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Abstract

For stochastic models with intractable likelihood functions, approximate Bayesian com-
putation offers a way of approximating the true posterior through repeated comparisons
of observations with simulated model outputs in terms of a small set of summary statis-
tics. These statistics need to retain the information that is relevant for constraining the
parameters but cancel out the noise. They can thus be seen as thermodynamic state vari-
ables, for general stochastic models. For many scientific applications, we need strictly
more summary statistics than model parameters to reach a satisfactory approximation
of the posterior. Therefore, we propose to use a latent representation of deep neural
networks based on Autoencoders as summary statistics. To create an incentive for the
encoder to encode all the parameter-related information but not the noise, we give the
decoder access to explicit or implicit information on the noise that has been used to gen-
erate the training data. We validate the approach empirically on two types of stochastic
models.
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1 Introduction

Mechanistic models are indispensable tools in many fields of research. For reliable predictions,
they need to include the dominant sources of uncertainty in the form of adequate noise terms.
The resulting stochastic models often depend on few parameters that need to be calibrated to
observed data. For a probabilistic interpretation of the predictions, it is convenient to adopt
the Bayesian framework and express our knowledge (or belief) about those parameters in
terms of probability distributions. Within this framework, calibration means getting hold of the
whole posterior distribution of parameters, expressing the combination of prior knowledge and
knowledge gained from the observations, which is typically a hard inverse problem.

Standard algorithms for sampling from the posterior (such as the family of Metropolis
algorithms) require a large number of evaluations of the likelihood function, expressing the
probability density for given observed data, as a function of the model parameters. For all
but trivial stochastic models, likelihood evaluations are typically prohibitively expensive as
they require a high-dimensional integration over model realizations, either because the model
has a large number of unobserved (latent) variables or because the normalizing partition
function of the model is unknown (think, e.g., of an Ising-type model). A recent solution is to
approximate the posterior by means of neural density estimators [1–3]. However, this requires
a parametrization of the space of approximating densities, which may lead to biases that are
hard to control.

Here, we take the approach of Approximate Bayesian Computation (ABC, e.g., [4,5]) - an
approximate sampling method that is a promising alternative to variational methods if model-
simulations are fast and parameters are few. ABC avoids evaluating the likelihood function, by
simulating a large number of model realizations, for various parameter sets, and accepting or
rejecting those sets depending on whether or not the simulated data agrees with the observed
data in terms of a given set of summary statistics, and within a given tolerance. For ABC to
be accurate and efficient, we need summary statistics that, respectively, retain most of the
parameter-related information and cancel out most of the noise. The latter requirement entails
that summary statistics are well-concentrated, for fixed parameter values, which allows for a
fast annealing of the tolerance [6].

Obvious candidates for such statistics are parameter estimators, such as the maximum
likelihood estimator (MLE). Hence, several methods for finding summary statistics are based
on parameter regression (e.g., [7–9]). Parameter estimators are constraining the location of the
posterior, but not necessarily its shape. If the data consists of a large number of independent
sample points, the posterior is typically well concentrated around the true parameter values, in
which case parameter estimators are near-sufficient, i.e. they contain nearly all the information
that is relevant for constraining the posterior. However, in many scientific applications, we
only have few realizations (e.g. from a lab experiment) or even just one (e.g. from a field
experiment). And although such data sets may consist of many components (e.g. time series),
they may be highly correlated. Therefore, models describing such data might produce rather
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different realizations, even for a fixed set of parameter values, and the corresponding posteriors
might look rather different as well. In such situations, additional statistics may be required to
reach a satisfactory approximation of the posterior.

In order to capture those additional statistics, we suggest to combine regression with
reconstruction, i.e. to use neural networks of Autoencoder-type. Recently, Autoencoders have
been employed to learn order parameters [10] or collective variables [11], which are quantities
capable of discriminating between different kinds of behavior of statistical-mechanics models.
However, in order to use Autoencoders for the purpose of ABC, we have to modify them such
that they encode only the features that carry information about the parameters, but not the
noise. To do so we give the decoder access to explicit or implicit noise information. Thus, it
creates an incentive for the encoder to encode parameter-related information only.

What distinguishes our approach from other information-theoretic machine learning algo-
rithms such as the ones recently presented in [12] and [13], is the possibility to use explicit
noise information. This makes our approach also applicable in situations where only noise-, but
no parameter-information is available, as could be the case in observed rather than simulated
data. As an example, we might want to use it to remove rain-features (rain playing the role of
the noise) from hydrological runoff time-series in order to distill runoff-features that stem from
the catchments themselves. We will examine this application in future publications.

The software written for this project is available on https://renkulab.io/gitlab/bistom/
enca-inca.

2 Summary Statistics

Consider a generic stochastic model, defined by a conditional probability density, f (x|θθθ ), where
θθθ ∈ Rp is a (low-dimensional) parameter vector and x ∈ RN a (high-dimensional) output vector.
Furthermore, consider a map, s : RN → Rq, of summary statistics, where q is small (of the order
of p). We require s to be asymptotically sufficient, meaning that

I(ΘΘΘ,S) := I(ΘΘΘ, s(X)) = I(ΘΘΘ,X) +O(1/N) , (1)

where I denotes the mutual information between dependent random variables. The capital
letters ΘΘΘ and X denote the dependent random variables associated with the densities f (θθθ)
(prior) and f (x|θθθ ), respectively. Eq. (1) means that, for large data sets, the summary statistics
contain almost as much information about the parameters as the whole data set. Furthermore,
for ABC to converge efficiently, we require the summary statistics to cancel the noise contained
in model-outputs, and thus to be ever more concentrated around a p-dimensional manifold
(at least locally) as N grows larger1. Thus, invoking the law or large numbers, we require the
asymptotic concentration property

H(S|ΘΘΘ) := −
∫

f (s|θθθ ) f (θθθ ) ln( f (s|θθθ ))dsdθθθ ∼ − ln(N) , (2)

as N →∞, which is an asymptotic minimal entropy condition. As can be seen from the identity

H(S|ΘΘΘ) = H(S)− I(ΘΘΘ,S) , (3)

there is a trade-off when adding more summary statistics. It typically increases the mutual
information, but also the entropy H(S). Therefore, we expect an optimal number of statistics,

1Here we assume that all parameters are identifiable. Otherwise the dimension of the manifold could be smaller
than p.
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which leads to the most concentrated summary statistics and hence the fastest convergence of
ABC.

The asymptotic sufficiency and concentration properties allow us to draw an analogy
between summary statistics and thermodynamic state variables, as already pointed out in [14].
In statistical mechanics, the concentration property leads to the equivalence of ensembles in the
thermodynamic limit. Extending this analogy a bit further, we define the free energy

Fθθθ (s) := − ln

∫

f (x|θθθ )dΩs(x) , (4)

where Ωs(x) is the surface measure on the shell s(x) = s. For members of the exponential
family, the free energy splits into an energy and an entropy term as

Fθθθ (s) = Uθθθ (s)− S(s) . (5)

If the data x is comprised of a large number of independent sample points, the free energy
will be dominated by the energy term. Hence, the summary statistics will concentrate around
a p-dimensional submanifold of minimal energy configurations. Since minimum energy is
synonymous with maximum likelihood, we can parametrize this manifold with maximum likeli-
hood estimators (MLE). Hence, we can encode nearly all information relevant for constraining
the parameters with q = p summary statistics. This is no longer the case if x is correlated, in
which case the entropy can substantially alter the free energy landscape. If (2) is satisfied, the
summary statistics will eventually concentrate locally around a p-dimensional submanifold.
However, due to correlations, certain features of the output might de-correlate very slowly and
lead to broad valleys or multiple modes in the free energy landscape. Multiple modes can even
persist in the limit as N →∞, in which case the model exhibits different phases. For such
models, S does not concentrate around a single p-dimensional submanifold, and we might
need q > p summary statistics, for a good posterior approximation.

3 Modified Autoencoders

We want to design Autoencoders implementing both the asymptotic sufficiency criterion (1) as
well as the concentration property (2). The encoder, s(x), is supposed to learn the summary
statistics. The first p of the q summary statistics are regularized to be parameter estimators,
whereby the concentration property is implemented. The auxiliary q− p summary statistics are
meant to capture additional information required for constraining the posterior. The decoder
is fed with the vector s and, in addition, with either explicit or implicit information on the
noise that went into generating the training data, and is supposed to either reconstruct the
model outputs or the parameter values. In this manner, the encoder is incentivized to encode
all the parameter-related information (sufficiency), but not the noise (concentration). The
first architecture we propose (Fig. 1) has a decoder that attempts to reconstruct the model
output x. For this architecture, the stochastic model needs to be set up as a deterministic
function, x= M(θθθ ,εεε), where the bare noise εεε is sampled from a θθθ -independent distribution.
Such a formulation is possible, for any stochastic model. However, it is not unique, and the
performance of the Autoencoder might depend on the choice of M . The decoder is then given
the explicit noise realizations εεε that went into the generation of the training data and attempts
to reconstruct the model output, i.e. it learns a function x̂(s,εεε). We refer to this architecture as
the Explicit Noise Conditional Autoencoder (ENCA). The decoder will not only have to learn
the model equations but implicitly also the reconstruction of the true parameter values θθθ from
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Figure 1: Basic ENCA architecture: The stochastic model needs to be available in
the form of a deterministic function, M , of a parameter vector θθθ and a (bare) noise
realization εεε. The encoder is trained on model realizations x, and produces summary
statistics s(x). The decoder is trained to reproduce the model realizations x̂(s,εεε),
based on s and the same noise realizations that have been used by M . Layers within
encoder and decoder neural network (NN) blocks can be optimized based on the prior
knowledge about M .

s and εεε (to the extent possible). For the loss function, we use the weighted sum of squares

L= 1
p

p
∑

α=1

�

sα − θα
θα

�2

+
1
N

N
∑

i=1

�

x̂ i − x i

x i

�2

. (6)

The second architecture (Fig. 2) does not require a separation of bare noise, and is therefore
more broadly applicable. It provides implicit information on the noise to the decoder in the
form of replica of summary statistics encoded from different realizations of the model for fixed
parameter values. That is, for a given set of parameter values θθθ , we generate n realizations, x( j),
for j = 1, . . . , n, from f (x|θθθ), which are then passed individually onto the encoder to predict
n summary statistics s( j) = s(x( j)). Since we do not have access to the bare noise, we do not
attempt to reconstruct the model output x, as such a reconstruction would generally be very
poor. Instead, the decoder attempts to aggregate the information in the replica of summary
statistics and reconstruct the true parameters, θ̂θθ({s( j)}). We refer to this architecture as the
Implicit Noise Conditional Autoencoder (INCA). If we again regularize the first p components
of s to be parameter regressors, we can set

θ̂α({s( j)}) =

∑n
j=1 w(s( j))s( j)α
∑n

j=1 w(s( j))
, α= 1, . . . , p , (7)

where w(·) is a nonlinear function to be learned by the decoder based on the auxiliary summary
statistics {s( j)

β
}, for β = p+1, . . . , q. If the parameter posterior strongly depends on the particular

realization x( j), for a fixed set of parameters θθθ , the reliability of the associated parameter
regressors s( j)α , for α = 1, . . . , p, will also strongly depend on the particular realization j, which
should be accounted for with the weights. This is precisely how the decoder incentivizes the
encoder to use the auxiliary summary statistics to encode the extra features that distinguish
these different realizations. As the loss function we use

L=
∑

j,α

�

s( j)α − θα
θα

�2

+
∑

α

�

θ̂α − θα
θα

�2

. (8)
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Figure 2: Basic INCA architecture: The encoder is trained on sets of model realizations
{x( j)}, for fixed parameter values, and produces the corresponding sets of summary
statistics {s( j) = s(x( j))}. The decoder is a NN acting on auxiliary summary statis-
tics {s( j)

β
}, for β = p+1, . . . , q to find a weighting function w to reconstruct model

parameters, based on eq. (7).

4 Results

We demonstrate our method with two types of stochastic iterative map models, for which we
have access to the true posterior. The first one is given by the equation

xn+1 = α f (xn) +σεn , εn ∼N (0,1) i.i.d. , n= 0, . . . , N − 1 (N = 200) , (9)

where f (x) is a nonlinear function admitting two stable solutions, e.g.
f (x) = x2(1− x). The deterministic map has a stable fixed point at x = 0. For sufficiently
large α, a second stable fixed point emerges, which, upon further increasing α, undergoes a
series of period doubling bifurcations eventually leading to chaos (see Appendix A.1, for more
details on the model). Depending on the initial condition x0, the deterministic map will go to
either one of the two attractors. This deterministic solution is the energetically most favored
realization as it corresponds to the zero-noise realization. For sufficiently large noise, entropic
effects become more important and a bi-modal free energy surface can occur. Fig. 5 shows the
two types of realizations the model exhibits, even for fixed parameter values. As a member of
the exponential family, the minimal number of sufficient statistics for this model is bounded.
However, the parametrization not being the natural one, we need three summary statistics
to reach sufficiency, albeit the model only has two parameters, θθθ = (α,σ)T . A convenient
parametrization, for sufficient statistics, is given by equations

α̂(x) =

∑N
n=1 xn f (xn−1)

∑N
n=1( f (xn−1))2

, (10)

σ̂(x) =
1
N

N
∑

n=1

(xn − α̂(x) f (xn−1))
2 , (11)

o(x) =
1
N

N
∑

n=1

( f (xn−1))
2 . (12)

The first two statistics are MLEs for the two parameters, inferring α from the auto-correlation
and σ from the residuals, respectively. The third one, o(x), can be seen as an order parameter
that is needed to tell the two attractors apart. We have chosen the initial point x0 in between
the two attractors, and the prior such that the switching time between them is much longer
than the observation time. Thus, there are parameter values θθθ , for which Fθθθ (s) is bi-modal,
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Figure 3: MLEs (using eqs. (10 and (11)) for the parameters of model (9) (left panels),
parameter regression from the ENCA- (middle panels), and the INCA-encoder (right
panels). Both ENCA and INCA are trained with q = 3 summary statistics. The upper
row of plots shows a clear accuracy-difference for the two attractors of the model.
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Figure 4: Prior distribution of sufficient summary statistics (10) - (12) (left), and
of the latent variables from both ENCA (middle) and INCA (right). The two sheets
correspond to the two attractors of the model and overlap on the (α̂, σ̂)-projection
(bi-modality).

for s = (α̂, σ̂, o)T (Fig. 4). For these values, the third statistic is not approximated by a
function of the other two. Hence it contains information about the parameters that is not
contained in the other two statistics. Fig. 3 shows that apart from prior boundary effects,
both architectures yield parameter regressors (first two components of s) that are very similar
to MLEs (first two components of the sufficient summary statistics (10), (11)). In order to
accurately reconstruct the output, the decoder of both ENCA and INCA forces the encoder to
also learn a quantity equivalent to the third statistic, although INCA separates the two “phases”
less clearly (Fig. 4). Fig. 6 compares ABC-posteriors, for different sets of summary statistics,
against a posterior-sample generated with a Metropolis algorithm. Using the encoder-generated
summary statistics from the two architectures confirms that both are near-sufficient, albeit the
approximate posterior achieved with INCA is a bit less accurate; i.e., wider. Both approximate
posteriors are much closer to the true posterior compared to the approximate posterior we get
when we only use the two MLE regressors (10) and (11). Hence, our Autoencoder-generated
summary statistics will outperform any statistics generated by machine-learning models that
are solely based on parameter regression. We have also trained ENCA with only two summary
statistics. The encoder then encodes the information about which attractor has been chosen
into these two statistics, at the price of a deteriorated parameter regression (Fig. 5). The ABC-
posterior resulting from these two statistics is thus closer to the truth than the MLE-posterior,
but farther away than the one generated with three ENCA-encoded statistics (Fig. 6).

Notice that, for extremely large N , typical realizations would switch between the two
attractors sufficiently often for there to be just one type of model behavior, and consequently
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Figure 5: Typical time-series x generated with model (9) (green) compared against the
reconstructions by the ENCA-decoder, using two (red) or three (blue) latent variables.
The two time-series were generated with the same set of parameters, α = 5.3 and
σ = 0.015. Two statistics are sufficient to encode the information about which
attractor has been taken, but at the price of a degraded parameter regression and
thus a degraded reconstruction. The data has not previously been used for training
the AE.
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Figure 6: Metropolis-generated posterior for model (9) (green, representing the
ground truth) compared against ABC posteriors using all three latent variables (blue)
from ENCA (left) and INCA (right) and using only the two MLE-regressors (red). The
posterior resulting from only two ENCA-generated summary statistics is shown in
grey. The dashed boxes represent the ABC priors, while the black dots represent the
true values of the parameters used to generate the synthetic data set.

no need for a third statistic. Hence, this model does not exhibit phases. However, the example
shows that there may be features in the output of stochastic models that de-correlate very
slowly as N grows, requiring auxiliary statistics even for large N .

The second example is a stochastic non-linear iterative map model with both additive and
multiplicative noise:

xn+1 = αn f (xn)+εn , αn ∼ U[α,α+δ] , εn ∼ U[0,ε] i.i.d. , n= 0, . . . , N−1 (N = 200) , (13)

and three parameters, θθθ = (α,δ,ε)T . It is an example for the common situation where we
have more internal-noise degrees of freedom (ααα, εεε) than observed output components (x).
Integrating out the unobserved degrees of freedom typically takes us outside of the exponential
family, as is the case for this model. According to the Pitman-Koopman-Darmois theorem,
we would need a set of summary statistics that grows unbounded with the size of the data
(N) to achieve strict sufficiency. However, we expect to be able to compress most of the
parameter-related information into few summary statistics nonetheless. We have trained both
ENCA and INCA with 3 (q = p) as well as 4, 5 and 6 summary statistics. Fig. 7 shows that, when

8

https://scipost.org
https://scipost.org/SciPostPhysCore.5.3.043


SciPost Phys. Core 5, 043 (2022)

training ENCA on model (13), adding a fourth statistic has a small yet noticeable effect on the
first statistic, i.e. the regressor for α. This means that the decoder can facilitate the regression
of the encoder, but its main purpose is to create the incentive to encode additional information
in the auxiliary statistics. That it does so indeed is shown in Fig. 8. When using only 3 statistics
the decoder does not manage the reconstruct the model output well, but with only 4 the
reconstruction is almost perfect. Correspondingly, using 4 or 5 statistics leads to approximate
posteriors that are more accurate than the one achieved with only 3 statistics. (Fig. 9). Using
more than 5 statistics leads to a degradation of the ABC-posterior. Presumably this is because
the statistics start to encode more of the noise, which degrades their concentration. Similarly,
the approximate posteriors resulting from INCA-generated summary statistics are most accurate
when using 5 statistics (Fig. 10).

When deciding about the optimal number of statistics (when the true posterior is not known)
the distances to the observations achieved with ABC can be an indication (Fig. 11). According
to eq. (3), large distances (lack of concentration) can be the result of either too few statistics
(lack of sufficiency) or too many (lack of minimality). The posterior accuracy achieved with
ENCA is in line with the achieved ABC distances. Although with INCA the smallest distances
are achieved with 3 statistics, the posterior with 5 statistics is marginally better. This is due to
dimensional reasons, because distances tend to be smaller for lower numbers of statistics.

5 Conclusions

We have given a proof of concept that Autoencoder-like architectures providing additional
noise-information to the decoder can be used to learn summary statistics that are both
near-sufficient and highly concentrated - two criteria that are required for ABC to work both
accurately and efficiently. While the decoder can help the encoder to find good parameter
regressors, its main job is to create an incentive for encoding additional information that
is relevant for constraining the parameters. We have proposed two types of decoders, one
that attempts to reconstruct the outputs and is given explicit noise information, and one that
attempts to reconstruct the parameters and is given implicit noise information. In our case
studies, the former achieved slightly better results, whereas the latter has a broader range
of applicability. For the proof of concept we have chosen members of two types of nonlinear
stochastic models. The first model is a member of the exponential family, which allowed us to
compare the learned summary statistics against a known set of sufficient statistics. This model
also exemplifies that stochastic nonlinear models can exhibit strongly correlated features, which
might require us to use more summary statistics than parameters. The second model is an
example for the common situation where we have more internal-noise degrees of freedom than
observed output components, and lies outside of the exponential family, where no bounded
set of sufficient statistics is available. Nevertheless, in our example we show that a very good
approximation of the true posterior can be achieved with ABC with a small number of learned
summary statistics that is, once again, larger than the number of parameters. As a criterion for
the optimal number of summary statistics we suggest to use the distances between simulated
and observed summary statistics achieved within ABC.

Our method is applicable whenever we want to disentangle low-dimensional relevant
features from high-dimensional irrelevant (noise) features. Thus, its applicability goes beyond
summary statistics learning for ABC inference. An exciting avenue for future research is to
apply it to learn relevant low-dimensional features in observed rather than simulated data.
Here, we only present a proof of concept. More research is required to explore and validate the
applicability of our approach in practical applications.
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Figure 7: Parameter regression for model (13) from ENCA, using three (left column)
or four (right column) latent variables. The contribution of the additional feature to
the α-marginal is small but noticeable. (Results are similar for INCA.)
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Figure 8: Typical time-series x generated by model (13) (green) compared against the
reconstruction by the ENCA-decoder, using three (red) or four (blue) latent variables.
The contribution of the additional statistic is indisputable. The data has not previously
been used for training the AE.
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Figure 9: 2D projections of the true posterior for model (13) (green) compared against
ABC posteriors (blue) from ENCA using, from left to right columns, three, four, five
and six summary statistics (q = 3, 4, 5, 6). The dashed boxes represent the ABC priors,
while the black dots represent the true values of the parameters used to generate the
synthetic data set.

Figure 10: Analogously to Fig.9, the exact posteriors for model (13) (green) are
compared against ABC posteriors (blue) from INCA.
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Figure 11: 99%-percentiles of the distance-distributions of the parameter regressors
achieved within ABC for ENCA (blue) and INCA (red), as a function of the total
number of used statistics, for model (13). Circles, squares and triangles correspond to
the regressors for α, δ, and ε, respectively. Latent spaces of dimension 4 and 5 yield
the most accurate posterior for ENCA (Fig. 9), whereas for INCA 5 summary statistics
lead to the best result (Fig. 10). The full distributions are shown in the Appendix.
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A Appendix

A.1 Statistical Model Priors

We conducted our experiments for eq. (9) using the following priors:
α∼ U(4.2, 5.8), σ ∼ U(0.005, 0.025), and x0 = 0.25. The true values used in ABC experiments
were α= 5.3 and σ = 0.015. For model (13), we used the following priors: α∼ U(0.9,1.4),
δ ∼ U(0.05,0.25), ε∼ U(0.02, 0.15), and x0 = 1.0. The true values used in ABC experiments
were α= 1.11, δ = 0.15 and ε= 0.08.

The choice of statistical model priors and true values in our experiments are based on
the stable points, bifurcations, and chaotic regions of the test models (see Fig. 12). For the

Table 1: Encoder architectures of the ENCA and INCA models. Global average pooling
layer is denoted as globpool. Convolutional layer (conv) hyper-parameters correspond
to kernel size, number of filters, and activation, respectively. Output shapes are listed
for observation length of 200 steps and minibatch size is denoted as bs.

input layer name hyper-parameters output shape (ENCA) output shape (INCA)
observation input (bs, 200, 1) (bs, n, 200, 1)

observation conv1.1 3, 16 relu (bs, 198, 16) (bs, n, 198, 16)
conv1.1 conv1.2 3, 16 relu (bs, 196, 16) (bs, n, 196, 16)
conv1.2 maxpool 2 (bs, 98, 16) (bs, n, 98, 16)

maxpool1 conv2.1 3, 32 relu (bs, 96, 32) (bs, n, 96, 32)
conv2.1 conv2.2 3, 32 relu (bs, 94, 32) (bs, n, 94, 32)
conv2.2 conv3 3, q, linear (bs, 92, q) (bs, n, 92, q)
conv3 globpool N/A (bs, q) (bs, n, q)

12

https://scipost.org
https://scipost.org/SciPostPhysCore.5.3.043


SciPost Phys. Core 5, 043 (2022)

Table 2: Decoder architecture of ENCA. Bidirectional (Bi)-LSTM layer details corre-
spond to number of LSTM filters (×2 due to Bi) and activation, respectively. Fully
connected (FC) layer details correspond to number of hidden units, and activation,
respectively. Output shapes are listed for an initial observation length of 200 steps
constructed using noise vector ε ∈ R200×cε having cε channels. Minibatch size is
denoted as bs. Note that cε is 1 and 2, for the two test models, respectively. Tile layer
corresponds to broadcasting operation along a new axis. For more details, please
refer to our repository.

Decoder ENCA
input layer name hyper-parameters output shape

summary statistics tile s N/A (bs, 200, q)
ε noise (bs, 200, cε)

[tile s, noise] concatenate N/A (bs, 200, cε + q)
concatenate Bi-LSTM1 16, tanh (bs, 200, 32)
Bi-LSTM1 Bi-LSTM2 16, tanh (bs, 200, 32)
Bi-LSTM2 FC 1, linear (bs, 200, 1)

Table 3: Decoder architecture of INCA. Fully connected (FC) layer details correspond
to number of hidden units, and activation, respectively. All leakyReLU activations
have their α= 0.3. Output shapes are listed for an initial observation length of 200
steps constructed using noise vector ε ∈ R200×cε having cε channels. Minibatch size is
denoted as bs. {s( j)} j=p+1,...,q corresponds to auxiliary summary statistics. For more
details, please refer to our repository.

Decoder INCA
input layer name hyper-parameters output shape

{s( j)} j=p+1,...,q N/A (bs, n, q− p)
{s( j)} j=p+1,...,q FC1 3, leakyReLU (bs, n, 3)

FC1 FC2 10, leakyReLU (bs, n, 10)
FC2 FC3 3, leakyReLU (bs, n, 3)
FC3 FC4 (i.e., w(·)) 1, sigmoid (bs, n, 1)

[w(·), {s( j)} j=1,...,p] Eq. (7) N/A (bs, p)

deterministic part of model (9), the first bifurcation occurs at α ≈ 5.3. Near this point, the
iterative map has two stable fixed points - the zero solution (α¯ 5.3) and a periodic solution
(α§ 5.3). Increasing α further, the periodic solution eventually becomes chaotic after a cascade
of period-doubling bifurcations. However, for this model, we limit the prior to a range away
from the chaotic regime. Adding noise to the iterative map allows for switching between the
two stable solutions. We chose the true noise and the initial condition such that the variable xn
randomly jumps to either one of the two stable solutions at the beginning of the time-series and
then typically stays there. This is to exemplify that stochastic models can exhibit rather different
types of behavior, even for fixed parameters. In the case of model (13), the parameter priors
ensure that all regimes are taken into account, including the stable solutions, all bifurcations
and the chaotic regime.

A.2 Training and evaluation details

For both INCA and ENCA, we use the same NN architecture for the encoder, which consists of
only convolutional and pooling layers (see Table 1). One major difference in implementation
comes from the fact that ENCA has 3 dimensional activations, (minibatch size, temporal axis,
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Figure 12: Amplitudes of the iterates xn as a function of the parameter α, for the
deterministic part of model (9) (left) and for model (13) (right) assuming a constant
α and replacing the additive noise with its average value. In both cases, one observes
two stable fixed points, corresponding to zero and non-zero solutions, and the cascade
of period doubling bifurcations that characterizes the route to a chaotic regime.

channel axis), as opposed to 4 in INCA, which has an additional dimension for the n replica.
The decoder architectures for ENCA and INCA are shown in Tables 2 & 3. We chose a recurrent
neural network architecture for the ENCA-decoder in order to estimate the input observation
where we paired bare noise with summary statistics for each time step. We used a multilayer
perceptron architecture to learn the mapping function w(·) within the INCA-decoder, which is
later used as in eq. (7).

For training ENCA to model (9), we simulated, on-the-fly and per training step, a minibatch
of 300 model realizations, that is, 300 triplets of parameter vectors, noise vectors and associated
model outputs. Per training step of INCA, we simulated a minibatch of n = 5 replica of 60
model realizations each. That is, we used 300 pairs of parameters and associated model outputs
per training step. For model (13) instead we set the number of model realizations per training
step to 100 for ENCA, and to 5× 60 = 300 for INCA. We used the Adam optimizer with an
initial learning rate of 10−3 for training both architectures.

We trained the networks well beyond convergence of their loss functions. A retrospective
analysis shows that the loss curves were already at the plateau at approximately 7 ·105 (ENCA)
and 106 (INCA) steps for model (9), and 5 · 105 steps for both ENCA and INCA for model (13).
This implies that on the order of 50M to 300M observations were generated on the fly to
train each network. For more expensive simulation models, we recommend to pre-compute a
much more modest number of independent model realizations, and then train the networks for
several epochs on this dataset until the loss function has converged.

The proposed networks ENCA and INCA have less than 15k and 6k network weight param-
eters, respectively, to be trained for the test models in this work. These numbers are invariant
to the time-series length of observed samples. This implies that our proposed networks can be
used to train on significantly longer samples without requiring more network parameters to be
learned unless an architectural change is deemed necessary.

For the ABC inference we used the simulated annealing ABC algorithm [6] as implemented
in the SPUX2 framework. Each inference took about 75 ·104 model realisations, for both models.
This large number of model realisations ensures that the ABC-inference process practically
converges, with a remaining acceptance rate of typically well below 1%.

The training of the Autoencoders and the ABC inference were run on the internal cluster
of the Zurich University of Applied Science (ZHAW, Switzerland), using for each of them a
full node equipped with two 16-core 2.6-3.7 GHz processors (Xeon-Gold 6142) and 196 GB of

2https://spux.readthedocs.io
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Figure 13: Histograms of the final accepted distances between observed and simulated
summary statistics achieved with ABC, for model (13). Only the first three summary
statistics, i.e., the parameter regressors, are plotted (rows). The columns correspond
to different architectures of ENCA, that is, latent space dimensions of 3, 4, 5, or 6, as
specified by the column labels.

Figure 14: Distance distributions as in Fig. 13, for different architectures of INCA.

memory. On this infrastructure, training the networks takes about 4 days for both ENCA and
INCA for model (9), and 3 (ENCA) and 7 (INCA) days for model (13). The ABC inference takes
about 2 hours. Both training and inference are automatically parallelized across the available
CPU cores by tensorflow (version 2.2) and SPUX, respectively.

A.3 Additional results

Figs. 13 and 14 show the full histograms of the ABC-distances, from which the quantiles in
Fig. 11 in the main text were derived.
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