2 − 4 t2(x)
�

= 0 . (25)

Therefore, F2 −
�

2 t(x)
�2

is just a constant A and replacing F with its original definition, we
end up with the first order differential equation

d x
dτ
= ±

r

�

2 t(x)
�2
+ A , (26)

with a formal solution

τ= ±
∫ x

x0

d x
Ç

�

2 t(x)
�2
+ A
+ B , (27)

for the most general case. The integration constant A can be fixed using Eqs. (21) and (26)
at τ = 0. This yields A = −

�

2 t(x0) cos p0

�2
, with x0 and p0 indicating the position and

momentum at τ = 0. This also fixes the signs in Eqs. (26) and (27) to be −sgn[t(x) sin p].
Notice that at a turning point p = 0 when momentum undergoes a sign change, and at points
where the sign of the hopping parameter switches, the sign in Eqs. (26) and (27) also changes.
At those points, care should be taked to choose the constant B such that the different parts of
the solution match.

Combining Eqs. (21) and (22), we obtain the new equation

dp
d x
=

t ′(x)
t(x)

cot p , (28)

which directly relates the position and the momentum. It has the solution

cos p =
t(x0) cos p0

t(x)
. (29)

This relation shows that t(x) cos p is a constant of motion and, in fact, we can assign
Ewp = −2t(x) cos p as the conserved average energy of the wave packet in a semiclassical
sense. In particular, we see that for initial value p0 = ±π/2, the momentum of the wave
packet remains constant throughout the time evolution. Since it also implies Ewp = 0 for all
times, this can also be thought of as a consequence of energy conservation. Finally, Eq. (29)
determines the position of the turning point of the wave packet (when p = 0) and in particular
the minimum distance from the horizon, as t(xmin) = t(x0) cos p0.

4.2 Trajectories for power-law hopping

Although Eqs. (27) and (29) give a general solution for the semiclassical equations, the former
is just a formal expression in terms of an integral. Here, we therefore focus on the specific case
of power-law hopping, defined as t(x) = xγ, for which the trajectories read

τ= ±
x
p

A
2F1

�

1
2

,
1

2γ
, 1+

1
2γ

,
4 x2γ

−A

��

�

�

�

x

x0

+ B , (30)
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using the hypergeometric function 2F1(a, b, c; z) with three real parameters a, b, c, and the
variable z. This expression gives a real value only when −4x2γ/A > 1 or equivalently
x > x0(cos p0)1/γ, in agreement with the turning point being given by xmin = x0(cos p0)1/γ.

For the special cases of γ= 1 or γ= 1/2, corresponding respectively to linear and square-
root forms of position-dependence, the solution of Eq. (30) simplifies to

τ= B ±







1
2 log

�

x+
q

x2−x2
0 cos2 p0

x0+x0 | sin p0|

�

γ= 1 ,
p

x − x0 cos2 p0 −
p

x0 | sin p0| γ=
1
2 .

Inverting this result and writing the position x in terms of the time τ, while also choosing
values for B by matching different parts of the solution, yields

xγ=1 =
x0

2

�

(1+ sin p0) e
2τ + (1+ sin p0) e

−2τ
�

, (31)

xγ=1/2 = x0 + 2τ
p

x0 sin p0 +τ
2 , (32)

for linear and square-root position-dependence respectively. Substituting these back into Eq.
(29), the evolutions of the corresponding momenta are found to be

cos pγ=1 =
2 cos p0

(1+ sin p0) e2τ + (1− sin p0) e−2τ
(33)

cos pγ=1/2 =
p

x0 cos p0
p

x0 + 2τ
p

x0 sin p0 +τ2
. (34)

4.3 Zero-energy wave packets and equivalence to geodesics

In the limit of p0 = −π/2, the constant A vanishes, and the general spatial trajectory of Eq.
(26) becomes

d x
dτ
= ±2t(x)≡ ±v(x) . (35)

Not surprisingly, the semiclassical trajectories in this limit coincide with the lightlike geodesics
(ds2 = 0) of the general metric in Eq. (8). In the case of power-law hopping variations, the
integral equation (27) simplifies to

τ= ±
∫ x

x0

d x
2 xγ

=

(

±
�

x1−γ−x1−γ
0

�

2(1−γ) γ 6= 1 ,
±1

2 log( x
x0
) γ= 1 ,

(36)

which in turn leads to

x =

(

�

�

�x1−γ
0 − 2(1− γ)τ

�

�

�

1
1−γ

γ 6= 1 ,

x0 exp(−2τ) γ= 1 .
(37)

Notice that these expressions agree with Eqs. (31) and (34) after substituting p0 = −π/2.

4.4 Comparing semiclassical and numerical results

Figure 3 shows a comparison between the semiclassical trajectories given by Eq. (37) and
numerical calculations of the exact time evolution of the wave packet peak position on the
lattice. Both the numerical and semiclassical results show that for p0 = −

π
2 , there are two

distinct types of behavior, depending on the value of the exponent γ. If γ ≥ 1, the wave
packet faces an eternal deceleration and only asymptotically reaches the horizon. In contrast,
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Figure 3: Peak position as a function of time for Gaussian wave packets in the lattice
model, for five values of γ and using x̃0 = 0.8, p0 = π/2, w̃= 0.05, and lattice of size
N = 1001. The solid lines represent numerical calculations, while the dashed lines
represent the solution of Eq. (37). For γ < 1, the wave packet bounces on the origin
of the lattice, while for γ≥ 1, it asymptotically reaches the origin of the lattice.

if γ < 1, the wave packet reaches the point x = 0 in a finite time. Although its velocity vanishes
there, it does not become stuck. Instead, we observe back-scattering from that point similar
to a classical particle bouncing from a hard wall. The value γ = 1 thus separates a region of
parameter space where a wave packet with momentum p0 = −

π
2 reflects off the origin of the

lattice from one where it localizes at the origin. In general relativity, the eternal slowdown
of particles is a key feature of particles approaching a black hole horizon as seen by a distant
observer. Therefore, the transition at γ = 1 found here separates lattice models with and
without a synthetic horizon. The special case of γ being precisely one has previously been
shown to mimic a (1+ 1)D anti-de Sitter spacetime [43].

In order to see the effect on the trajectories of changing the initial momentum p0, we show
in Fig. 4 the time evolution of the wave packet maximum obtained numerically for γ= 1 and
γ = 1/2. The numerical results are in good agreement with the semiclassical trajectories
given by Eqs. (31) and (32). For the special case of p0 = −π/2 and γ = 1, the wave packet
asymptotically approaches the horizon at x = 0 at large times τ. For all other momenta, the
wave packet bounces back at a nonzero distance xmin = x0 cos p0 from the horizon (see also
Fig. 5). For γ= 1/2, the wave packet never localizes at the point x = 0, although the velocity
vanishes there momentarily for p0 = −π/2. Instead we always see a back-scattering from the
point xmin =

p
x0 cos p0 (as shown also in Fig. 5).

We now turn to the deviations from the semiclassical picture to quantify its breakdown,
as signalled by the disintegration of the wave packets stuck to the horizon in Fig. 1. We
define a wave packet ψG(τ) whose position x(τ) and momentum p(τ) are given by Eqs. (31)
and (22), and whose width follows the same time dependence as x(t). Notice that this wave
packet is not a solution to the dynamics, but serves as a reference or idealized case to compare
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Figure 4: Peak position of Gaussian wave packets as a function of time for three
values of p0, and for (a) γ = 1 and (b) γ = 1/2, with x̃0 = 0.8, w̃ = 0.05, and
N = 1001. The solid lines represent the numerical results, while the dashed lines
represent the results obtained from the semiclassical Eqs. (31) and (32), for γ = 1
and γ= 1/2 respectively.

Figure 5: The turning point xmin as a function of the initial momentum p0 for power-
law hopping with (a) γ = 1 and (b) γ = 1/2. Red circles are the numerical results
while solid lines indicate the semiclassical expression xmin = x0 cos1/γ p0.
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Figure 6: Time evolution of (a) the overlap between ψG(τ) and ψ(τ) and (b) the
wave packet width for four different values of initial width. The drop in overlap
coincides with the width ofψG(τ) becoming of the same order as the lattice spacing.

the actual dynamics of a wave packet on the discrete lattice to, for the case of linear hopping.
The numerical overlap between these two wave packets is shown as a function of time in
Fig. 6(a). It is practically constant and equal to one up to the point where ripples start to
appear in the time-evolved wave function, at which point the overlap starts to decrease. The
large oscillations seen at late times can be explained by the evolution of ψG alone: at large t,
the width of ψG is smaller than the lattice size, and therefore the norm of ψG evaluated on
the discrete lattice oscillates, depending on whether its peak position is on a lattice point or
between sites.

To further analyse the relation between the non-zero lattice spacing and the decreasing
overlap and formation of ripples, Fig. 6 shows the overlap betweenψG(t) andψ(t) for multi-
ple values of the width. The onset time for the decrease of the overlap goes up with increasing
width of the initial wave packet. For initial widths of 20, 30, 40, and 50 lattice spacings, the
width ofψG when the overlap reaches 1/2 is 1.31, 0.96, 0.86, and 0.71 lattice spacings respec-
tively. These values are close to the lattice spacing which therefore acts as an effective critical
value of the width. We therefore argue that the lattice plays a key role in the formation of the
ripples, which are the main observable difference between the dynamics of wave packets with
p0 = −π/2 in the lattice model and those in relativistic continuum theories.

5 Eigenstates and their localization

So far, we studied the dynamics of wave packets in position-dependent lattice models and
compared them to a semiclassical picture to highlight possible gravitational analogies. It has
also been previously shown that the eternal slowdown of zero-energy wave packets upon ap-
proaching the horizon is always associated with the presence of a divergent density of states
(DOS) at zero energy, in the N → ∞ limit [43, 47]. In particular, it was pointed out that
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the transition from back-scattering to slowdown at γ = 1 coincides with a transition in the
spectral properties of the lattice Hamiltonian at zero energy. In this part, we therefore turn
to the eigenstates of the position-dependent lattice models whose properties can shed further
light on the features found in the wave packet dynamics as well as the density of states.

The Hamiltonian of Eq. (1) for power law hopping can be written as an N ×N matrix with
non-vanishing elements

Hn,n+1 = −
� n

N − 1

�γ

, Hn,n−1 = −
�

n− 1
N − 1

�γ

.

Then the eigenvalue problem H|Ψε〉 = ε|Ψε〉 with |Ψε〉 = (ψ1, · · · ,ψN )T can be written as a
set of N coupled equations in the recursive form,

−εψn =
�

n− 1
N − 1

�γ

ψn−1 +
� n

N − 1

�γ

ψn+1 , (38)

with the boundary conditions ψ0 =ψN = 0.

5.1 Exact form for zero-energy states

For the special case of ε = 0 (zero modes), we can find the exact form of the discrete wave-
function amplitudes ψn. Eq. (38) for zero-energy states becomes

(n− 1)γψn−1 + nγψn+1 = 0 , (39)

which yields

ψn+1 = −
�

n− 1
n

�γ

ψn−1

=
�

n− 1
n

�γ�n− 3
n− 2

�γ

ψn−3 = · · · . (40)

Repeating the sequence above, we obtain the wave function amplitudes on even and odd sites

ψ2n+1 = (−1)n
[(2n)!]γ

(2n n!)2γ
ψ1 , (41)

ψ2n = (−1)n−1 [2
n(n− 1)!]2γ

[(2n− 1)!]γ
ψ2 . (42)

Equation (39) for n = 1 readily shows that ψ2 = 0 for zero-energy states, and, subsequently,
from Eq. (42) we find that the wave function amplitude identically vanishes on all even sites.

For an even number of lattice points Ne = 2N ′, the boundary condition at the second end
will read ψNe+1 = ψ2N ′+1 = 0 which cannot be fulfilled unless all odd lattice points have
vanishing amplitudes. As a result, for an even number of lattice points there is no zero mode
at all. For an odd number of lattice points on the other hand, the boundary conditions on
both ends of the chain force the amplitude to vanish on even lattice points. Therefore for odd
No = 2N ′ + 1 we find a single zero mode with the wave function given by Eq. (41).

The qualitative behavior of this wave function in the limit of large n, can be found using
the Stirling’s approximation formula n!≈

p
2πn(n/e)n, with Euler’s constant e, to be

ψ2n+1 ≈
(−1)n

(πn)
γ
2

ψ1, n� 1 . (43)

This form applies to the tail of the zero-energy wave function in a large lattice (N � 1).
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5.2 Analytical approximation for all eigenstates

Inspired by the approximate power-law form for the zero mode in Eq. (43), we consider a trial
solution

ψn ≈
in−1

(πn)
γ
2

eiωn , n� 1 , (44)

for other eigenstates. This form coincides with the zero-energy eigenstate if ωn = 0. Substi-
tuting this ansatz into the recursive formula of Eq. (38), yields the condition

−iε̃ eiωn =
�

n(n− 1)
�γ/2

eiωn−1 − nγ
� n

n+ 1

�γ/2
eiωn+1 ,

where ε̃ = ε (N − 1)γ. Approximating n ± 1 with n (for n � 1) in the prefactors of the
exponential then yields

−i
ε̃

nγ
= e−i(ωn−ωn−1) − ei(ωn+1−ωn) . (45)

Finally approximating ωn −ωn−1 ≈ ωn+1 −ωn ≈ dω/d x , with ω(x) a continuous function
such that ω(x = n)≡ωn, we obtain the differential equation

ε̃

2xγ
= sin

�dω
d x

�

, (46)

or equivalently
dω
d x
= i ln

�

iε̃
2xγ
±

√

√

1−
� ε̃

2xγ

�2
�

. (47)

The general solution of this equation (for γ 6= 1) reads

ω(x) = ∓
ε̃

2xγ
Ξ(x) + i x ln

�

ĩε
2xγ
±

√

√

1−
ε̃2

4x2γ

�

,

Ξ(x) =
γ x

1− γ 2F1

�

1
2

,
1
2
−

1
2γ

;
3
2
−

1
2γ

;
ε̃2

4x2γ

�

. (48)

For the special cases γ= 1 and γ= 1/2, this gives the respective approximate eigenstates

ψn =

�

n+
Ç

n2 − ε̃2

4

�i|ε̃|/2

i
p
πn

�

−ε̃
2n
+ i sgn(ε)

√

√

1−
ε̃2

4n2

�n

, (49)

ψn =
ei

˜|ε|
4

p
4n−ε̃2

2 (πn)1/4

�

−ε̃
2
p

n
+ i sgn(ε)

√

√

1−
ε̃2

4n

�n

, (50)

respectively.
It should be noted that although they approximate the exact eigenstates, the approximate

wave functions ψn are not necessarily normalized or even orthogonal to each other. In addi-
tion, there is no limitation on the energy ε, except for the fact that we only get mathematically
well-behaved results for an energy range consistent with the exact bandwidth. Barring these
unavoidable shortcomings and the appearance of some phase differences betweenψn and the
exact eigenstates for low n, we find good agreement between the eigenstates obtained numer-
ically by exact diagonalization and the real part of the approximate analytical results of Eqs.
(49) and (50), as shown in Figs. 7 and 8. Both for γ= 1 and γ= 1/2, two qualitative features
of the wave functions stand out: (i) a power-law localization and (ii) regions of suppressed
amplitude. States with energies close to zero have an envelope approaching its maximum at
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Figure 7: Some of the eigenstates of the lattice model with linearly varying hopping.
Left and right panels respectively show the results of exact diagonalization on a lattice
with 101 sites, and the corresponding analytical approximation given by Eq. (49).
The eigenstates are labeled with integer numbers ` in the range of (−[N/2], [N/2])
such that the zero mode corresponds to ` = 0. The energy of states with ` = ±10
and ` = ±30, are obtained numerically to be ε = ±0.14 and ε = ±0.67, respec-
tively. For the sake of comparison, the right panels also display the numerical results
with empty circles, indicating the good agreement with the approximate analytical
functions shown in red solid lines.

the vicinity of n = 0, where the hopping becomes vanishing small. In contrast, the envelope
of eigenstates with non-zero energy is suppressed and becomes vanishing small for a finite
range around n = 0. The extent of the suppressed regions grows with the absolute value of
energy, |ε`|, and is bordered by a region with power-law behavior for the envelope of the wave
function.

The appearance of forbidden regions is a universal feature for all models with power-law
variation of the hopping studied here. This can be understood by noticing that in both Eqs.
(46) and (47) the function ω(x) (or its discrete counterpart ωn) acquires an imaginary part

for n < nc,ε ∼
�

ε̃/2
�1/γ

. As a result, the real part of the trial wave functions in Eq. (44) show
an exponentially decaying position-dependence for

n
N − 1

<
nc,ε

N − 1
∼
�ε

2

�1/γ
. (51)

These regions appear shaded in the right panels of Figs. 7 and 8.
A more intuitive picture for the existence of forbidden regions can be found by recalling the

local band structure picture, with ε(n, k) ∼ −2
�

n/(N − 1)
�γ

cos k. This shows that for a state
with non-zero energy ε, the region with 2

�

n/(N − 1)
�γ
< |ε| becomes classically forbidden,

as there is no available locally extended states there. The only way to penetrate that region
is then by quantum tunneling, with its associated exponential decay of wave function ampli-
tudes. Moreover, the existence of forbidden regions for states with non-zero energy provides
an alternative explanation for the back-scattering of wave packets with p0 6= −π/2, which
have non-zero average energy.
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Figure 8: Some of the eigenstates of the lattice model with square-root position de-
pendence of the hopping. Left and right panels respectively show the results of exact
diagonalization on a lattice with 101 sites, and the corresponding analytical approx-
imation given by Eq. (49). The eigenstates are labeled with integer numbers ` in the
range of (−[N/2], [N/2]) such that the zero mode corresponds to `= 0. The energy
of states with ` = ±10 and ` = ±30, are obtained numerically to be ε = ±0.31 and
ε = ±0.97, respectively. For the sake of comparison, the right panels also display
the numerical results with empty circles, indicating the good agreement with the
approximate analytical functions shown in red solid lines.

5.3 Exact solution of the lattice model with γ= 1/2

The lattice model with tn =
p

n, i.e. γ = 1/2, is of special interest as one can establish an
exact expression for the eigenstates in terms of Hermite polynomials, as we will show in the
following. In this case, the eigenvalue equation reads

−ε̃ψn =
p

n− 1ψn−1 +
p

nψn+1 , (52)

with the boundary conditions ψ0 =ψN = 0. Below, we show that this recurrence relation can
be related to the relation

2z Hn(z) = 2n Hn−1(z) +Hn+1(z) , (53)

for the well-known Hermite polynomials

Hn(z) = (−1)nez2
(

d
dz
)ne−z2

. (54)

To show this, let us change to variables ψ̃n, defined as ψn+1 = ψ̃n/
p

2nn!. The recurrence
relation in terms of the new variables then becomes

−ε̃ ψ̃n−1
p

2n−1(n− 1)!
=
p

n− 1 ψ̃n−2
p

2n−2(n− 2)!
+
p

n ψ̃np
2nn!

, (55)
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which simplifies to

−
p

2 ε̃ ψ̃n = 2n ψ̃n−1 + ψ̃n+1 . (56)

Comparison of Eqs. (53) and (56) then yields

ψn+1 =
A
p

2nn!
Hn(
−ε̃
p

2
) , (57)

with the normalization constant

Aε =
1
N

p
2N N !

|HN (
ε̃p
2
)|

, (58)

as derived in detail in appendix B. The boundary condition ψN+1 = HN (
ε̃p
2
) = 0 implies that

the eigenvalues εm are directly related to the roots of N -th Hermite polynomial. Since HN
is guaranteed to have N real roots, this always yields all N eigenvalues for the problem. In
appendix B we provide the asymptotic behavior (n� 1) of the exact solution found here, and
compare it with the corresponding limit of Eq. (50). Unsurprisingly, we find good agreement
between the asymptotic forms of the exact and approximate analytical solutions, which can
serve as further justification for the method used in Sec. 5.2.

6 Summary

We considered a family of nearest-neighbor tight-binding models with position-dependent hop-
ping introduced in [43] whose dynamics for zero-energy wave packets coincide with that of
Dirac fields in a static curved spacetime. We extended the results presented in [43] by de-
tailing the numerical simulations of the wave packet dynamics on the lattice and deriving a
semiclassical picture valid at long wave lengths, thus further elucidating the analogies be-
tween the position-dependent lattice models and a Dirac particle subjected to a gravitational
background.

For power-law variation of the hopping with an exponent γ ≥ 1, we showed that zero-
energy wave packets with momentum p0 = −π/2 eternally slow down while approaching the
point of vanishing hopping. This is reminiscent of the dynamics of a particle approaching
a black hole horizon as seen by a distant observer. In contrast, for lower values of γ, the
model does not produce horizon physics and wave packets back-scatter from the point of zero
hopping. We also showed that wave packets with non-zero average energy, or p0 6= −π/2,
never reach the horizon and instead reflect back at a non-zero distance which increases with
the absolute value of energy.

To understand the observed wave packet dynamics beyond the semiclassical picture, we
studied the eigenstates both numerically and in an approximate analytical way. We found that
the low-energy eigenstates have a power-law localization of their wave function envelopes.
This behavior of the zero-energy eigenstates results in the formation of ripples and the local-
ization of wave packets observed in the simulated dynamics. The states with non-zero energy,
in contrast, show two types of behavior at long and short distances from the horizon. While
the long distance behavior is qualitatively similar to low-energy states, at short distances we
see exponential localization. The latter comes from the fact that regions with low values for
the hopping become classically forbidden for states non-zero energy. These results explain the
back-scattering of wave packets with non-zero energy, as they cannot penetrate the forbidden
region.
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A Derivation of Dirac equation (7)

The covariant Dirac equation in curved spacetime can be written in the general form

(iγµ(x)Dµ −m)ψ= 0 , (59)

with spacetime-dependent Dirac matrices satisfying anticommutation relation
{γµ(x),γν(x)} = 2gµν(x). The covariant derivative for a spinor field is also given by [48],

Dµ = ∂µ +
1
8
ωµab[γ

a,γb] , (60)

with spin connection components ωµab and Dirac matrices γa in a flat spacetime. It is
convenient to write the contravariant metric as gµν = ηabea

µeb
ν, in terms of a vierbein

(the local frame field also known as tetrad) with components ea
µ and Minkowski met-

ric ηab, which implies γµ(x) = γaea
µ. Accordingly, for the covariant metric we have

ds2 = gµνd xµd xν = ηabeaeb , using co-vierbeins ea = ea
µd xµ.

The (1+1)D metric (8) can be recast as

ds2 = −[v(x)dτ]2 + d x2 = −(e0)2 + (e1)2 , (61)

which gives the co-vierbeins e0 = v(x)dτ and e1 = d x using the convention ηab = diag(−1,1).
We also find vierbeins e0 = ∂τ/v(x) and e1 = ∂x simply from ea eb = δa

b. Choosing the
representation of gamma matrices γ0 = −iσx and γ1 = σy , and therefore [γ0,γ1] = 2σz , we
only need to find the spin connection components ωµ01 = −ωµ10. One easy way to calculate
them is to use the so-called torsion-free condition [49],

dea +ηabωbc ∧ dec = 0 , (62)

for the spin connection one-form ωab = d xµωµab. Considering the co-vierbeins found above,
we get de0 = −(dv/d x)dτ∧ d x and de1 = 0 which eventually results in ω01 = −(dv/d x)dτ.
Therefore, the Dirac Eq. (59) for our curved (1+1)D spacetime reads

�

σx

v(x)

�

∂τ −
1
2

dv
d x
σz

�

+ iσy∂x −m
�

ψ= 0 , (63)

which can be re-written as
�

∂τ −σz v(x)∂x −
1
2
σz

dv
d x
−mv(x)σx

�

ψ= 0 , (64)

which reduces to Eq. (7) in massless limit (m= 0).
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B Wave functions in the model with γ= 1/2

In this appendix, we provide supplementary details about the exact solution for the model
with square-root position dependence of the hopping.

First, to normalize the wave functions given by Eq. (57), the Christoffel–Darboux for-
mula is used. It applies to sequences of orthogonal polynomials in general, and for Hermite
polynomials reads [50],

N−1
∑

n=0

Hn(z)Hn(z′)
2n n!

=
1

2N (N − 1)!
HN (z)HN−1(z′)−HN−1(z)HN (z′)

z − z′
. (65)

For the limit z′→ z this results in

N−1
∑

n=0

[Hn(z)]2

2n n!
=

1
2N (N − 1)!

�

H ′N (z)HN−1(z)−H ′N−1(z)HN (z)
�

. (66)

Using this identity, the normalization factor follows from

1=
N−1
∑

n=0

|ψn|2 = |A|2
N−1
∑

n=0

[Hn(
εp
2
)]2

2n n!

= |A|2
H ′N (

εp
2
)HN−1(

εp
2
)

2N (N − 1)!
. (67)

This finally results in Eq. (58) upon using the recursion relation H ′N (z) = 2N HN−1(z) of
Hermite polynomials.

For the particular case of the zero energy state, we obtain

Aε=0 =
p

N !
N !!

≈
� π

2N

�1/4
, (68)

which uses the observation that HN−1(0) = 2(N−1)/2(N − 2)!! for odd N . For even N , HN−1(0)
vanishes, and there is no zero mode. To reach the final approximate form, the Stirling formula
at large N has been employed.

We can also find an approximate form for the normalization constant using the asymptotic
form of Hermite polynomials at large N derived below, which yields

Aε ≈
� π

2N

�
1
4
�

1−
ε2

4N + 2

�
1
4 e−

ε2
4 . (69)

This relation is valid for small and intermediate values of ε as long as ε�
p

N . It shows that
for large N and finite energies the normalization factor exponentially decreases with ε.

We next consider the asymptotic (n � 1) properties of the eigenstates. We invoke the
Hermite differential equation

d2

dz2
Hn(z)− 2z

d
dz

Hn(z) + 2nHn(z) = 0 , (70)

which shows that for large n but small and intermediate z, the Hermite polynomials behave
like sin(

p
2nz) and cos(

p
2nz). Using a more careful analysis, it has been found that [51]

e−
z2
2 Hn(z)∼

p
2
�

2n
e

�
n
2 cos

�

z
p

2n− nπ
2

�

�

1− z2

2n+1

�1/4
. (71)
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Substituting this asymptotic form in (57) and using Stirling’s formula, we find

ψn+1 ∼
1
N

�N − ε̃2/4
n− ε̃2/4

�1/4 cos
�

ε̃
p

n+ nπ
2

�

cos
�

ε̃
p

N + Nπ
2

� . (72)

This provides a good approximation for large n, provided that n¦ nc,ε = ε̃2/4. The oscillatory
part of this expressions can alternatively be derived by taking the real part of the large n limit
of Eq. (50).
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