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Abstract

We develop a simple non-perturbative approach to the calculation of a field theory effec-
tive potential that is based on the Wilson or exact renormalization group. Our approach
follows Shepard et al’s idea [Phys. Rev. D51, 7017 (1995)] of converting the exact renor-
malization group into a self-consistent renormalization method. It yields a simple second
order differential equation for the effective potential. The equation can be solved and its
solution is compared with other non-perturbative results and with results of perturba-
tion theory. In three dimensions, we are led to study the sextic field theory (λφ4+ gφ6).
We work out this theory at two-loop perturbative order and find the non-perturbative
approach to be superior.
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1 Introduction

Wilson is the main author of the modern theory of the renormalization group as well as of
its formulation for statistical systems as a transformation of the full probability distribution,
defined by an unbounded set of parameters [1]. The exact renormalization group (ERG) is
the group (or semigroup) formed by such transformations. The ERG equation is a functional
differential equation that admits several formulations [1–9]. The solution of the ERG equa-
tion should provide the exact infrared-cutoff-dependent generator of the Green functions and,
hence, a full solution of the field theory in question. Of course, the exact renormalization
group is not the only approach that establishes functional equations that provide the exact
Green functions. The well-known Dyson-Schwinger equations constitute another set of func-
tional equations with the same goal [10, 11]. These equations involve no cutoff, in principle,
but actually need ultraviolet regularization. In fact, the presence of a running infrared cutoff
in the ERG equation is an asset [7].

At any rate, neither the Dyson-Schwinger equations nor the ERG equation are easy to han-
dle, since they involve functionals. Naturally, functions are easier to handle, and a field theory
function that contains considerable information is the effective potential [10]. The ERG equa-
tion admits an approximation in terms of a local potential which plays the role of effective
potential [4, 5, 12–15]. Of course, the expression of the full action or Hamiltonian as a se-
ries expansion in field derivatives is old and is the origin of the Landau-Ginzburg Lagrangian
model of critical phenomena [16]. The ERG equation in the local potential approximation is a
partial differential equation with derivatives respect to the renormalization group parameter
and the field. At a fixed point, it becomes a nonlinear ordinary differential equation, which is
nonetheless too hard to solve analytically. However, this equation has allowed to find, in three
dimensions, the Wilson-Fisher fixed point and to compute quite accurate critical exponents [8].

The solution of the ERG equation in the local potential approximation provides the effec-
tive potential for a given classical potential, as stressed by Shepard et al [17]. Furthermore,
they propose an interesting connection between the Wegner-Houghton sharp-cutoff ERG equa-
tion for the local potential [4, 15] and an integral equation for the effective potential. Essen-
tially, they “bootstrap” the relation between the classical and the one-loop effective potential
to define a self-consistent “Dyson-Schwinger effective potential”. This potential constitutes an
approximate solution of the exact renormalization group equation and gives rise to equations
that can be related to the Dyson-Schwinger equations. We believe that Shepard et al’s interpre-
tation of the exact renormalization group as a non-perturbative renormalization of coupling
constants is very interesting.

However, Shepard et al [17] restrict their study to the φ4-theory and to two equations, for
the mass and coupling-constant renormalization. These equations are closed, but only because
Shepard et al arbitrarily change the actual equations derived from the integral equation for the
effective potential. This potential actually involves an infinite number of coupling constants,
which need to be determined with an infinite number of equations. We elaborate on Shepard
et al’s idea and we are led to improve the integral equation itself. Our self-consistent effective
potential, which involves an infinite number of coupling constants, satisfies a second-order
differential equation that provides a new non-perturbative method of renormalization. We
present here the general idea and we construct, as an example, the non-perturbative renor-
malization of scalar field theory in three dimensions.

Shepard et al [17] also carry out numerical calculations, namely, Monte Carlo calculations
in a lattice and continuous and lattice ERG calculations (all for theφ4-theory). Tsypin [18] had
calculated before the effective potential of the three-dimensional φ4-theory with the lattice
Monte Carlo method. Various later lattice calculations are presented by Butera and Pernici
[19]. Of course, calculations in a lattice are affected by the limitation on the number of sites
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or other issues. In Shepard et al’s continuous ERG calculations, a different problem arises: in
the decomposition of the range of the field, which is finite, there appear instabilities at the
end of the range. In connection with this problem, we show that a proper treatment of the
boundary conditions for large fields is mandatory in our approach.

The standard calculation of the fixed point effective potential with the ERG [4, 15] boils
down to the solution of a second order differential equation for the effective potential. This
equation indeed requires a careful study of the the boundary conditions for large fields. Morris
[15] explains how to obtain the large-field asymptotic form of the fixed-point effective potential
and, thus, how to resolve the ambiguity in the boundary conditions for vanishing field. The
differential equation for the not fixed-point effective potential that we obtain is different from
the fixed-point equation in Refs. [4, 15], but it also lends itself to a successful study of the
boundary conditions needed for finding physical solutions.

The effective potential can also be calculated in perturbation theory [10]. We discuss the
connection of our non-perturbative calculation in three dimensions with perturbative calcu-
lations [20–25], which are still ongoing work [26]. This connection is indeed fruitful and
unveils advantages and disadvantages of each approach. In contrast, the connection between
the fixed-point ERG effective potential and perturbative renormalization is indirect (see the
discussion by Morris [27]).

Our approach begins with an arbitrary classical potential but obtains indirect information
about it. We shall discover that a natural solution for our formulation of the Dyson-Schwinger
effective potential involves, for a single scalar field φ in three dimensions, not just the φ4-
theory considered by Shepard et al [17] but the full renormalizable φ6-theory. The φ6-theory
has two relevant control parameters and encompasses a broader range of applications, includ-
ing the description of tricritical behavior [16,28,29].

The tricritical behavior of three-dimensional scalar field theory features among the multi-
critical RG fixed points in dimension d > 2, which have been the focus of recent interest, e.g.,
in the work of Codello et al in Refs. [30,31] and in references therein. These references apply
a combination of perturbation theory and non-perturbative methods based on conformal field
theory. A possible connection of these methods with our approach to the non-perturbative
calculation of the effective potential should be very interesting.

Perturbative calculations in the epsilon expansion for multi-critical RG fixed points are
compared by O’Dwyer and Osborn [32] with the ERG equation in the local-potential approxi-
mation (and beyond). The connection of the ERG equations with dimensional regularization
is further studied by Baldazzi et al [33]. These works are possibly related to the comparison
made in Sect. 6.1 between our non-perturbative approach and perturbation theory. However,
we do not employ the epsilon expansion, which turns out to be problematic.

Non-perturbative methods in field theory, namely, the Dyson-Schwinger method and the
ERG method, are gaining an increasingly important role in a variety of problems in quantum
field theory and, because of this, computer packages that can work out both types of equations
have been built [34]. The computational power of such packages can possibly be used to
construct approximations of the effective potential better than ours. This goal is beyond the
scope of the present work.

The effective potential in field theory is especially useful to study symmetry breaking. We
are here mainly concerned with the symmetric phase and the onset of symmetry breaking, in
terms of the massless limit. The solution of the ERG equation is more complicated in broken
symmetry phases. Notwithstanding, the ERG can be applied to the study of the effective poten-
tial in broken symmetry phases [35,36]. The symmetry that we have in the theory of a single
scalar field is very simple, namely, the Z2 φ-reflection symmetry. Nevertheless, the phase struc-
ture near a tricritical point is quite involved [16,28,29]. Theories with several fields, including
fermionic fields, and with various discrete or continuous symmetries have many applications
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but require an ample study. A detailed study of the various aspects of symmetry breaking is
beyond the scope of the present work.

Here is our plan. We introduce in Sect. 2 Shepard et al’s effective potential, with a notable
improvement. In Sect. 3, the integral equation fulfilled by this potential, in three dimensions,
is transformed into an ordinary differential equation for non-perturbative renormalization.
The mass renormalization is especially important and is studied in Sect. 3.1. The differential
equation for the effective potential is thoroughly studied in Sect. 4, which includes: a natural
but special solution in the form of a sixth-degree polynomial (Sect. 4.1), the general solution
(Sect. 4.2), and a study in Sect. 5 of its asymptotic behavior, based on the differential equation
itself, whence follow some numerical examples (Sect. 5.1). A comparison of numerical results
of our approach with numerical results of other authors is made in Sect. 6. This section includes
Sect. 6.1, containing a comparison with results of perturbation theory and a short discussion
of its scope. Finally, because the massless limit is most problematic in all these approaches,
Sect. 6.2 contains some remarks about it. We end with a general discussion (Sect. 7). In
the appendix, we derive some useful perturbative renormalization formulas for (λφ4+ gφ6)3
theory.

2 The Dyson-Schwinger effective potential

Let us first introduce the “Dyson-Schwinger effective potential”, as defined by Shepard et al
[17]. Starting from the equation for the regularized one-loop effective potential in terms of
the classical potential, namely,

U1(φ) =
1
2

∫ Λ0

0

dd k
(2π)d

ln
�

k2 + U ′′clas(φ)
�

. (1)

Shepard et al heuristically define the “Dyson-Schwinger effective potential” UDS as the solution
of the integro-differential equation

UDS(φ) = Uclas(φ) +
1
2

∫ Λ0

0

dd k
(2π)d

ln
�

k2 + U ′′DS(φ)
�

. (2)

Shepard et al show that the derivatives with respect to φ of this equation yield equations anal-
ogous to the standard Dyson-Schwinger equations. Furthermore, they connect the equation
with the sharp-cutoff ERG equation, written as

dU(φ,Λ)
dΛ

= −
Ad

2
Λd−1 ln

�

Λ2 + U ′′(φ,Λ)
�

, (3)

where Ad =
∫

dΩd/(2π)d (the angular integral such that dd k/(2π)d = Ad kd−1, for any inte-
grand that only depends on k). Indeed, Shepard et al regard Eq. (2) as a crude integration of
the ERG equation (3), “namely one in which the integration of the differential equation . . . is
carried out in a single step."

Actually, it is possible to exactly integrate Eq. (3), that is to say, it is possible to transform
it into an integral equation, namely,

U(φ,Λ) = U(φ,Λ0) +
1
2

∫ Λ0

Λ

dd k
(2π)d

ln
�

k2 + U ′′(φ, k)
�

. (4)

It becomes, in the limit Λ→ 0,

U(φ, 0) = U(φ,Λ0) +
1
2

∫ Λ0

0

dd k
(2π)d

ln
�

k2 + U ′′(φ, k)
�

. (5)
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This equation is similar to Eq. (2), provided that we identify UDS(φ) = U(φ, 0) and
Uclas(φ) = U(φ,Λ0). Of course, the second derivative U ′′ in the integrand now depends on the
integration variable, in contrast to U ′′DS in Eq. (2). It is the dependence of U ′′ on the integration
variable that makes it difficult to solve the integro-differential equation (4) to find U(φ,Λ) and
hence U(φ, 0). This is the effective potential that we seek, but we keep the subscript “DS” to
emphasize that by using integral equations we can make connections to the Dyson-Schwinger
equations.

The assumption that leads to Eq. (2) is that one can replace U ′′(φ, k) in the integral in
the right-hand side of Eq. (5) by its value at the lower integration limit. Notice that, if we
replace U ′′(φ, k) in the integral in Eq. (5) by its value at the upper integration limit, then, with
the identification Uclas(φ) = U(φ,Λ0), we simply have that U(φ, 0) is the one-loop effective
potential. In this case, the identification U(φ,Λ0)with Uclas(φ) is natural as a renormalization
procedure: the UV cutoff Λ0 has to be absorbed in the parameters present in Uclas for the
theory to be renormalizable and the limit Λ0 →∞ to be possible [10]. The exact solution
of Eq. (5) yields a transformation of Uclas(φ) to UDS(φ) that amounts to a non-perturbative
renormalization of coupling constants.

As noted by Shepard et al [17], the second derivative of Eq. (2) with respect to φ at
φ = 0 can be somehow connected with the “cactus approximation” to the Dyson-Schwinger
equation for the two-point function, namely, with the standard “gap equation”. This equation
is a severe truncation of the Dyson-Schwinger equation, as is well known and concisely shown
by Swanson [11, §5.4.1]. Actually, the second derivative of Eq. (2) with respect to φ at φ = 0
gives

m2
DS = m2

0 +

∫ Λ0

0

dd k
(2π)d

12λDS

k2 +m2
DS

, (6)

where m2
0 = U ′′clas(0), m2

DS = U ′′DS(0), and λDS = U ′′′′DS (0)/4!. The gap equation results from
Eq. (6) when one substitutes inside the integral the renormalized coupling λDS by the bare
coupling λ0 = U ′′′′clas(0)/4! but keeps mDS intact. If we also substitute mDS by m0, then it is like
putting U ′′clas instead of U ′′DS in the integral in Eq. (2) before taking the second derivative, and
thus we just have the one-loop correction to the bare mass.

The integrated ERG equation (5) yields, by taking its second derivative with respect to φ
at φ = 0:

U ′′DS(0) = U ′′clas(0) +
1
2

∫ Λ0

0

dd k
(2π)d

U ′′′′(0, k)
k2 + U ′′(0, k)

, (7)

where U ′′(0, k) and U ′′′′(0, k)/4! represent the scale-dependent square mass and fourth-order
coupling constant [naturally, we assume U ′′′(0, k) = 0]. This equation implies that m2

DS > m2
0

but hardly gives more information, unless we are able to say something about the dependence
on k of the integrand in the right-hand side.

To obtain the gap equation from Eq. (7), we have to take U ′′(0, k) = U ′′(0,0) = m2
DS but

U ′′′′(0, k) = U ′′′′(0,Λ0) = 4!λ0. We can understand this substitution as an instance of a sort of
hybrid approach to Eq. (5), in which one replaces U ′′(φ, k) in the integrand by its value neither
at the upper integration limit nor at the lower limit but by an expression that combines both
values, namely, which combines the renormalized mass, which belongs to the lower limit, with
the bare coupling, which belongs to the upper limit. This idea motivates us to find a systematic
approximation to Eq. (5) that considers the change of U ′′(φ, k) when k is brought from Λ0
down to 0.

The assumption that one can replace U ′′(φ, k) in the integral in the right-hand side of
Eq. (5) by its value at the lower integration limit is consistent with Shepard et al’s idea [17]
of integrating the ERG equation (3) “in a single step.” However, the assumed constancy of
U ′′(φ, k) in the integration over k produces certain error. Naturally, if we manage somehow
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to account for the dependence of U ′′(φ, k) on k, at least partially, we must have a better
approximation. A simple way of doing it consists in a two-step integration, in which we split
the integration range [0,Λ0] in two parts, using Uclas in the upper part and UDS in the lower
part. This procedure still gives an equation of the type of Eq. (2), that is, an equation with only
two functions, namely, the unknown function UDS and the input function Uclas. Of course, a
multi-step integration would be more accurate but would introduce other functions and thus
it would be considerably more complicated; unless the procedure were carried out in a fully
numerical fashion.

A multi-step integration of Eq. (5) is a numerical integration of the partial differential
equation (3) by discretization of Λ (and possibly φ). Such numerical integration can be per-
formed in several ways [17,36,39,40]. However, it inevitably demands an assumption about
the large-field behavior. Actually, the range of the field is often truncated to make it finite
and the corresponding boundary condition is somewhat arbitrary. Therefore, it seems that
a rather extensive study of the relation between the various boundary conditions and of the
influence of changes in the range of the field should be carried out to assess the validity of
the procedure. Unfortunately, numerical methods deprive us of intuition and, hence, require
extra work, which can be avoided with the insight gained from analytic methods. Our aim is
to provide this insight.

Naturally, a multi-step integration allows better control of numerical error, which is some-
what undefined in our approach. However, the error is usually estimated by comparison,
even in completely numerical approaches. The absence of error estimates in our approach
is compensated by the convenient formulation in terms of integral equations related to the
Dyson-Schwinger equations and the later connection with perturbative renormalization.

Both Eq. (2) or the improved version with a two-step integration allow us to express the
renormalized couplings in UDS in terms of the bare couplings in Uclas. Shepard et al relate
Eq. (2) to the Dyson-Schwinger equations but the improved version is a better approximation
to these equations. Indeed, the Dyson-Schwinger equation for the two-point function, for
example, actually contains the scale-dependent four-point vertex [11, §5.4.1], like Eq. (7).
That scale dependence is partially included in the improved version, which can be understood
as a better approximation to the corresponding Dyson-Schwinger equation.

Moreover, Eq. (2) leads to Eq. (6), which cannot be valid in the massless limit mDS → 0
(in dimension 2 < d < 4) because, in this limit, the renormalized coupling constant also van-
ishes [37,38]. Because of Eq. (6), the vanishing of λDS implies that m0 = 0, contradicting that
m0 is an arbitrary parameter. In fact, we must choose a value m2

0 < 0 to have the massless
renormalized theory, as deduced from general principles [37,38] and from Eq. (7). This ques-
tion is further discussed in Sect. 4.1, in regard to mass renormalization in three dimensions.

To obtain a concrete relation between UDS and Uclas, we shall confine ourselves to a given
dimension d. Our main interest in this paper is the case d = 3. The integrals in Eq. (2) or in
our improved version are easily carried out in (integer) dimension d, like in the calculation of
the one-loop effective potential U1 with Eq. (1). The result of such integration will just be a
nonlinear second-order differential equation for UDS, given Uclas.

3 Equation for the Dyson-Schwinger effective potential in 3d

In d = 3, when we integrate over k in Shepard et al’s equation (2), we obtain:

UDS(φ) = Uclas(φ) +
1

4π2
Λ0 U ′′DS(φ)−

1
12π

[U ′′DS(φ)]
3/2 . (8)

In this equation we have suppressed the part that only depends on Λ0, which is divergent
when Λ0 →∞, and we have neglected corrections that are suppressed by inverse powers of
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Λ0. The term proportional to Λ0 must be kept, but its coefficient depends on the formulation
of the ERG, which is given by Eqs. (3) and (4) (a different formulation can be employed,
such as, for example, the lattice regularization method of Shepard et al [17]). This coefficient
dependence is part of the scheme dependence of the ERG [8, 9], which is here condensed in
just one parameter. Naturally, it is required that the potential be convex, namely, U ′′DS(φ)≥ 0,
to have a well defined 3/2-power in Eq. (8). This might seem to make Eq. (8) inapplicable
to broken symmetry phases. However, the ERG equation (3) can actually be proved to have
convex solutions even in broken symmetry phases [35,36].

Now we intend to improve on Eq. (2) by means of a two-step integration in Eq. (5), namely,
by splitting the integration range [0,Λ0] into an upper part, where we replace U(φ, k) by
Uclas(φ), and a lower part, where we replace U(φ, k) by UDS(φ). Let the dividing point be Λi.
A short calculation gives (in d = 3), instead of Eq. (8),

UDS(φ) = Uclas(φ) +
1

4π2
(Λ0 −Λi)U

′′
clas(φ) +

1
4π2

Λi U ′′DS(φ)−
1

12π
[U ′′DS(φ)]

3/2 . (9)

The value of Λi is at our disposal. However, the ERG parameter actually is t = log(Λ0/Λ) and
most of the coupling constant “running” takes place for large t, that is to say, for Λ � Λ0.
Thus, we choose Λi� Λ0. Therefore, it seems reasonable to remove small terms from Eq. (9)
and write

UDS(φ) = Uclas(φ) +
1

4π2
Λ0 U ′′clas(φ)−

1
12π

[U ′′DS(φ)]
3/2 , (10)

which is only slightly different from Eq. (8) but is considerably more accurate, as we shall see.
Equation (10) can be suitably transformed by rescaling the field and the potential by pow-

ers of Λ0, that is to say, by taking Λ0 as the scale of reference and making Λ0 = 1. Indeed,
defining

x = φ/Λ1/2
0 , Ũ(x) = U(φ)/Λ3

0 ,

equation (10) adopts the form:

UDS(x) = Uclas(x) +αU ′′clas(x)−
1

12π
[U ′′DS(x)]

3/2 , (11)

where α= 1/(4π2) and we have suppressed the tildes for simplicity. Equation (11) is the basis
of our approach.

Both Eqs. (8) and (10) are self-consistent. In the former, the self-consistency is due to the
substitution of Uclas by UDS in the integral for the one-loop effective potential (1) to have the
original equation (2). If Uclas is characterized by some coupling constants and we assume that
UDS can be written in terms of the same coupling constants, the substitution of Uclas by UDS
amounts to the substitution of the bare coupling constants by the renormalized ones. Such
substitution is actually made in perturbation theory through the definition of the renormalized
loop expansion, as explained by Zinn-Justin in Ref. [38, p. 246 ff]. In this case, the effect
is that only superficially divergent Feynman diagrams need to be renormalized, because the
divergent subdiagrams are taken into account self-consistently. Thus, Eq. (8) is connected
with perturbation theory.

In contrast, Eq. (10) is not connected with perturbation theory. Next, we study various
forms of relationship between bare and renormalized parameters, in the simple case of mass
renormalization.

3.1 Perturbative and non-perturbative mass renormalization

We have three different equations for the effective or renormalized potential, namely, the
perturbative one-loop equation, Shepard et al’s Eq. (8), and our improved Eq. (10). We can
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compare them in the simple case of mass renormalization, whose equation is obtained by
taking the second derivative of the effective potential. With the definitions U ′′clas(0) = m2

0,
U ′′′′clas(0) = 4!λ0, U ′′eff(0) = m2, and U ′′′′eff (0) = 4!λ, we have first the perturbative one-loop
equation:

m2 = m2
0 +

6Λ0

π2
λ0 −

3
π

m0λ0 . (12)

Shepard et al’s Eq. (8) gives instead:

m2 = m2
0 +

6Λ0

π2
λ−

3
π

mλ . (13)

Eq. (10) gives:

m2 = m2
0 +

6Λ0

π2
λ0 −

3
π

mλ . (14)

In addition, we have the gap equation, namely,

m2 = m2
0 +

6Λ0

π2
λ0 −

3
π

mλ0 . (15)

All these four mass renormalization equations look similar but are quite different.
Shepard et al’s mass renormalization equation (13) coincides with the renormalized one-

loop equation (perturbation theory is further discussed in Sect. 6.1). This equation is wrong
in the massless m→ 0 limit, because in this limit λ→ 0 as well, as will be shown shortly. The
gap equation involves the renormalized mass but the bare quartic coupling. Nevertheless, the
gap equation is reasonable in the massless limit: it implies a relation between the bare mass
and quartic coupling, namely,

m2
0 = −

6Λ0

π2
λ0 , (16)

which is fine, as shown below. This same relation follows from Eq. (14) in the massless limit.
Let us consider the linearized Wegner-Houghton ERG directly in parameter space. The

nonlinear equations including up to the sextic coupling are written by Haagensen et al [6, §4].
Linearizing these equations, we obtain that the sextic coupling is constant, hence null, and we
have just two equations:

dσ
d t
= 2σ+ u , (17)

du
d t
= u , (18)

where t = ln(Λ0/Λ), σ = m2/Λ2, and u = 6λ/(π2Λ). System (17,18) has eigenvalues {2, 1}
and corresponding eigenvectors {(1,0), (−1,1)} (in this regard, see Ref. [28, §5.3]). Therefore,
the system is solved by defining the new variable v = σ+ u, giving

dv
du
= 2

v
u

.

Its solution is
v = σ+ u= K u2 ,

with an arbitrary constant K ≥ 0.
Geometrically, these RG trajectories are parabolas in the (σ, u) plane, which have horizon-

tal axes and are tangent to the line σ = −u at the origin. This RG flow is only valid in the
neighborhood of the origin (small m0 and λ0) and for small t, because bothσ and u are driven
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away from the origin for growing t. In contrast, the corresponding values of m2 and λ go to
finite limits when t →∞ (Λ→ 0), namely,

m2 = m2
0 +

6Λ0

π2
λ0 , (19)

and λ= λ0 (actually, λ is constant for any Λ). We find that Eq. (16) is indeed required to have
m = 0 in Eq. (19). Naturally, Eq. (19) is not exact (and λ 6= λ0), because the linearized ERG
is not applicable for t � 1 (Λ� Λ0).

Nevertheless, the full nonlinear ERG gives a massless limit that may not depart much from
Eq. (16). For example, Hasenfratz and Hasenfratz [4, §5.1] choose λ0 = 3Λ0/4 (in our nota-
tion) and compute the value of m2

0 that makes m = 0, by solving the nonlinear ERG equation
and tuning m2

0 to hit the critical surface. They find m2
0/Λ

2
0 = −0.4576, whereas Eq. (16) gives

m2
0/Λ

2
0 = −9/(2π2) = −0.4559.

The gap equation (15) is a better mass renormalization equation than Eq. (19), and it
reduces to Eq. (19) when m� Λ0. Our equation (14) reduces to the gap equation whenλ= λ0
(which is correct under the linearized ERG). Thus, those three mass renormalization equations
can be considered as successively better approximations to the exact mass renormalization
equation. Our equation (10) actually implies that λ → 0 in the massless limit (Sect. 4), as
expected. Indeed, λ must vanish at the non-trivial fixed point of the ERG, namely, at the
Wilson-Fisher fixed point (which does not appear in the linearized form, of course, but is
easily found with the non-linear ERG [1, 6]). Given that u = 6λ/(π2Λ) stays finite at the
non-trivial fixed point, λ must vanish with Λ.

In conclusion, both the gap equation (15) and our equation (14) are fine in the massless
limit whereas Eq. (13) is not. Consequently, our general equation (10) for the full effective
potential definitely improves on Shepard et al’s Eq. (8).

4 Solution of the differential equation

Our approximation to the Dyson-Schwinger effective potential is given by the nonlinear second-
order differential equation (11), which contains the input function Uclas. This second-order
differential equation can be rewritten in several ways. One obvious way consists in solving for
U ′′DS. Another is to redefine the dependent variable as

w= UDS− Uclas −αU ′′clas ,

to have the second derivative of the dependent variable expressed as the sum of two terms,
one with the dependent variable and another with the independent variable, namely,

w′′(x) = [−12πw(x)]2/3 − U ′′clas(x)−αU ′′′′clas(x) . (20)

Either way, we can think of an analogy with the problem of the one-dimensional motion of
a particle under an arbitrary force in mechanics, supposing that the dependent variable rep-
resents the position and the independent variable represents the time. This analogy is more
useful in the form (20), which corresponds to the sum of a conservative force and a time-
dependent force in mechanics. In fact, we can add −(U ′′clas + αU ′′′′clas)(0) to the conservative
force and subtract it from the “time-dependent force”, so that the latter initially vanishes.

We have two integration constants that can be determined by standard “initial” conditions
at x = 0, namely, by the values of the dependent variable and its first derivative at x = 0. Nat-
urally, the presence of the “time-dependent force” in Eq. (20) implies that there is no “energy”
first integral; unless there is no such force, as happens when Uclas(x) is a quadratic polyno-
mial, that is to say, in the trivial Gaussian case. The first derivative at x = 0 is imposed by
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the reflection symmetry of the potential, namely, U ′DS(0) = 0 or w′(0) = 0 (we assume that
Uclas(x) is symmetric, of course).

Differential equation (11) can also be transformed into a simpler second order equation by
taking its derivative with respect to x and replacing U ′DS by a new dependent variable (as done
to the differential equation for the ERG fixed-point local potential [4]). With this procedure,
the initial conditions consist of the values U ′DS(0) and U ′′DS(0). As said above, the former must
vanish whereas the latter has an important physical meaning: it gives the field-theory mass
(or correlation length).

A general problem with nonlinear differential equations such as (11) is that they can exhibit
singularities which depend on the initial conditions and are called “spontaneous” or “movable”
singularities. Note that such singularities can occur in one equation for most initial conditions.
This is the case of the differential equation for the ERG fixed-point local potential [4, 15],
and the presence of singularities for most initial conditions actually allowed Morris [15] to
determine the initial conditions, by imposing the absence of singularities. Equation (20) can
develop a sort of singularities that depend on the initial conditions, although the absence of
them does not fully determine the initial value w(0).

Indeed, the solution of Eq. (20) may be non extendable whenever w vanishes, because of the
2/3-power. In general, we must choose the initial condition w(0) < 0, so that the 2/3-power
is well defined. This condition is equivalent to the convexity of UDS. For some initial condition
w(0)< 0, the dynamics given by Eq. (20) is intuitive: the “conservative force” drives w towards
zero whereas the “time-dependent force” drives w towards more negative values, because we
assume that the even derivatives of Uclas are positive at x = 0. The “time-dependent force”
initially vanishes, whereas the first “force” is initially larger the larger is −w(0) and makes w
go towards zero for an interval of x . If w does hit zero with non-vanishing “velocity” w′, then
the solution stops at the corresponding value of x .

Nevertheless, we can have non-singular and extendable solutions, provided that −w(0) is
small and non-vanishing (Sect. 4.2). At any rate, our intention is not to carry out a detailed
study of the singularities of the general solution of Eq. (11) and we proceed on a different tack.
First, we present the solution for a particular form of Uclas (Sect. 4.1). Second, we consider in
Sect. 4.2 the local properties of the general solution at x = 0, taking into account what is learnt
from the particular solution. In Sect. 5, we combine this study with the study of asymptotic
properties.

4.1 Polynomial solution

In a quantum field theory in some dimension d, the input function Uclas(x) is a polynomial and
the renormalizability of the effective potential implies a bound to the degree of the polynomial
that depends on d [10, 37, 38, 42]. In d = 3, the maximum degree is 6. If we set α = 0 and
put Uclas(x)∝ x6 in Eq. (11), then we have a solution UDS(x)∝ x6, because the consequent
homogeneity in the variable x allows us to adjust the coefficients to satisfy Eq. (11). All of this
suggests us to choose Uclas(x) as a sixth-degree polynomial, with only even powers, to make
it symmetrical; namely,

Uclas(x) = g0 x6 +λ0 x4 + r0 x2 + b0 . (21)

Hence, we seek a particular solution of Eq. (11) in the form of a symmetrical sixth-degree
polynomial, namely,

UDS(x) = g x6 +λ x4 + r x2 + b . (22)

Some simple but lengthy algebra shows that this is indeed a solution, provided that a set of
7 algebraic equations for the 8 coefficients is satisfied. The 7 algebraic equations are easily
obtained by solving for [U ′′DS(x)]

3/2 in Eq. (11), squaring, and equating the coefficients of the
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two twelfth-degree polynomials in x . By squaring, we introduce sign ambiguities, but the signs
can be determined by always referring to the positive square root in Eq. (11). Let us discuss
the nature of the equations.

First of all, the solution could actually be determined, because in the set of 7 algebraic
equations only appears the combination b− b0, and therefore the number of independent un-
knowns is 7 as well. Naturally, we set b0 = 0 (this additive constant in Uclas is not significant).
In general, b 6= 0. Let us consider the equations given by each subsequent power of x .

• The first and simplest equation (x0) can be written as

b = 2αr0 −
21/2

6π
r3/2 , (23)

which just expresses the unimportant constant b in terms of r0 and r.

• Next equation (x2), after substituting for b according to Eq. (23), can be written as

r − r0 = 12αλ0 −
3

21/2π
r1/2λ . (24)

This equation is just another form of writing the mass renormalization equation (14),
which is a general consequence of Eq. (10) and is in accord with the linearized ERG, as
explained in Sect. 3.1.

• Next equation (x4), after the pertinent substitutions, gives λ−λ0 in terms of r,λ, g (we
assume that r = U ′′DS(0)/2 6= 0):

λ−λ0 = 30αg0 −
3r1/2

221/2π
(5g + 3r−1λ2) . (25)

It is related to one-loop λ-renormalization equations, namely, to Eqs. (A.5) or (A.9) to
O(h), but it matches neither.

• Next equation (x6) gives g − g0 in terms of r,λ, g:

g − g0 =
9

2 21/2π
λ r−1/2 (−5g + r−1λ2) . (26)

It matches a g-renormalization equation, namely, Eq. (A.10) to O(h). Notice that it does
not involve α, which is associated with terms divergent in the limit Λ0→∞.

The last three equations allow us to express the bare parameters as explicit functions of the
renormalized parameters. Solving for the renormalized parameters r,λ, g, we could express
them in terms of the bare ones. Interestingly, the next two equations (x8, x10) reduce to one
equation, upon replacing r0,λ0, g0 in accord to the preceding equations. The equation is:

5r g = 3λ2 . (27)

The remaining seventh equation (x12) can be written as

(30g)3/2 = −12π(g − g0) , (28)

or

g0 = g +
303/2

12π
g3/2 . (29)

This relation is precisely the one that is obtained by making α= 0 and setting Uclas(x) = g0 x6

and UDS(x) = g x6 in Eq. (11).
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Excluding b (which we can calculate at the end), we have 5 independent equations for
r,λ, g and r0,λ0, g0. Therefore, we can choose one variable, say r, and solve for the others in
terms of it. The simplest procedure seems to be the following. We can eliminate g0 between
Eqs. (26) and (28), so that we have an equation for r,λ, g. This equation turns out to be
satisfied provided that Eq. (27) is satisfied. Therefore, we can choose arbitrarily two variables,
say r and λ, and then g is given by Eq. (27). As regards the application to the theory of phase
transitions, potential (22) can have three minima, that is to say, three phases, and two relevant
variables are necessary for tricritical behavior [28,29] (also Ref. [38, p. 608]).

It seems more natural to let the input parameters be the bare ones. However, the constraint
that affects r,λ, g implies a constraint on r0,λ0, g0, leaving independent only two of them,
which can be r0 and λ0. (However, we shall set r and λ0 in Sect. 6, to compare with the
calculations of Shepard et al [17].) It may seem odd that g0 is determined and non-vanishing,
because it vanishes in the φ4-theory. We can legitimately ask what happens if we arbitrarily fix
the three bare parameters r0,λ0, g0 and just solve for the renormalized parameters by means
of Eqs. (24), (25), and (26). This possibility is discussed below.

Let us now study the meaning of Eq. (27). When this equation is fulfilled, U ′′DS(x) is a
perfect square, namely,

U ′′DS(x) = 2(r + 3λx2)2/r . (30)

Naturally, then we have that

[U ′′DS(x)]
3/2 = (2/r)3/2 |r + 3λx2|3 ,

and it is a polynomial in x , provided that r + 3λx2 ≥ 0, as occurs when r,λ ≥ 0. Note that
the potential can be convex with λ < 0, provided that 5r g ≥ 3λ2, and then U ′′DS(x) in Eq. (30)
vanishes for some value of x . Nevertheless, we consider here that λ > 0.

We conclude that Eq. (27) or, rather, its expression in terms of the bare coupling constants
is the closure equation for polynomial solutions of Eq. (11) with input (21). If Eq. (27) holds,
then Eq. (11) boils down to the set of equations from (23) to (26) [with the substitution
g = 3λ2/(5r)]. The role of this set of equations is further clarified by the study of the general
solution of Eq. (11).

4.2 General solution

So far, we have found an interesting but particular solution of Eq. (11), namely, a sixth-degree
polynomial with coefficients that can be determined sequentially. The procedure employed
suggests us to look for the general solution of Eq. (11) as a power series expansion at x = 0;
namely, we assume that

UDS(x) =
∞
∑

k=0

ck x2k (31)

and try to determine the coefficients ck from Eq. (11). The sixth-degree polynomial solution
in Eq. (22) corresponds to the truncation to k = 3, and we preserve the former names of
c0, . . . , c3. It is the only exact polynomial solution. Naturally, the analyticity assumption implicit
in Eq. (31) is only valid if U ′′DS(0) 6= 0, that is to say, it is not valid at the singular point of
Eq. (11). We must caution that the expansion of the effective potential in powers of x ceases
to be valid for x � (r/λ)1/2, on general grounds [23,24].

The sixth-degree polynomial solution in Eq. (22) imposes that Uclas(x) is also a sixth-degree
even polynomial, with three coefficients and a constraint on them. However, if Uclas(x) is an
arbitrary sixth-degree (even) polynomial, then we can still find a solution of Eq. (11), as the
infinite series in Eq. (31). We try to determine the coefficients ck sequentially, but we no longer
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assume Eq. (27), which makes ck vanish for k ≥ 4. Equations (23), (24), and (25) are not
modified, but an additional term, with c4, is generated in Eq. (26):

g − g0 = −
45gλ

2
p

2πr1/2
+

9λ3

2
p

2πr3/2
−

14c4r1/2

p
2π

. (32)

Equations (24), (25), and (32) allow us to express the renormalized parameters r,λ, g in terms
of the bare ones and c4. To determine c4 we have to look to the following equations. Next one
is

c4 = −
3
�

60c5r3 + 112c4r2λ+ 75g2r2 − 90grλ2 + 27λ4
�

8
p

2πr5/2
. (33)

Naturally, we face the usual problem of non-perturbative approaches: the issue of an infinite
tower of equations that has to be truncated somehow to obtain definite solutions. If we just
make c5 = 0, then Eqs. (24), (25), (32), and (33) are a closed system for r, λ, g, and c4.

Of course, if we make c4 = 0, then Eq. (33) and all the following equations are automat-
ically satisfied provided that Eq. (27) holds, which implies that ck = 0 for k ≥ 4. With this
particular truncation, we have the exact sixth-degree polynomial solution. If we make c5 = 0
but assume that c4 6= 0, then we can solve for c4 in Eq. (33), obtaining:

c4 = −
9
�

5gr − 3λ2
�2

8r2
�p

2π
p

r + 42λ
� . (34)

Hence, we can substitute for c4 in Eq. (32) and obtain a correction to Eq. (26) that has larger
magnitude the larger is the deviation from Eq. (27). By assuming that c4 = 0 in Eq. (32), we
are introducing a truncation error, which can be evaluated by computing what c4 should be
according to Eq. (34) for the found solution. We can also substitute for c4 in Eq. (32) according
to Eq. (34) before solving it. However, if c4 6= 0, then we do not have that ck for all k ≥ 5, and
some high-degree coefficients could be large.

For small |x | and fixed r0,λ0, g0, the recursive reduction of the sequence of ck to one
definite unknown is straightforward, as we now describe. From the two initial conditions for
Eq. (11), the non-trivial one is the value of r (r 6= 0). Once we have chosen it, we can solve
Eq. (24) for λ(r), substitute in Eq. (25) and solve for g(r), substitute in Eq. (32) and solve for
c4(r), etc. However, the found solution may not have the right behavior for large |x |. Indeed,
we have seen at the beginning of Sect. 4 that a singularity appears when the value of

−w(0) = αU ′′clas(0)− UDS(0) = 2αr0 − b =
21/2

6π
r3/2

is large enough. Therefore, the range of r is restricted. The study of the large-|x | behavior
leads to further restrictions and, in fact, to a definite solution, as explained in Sect. 5.

Naturally, the variable r plays a special role in the equations for ck, as we know from its
physical meaning and also because it features in the denominators of Eqs. (25), (32), and (33).
There are two interesting limits, namely, r →∞ and r → 0. The former is a sort of “classical”
limit, that is to say, the limit in which fluctuations are negligible. To understand this limit, it is
useful to recall that our coupling constants are dimensionless, after the rescaling by powers of
Λ0, and the limit r →∞ is achieved when the dimensional coefficient of the φ2-term is� Λ2

0.
In principle, if we make Λ0 → 0, then UDS(φ) = U(φ, 0) will approach Uclas(φ) = U(φ,Λ0),
and the renormalized parameters should tend to the bare ones. However, we have neglected
corrections that are suppressed by inverse powers ofΛ0 in Eq. (8), making that limit non-trivial.
The opposite limit r → 0 determines critical behavior, which is further studied in Sect. 6.2.
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5 Asymptotic behavior for large fields

An interesting question is how the effective potential behaves for large values of the field. In
other words, we ask the behavior of the differential equation in the neighborhood of x =∞
or, more rigorously, in the neighborhood of y = 0, where y = 1/x . Effecting this change of
the independent variable, accompanied by a convenient change of the dependent variable, we
obtain the associated equation:

y2 g ′′(y)− 10y g ′(y) + 30g(y) = (−12π [g(y)− ũ(y)])2/3 , (35)

where
g(y) = y6 UDS(1/y)

and
ũ(y) = y6

�

Uclas(1/y) +αU ′′clas(1/y)
�

.

Differential equation (35) contains g ′ in addition to g ′′ and is, therefore, a bit more compli-
cated than the equations in terms of x . However, it has some interesting properties at y = 0,
which we now study.

Naturally, y = 0 is a singular point of Eq. (35). Nevertheless, if ũ(0) is finite, then we can
have an analytic solution for g(y), thus justifying the definitions of g and ũ. Of course, ũ(0) is
finite only if the growth of Uclas(x) is O

�

x6
�

at the most, that is to say, only if it has the sextic
form (21). We can now expand g(y) in powers of y at y = 0, substitute for it in Eq. (35),
and solve for the coefficients in sequence, namely, for the sequence of derivatives of g(y) at
y = 0. Given that the polynomial ũ(y) has no odd-degree powers, the odd-order derivatives
of g(y) vanish (as expected). The even-degree coefficients are expressed in terms of r0,λ0, g0.
In particular, the first coefficient, g(0), is given by the g in Eq. (28).

The power expansion of g(y) at y = 0 does not end at any finite power, for generic values
of r0,λ0, g0, unlike in the case that these values satisfy the constraint that makes UDS(x) a
sextic polynomial and, therefore, that it also makes g(y) a sextic polynomial (the constraint
appears in Sect. 4.1). Of course, the truncation of the power expansion of g(y) to O

�

y6
�

makes UDS(0) finite, whereas higher-order terms make it divergent. Naturally, the power ex-
pansion of g(y) at y = 0 does not have an infinite radius of convergence and does not serve
to calculate UDS(0). Therefore, we cannot directly deduce the missing boundary condition at
x = 0 for Eq. (11). To do it, one possibility is to take g(y) at some value y within the ra-
dius of convergence and numerically integrate Eq. (11) from x = 1/y to x = 0, with initial
conditions UDS(x) = x6 g(1/x) and its derivative. Another possibility, which we find more pre-
cise, is a sort of asymptotic matching, which is best explained with some examples below (this
technique is related to the one employed by Borchardt and Knorr [41] in a related problem,
namely, the decomposition of the range of x into [0, x0] and [x0,∞]).

It is to be remarked that the phase-space point with g ′(0) = 0 and g(0) given by Eq. (28) is
a singular point of Eq. (35) and there is no unique solution through it. Indeed, the calculation
of the power expansion of g(y) ignores possible non-analytic terms. Numerical experiments
show that the integration of Eq. (28) with the given boundary conditions is unstable, result-
ing in oscillations of increasing amplitude. Therefore, the analytic solution is unstable under
small perturbations that bring in the non-analytic terms. At any rate, the analytic solution is
dependable, because the power series seems to converge well for reasonably large values of y
(small x).

5.1 Asymptotic matching: numerical examples

Let us see how the asymptotic matching works in an example. Hasenfratz and Hasenfratz [4,
§5.1] computed the ERG evolution of the case λ0 = 3/4 and g0 = 10/3 (in our notation)
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along a range of t = ln(Λ0/Λ), with r close to the critical value. These parameter values are a
possible choice for us. Unfortunately, Hasenfratz and Hasenfratz did not specify the boundary
condition for the potential at x = ∞ (the field is, according to their graphs, restricted to
the range x < 0.4). Moreover, we are interested in the limit Λ → 0, and thus it is difficult
to compare with their results. Hence, to be able to connect in Sect. 6 with Shepard et al’s
numerical work [17], we choose

Uclas(x) = 0.1x6 + 0.641391x4 + 0.1x2 . (36)

Assuming a truncated power series for g(y) in Eq. (35), with the corresponding ũ(y), we
obtain

g(y) =+ 0.0505146+ 0.451816y2 + 0.0523064y4

+ 0.137535y6 − 0.140594y8 + 0.201719y10 +O
�

y12
�

.

The function x6 g(1/x) is to be matched to a solution UDS(x) of Eq. (11) in the form (31). The
matching is to be performed at a value of y so small that the O

�

y10
�

expansion is sufficient,
and at a value of x = 1/y such that we can also keep few terms of the expansion (31). We
choose the value of x that makes the last two terms of the power expansion of g(y) of equal
magnitude, namely, x = 1/y = 1.2 [at this value, g(y) = 0.435 and 0.201719y10 = 0.0326].
Furthermore, we keep in (31) up to O

�

x10
�

. After solving the equations for the coefficients,
we find

UDS(x) =− 0.00131719+ 0.193442x2 + 0.341827x4

+ 0.143405x6 − 0.0954937x8 + 0.0478979x10 +O
�

x12
�

. (37)

Naturally, this procedure involves numerical errors and the coefficients may not be very
precise. The precision can be tested with various numerical experiments. For example, we
can (laboriously) include higher powers of x in (31) before solving for the coefficients. If we
match UDS(x) up to O

�

x12
�

, then the coefficients change: we observe that the coefficients of
powers up to O

�

x6
�

are quite stable, but the coefficients of x8 and x10 become −0.12 and
0.17, respectively. At any rate, they stay small and, therefore, seem to justify the truncation
of UDS(x) at some low order. For instance, we can truncate the expansion (31) at O

�

x8
�

(c5 x10 = 0) and use Eq. (34) with the values of r, λ, and g in (37), to obtain c4 = −0.083,
which is surely not very imprecise.

Of course, we can also check on the truncation at O
�

x6
�

given by Eqs. (24), (25), and (26).
For the potential (36), we obtain, by solving these equations, that r = 0.191997,λ= 0.347995,
g = 0.120942, which agree well with (37). Therefore, the truncation at O

�

x6
�

works for
r = 0.19, notably smaller than one. However, let us remark that to assume a truncation
at O

�

x6
�

does not imply to assume that the sextic effective potential is an exact solution of
Eq. (11), as would occur if Eq. (27) were verified (it is definitely not verified in this case).

We may notice that r0 = 0.1 in (36) has grown to r = 0.19 in (37). In fact, r > r0 always,
as commented after Eq. (7). Therefore, we need that r0 < 0 to attain r = 0. The results that
correspond to (36) with r0 = −0.1 instead of r0 = 0.1 are the following: r = 0.053, λ= 0.27,
and g = 0.32. We see that r is small, so we expect that a more negative value of r0 must
make r → 0. Actually, from Eq. (16) we deduce that r = 0 when r0 = −12αλ0 = −0.194959.
However, we find that the fitting of the power expansion (31) becomes very tricky when we
approach this value. We must not be surprised, since we have already seen that then the
solution of Eq. (11) is not analytic at x = 0 (Sect. 4). However, we still have an acceptable
matching of power series for r0 = −0.18 (with λ0 = 0.641391 and g0 = 0.1). It yields:

UDS(x) = −0.00915248+ 0.00585087x2 + 0.176356x4 + 1.00058x6 − 0.705973x8

+O
�

x10
�

. (38)
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Figure 1: Matching of power series at x = 1 for r = U ′′DS(0)/2= 0.0059.

Here we have included only up to O
�

x8
�

because higher powers actually worsen the fit, which
is a symptom of a reduced radius of convergence. Function (38) is plotted in Fig. 1 together
with the matching function x6 g(1/x). For r0 a bit smaller than −0.18, we can still get a
sensible power series of UDS(x), but the matching is progressively worse and the results are
less reliable.

It is interesting to note that the truncation at O
�

x6
�

given by Eqs. (24), (25), and (26),
agrees well with (38), in spite of c4 being of considerable magnitude. Indeed, by solving the
equations, we obtain r = 0.00584496, λ = 0.176559, g = 0.990523. This good agreement is
due to the small contribution of the term that contains c4 in the right-hand side of Eq. (32),
which is therefore almost equivalent to Eq. (26).

6 Comparison with other results

Here we compare the foregoing results with other results, encompassing numerical and ana-
lytic results. We first compare to Shepard et al’s numerical work [17]. As regards mass renor-
malization, Shepard et al’s Eq. (8) gives Eq. (13), which is unsuitable (Sect. 3.1). However,
they actually employ the gap equation (15).

Shepard et al set λ0 = 10, but their bare coupling λ0 is not to be identified with ours, which
is divided byΛ0 when we undo the change of variables that removesΛ0. Furthermore, our nor-
malization of the φ4-term is different, by a factor of 4. Shepard et al show that Λ0 = (6π2)1/3

for the lattice calculations in d = 3. When both differences are taken into account, we have
λ0 = (10/4)/(6π2)1/3 = 0.641391, the value used in Sect. 5.1. This value is smaller than one
but not very small. If we replace λ with λ0 in Eq. (24) and use this value of λ0, then we have
a relation between the bare and renormalized values of r (or m). For r � 1, r hardly differs
from r0, as expected in the “classical” limit of negligible fluctuations. Shepard et al actually
set m= 0.285 for their “latticized” version of the cactus approximation. This is, with our nor-
malization, equivalent to m= 0.285/(6π2)1/3 = 0.07312� 1 or r = m2/2= 0.002673, being
in the regime of strong fluctuations. With the ordinary gap equation, we obtain r0 = −0.17,
whereas the “latticized” gap equation yields m0 = 2.61i [17], equivalent to r0 = −0.224. The
result of Monte Carlo calculations by Shepard et al is r0 = −0.154.

Actually, whether we have r1/2λ0, as in the gap equation, or r1/2λ, as in Eq. (24), is almost
irrelevant when r � 1, because either of them hardly contributes to the right-hand side of each
equation. Therefore, r0 ≈ −12αλ0 for r → 0. This is r0 = −0.19, for λ0 = 0.6414, as already
seen in Sect. 5.1. In that section, we also see, in Eq. (38), that we obtain r > 0.005 for
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r0 = −0.18, which suggests that −0.19< r0 < −0.18 for Shepard et al’s r = 0.002673.
In Eq. (24), we also need λ to solve for r0, given r and λ0. With the truncation at O

�

x6
�

, the
coupling constant λ of theφ4-theory is given by Eqs. (25) and (26) with g0 = 0 (equations that
do not contain α). Given λ0 and r, both these equations constitute a soluble system for λ, g.
Alternatively, we can employ Eq. (32) and Eq. (34) instead of Eq. (26). With λ0 = 0.6414 and
r = 0.002673, both methods do not differ much and yield λ= 0.14 and g = 1.4–1.6. Shepard
et al obtain (in our normalization of λ) λ = 0.096 with Monte Carlo and λ = 0.12 with their
continuous ERG calculation, making numerical fits that assume g = 0 (wrongly). In the case
of Eq. (38), with the same λ0 but g0 = 0.1 and r = 0.0059, we have λ= 0.18 and g = 1.0.

Now we quote the ratios λ/m = λ/(2r)1/2, for later use (in Sects. 6.1 and 6.2). Shepard
et al’s results obtain λ/m = 1.3 with Monte Carlo and λ/m = 1.7 with their continuous ERG
calculation (with our normalization of λ), while we obtain λ/m= 1.9 with truncation and 1.6
with Eq. (38) (for g0 = 0.1). Shepard et al’s DS-like 4-point coupling equation [see Eq. (16)
or Eq. (38) in Ref. [17]] yields a too low λ/m= 0.57.

6.1 Comparison with perturbation theory

We have considered both perturbative and non-perturbative mass renormalization in Sect. 3.1
and remarked in Sect. 4 the connection of some non-perturbative equations with one-loop
renormalized perturbation theory. It behooves us to proceed to higher orders in the renormal-
ized perturbation series.

Renormalization of the φ4-theory at the two-loop level is described in detail by Amit,
Ref. [42, p. 117 ff]. Applying Amit’s formulas to d = 3 with momentum cutoff regulariza-
tion and neglecting inverse powers of the cutoff Λ0, the result is:

m2
0 = m2 −

6Λ0

π2
λ+

3mλ
π
− 27

�

Λ0

π3m
−

8+π2

2π4

�

λ2 +
6λ2

π2

�

log
Λ0

m
− 1.5247

�

, (39)

λ0 = λ+
9λ2

2πm
+

63λ3

4π2m2
. (40)

(The last parenthesis in Eq. (39) results from the calculation of the cutoff “sunset” Feynman
graph, whose Λ0-independent part is computed numerically). These two equations can also
be obtained as particular cases (g0 = 0) of equations derived in the appendix.

In the mass renormalization equation (39), the three initial terms in the right-hand side
form the one-loop level result, matching equation (13). This equation fails in the massless
limit, as analyzed in Sect. 3.1. The addition of the two-loop terms does not remedy it, because
they also vanish as m→ 0, given that λ/m stays finite.

The renormalization of λ is given by Eq. (40). This equation, as well as Eq. (39), is fine as
an expansion in powers of λ for fixed m, that is to say, is fine for λ/m small. For example, in
potential (37), λ/m= 0.55 and

9λ
2πm

= 0.79,
63λ2

4π2m2
= 0.48 .

Consequently, the power series expansion seems to show certain degree of convergence in this
case and higher-order corrections should improve the result (in fact, these series are known to
be asymptotic and not convergent [37,38], and only a limited number of terms can be used).
Given λ0 and m, we could solve for λ and obtain an approximate value.

The potential with r = 0.053 and λ = 0.27 in Sect. 5.1 gives λ/m = 0.83, larger than for
potential (37), and

9λ
2πm

= 1.2,
63λ2

4π2m2
= 1.1 .
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Naturally, cases withλ/m¦ 1 are unsuitable (we have found above thatλ/m> 1 with Shepard
et al’s values of λ0 and m). In these cases, the raw form of λ0/m as a series expansion in powers
of λ/m is hardly useful and series summation methods are the standard procedure [37,38].

The perturbative expansion of the effective potential of the φ4-theory in d = 3 is known
to the five-loop order [23]. However, the calculations have been done in dimensional regu-
larization with minimal subtraction, instead of being done with a physical momentum cutoff.
Dimensional regularization introduces an unknown scale µ and misses any power of Λ0. The
redefinition to the physical mass scheme is a very laborious task [23]. On the other hand, the
calculation of Feynman graphs with a momentum cutoff is also very laborious.

Perturbative φ6-theory is even more complicated, of course. Although its study was ini-
tiated long ago [43–45], there are only very partial results. While perturbative φ4-theory
is super-renormalizable in d = 3, φ6-theory is just renormalizable and divergences prolifer-
ate, according to the general theory [38]. For example, the coupling constant λ is divergent
in the limit Λ0 → ∞; say, it is non universal [as already manifest in Eq. (25)]. Perturba-
tive computations with dimensional regularization and minimal subtraction by McKeon and
Tsoupros [46, 47] or Huish and Toms [48, 49] are hardly useful in our context, because they
are restricted to the poles in ε = 3− d and omit the finite parts. Much the same can be said of
the six-loop calculation of Hager [50], which applies strictly to tricritical behavior. Lawrie and
Sarbach discuss this type of renormalization and its limitations [29, Sect. V]. Sokolov [45]
calculated in the physical mass scheme but only retained quadratic terms in the coupling con-
stants (as do McKeon and Tsoupros [46,47], while Huish [49] has completed a four-loop order
calculation). In fact, Sokolov’s [45] non-trivial RG fixed point (the Wilson-Fisher fixed point)
is not correct: at that fixed point, g = 0, but later calculations contradicted it [22,23].

We present in the appendix the full two-loop renormalization of (λφ4+ gφ6)3 theory, reg-
ularized with the momentum cutoff Λ0 in the physical mass scheme. The comparison between
the non-perturbative equations and the perturbative ones shows that the latter perform worse.
For example, the results of Eqs. (24), (25) and (26) for potential (36) reproduce the full non-
perturbative potential (37) within a few percent in the case of r and λ, while the one-loop
perturbative results, namely, r = 0.122808, λ= 0.338735, g = 0.172128, deviate more. Of
course, the exact results are not available and we can only try to draw conclusions by compar-
ing between various results.

We find, furthermore, that the two-loop contribution actually spoils the one-loop approx-
imation obtained for potential (36). In fact, it is difficult to find numerical solutions for the
renormalized coupling constants from Eqs. (A.8), (A.9), and (A.10), which are very complex.
If we consider only the perturbation series for g(m,λ, g0) in Eq. (A.7), then we see that it ap-
pears to be strongly non-convergent, as manifested in a negative and relatively large two-loop
contribution to g, when we put g0 = 0.1, m =

p
2r = 0.622 and λ = 0.3418 [Eq. (37)]. In

the simple case with g0 = 0, Eq. (A.7) simplifies to

g(m,λ, 0) =
9λ3

πm3

�

1−
3λ
πm

�

+O
�

λ5
�

, (41)

as previously derived by other authors [22, 23], who noticed that these expansions are not
useful for λ/m close to one. The expansions actually get worse at higher loop order and
demand resummation methods [22,23,26] (unless λ/m is small, of course).

The convergence of series expansions with g0 6= 0 is worse than with g0 = 0, and no
resummation method has ever been tried in that case. In fact, we can see in the series for
g(m,λ, g0) of Eq. (A.7) that the term with log(m/Λ0) will grow without bound when m→ 0.
This growth is harmless for tricritical behavior and actually gives the expected logarithmic
correction to scaling behavior [43–45]. However, that term shows the problems that arise
to reach ordinary critical behavior by using perturbation theory when g0 6= 0. One obvious

18

https://scipost.org
https://scipost.org/SciPostPhysCore.5.3.044


SciPost Phys. Core 5, 044 (2022)

problem arises in the ε-expansion, because it requires a different dimension base for either
tricritical behavior or critical behavior, as discussed by Lawrie and Sarbach [29, Sect. V].

6.2 The massless limit: critical behavior

Our approach leads us to consider, in d = 3, the φ6-theory instead of just the φ4-theory. The
result of the perturbative renormalization group [43–45] is that gφ6 is RG-irrelevant with
respect to the trivial RG fixed point, which corresponds to tricritical behavior (λ/m = 0). Of
course, gφ6 is also irrelevant with respect to the non-trivial fixed point which corresponds to
ordinary critical behavior (λ/m 6= 0). Thus, one does not need to take g0 = 0 to study the
critical behavior, and the renormalized value of g should be independent of g0. In contrast,
λ is irrelevant with respect to the non-trivial fixed point but is relevant with respect to the
trivial fixed point. In the critical surface, there is a RG trajectory that departs from the trivial
fixed point and leads to the non-trivial fixed point. The higher stability of the latter implies
that the massless theory will be controlled by this fixed point, for generic values of the bare
couplings [1, 28, 29, 45]. We have seen in Sect. 3.1 that our approach is adequate for mass
renormalization in the massless limit. Here we consider coupling-constant renormalization.

Our coupling constants g and λ are already dimensionless, since λ is the dimensionful
coupling constant divided by Λ0. However, it is convenient here to define a quartic coupling
constant that is dimensionless and does not involve Λ0, as is common; namely,

u= λ/m= λ/(2r)1/2 .

In terms of this variable, Eq. (27), for example, adopts the form

g = 6u2/5 , (42)

which is non-perturbative, unlike Eq. (41), but is not exact (note that the two equations do
not agree for u� 1).

Let us recall how the RG fixed point value u∗ that controls the critical behavior is derived in
perturbative φ4-theory at fixed dimension [37,38]. While ordinary perturbation theory yields
u(m,λ0,Λ0) as a power series in λ0, renormalized perturbation theory, in d = 3, simply yields
λ0/m as a power series in u [e.g., Eq. (40)]. This expansion can be reversed to obtain the
expansion of u(λ0/m). The value u∗ is determined by the vanishing β-function condition

�

∂ u
∂m

�

λ0

= 0 . (43)

In fact, λ0/m as a function of u should have a vertical asymptote at u∗, such that the solution
of Eq. (43) is found for m → 0 and λ0/m → ∞ (as explained by Parisi [37, §8.1]). The
vertical asymptote at u∗ corresponds to a horizontal asymptote of u(λ0/m), that is to say, to
a maximum value of u for m→ 0 at fixed λ0. However, any truncated perturbative series of
λ0/m in powers of u is a polynomial and does not have a vertical asymptote [e.g., Eq. (40)].
Nevertheless, if one assumes that one can obtain β(u) as a power series expansion truncated
at the same order, then one can solve the equation β(u∗) = 0 and determine u∗. Of course,
this value necessarily corresponds to a finite value of λ0/m and hence to m > 0. Moreover,
the expansion of u(λ0/m), truncated at the same order, may or may not have a maximum [the
inverse expansion of (40) does not]; and if it does have a maximum, it may not be at the value
u∗ determined by β(u∗) = 0.

The above arguments show that the perturbative calculations of critical behavior are ques-
tionable. At low orders, the RG fixed point is found at λ0/m ∼ 1 rather than λ0/m � 1.
Nevertheless, λ0/m grows as higher-order terms are added, that is to say, as higher powers of
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λ are added to the right-hand side of Eq. (40). In fact, perturbation theory at fixed dimension
can be arranged to yield good results at higher orders [37, 38]. At any rate, the higher-order
terms make a substantial contribution, as already seen for moderately small m in Sect. 6.1. The
calculation of u∗ demands sophisticated series summation methods (described by Zinn-Justin
in Ref. [38, ch. 42]).

Moreover, renormalized perturbation theory is not useful for knowing whether or not
m = 0, given the initial values m0 and λ0. The problem with the massless limit has already
been presented in Sect. 3.1. Indeed, this problem is traditionally treated non-perturbatively,
for example, with the use of the gap equation.

Let us now consider various results of perturbative and non-perturbative calculations of
u∗ and g∗ (the critical sextic coupling constant). Work done years ago by Tsypin [18] on the
effective potential of the 3d Ising universality class, ruled by the φ4-theory, employing Monte
Carlo simulations, yielded u∗ = 0.97 ± 0.02 and g∗ = 2.05 ± 0.15. The consensus value is
u∗ ' 1, according to Tsypin [18]. Zinn-Justin reports (a value equivalent to) u∗ = 0.985
in Ref. [38, table 29.4], obtained with perturbative calculations (see also Ref. [25, table 8]).
The values of u found by Shepard et al and by our approach close to the massless limit are
somewhat larger: Shepard et al’s Monte Carlo calculation gives u = 1.3 for r = 0.0027 and
our approach gives u= 1.6 for r = 0.0059. The latter actually comes from λφ4+ gφ6 theory,
but u∗ should be the same as in just the φ4 theory.

The sixth degree coupling constant g is also interesting. Tsypin [18] referred to results of
perturbation theory in fixed dimension d = 3 as well as results of the ε-expansion. He also
referred to results of the ERG in the local potential approximation. In summary, the quoted
results show that g∗ ∈ (1.6, 2.3). Guida and Zinn-Justin [23] or Sokolov and collaborators, in
Ref. [22] and later in Ref. [26], with a more modern treatment, report g∗ = 1.65. If u∗ ' 1
and Eq. (42) hold, then we would have that g∗ ∼ 6/5 = 1.2. Butera and Pernici [19, table X]
compare various results, including higher-order coupling constants. The variance of g∗ in those
results is considerable. Higher order coupling constants have larger errors. We have found, for
λ0 = 0.6414 and r = 0.002673, with the truncated non-perturbative potential, g = 1.4–1.6,
whereas the asymptotic matching technique gives g = 1.0 in (38) for a somewhat larger r.

7 Discussion

We have explored the connection between bare and renormalized couplings that is derived
from the integral form of the Wilson or exact renormalization group. Our approach is a gener-
alization of Shepard et al’s integral equation and consists in a sort of a two-step rather than a
one-step integration over the momentum scale. It gives rise, in three dimensions, to a second-
order differential equation for the effective potential, namely, Eq. (11). Of course, a many-step
integration is possible, but it involves many functions and boils down to a procedure of nu-
merical integration of the ERG by discretization of Λ. In contrast, Eq. (11) can be studied
analytically and gives insight into non-perturbative renormalization.

The basic issue to be discussed is the scope of differential equation (11). To evaluate it, we
have first found an exact solution and then studied the general solution (in three dimensions)
in its light. In addition, we compare our numerical results to results of other approaches,
mainly with the results of Shepard et al and, from a different perspective, with the results of
perturbation theory.

In the simple case of mass renormalization, we have compared Eq. (11) with three other
equations for the effective potential, namely, the perturbative one-loop equation, Shepard et
al’s Eq. (8), and the gap equation. While Shepard et al’s equation totally fails in the massless
limit, Eq. (11) and the gap equation, which both approximate the Dyson-Schwinger equation
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for the two point function, correctly reproduce the expected result in the massless limit (for
small values of m0 and λ0). Moreover, the mass renormalization equation that derives from
Eq. (11), namely, Eq. (14), takes into account that the quartic coupling constant is renormal-
ized as well, as occurs in the Dyson-Schwinger equations but is neglected in the gap equation.

The renormalization of mass involves the renormalized quartic coupling constant and, like-
wise, the renormalization of any coupling constant involves the next-order renormalized cou-
pling constant. Therefore, our approach, when stated as a set of equations for the renormal-
ization of coupling constants, needs a truncation, as do the Dyson-Schwinger equations; that
is to say, we face an infinite tower of equations that need to be truncated. The truncation up
to the sextic coupling works well, as shown in Sect. 6. At any rate, our crucial result is that the
indeterminacy implicit in the infinite tower of equations corresponds to the indeterminacy of
the initial value problem for the second order differential equation. In this formulation of the
problem, we can obtain definite results by appealing to the asymptotic behavior of the general
solution of the differential equation, namely, by demanding that the solution has no singular
behavior for large values of the field.

The necessity of a boundary condition at infinity is surely not a particular feature of our
simplification of the ERG equation for the effective potential. Arguably, the absence of such
boundary condition has hampered attempts at numerical integration of the ERG equation. In
this regard, we expect that the insight provided by our simplified approach constitutes a step
forward towards successful methods of integration of the exact equation.

An essential innovation in our approach is that it naturally leads us to consider, in d = 3,
the renormalizable φ6-theory rather than the super-renormalizable φ4-theory. The standard
treatments of the ERG in three dimensions are compared to results of perturbative φ4-theory,
because the focus is on the non-trivial RG fixed point, which can be found with just the φ4-
theory. However, there are interesting phenomena related to the trivial (tricritical) fixed point
and, especially, to the crossover from one point to another. These phenomena have not been
considered within a non-perturbative approach, but we have shown that it is natural to do so.
This is an aspect to develop in future non-perturbative studies of scalar field theory in three
dimensions.

On the other hand, (λφ4 + gφ6)3 theory can also be studied with perturbative methods,
but it is quite complicated and our non-perturbative approach seems definitely superior. To
better answer this question, we should have more extensive results of the perturbative method
than those currently available.

The massless limit of the effective potential deserves a specific discussion. It is troublesome,
in perturbation theory as well as in our non-perturbative approach, because the massless (or
critical) theory should have a non-analytic effective potential. We have seen that the differ-
ential equation for the effective potential, in our approach, is indeed singular in the massless
limit. Actually, the singularity does not prevent us from carrying out a numerical integration
of the differential equation. However, we have found that the nature of the singularity is not
easily established by numerical methods. Further investigation of this question is left for the
future.

Finally, let us remark that convexity of the effective potential is required to have a well
defined 3/2-power in our differential equation for the potential. In the consequent relation
between classical and renormalized parameters, we see that there appears r1/2 = m (besides
the possibly negative r0 = m2

0), and m becomes an imaginary number in a broken symme-
try phase. The cure for this problem is well-known: to redefine the mass by a shift of the
field so that the expansion of the potential is made about a true minimum. Likewise, further
elaboration of our method is required to extend it to broken symmetry phases. This exten-
sion should present no special difficulties, because it has been shown that the ERG directly
obtains a convex potential in broken symmetry phases. In any case, our approach describes
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the non-perturbative effect of quantum corrections on the onset of symmetry breaking when
the parameters of the classical potential are tuned to the massless limit. In particular, we have
shown that there is a definite improvement in the mass renormalization equation in that limit.
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A Two-loop perturbative (λφ4+ gφ6)3 theory in the physical mass
scheme
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The effective potential at two-loop order is calculated with the background-field method
(succinctly exposed by Honerkamp [51]):

Ueff(x) =Uclas(x) + h
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. (A.1)

Here, the loop counting parameter is h. The O(h) term is standard. There are two O
�

h2
�

terms, given by the “double bubble” and the “sunset” Feynman graphs, drawn above. The
corresponding integrals are calculated with momentum cutoffΛ0 (the finite part of the “sunset”
graph integral is computed numerically, yielding A = −1.5247). Both h and Λ0 are to be set
to 1 at the end, to compare with the non-perturbative potential UDS(x). Of course, we put

Uclas(x) =
m2

0

2
x2 +λ0 x4 + g0 x6,

in accord with Eq. (21) (the constant term can be suppressed). Let us remark that, if we
make g0 = 0, then we reproduce the results in several references (calculated at higher loop
order) [20–25].

The renormalization is carried out as follows:

m2 = U ′′eff(0) = m2
0 + h

�
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, (A.2)
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λ=
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g =
U (6)eff (0)
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[The symbol O
�

h3
�

that denotes higher order terms is omitted in some expressions, for brevity.]
Solving for m0 in Eq. (A.2) and substituting in the following two equations:
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Hence, we obtain g(m,λ, g0) as:
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We can also solve for m0, λ0 and g0 in Eqs. (A.2), (A.3) and (A.4):
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π2

+ h2

�

45gΛ2
0

2π4
−

45gmΛ0

2π3

−
27λ2Λ0

π3m
+
�

27
2π2
−

36
π4
+

6A
π2

�

λ2 −
6λ2

π2
log

m
Λ0
+
�

45
8π2
−

45
π4

�

gm2

�

, (A.8)

λ0 = λ+ h
3
�

5πgm2 − 10gmΛ0 + 6πλ2
�

4π2m
+ h2

�

−
675Λ0 gλ

4π3m

+
675gλ

8π2
−

315gλ
π4

+
30Agλ
π2

−
30gλ
π2

log
m
Λ0
+

135Λ0λ
3

2π3m3
−

18λ3

π2m2

�

, (A.9)

g0 = g + h
9
�

5gm2λ− 2λ3
�

2πm3

+ h2

�

−
675g2

π4
+

75Ag2

π2
−

75g2

π2
log

m
Λ0
+

495gλ2

2π2m2
−

351λ4

2π2m4

�

. (A.10)

Replacing these bare constants in Uclas and substituting in Eq. (A.1), we can derive the renor-
malized expansion of Ueff to O

�

h2
�

, in which the limit Λ0→∞ obtains a universal potential.
Eqs. (A.8) and (A.9) are also useful to derive Eqs. (39) and (40), by replacing in Eqs. (A.8)
and (A.9) the function g(m,λ, 0), as given by Eq. (A.7) [only needed to O(h)].
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