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Abstract

A complex, seven-parameter ground-state problem for an Ising model on a 3D honey-
comb zigzag-ladder lattice, containing two types of magnetic sites, is considered in the
presence of an external field using the method of basic rays and basic sets of cluster
configurations. It is shown that the geometrical frustration due to the presence of trian-
gle elements leads to the emergence of a large variety of magnetic phases, the majority
of which are highly degenerate. The obtained theoretical results are used to elucidate
the sequence of phase transitions in the family of rare-earth oxides with a honeycomb
zigzag-ladder lattice, SrRE2O4 and BaRE2O4. New phases predicted by our model and
observed experimentally do not appear in previously considered simpler models for non-
interacting zigzag-ladders.
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1 Introduction

Geometrically frustrated magnets, due to richness of their magnetic structures and behaviors,
have been among the most intensively studied objects in the physics of magnetism and mag-
netic materials over the past several decades. Their theoretical description is a rather difficult
task, especially in the case when quantum effects are essential. However, among frustrated
magnets, there are many compounds with large-moment magnetic atoms. Often, these mag-
nets can be well described with classical, either Heisenberg or Ising spin models, depending
on the presence of strong crystal-field effects.

In this paper, we study geometrically frustrated magnets with magnetic atoms carrying
large spins. These are 3D honeycomb zigzag-ladder magnets such as SrRE2O4 [1, 2] and
BaRE2O4 [3–6], where RE is a rare earth atom. These families of compounds exhibit a very rich
magnetic behavior, especially in an external magnetic field [7–15]. Rare earth magnetic atoms
in these compounds occupy two crystallographically inequivalent positions with substantially
different values of magnetic moments (which can be considered as classical) and, very often,
almost orthogonal directions of easy-axis magnetization.

J01

J2

J12

J11 J02

h2

h1J2

Figure 1: A honeycomb zigzag-ladder lattice comprised of two types of sites, red and
blue. The coupling between the two neighboring spins along the ladder legs is J01
for red sites and J02 for blue sites. The spin coupling along ladder rungs is J11 and
J12 for the red and blue sites, respectively, while the coupling between red and blue
neighboring sites is J2. The external field for the two sites is represented by h1 and
h2. This magnetic lattice is found, for example, in the SrRE2O4 compounds [1] for
which the orange box represents a crystallographic unit cell.
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One of the most important experimental and theoretical challenges is to determine the
magnetic structures of these magnets in an external magnetic field at low temperature. If
an appropriate Hamiltonian is established, then one can try to solve the ground-state prob-
lem. This is difficult, even for rather simple classical Hamiltonians and, although several
methods have been developed [16–27], in particular the method of geometric inequalities by
J. Kanamori and M. Kaburagi [20,21], no general algorithm exists to obtain the ground-state
phase diagrams.

To appropriately describe the honeycomb zigzag-ladder magnets with strong magnetic
anisotropy, we consider an Ising-like Hamiltonian with seven parameters (see Fig. 1). Since we
deal with two types of spins, and the direction of the external field is arbitrary, two, rather than
one, external field parameter needed to be introduced. Although we refer to spins throughout
the text, one has to keep in mind that the orbital contribution to the magnetic moments is
significant in almost all SrRE2O4 and BaRE2O4 compounds.

The ground-state problem for Ising-like Hamiltonians can be solved by using the method
of basic rays and basic sets of cluster configurations [28–32]. This is the only method that
gives the complete solution for a ground-state problem of Ising-like Hamiltonians, i.e, all the
ground-state structures in every point of Hamiltonian parameter space. In the previous stud-
ies by one of the authors, this method was mostly used to rigorously prove the completeness
of solutions [28, 31, 32]. Here, we use the method as a tool for finding a solution to the
ground-state problem for an Ising model on a honeycomb zigzag-ladder lattice with two types
of sites. Although we restrict our considerations to the smallest clusters (triangular plaque-
ttes) the problem is rather complex because there are four types of such plaquettes with six
configurations for each type. We have found 22 basic rays (edges of ground-state regions in
the parameter space), but this is not a complete set – to determine all the basic rays, larger
clusters should be considered. It might be possible to eventually establish a complete solu-
tion for this ground-state problem using an advanced, specially developed software package,
however, even the incomplete solution found here sheds light on the sequence of magnetic
transitions observed in the honeycomb zigzag-ladder magnets in the SrRE2O4 and BaRE2O4
families. Due to strong crystal-field effects, the magnetic moments in several members of these
families demonstrate Ising-like behaviour with the easy-axes directions varying from one rare-
earth site to another, which makes them a good fit to the model considered.

The paper is organized as follows. Subsection 2.1 of Section 2 gives a description of the
model under consideration and the cluster method used. In Subsection 2.2, triangular pla-
quettes and their spin configurations are introduced, the Hamiltonian is presented as a sum
of energies of all the plaquettes of the lattice. In Subsection 2.3, all the basic rays (vectors)
which can be found using the triangular plaquettes are listed. Fully dimensional (that is,
seven-dimensional) ground-state regions and corresponding ground-state structures found on
the basis of these basic rays are described in Subsection 2.4. In Subsection 2.5, the disorder
(degeneracy) of the fully dimensional phases is analyzed. In Subsection 2.6, “nontriangular”
fully dimensional structures neighboring “triangular” ones are constructed and analyzed and,
in Subsection 2.7, six examples of ground-state phase diagrams are presented. In Section 3,
the relation between the experimental and the theoretical results is discussed and, in Section 4,
conclusions are drawn.
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2 “Triangular” ground-state structures

2.1 Model and method

The magnetic lattice of 3D honeycomb zigzag-ladder magnets is shown in Fig. 1. The structure
is composed of three types of zigzag ladders: red, blue and gray (after the color of rungs in
Fig. 1). We will refer to a part of the lattice with one red, one blue, and four gray ladders
as a “hexagonal tube”. There are two species of nonequivalent sites, these are depicted with
two colors: blue and red. The value of spin at each site is equal to −1 or +1. The coupling
between two neighboring spins along ladder legs (rungs) is J01 for red sites and J02 for blue
ones (J11 and J12). The coupling between spins at neighboring sites of different colors (along
ladder rungs) is J2. There are also two external field parameters, h1 and h2 for the red and
blue sites, respectively; these parameters depend on the components of an external field along
the two easy magnetization axes and the values of the magnetic moments at red and blue sites.
We therefore consider an Ising-type model with seven parameters and the Hamiltonian of the
model reads

H =
∑

〈magenta
bonds 〉

J01σiσ j +
∑

〈 cyan
bonds〉

J02σiσ j +
∑

¬

red
bonds

¶

J11σiσ j +
∑

¬

blue
bonds

¶

J12σiσ j

+
∑

〈 gray
bonds〉

J2σiσ j −
∑

¬

red
sites

¶

h1σi −
∑

¬

blue
sites

¶

h2σi . (1)

To find the ground states of such a model, we use a cluster method developed by one of
the authors in previous papers, the so-called method of basic rays and basic sets of cluster
configurations [28, 29, 31, 32]. Let us briefly elaborate on the main aspects of the method
used.

The ground-state phase diagram for any Ising-type model is a set of convex polyhedral
cones (polyhedral angles with the vertices at the origin of coordinates) in the parameter space.
A polyhedral cone is the linear hull, that is, all linear combinations with nonnegative coeffi-
cients — the so-called conic hull — of a set of vectors. An n-dimensional polyhedral cone is
bounded by (n− 1)-, (n− 2)-, . . ., 2-, 1-faces. 1-faces are called edges. The polyhedral cone
is fully determined by its edges (vectors along them). The most important are fully dimen-
sional polyhedral cones (seven-dimensional for the model considered). These cones fill the
parameter space without gaps and overlaps. We refer to a structure, which is a ground-state
structure in a fully dimensional polyhedral cone, as fully dimensional and to the corresponding
edges (vectors) as basic rays (vectors) [28–32]. A ground-state problem can be considered as
resolved if all the edges (basic rays or basic vectors) of all the fully dimensional polyhedral
cones are determined as well as all the ground states at these edges. The ground states in
basic rays (the same along an entire ray) are constructed with the lowest energy configura-
tions of a cluster (or clusters). We refer to the sets of these configurations as “basic sets of
cluster configurations.” Simple examples of basic rays and basic sets of cluster configurations
are given in Refs. [31,32] and in the appendix of Ref. [29]. It should be noted that the lower
the dimension of a face, the more degenerate is the corresponding ground state. The most
degenerate ground states correspond to 1-faces, i.e., edges.

2.2 Triangular plaquettes and their energies

Let us consider the simplest plaquettes of the lattice shown in Fig. 1 – triangular ones (Fig. 2).
There are four types of triangular plaquettes, the total energy can be distributed between
them in different ways, as every plaquette has vertices and sides shared with the neighboring
plaquettes. The arbitrariness in energy distribution can be taken into account by introducing
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(1-𝛼1)J01
J12/2J11/2

(1-𝛼2)J02

(1-𝛿1)(1-𝛾1)h1

J11/2

(1-𝜂1)𝛾1h1/2 (1-𝜂1)𝛾1h1/2

J12/2

(1-𝛿2)(1-𝛾2)h2

(1-𝜂2)𝛾2h2/2 (1-𝜂2)𝛾2h2/2 𝜂1𝛾1h1/4 𝜂1𝛾1h1/4 𝜂2𝛾2h2/4 𝜂2𝛾2h2/4

𝛼1J01/2 𝛼2J02/2

𝛿2(1-𝛾2)h2 𝛿1(1-𝛾1)h1

(1-𝛽)J2 (1-𝛽)J2 𝛽J2 𝛽J2

(a) (b) (c) (d)

Figure 2: Four types of triangular plaquettes and their energies (see Fig. 1). The
energy distribution between plaquettes of different types with shared sites or bonds
is parameterized by a set of coefficients α1,2, β , γ1,2, and, η1,2, which take arbitrary
values between zero and unity and which we refer to as “free” coefficients.

a set of coefficients α1, α2, β , γ1, γ2, η1, and η2 which can take arbitrary values between
zero and one and which we refer to as “free” coefficients. The four types of the triangular
plaquettes and energy distribution between them are shown in Fig. 2. The Hamiltonian (1)
can be presented as a sum of energies for all the plaquettes,

H =
∑

i

�

(1−α1)J01σi1σi2 +
J11

2
(σi2σi3 +σi3σi1)−

1−η1

2
γ1h1(σi1 +σi2)

−(1−δ1)(1− γ1)h1σi3

�

+
∑

i

�

(1−α2)J02σi1σi2 +
J12

2
(σi2σi3 +σi3σi1)−

1−η2

2
γ2h2(σi1 +σi2)

−(1−δ2)(1− γ2)h2σi3

�

+
∑

i

�

α1

2
J01σi1σi2 + (1− β)J2(σi2σi3 +σi3σi1)−η1

γ1

4
h1(σi1 +σi2)−δ2

1− γ2

2
h2σi3

�

+
∑

i

�

α2

2
J02σi1σi2 + (1− β)J2(σi2σi3 +σi3σi1)−η2

γ2

4
h2(σi1 +σi2)−δ1

1− γ1

2
h1σi3

�

,

(2)
where the first, second, third, and fourth summations go over all the plaquettes shown in
Fig. 2.

Let us show, for instance, that the energy of every red site is taken into account only once
in the sum of energies of all the plaquettes on the lattice, that is, in the Hamiltonian (2). Every
red site belongs to three plaquettes of type a (to one in the upper position and to two in the
lower positions), to four plaquettes of type c, and to two plaquettes of type d. Therefore the
one-site energy is

e = −σh1

�

(1−δ1)(1− γ1) + 2
(1−η1)γ1

2
+ 4
η1γ1

4
+ 2
δ1(1− γ1)

2

�

= −σh1, (3)

where σ is the value of spin at the red site. The Hamiltonian (2) does not depend on free
coefficients despite the fact that the four sums for the individual plaquettes do depend on
them.
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There are six configurations of each plaquette, , , , , , and , where open
and solid circles denote spins σ = −1 and σ = +1, respectively. The energies of these config-
urations for all the four types of plaquettes are given in Appendix A.

2.3 Basic rays and basic sets of triangular plaquettes configurations

Using the expressions for these energies (see Appendix A), one can find 22 basic rays.
They are given in Table 1. In the first column of the table, the basic rays r [7-vectors
(J01, J02, J11, J12, J2, h1, h2)] are listed. Symbols ?,e, and denote the following transforma-
tions: sublattices swap (red sublattice becomes blue and vice versa), spin flip on the blue
sublattice, and spin flip on both sublattices. In the second column, the ground-state configu-
rations of the four types of plaquettes for the corresponding basic ray are given. The symbol
‖ separates configurations for four different types of triangular plaquettes. The symbol
denotes the set of all the six configurations. Basic vector (ray) r?1, for instance, and the cor-
responding basic set of cluster configurations can be obtained from vector r1 and its basic set
of cluster configurations by using the ? transformation. In the last column, the “free” coeffi-
cient values that minimize the energies of the corresponding configurations in the basic ray
are presented.

Let us consider as an example the ray r1 for which J01 < 0 (ferromagnetic coupling) and
all the other parameters are equal to zero. If α1 = 0, then, in this ray, the following triangular
plaquette configurations have the lowest energies: , , , and for the types a and c of
triangular plaquettes and all the possible configurations for the types b and d. Configurations

and have higher energies; configurations and , despite having the lowest energies,
are incompatible with other configurations. Any global configuration, constructed with these
local ones, is a ground-state configuration in this ray, that is, any global configuration, where
local configurations , , , and are excluded, is a ground-state in this ray (and vice
versa). It is clear that for these ground states all the red chains are ferromagnetic while the
blue chains could be arbitrary. We refer to a structure constructed with a set of triangular pla-
quette configurations in such a way, that is, without any additional condition, as a “triangular”
structure.

It should be noted that, at this stage, it is not yet proven that the r1 is a basic ray. As will
become apparent below, the 22 rays listed in Table 1 are indeed basic rays, but they do not
form a complete set.

2.4 Fully dimensional “triangular” phases

Although the set of basic rays is incomplete, many fully dimensional global ground-state con-
figurations can be found using these basic rays, they are given in Table 2 and Figs. 3-7.

The first column of Table 2 gives the label for the regions in parameter space. In the second
column, the triangular plaquette configurations that generate all the ground-state structures in
this region are shown. Under the plaquette configurations basic rays (not all in most cases) for
the region considered are also listed in this column. The third column lists some characteristics
of the structure(s), such as energy (per six plaquettes), relative number of each plaquette
configuration in the structure(s), and dimensionality of disorder. The coefficient in front of h1
(h2) in the expression for the energy, taken with opposite sign, is equal to the magnetization per
one sublattice site of the “red” (“blue”) sublattice. For region 2, for example, magnetization per
site is 1 for the “red” sublattice and 1/3 for the “blue” sublattice. Among the basic vectors for
every region, there are necessarily seven linearly independent ones, except for region 15. For
this region seven basic vectors are determined but only six of them are linearly independent.
However, one can prove that phase 15 is fully dimensional. To obtain all the basic vectors for
this phase, larger clusters should be considered.
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Table 1: Basic rays and basic sets of configurations for the Ising model on a honey-
comb zigzag-ladder lattice.

Basic ray Basic set “Free”
(J01, J02, J11, J12, J2, h1, h2) of configurations Ri coefficients

r1 (−1,0, 0,0, 0,0, 0) ‖ ‖ ‖ α1 = 0

r?1 (0,−1,0, 0,0, 0,0) ‖ ‖ ‖ α2 = 0

r2 (1, 0,−2, 0,0,0, 0) ‖ ‖ ‖ α1 = 0

r?2 (0,1, 0,−2, 0,0, 0) ‖ ‖ ‖ α2 = 0

r3 (1,0, 2,0, 0,0, 0) ‖ ‖ ‖ α1 = 0

r?3 (0,1, 0,2, 0,0, 0) ‖ ‖ ‖ α2 = 0

r4 (2,0, 0,0, 1,0, 0) ‖ ‖ ‖ α1 = 1, β = 0

r∼4 (2,0, 0,0,−1, 0,0) ‖ ‖ ‖ α1 = 1, β = 0

r?4 (0,2, 0,0, 1,0, 0) ‖ ‖ ‖ α2 = 1, β = 1

r∼?4 (0,2, 0,0,−1,0, 0) ‖ ‖ ‖ α2 = 1, β = 1

r5 (1, 0,0, 0,0, 2,0) ‖ ‖ ‖ α1 = 0, γ1 = 1, η1 = 0

r−5 (1, 0,0, 0,0,−2, 0) ‖ ‖ ‖ α1 = 0, γ1 = 1, η1 = 0

r?5 (0, 1,0, 0,0,0, 2) ‖ ‖ ‖ α2 = 0, γ2 = 1, η2 = 0

r?−5 (0, 1,0, 0,0,0,−2) ‖ ‖ ‖ α2 = 0, γ2 = 1, η2 = 0

r6 (0,0, 1,0, 0,2, 0) ‖ ‖ ‖ γ1 =
1
2 , δ1 = 0, η1 = 0

r−6 (0,0, 1,0, 0,−2,0) ‖ ‖ ‖ γ1 =
1
2 , δ1 = 0, η1 = 0

r?6 (0,0, 0,1, 0,0, 2) ‖ ‖ ‖ γ2 =
1
2 , δ2 = 0, η2 = 0

r?−6 (0,0, 0,1, 0,0,−2) ‖ ‖ ‖ γ2 =
1
2 , δ2 = 0, η2 = 0

r7 (0,0, 0,0, 1,4, 4) ‖ ‖ ‖ β = 0, γ1 = 1, γ2 = 0,
δ2 = 1, η1 = 1

r−7 (0,0, 0,0, 1,−4,−4) ‖ ‖ ‖ β = 0, γ1 = 1, γ2 = 0,
δ2 = 1, η1 = 1

r∼7 (0,0, 0,0,−1, 4,−4) ‖ ‖ ‖ β = 0, γ1 = 1, γ2 = 0,
δ2 = 1, η1 = 1

r∼−7 (0, 0,0,0,−1,−4, 4) ‖ ‖ ‖ β = 0, γ1 = 1, γ2 = 0,
δ2 = 1, η1 = 1

Let us consider an example. Structures 3 (see Fig. 3), composed of red uu chains
and blue ud chains, are generated with triangular plaquette configurations , , , ,

, and , that is, every triangular plaquette in these structures should be one of these.
This set of triangular plaquette configurations is a subset of basic sets Ri for basic rays
r1, r2, r?2, r?3, r?4, r∼?4 , r5, r?5, r?−5 , r6, r7, and r∼7 (see Table 1). It means that, in the conic hull of
this set of vectors, structures 3 are the ground-state ones. To calculate the energy of structures
3, it is sufficient to determine the relative number of each plaquette configuration in these
structures (see Appendix A). These numbers are 2, 1, 1, 2, 2, and 4, respectively.

In Table 2, we give only one representative per class of structures. Other structures of the
class can be obtained from the given one by applying three transformations (?,e, and ). For
instance, the class of structures 5 contains eight structures (see Table 3 and Fig. 8): 5, 5?,
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Table 2: Fully dimensional regions and “triangular” ground-state structures of the
Ising model on the honeycomb zigzag-ladder lattice. The structures (from 1 to 14)
are numbered in order of decreasing magnetization of the “red” sublattice.

Generating configurations Characteristics of the structure(s)
and basic rays (energy per six plaquettes)

1 ‖ ‖ ‖ J01 + J02 + J11 + J12 + 4J2 − h1 − h2
r1, r?1, r2, r?2, r∼4 , r∼?4 , [ 1 ‖ 1 ‖ 2 ‖ 2 ], order

r5, r?5, r6, r?6, r7, r∼7 , r∼−7

2 ‖ ‖ ‖ 1
3(3J01 − J02 + 3J11 − J12 + 4J2 − 3h1 − h2)

r1, r2, r?3, r∼?4 , r5, r?5, r6, r?6, r7, r∼7 [ 3 ‖ 1, 2 ‖ 2, 4 ‖ 4, 2 ], 2D disorder

3 ‖ ‖ ‖ J01 − J02 + J11 − h1
r1, r2, r?2, r?3, r?4, r∼?4 , [ 2 ‖ 1, 1 ‖ 2, 2 ‖ 4 ], 2D disorder
r5, r?5, r?−5 , r6, r7, r∼7

4 ‖ ‖ ‖ J01 + J02 + J11 − J12 − h1
r1, r?1, r2, r?3, r5, r6, r?6, r?−6 , r7, r∼7 [ 2 ‖ 1, 1 ‖ 2, 2 ‖ 2, 2 ], 2D disorder

5 ‖ ‖ ‖ 1
5(J01 + J02 + J11 − 3J12 + 12J2 − 3h1 − h2)

r?3, r∼4 , r∼?4 , r5, r6, r?6, r∼7 [ 1, 2,2 ‖ 1,2, 2 ‖ 4,6 ‖ 2, 4,4 ], order

6 ‖ ‖ ‖ 1
2(2J02 − 2J12 − 4J2 − h1)

r?1, r?3, r4, r5, r6, r?6, r?−6 , r7 [ 1, 2,1 ‖ 2,2 ‖ 4,4 ‖ 4,2, 2 ], 2D disorder

7 ‖ ‖ ‖ 1
3(−J01 − J02 + J11 + J12 − 4J2 − h1 − h2)

r2, r?2, r4, r?4, r5, r?5, r7 [ 1, 1,1 ‖ 1,1, 1 ‖ 2,4 ‖ 2, 4 ], 1D disorder

8 ‖ ‖ ‖ 1
3(−J01 − J02 − J11 − J12 − 4J2 − h1 − h2)

r3, r?3, r4, r?4, r5, r?5, r6, r?6, r7 [ 1, 2 ‖ 1, 2 ‖ 2, 4 ‖ 2, 4 ], order

9 ‖ ‖ ‖ 1
3(−J01 − J02 − J11 − J12 + 4J2 − h1 − h2)

r3, r?3, r∼4 , r∼?4 , r5, r?5, r6, r?6 [ 1, 2 ‖ 1, 2 ‖ 2, 2,2 ‖ 2,2, 2 ], 2D disorder

10 ‖ ‖ ‖ 1
3(−J01 − J02 − J11 + J12 + 4J2 − h1 − h2)

r?2, r3, r∼4 , r∼?4 , r5, r?5, r6 [ 1, 2 ‖ 1,1, 1 ‖ 2,2, 2 ‖ 2, 2,2 ], 3D disorder

11 ‖ ‖ ‖ 1
3(−J01 − 3J02 − J11 − h1)

r?2, r3, r?3, r?4, r∼?4 , r5, r?5, r?−5 , r6 [ 2, 4 ‖ 3, 3 ‖ 4, 2,4, 2 ‖ 4,8 ], 2D disorder

12 ‖ ‖ ‖ J01 + J02 − J11 − J12 − 4J2
r1, r?1, r3, r?3, r4, r?4, [ 1, 1 ‖ 1, 1 ‖ 2, 2 ‖ 2, 2 ], order
r6, r−6 , r?6, r?−6 , r7, r−7

13 ‖ ‖ ‖ −J01 + J02 − J12
r?1, r2, r3, r?3, r4, r∼4 , r5, r−5 , r?6, r?−6 [ 1,1 ‖ 1, 1 ‖ 2, 2 ‖ 1, 1,1, 1 ], 2D disorder

14 ‖ ‖ ‖ −J01 − J02
r2, r?2, r3, r?3, [ 1, 1 ‖ 1, 1 ‖ 2, 2 ‖ 2, 2 ], 2D disorder

r4, r∼4 , r?4, r∼?4 , r5, r−5 , r?5, r?−5

15 ‖ ‖ 1
3(−J01 + 3J02 − J11 − 3J12 − h1)

‖ [ 2,4 ‖ 3,3 ‖ 4,2, 4, 2 ‖ 2, 4, 2,4 ], disorder
r?1, r3, r?3, r5, r6, r?6, r?−6
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2 3 4

5 6 8

11 12 13

14 15

Figure 3: Phases 2, 3, 4, 5, 6, 8, 11, 12, 13, 14, and 15. For each phase, the left hand
panel shows the configuration of the spins within each chain of a hexagonal tube
(its development is depicted). The larger colored circles at the bottom of the chains
are a key that indicate how the spins along a chain are distributed in each of the
arrangements shown in the right hand panels. For each phase, the right hand panel
shows the setting of the spins viewed down the chains from above. The configurations
of triangular plaquettes are also given. Phases 5, 8, and 12 are ordered, while phases
2, 3, 4, 6, 11, 13, 14, and 15 are disordered (the disorder is two-dimensional).

e5, e5?, 5, 5?, e5, and e5?. This is the maximum number of structures in one class. It should be
noted here that en∗ = (ñ)∗. The class of structures 14 contains only structure 14 because this
structure is symmetric with respect to all the three transformations. There are 69 “triangular”
phases in total.

It should be also noted that phases 5, 6, 7, and 10 are not possible if only uncoupled “red”
and “blue” zigzag-ladders are considered, i.e. if J2 = 0 (see Ref. [33] for ground states of one
zigzag-ladder).
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Table 3: Structure 5 and seven other structures obtained from it using transforma-
tions ?,e, and .

Generating configurations Characteristics of the structure
and basic rays (energy per six plaquettes)

5 ‖ ‖ ‖ 1
5(J01 + J02 + J11 − 3J12 + 12J2 − 3h1 − h2)

r?3, r∼4 , r∼?4 , r5, r6, r?6, r∼7 [ 1, 2,2 ‖ 1,2, 2 ‖ 4, 6 ‖ 2, 4,4 ], order

5? ‖ ‖ ‖ 1
5(J01 + J02 − 3J11 + J12 + 12J2 − h1 − 3h2)

r3, r∼4 , r∼?4 , r?5, r6, r?6, r∼−7 [ 1, 2,2 ‖ 1,2, 2 ‖ 2,4, 4 ‖ 4, 6 ], order

e5 ‖ ‖ ‖ 1
5(J01 + J02 + J11 − 3J12 − 12J2 − 3h1 + h2)

r?3, r4, r?4, r5, r6, r?−6 , r7 [ 1, 2,2 ‖ 2,2, 1 ‖ 6,4 ‖ 4,2, 4 ], order

e5? ‖ ‖ ‖ 1
5(J01 + J02 − 3J11 + J12 − 12J2 + h1 − 3h2)

r3, r4, r?4, r?5, r−6 , r?6, r7 [ 2, 2,1 ‖ 1, 2,2 ‖ 4,2, 4 ‖ 6,4 ], order

5 ‖ ‖ ‖ 1
5(J01 + J02 + J11 − 3J12 + 12J2 + 3h1 + h2)

r?3, r∼4 , r∼?4 , r−5 , r−6 , r?−6 , r∼−7 [ 2,2, 1 ‖ 2, 2,1 ‖ 6,4 ‖ 4,4, 2 ], order

5? ‖ ‖ ‖ 1
5(J01 + J02 − 3J11 + J12 + 12J2 + h1 + 3h2)

r3, r∼4 , r∼?4 , r?−5 , r−6 , r?−6 , r∼7 [ 2,2, 1 ‖ 2, 2,1 ‖ 4, 4,2 ‖ 6,4 ], order

e5 ‖ ‖ ‖ 1
5(J01 + J02 + J11 − 3J12 − 12J2 + 3h1 − h2)

r?3, r4, r?4, r−5 , r−6 , r?6, r−7 [ 2,2, 1 ‖ 1, 2,2 ‖ 4, 6 ‖ 4, 2,4 ], order

e5? ‖ ‖ ‖ 1
5(J01 + J02 − 3J11 + J12 − 12J2 − h1 + 3h2)

r3, r4, r?4, r?−5 , r6, r?−6 , r−7 [ 1,2, 2 ‖ 2,2, 1 ‖ 4, 2,4 ‖ 4,6 ], order

2.5 Disorder (degeneracy) of the phases

Let us analyze the disorder of phases next. Phases 1, 5, 8, and 12 (and the phases obtained
from them by using the transformations described above) are ordered. All the other phases
are disordered, that is, there are an infinite number of structures with the same energy. A
disorder can be characterized by its dimensionality. For instance, the disorder of phase 7 is

aa'

a'

a'
a'

a'a

aa
a

a' a

a'

a'

a'

a'a'

a

7

a a= a' a'=

Figure 4: Phase 7. The structures of this phase are constructed with the two con-
figurations of hexagonal tube: a and a′. The arrows show the directions of shift for
chains. The global arrow configuration (constructed with two hexagonal configu-
rations) is fully determined by a line of arrows (depicted in olive). Therefore, the
disorder is one-dimensional.
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a'

9

a

b c b'c'

Figure 5: Structures 9 are composed of six hexagonal tube configurations correspond-
ing to six arrow configurations of hexagons (a, b, c, a′, b′, and c′) in which two
arrows are pointing clockwise and two others anticlockwise or vice versa. The global
arrow configuration generated by local configuration b is depicted. The substitu-
tion shown in the upper part of the figure can be made locally without violating the
ground state rules. Therefore, the disorder is two-dimensional.

one-dimensional, as shown in Fig. 4. The structures of this phase are constructed with two
hexagonal tube configurations that can be depicted as hexagons with two arrows showing
the shift of the corresponding chains. The global lattice configuration is mapped on two-
dimensional arrow configurations. It is easy to see, such an arrow configuration is determined
by an arbitrary one-dimensional sequence of arrows. So, the disorder is one-dimensional.

The disorder of phase 2 is two-dimensional, since all the chains are ordered but every up-
up-down (uud) chain can be in three different positions. That is, there is a perfect order along
the c direction (along the chains) but a disorder in the ab-plane. The disorder of phase 4 is
also two-dimensional, since every “blue” ladder can be in two different positions. It is shown
in Fig. 5 that the disorder of phase 9 is two-dimensional as well, because all the chains are or-
dered and, in the structure generated by arrow configuration b, the local arrow configurations
depicted in the upper part of the figure are interchangeable.

The disorder of phase 10 is three-dimensional, that is, the degeneracy is macroscopic and
therefore there exists a residual entropy in this phase. Let us prove this. The structures of
phase 10 are constructed with ten hexagonal tube configurations, shown in Fig. 6. These
tube configurations are composed of identical chains, uud. The shift of a chain configuration
when passing to a neighboring one can be indicated by an arrow. So, we have ten arrow
configurations of hexagons. Notation x ′ means that all the arrows in the hexagon are opposite
to those in hexagon configuration x . In Fig. 7, an example of arrow configurations and another
representation of the same structures, by explicit indication of chain positions, are given. For
the “shaded” chains the shifts of all the three neighboring chains are equal. In such blue chains,
one of two spins in each oval (Fig. 7, right panel) can point in an arbitrary direction with the
other being opposite. So, the disorder in phase 10 is three-dimensional.
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b d eca a' 10

Figure 6: Structures 10 are composed of ten hexagonal tube configurations corre-
sponding to ten arrow configurations of hexagons, a, b, c, d, e, a′, b′, c′, d ′, and
e′ (the last four are not shown), in which one arrow is pointing clockwise and four
others anticlockwise or vice versa.

2.6 Fully dimensional “nontriangular” phases

The sets of basic vectors are complete for only four (4, 11, 13, and 14) of the fully-dimensional
regions stated in Table 2. The proof of the completeness is given in Appendix B which lists
the 6-faces for these regions. But even if the set of basic vectors for a “triangular” phase re-
gion is incomplete, the majority of 6-faces of the polyhedral cone generated by this set are
6-faces of this region. Then, even if the neighboring phase is not a “triangular” one, it is pos-
sible to determine the ground-state structure(s) for this phase. Such structures should have a
maximum number of new triangular configurations which are absent in structures of the “tri-
angular” phase but present in ground-state structures at the common boundary (6-face). We
found nine phases (more exactly, nine classes) of this type. The list of these phases is given in
Table 4 (one representative per class) and the corresponding structures are depicted in Figs. 9-
13. In these figures, new triangular configurations are framed by dotted squares. It should
be noted that the sets of triangular configurations in Table 4 and in the figures are the sets of
ground-state triangular configurations for six-dimensional boundaries. As one can see from
Figs. 9-11, some “nontriangular” structures, in contrast to “triangular” ones, are composed of
two different types of red ladder (phases 16, 18, 19, 22, and 23) or blue ladder (phases 20
and 21) configurations. These phases are due to the interaction between red and blue ladders,
they are therefore excluded from considerations in the one-dimensional models, such as 1D
ANNNI model used in Ref. [34].

It is worthwhile studying the disorder of these “nontriangular” phases. Phases 17 and
20 are ordered. As it is clear from Fig. 9 (upper panel), the disorder of phase 16 is one-
dimensional, since the structure is completely determined by a sequence of arrows showing
the shifts of neighboring red uud chains. The disorder of phases 18, 21, 22, and 23 is two-
dimensional due to ud chains. A complex disorder is present in phase 24. The structures of
this phase can be mapped on two-dimensional arrow configurations composed of ten hexagon
arrow configurations in which one arrow is aligned clockwise and the five others anticlock-
wise or vice versa, the arrow between blue sites being aligned with the majority of the arrows.
Three arrows depicted in Fig. 13 (left hand panel) produce an infinite half-chain of hexagon
arrow configurations. At the first sight, the local arrow configuration shown in Fig. 13 (mid-
dle panel) should produce a three-dimensional disorder. However, the number of this arrow
configurations is infinitesimal, since every configuration of this type generates at least two
half-chains of hexagons. So, the disorder is not three-dimensional but two- or, possibly, even
one-dimensional.

12

https://scipost.org
https://scipost.org/SciPostPhysCore.5.3.047


SciPost Phys. Core 5, 047 (2022)

1/2

1

1/20

3/2

1

1

1/2

0

1/2

1

1/20

01 1/2

1/2

3/2

1/2

3/2

0

3/2

0

1

0

1 11/2

3/2

3/2

1/2

1/2

0

1/2

0

1/2

1

0 1/2

3/2

1/2

3/2 1/2

0

1

1/2

1/2

1

1

1

1

1

1

1

1

3/2

1

0

11/2

11/2

1

1

1/2

1/2

1/2 1

3/2

1

3/2

1/2

1 1

1

1/2

1

3/2

1/2

1

0

1/2

0

1/2

3/2

1

0

1/2

0

1/2

1/2

1/2

1/2

1/21

1

3/2 0

1/2

0

1/2

1

1

1

1

3/2

0

1/2

1 3/21/2 1

1/2

1/2

13/21

1/2 1/2 1

03/2

0

1/2 0 1/2 0

1/2

0

11/21/2

0

0

01/2

0

1/2

11/2

13/2

3/2 1

3/2

01/2

11/2

0

1

1

3/2

3/2 1

1/2

0

1/2

03/2

1/2

1/2 1

1/2

1/2

1/2

1

1

1/2

1/20 3/2

1

Figure 7: One of possible structures of phase 10 is shown in two ways, (left panel)
with the help of arrow configurations and (middle panel) by indicating the shift of
each chain, in the units of the in-chain spin distance. The unit cell is also indicated.
For the “shaded” chains the shifts of all the three neighboring chains are equal. In
such blue chains (right panel), one of two spins in each oval can be arbitrary, the
other being of opposite direction. The disorder in phase 10 is three-dimensional, i.e.
this phase is macroscopically degenerate.

5 5 5 5* ~ *~

Figure 8: Structure 5 and three related structures obtained from it by using transfor-
mations ?, and e. Transformation (spin flip on both sublattices) gives additional
four structures. Only one hexagonal tube is shown for each structure.

2.7 Ground-state phase diagrams in the (h1, h2)-plane

Consider the ground-state phase diagrams in the (h1, h2)-plane. Although the solution of the
ground-state problem is incomplete, at some particular values of the parameters J01, J02, J11,
J12, and J2, it is possible to construct exact and complete phase diagrams. Six examples of
such diagrams are given in Fig. 14. The boundaries shown with dotted lines are not strictly
proven.

When both the interaction parameter values and the external fields, h1 and h2, are fixed we
have a single point on the phase diagram. By continuously varying the value (and possibly the
direction) of an external field, instead of a point, we generate a line of transitions on the phase
diagram. For instance, increasing magnetic field along the a axis in SrEr2O4 that corresponds
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Figure 9: Phases 16, 17, 18, 19, 20, 22, and 23. They appear at boundary of phases 2,
3, 4, 4, 10, 13, and 13, respectively. The triangular configurations shown below the
structures are the ground-state configurations at these boundaries. New triangular
configurations are surrounded by dotted squares. The principle of these structures
construction is to find at the given boundary the structures containing maximum
number of such configurations. To show chains, only one hexagonal tube configu-
ration is depicted for each phase. A more detailed picture of phase 20 is shown in
Fig. 7 (middle panel) with “dashed” ddu chains.
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Table 4: Fully dimensional regions and “nontriangular” ground-state structures of
the Ising model on the honeycomb zigzag-ladder lattice.

Boun- Triangular configurations Characteristics
dary and basic rays of “nontriangular” structures

(2, 16) ‖ ‖ 1
3(J01 − J02 + 2J11 − J12 − 2h1 − h2)

‖ [ 1, 1, 4 ‖ 2, 4 ‖ 4,4, 4 ‖ 2,8, 2 ], 1D disorder
r2, r?3, r5, r?5, r?6, r7

(3, 17) ‖ ‖ 1
5(J01 − 3J02 + J11 + J12 − 4J2 − 3h1 − h2)

‖ [ 1,2, 2 ‖ 2,2, 1 ‖ 4, 4,2 ‖ 2,8 ], order
r?2, r?4, r5, r?5, r6, r7

(4, 18) ‖ ‖ 1
4(2J01 + 4J02 + 3J11 − 4J12 − 4J2 − 3h1)

‖ [ 1,1, 6 ‖ 4, 4 ‖ 8, 4,4 ‖ 8,2, 6 ], 2D disorder
r?1, r2, r?3, r5, r?6, r?−6 , r7

(4,19) ‖ ‖ 1
2(2J01 + 2J02 + 2J11 − 2J12 + 4J2 − h1)

‖ [ 1, 3 ‖ 2, 2 ‖ 2, 2, 4 ‖ 2, 2, 4 ], 2D disorder
r1, r?1, r2, r?3, r?6, r?−6 , r∼7

(10,20) ‖ ‖ 1
9(−3J01 − 3J02 − 3J11 + 3J12 + 12J2 − 3h1 − h2)

‖ [ 3, 6 ‖ 1, 3,3, 2 ‖ 8,4, 6 ‖ 2, 4,8, 4 ], order
r?2, r3, r∼4 , r∼?4 , r5, r6

(11, 21) ‖ ‖ 1
9(−3J01 − 7J02 − 3J11 + J12 − 4J2 − 3h1 − h2)

‖ [ 3, 6 ‖ 4, 4, 1 ‖ 4, 4, 8, 2 ‖ 4, 2, 12 ], 2D disorder
r?2, r3, r?4, r5, r?5, r6

(13, 22) ‖ ‖ 1
4(−2J01 + 4J02 + J11 − 4J12 + 4J2 − h1)

‖ [ 3,3, 2 ‖ 4, 4 ‖ 8, 4,4 ‖ 4,4, 2, 6 ], 2D disorder
r?1, r2, r?3, r∼4 , r5, r?6, r?−6

(13, 23) ‖ ‖ 1
12(−10J01 + 12J02 − J11 − 12J12 + 4J2 − h1)

‖ [ 9, 2,13 ‖ 12, 12 ‖ 24, 20,4 ‖ 12, 12,10, 14 ],
r?1, r3, r?3, r∼4 , r5, r?6, r?−6 2D disorder

(14, 24) ‖ ‖ 1
5(−3J01 − 3J02 − J11 + J12 − 4J2 − h1 − h2)

‖ [ 1, 1, 3 ‖ 2, 2, 1 ‖ 2,2, 6 ‖ 2,2, 6 ], disorder
r?2, r3, r4, r?4, r5, r?5

to a passage along the h1 axis in Fig. 14 (left middle panel) we have the following sequence
of the phases: 13, 23, 15, 6̃ and 4 (see also Fig. 15).

Let us show how to prove that the point where three phases, for instance, 2, 5, and 9,
meet, exists in a ground-state phase diagram. This point is determined by the following set of
vectors (common for all the three phases), {r?3, r∼?4 , r5, r6, r?6}. At fixed J01, J02, J11 J12, and J2
the solution of the equation

a?3r?3 + a∼?4 r∼?4 + a5r5 + a6r6 + a?6r?6 = (J01, J02, J11, J12, J2, h1, h2) (4)
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Figure 10: Disorder of phase 19. Open and filled circles denote two types of ferro-
magnetic chains. A similar disorder is present in phases 18, 22, and 23.
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Figure 11: Phase 21. There is a two-dimensional disorder in this phase due to the
presence of ud chains. Right panel gives a more detailed picture of the structure
(compare with Fig. 7, middle panel).

is

a?3 = J02 + 2J2, a∼?4 = −J2, a5 = J01, a6 = J11, a?6 = −2J02 + J12 − 4J2 ,

h1 = 2J01 + 2J11, h2 = −4J02 + 2J12 − 8J2 . (5)

For J01 = 1.0, J02 = 0.65, J11 = 0.60, J12 = 0.75, and J2 = −0.25 all the five coefficients are
nonnegative, so, the linear combination in the left side of Eq. 4 belongs to the conical hull of
the set of vectors, and, therefore, for these values of parameters, the point where the phases
2, 5, and 9 meet exists in the ground-state phase diagram for these values of parameters. It is
the point h1 = 3.2, h2 = 0.9.

In a similar way one can, for instance, find conditions for the existence of the region 13 –
region 23 boundary in the (h1, h2)-plane,

J11 > 0, J12 > 0, J2 < 0, 2J01 − J11 + 4J2 > 0, J12 − 2J02 > 0 . (6)

Then, for this boundary we have
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Figure 12: Structures 24 are determined by ten arrow configurations of hexagon (a,
b, c, d, e, a′, b′, c′, d ′, and e′) in which one arrow is pointing clockwise and five
others anticlockwise or vice versa. The arrow between blue sites is aligned with the
majority of the arrows. An example of global arrow configuration is also shown.
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Figure 13: Disorder of phase 24. Half-chain of hexagon arrow configurations for
phase 24 (see Fig. 12) is completely determined by the three arrow depicted in olive
or in green (left hand panel). Local arrow configuration shown in olive (middle
panel) could lead to a three-dimensional disorder because a rearrangement of spins
in blue chains of such configuration is possible (right hand panel). However, the
number of this arrow configurations is infinitely small, since every configuration of
this type generates at least two half-chains of hexagons.

h1 = 2J01 − J11 + 4J2 ,
¨

4J02 − 2J12 < h2 < 2J12 − 4J02 if J02 > 0 ,

− 2J12 < h2 < 2J12 if J02 < 0 .
(7)
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Figure 14: Examples of ground-state phase diagrams in the (h1, h2)-plane (the fields
and couplings are shown in arbitrary units). Some diagrams are not completely
proven, particularly the transitions depicted by the doted lines.
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3 Application to SrRE2O4 and BaRE2O4 compounds

In this section, we consider an application of the theoretical approach discussed above to the
magnetic properties of the two families of rare-earth compounds, SrRE2O4 and BaRE2O4. We
start by briefly summarizing what is experimentally known about the ground state configura-
tions of these zigzag-ladder magnets, particularly focusing on the in-field behaviour of SrEr2O4,
SrHo2O4, SrDy2O4 and BaDy2O4.

The crystal structure of these compounds is very close to the one depicted in Fig. 1, with
two RE ions in different positions forming a set of triangular ladders running along the c
axis [1]. The ladders are arranged in a honeycomb-like lattice in the a-b plane, however, the
honeycombs are significantly distorted so that the distances between the ions are not identical,
which results in the need to introduce different exchange couplings, J11 6= J12 6= J2 in our
model.

One important question to address here is to what degree the SrRE2O4 and BaRE2O4 com-
pounds could be characterized as Ising-type magnets. The answer to this question should come
most naturally from considering the effects of crystal fields (CFs), however, the task of estab-
lishing the sets of relevant CF parameters for the two ions in crystallographically inequivalent
positions is far from trivial. Because of the low overall symmetry and the large number of
atoms in a unit cell, interpretation of inelastic neutron scattering data does not necessarily re-
turn a unique set of CF parameters unless supplemented by optical and electron paramagnetic
resonance measurements, and so far this has only been done for SrEr2O4 [35]. For SrEr2O4,
the observed largely anisotropic g factors for the Er3+ ions in both crystallographically in-
equivalent sites [35] prove the applicability of the Ising model. For SrHo2O4 anf SrDy2O4, the
results of the inelastic neutron scattering were also interpreted as consistent with the Ising
chain model [36].

In zero field, the Er ions positioned in SrEr2O4 on different sites participate in the forma-
tion of two different magnetic systems acting almost independently of each other [37,38]. Er1
sites form a long-range antiferromagnetic order with the magnetic moments aligned parallel to
the c direction. For this site, each ladder is made of the two ferromagnetic chains aligned an-
tiparallel to each other. Er2 sites participate in the formation of a short-range one-dimensional
order, where the spins lay in the a-b plane, and demonstrate very strong antiferromagnetic in-
chain correlations (along the c axis) with much weaker correlations between the chains (that
is in the direction normal to the c axis). In the absence of an external field, phase 13 is realized
in SrEr2O4 (without degeneracy of the Er1 subsystem).

In SrHo2O4, the zero-field ground state is similar to that of SrEr2O4, however, for the Ho1
sites, the magnetic order remains limited even at the lowest experimentally achievable temper-
ature [39]. This lack of ordering can potentially be explained by the degeneracy (disorder) of
both Ho1 and Ho2 subsystems in phase 13, however, it is also possible that for a non-Kramers
Ho sites the crystal field effects lead to a considerable splitting of the ground state doublets at
the lowest temperature.

In SrDy2O4, there are no long-range correlations between the magnetic moments in zero
field, but they can be induced by applying a relatively weak magnetic field along the b axis [12].
In fact the magnetization process in all the three compounds demonstrate similar features, as
revealed by the low-T single-crystal magnetization M(H) measurements [7]. For certain di-
rections of an applied field, the process is characterized by the appearance of a magnetization
plateau, albeit not very pronounced but still clearly visible on the dM(H)/dH curves. To sta-
bilize the plateaus, the field should be applied along the a axis in SrEr2O4 and along the b axis
in SrDy2O4 and SrHo2O4. The value of magnetization on the plateaux is approximately a third
of the magnetization observed in higher fields [7]. The 1/3 magnetization plateaux are, of
course, a common feature of many triangular antiferromagnets, they correspond to the states
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13 23 15

6~ 4

Figure 15: Sequence of the proposed phase transitions in SrHo2O4 and SrEr2O4 for a
magnetic field applied along the easy-magnetization direction for the RE2 site, a axis
in SrEr2O4 and b axis in SrHo2O4, for J2 < 0, J11 > 0. For J2 > 0 (J11 > 0), the phase
f23 should appear instead of the phase 23 and the phase 6 should appear instead of the
phase 6̃. The corresponding sequence of magnetization values for the red sublattice
is 0, 1/12, 1/3, 1/2, and 1 (per one site of red sublattice). Transition field values are
h1,13−23 = 2J01− J11+ 4J2, h1,23−15 = 2J01− J11−

4
3 J2, h1,15−6̃ = 2J01+ 2J11+ 12J2,

h1,6̃−4 = 2J01 + 2J11 − 4J2. The width of the region e6 is three times the width of the
region 23 in (h1, h2)-plane (see Fig. 14).

with the two spins on each triangle pointing along the field and the third spin pointing in
the opposite direction (the so called up-up-down, uud, structure) [40, 41]. Overall magne-
tization data are consistent with the Ising behavior in these three SrRE2O4 compounds. The
two magnetic sites have their magnetization easy-axes aligned along (or very near) the two
crystallographic axes, while when the field is applied along the third crystallographic axis,
the measured magnetization is significantly lower (particularly for Ho and Er compounds [7])
suggesting that it is a hard magnetization axis for both sites.

Apart from the magnetization data, the evidence for a field-induced uud structure comes
from the results of neutron diffraction for SrDy2O4 [12,13], SrHo2O4 [14], SrEr2O4 [42] and
BaDy2O4 [15]. The uud structures are characterized by the appearance of the sharp, almost
resolution-limited magnetic peaks at non-integer positions. In SrHo2O4, the observed peaks
are at the (h01

3), (h02
3) and symmetry related positions [14], in SrDy2O4, they are indexed

by the propagation vector k′ = [0 1
3

1
3] [12, 13] and in BaDy2O4, the propagation vector is

k′=[0 0 1
3] [15].

Let us consider the case of a field induced 1/3 magnetization plateau – the field applied
along the easy-magnetization direction for the RE2 site, a axis in SrEr2O4 and b axis in SrHo2O4
(see Fig. 15). The high-field phase with all the spins on the RE2 sites polarized along the field
direction is phase 4. The experimentally determined uud structure is phase 15 (see Table 2
and Fig. 3). However, it follows from our study that regions 13 and 15 as well as regions 4
and 15 have no common 6-face. Therefore some intermediate phases should exist between
them. These are probably phases 23 and 6̃ (f23 and 6 if J2 > 0) (see Fig. 15). Indeed the
latest low-temperature magnetization and neutron diffraction measurements [42] indicated
the presence of the additional intermediate phase(s) between zero-field and 1/3 magnetization
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13 11 3

Figure 16: A sequence of phase transitions proposed for an increasing field applied
along the c axis in SrHo2O4 and SrEr2O4. The corresponding numbers for magneti-
zation of the blue sublattice are 0, 1/3, and 1. J02 > 0. If J02 < 0, then there is a
direct transition from phase 13 to phase 3∗.

plateau structures in SrEr2O4.
For H ‖ b in SrDy2O4, the situation should be somewhat similar, but the low-field transition

is from a disordered state and therefore difficult to describe within the framework of our theory.
The transition from the field-induced uud structure into a fully polarized state should, however
also involve an intermediate phase. For H ‖ b in SrDy2O4, the zero-field phase is the disordered
phase 14. There are several possibilities for the field-induced uud phase from phase 14 (see
Appendix B and Fig. 14). The transition from the uud structure into a fully polarized state
should also involve an intermediate phase.

A very interesting case is found in BaDy2O4. Its low temperature (T < TN = 0.48 K)
zero-field structure is characterized by two half-integer propagation vectors, k1 = [

1
2 0 1

2] and
k2 = [

1
2

1
2

1
2] [6], suggesting stabilization of a significantly different ground state compared to

SrEr2O4, SrHo2O4, and SrDy2O4. An in-field behaviour, however, seems to be rather similar,
as a uud structure is again inferred from powder neutron diffraction measurements and from
a pronounced plateau in the magnetization curve [15]. The uud structure appears to be much
more stable than the zero field states, as it survives warming to the three times higher temper-
ature than the TN(H = 0). Remarkably, the field-induced magnetic structure depicted in Fig. 7
of Ref. [15] contains the triangles with all 3 magnetic moments pointing in the same direction
(the ladders with uuuudd structure). This structure cannot be energetically favorable if only
non-interacting zigzag ladders are considered, but present in our model (structures 7 or 10).
Unfortunately, finding any further intermediate magnetic states in BaDy2O4 is experimentally
challenging in the absence of large single crystal samples of this compound.

Let us conclude this section by considering the case of a field applied along the c axis
(direction of the chains of the magnetic atoms). For this geometry, magnetization data for
SrHo2O4 and SrEr2O4 suggest a single phase transition to a state with a full polarization of a
site for which the easy-magnetization direction coincides with the c axis. In the language of
this paper, the transition is from a zero-field phase 13 to phase 3∗ where all spins on one of the
magnetic sites are parallel to the field while the other site remains the same as in zero-field.
The proposal is that with increasing field, structure 11∗ is stabilized between phases 13 and
3∗ (see Fig. 16), although a direct transition between these phases is also possible.

4 Conclusions

We present a solution to the ground-state problem for an Ising model in an external field for a
honeycomb zigzag-ladder lattice with two different types of magnetic sites. Although the solu-
tion is incomplete, the presence of a variety of ground-states is proved and, for several phases,
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the corresponding regions in seven-dimensional parameter space are completely determined.
Some of these phases are ordered but the majority are disordered with the disorder being one,
two, or even three-dimensional.

The solution is used to explain the formation of experimentally determined spin arrange-
ments in honeycomb zigzag-ladder magnets SrRE2O4 and BaRE2O4 in an applied magnetic
field. In particularly for SrEr2O4 and BaDy2O4, the solution predicts new magnetic phases
(with two different types of magnetic configurations on the same ladder), recently found or
yet to be detected experimentally.

Since the set of basic rays that we found here is incomplete, we hope that the paper will
inspire further efforts to find the remaining basic rays and to establish a complete set for this
very interesting and complex ground-state problem.
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A Appendix: Energy of triangular plaquette configurations

Here we present the energies for all the six configurations, , , , , , and
(open and solid circles denote spins σ = −1 and σ = +1, respectively), of the four types
of plaquettes (see Fig. 2 and Eq. (2)).

e11 = (1−α1)J01 + J11 + [(1−η1)γ1 + (1−δ1)(1− γ1)]h1 ,

e12 = −(1−α1)J01 + (1−δ1)(1− γ1)h1 ,

e13 = (1−α1)J01 − J11 + [(1−η1)γ1 − (1−δ1)(1− γ1)]h1 ,

e14 = (1−α1)J01 − J11 − [(1−η1)γ1 − (1−δ1)(1− γ1)]h1 ,

e15 = −(1−α1)J01 − (1−δ1)(1− γ1)h1 ,

e16 = (1−α1)J01 + J11 − [(1−η1)γ1 + (1−δ1)(1− γ1)]h1 ; (A.1)

e21 = (1−α2)J02 + J12 + [(1−η2)γ2 + (1−δ2)(1− γ2)]h2 ,

e22 = −(1−α2)J02 + (1−δ2)(1− γ2)h2 ,

e23 = (1−α2)J02 − J12 + [(1−η2)γ2 − (1−δ2)(1− γ2)]h2 ,

e24 = (1−α2)J02 − J12 − [(1−η2)γ2 − (1−δ2)(1− γ2)]h2 ,

e25 = −(1−α2)J02 − (1−δ2)(1− γ2)h2 ,

e26 = (1−α2)J02 + J12 − [(1−η2)γ2 + (1−δ2)(1− γ2)]h2 ; (A.2)
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e31 =
α1

2
J01 + 2(1− β)J2 +η1

γ1

2
h1 +δ2

(1− γ2)
2

h2 ,

e32 = −
α1

2
J01 +δ2

(1− γ2)
2

h2 ,

e33 =
α1

2
J01 − 2(1− β)J2 +η1

γ1

2
h1 −δ2

(1− γ2)
2

h2 ,

e34 =
α1

2
J01 − 2(1− β)J2 −η1

γ1

2
h1 +δ2

(1− γ2)
2

h2 ,

e35 = −
α1

2
J01 −δ2

(1− γ2)
2

h2 ,

e36 =
α1

2
J01 + 2(1− β)J2 −η1

γ1

2
h1 −δ2

(1− γ2)
2

h2 ; (A.3)

e41 =
α2

2
J02 + 2βJ2 +δ1

(1− γ1)
2

h1 +η2
γ2

2
h2 ,

e42 = −
α2

2
J02 +δ1

(1− γ1)
2

h1 ,

e43 =
α2

2
J02 − 2βJ2 −δ1

(1− γ1)
2

h1 +η2
γ2

2
h2 ,

e44 =
α2

2
J02 − 2βJ2 +δ1

(1− γ1)
2

h1 −η2
γ2

2
h2 ,

e45 = −
α2

2
J02 −δ1

(1− γ1)
2

h1 ,

e46 =
α2

2
J02 + 2βJ2 −δ1

(1− γ1)
2

h1 −η2
γ2

2
h2 . (A.4)

To calculate the energy of a structure (or structures in the case of degeneracy), it is suffi-
cient to know the relative numbers of plaquette configurations which generate this structure.
For instance, structures 2 are generated with seven configurations , , , , , ,
and (see Table 2), relative numbers of which in these structures are 3, 1, 2, 2, 4, 4, and 2,
respectively. Hence, the energy (per six plaquettes) of structures 2 is

e2 =
1
3
(3e16 + e24 + 2e25 + 2e34 + 4e36 + 4e45 + 2e46)

=
1
3
(3J01 − J02 + 3J11 − J12 + 4J2 − 3h1 − h2) . (A.5)

It should be noted that this energy does not depend on free coefficients although ei j do depend
on these. The magnetization of the red sublattice (per one red site) is equal to 3 ·1/3= 1, for
the blue sublattice, it is equal to 1/3.

Let us show how to find conditions for the existence of a region in the (h1, h2)-plane,
for instance, region 4. This region is determined with the set of basic rays {r1, r?1, r2, r?3, r5,
r6, r?6, r?−6 , r7, r∼7 }.

From the equation

a1r1 + a?1r?1 + a2r2 + a?3r?3 + a5r5 + a6r6 + a?6r?6 + a?−6 r?−6 + a7r7 + a∼7 r∼7
= (J01, J02, J11, J12, J2, h1, h2), (A.6)

we have

a1 = a2 + a5 − J01, a?1 = a?3 − J02 ,

a6 = 2a2 + J11, a?−6 = −2a?3 − a?6 + J12, a7 = a∼7 + J2 ,

h1 = 4a2 + 2a5 + 8a∼7 + 2J11 + 4J2, h2 = 4a?3 + 4a?6 − 2J12 + 4J2 . (A.7)
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All the coefficients a should be nonnegative, therefore, we obtain

J12 > 0, − 2J02 + J12 > 0 . (A.8)

These inequalities are the conditions for the existence of region 4 in h1, h2-plain at fixed J01,
J02, J11 J12, and J2. For h1 and h2 of region 4 we have,

h1 > 2J11 + 4|J2| if J01 < 0 ,

h1 > 2J01 + J11 + 4|J2| if J01 > 0, J11 < 0 ,

h1 > 2J01 + 2J11 + 4|J2| if J01 > 0, J11 > 0,

−2J12 + 4J2 < h2 < 2J12 + 4J2 if J02 < 0 ,

4J02 − 2J12 + 4J2 < h2 < −4J02 + 2J12 if J02 > 0 . (A.9)

B Appendix: Completeness of sets of basic rays

Considering a set of basic rays (vectors) for a fully dimensional phase (see Table 2), we can
check whether this set is complete. All linear combinations with nonnegative coefficients of
the basic rays form a seven-dimensional polyhedral cone (see Subsection 2.1). First, we should
find all the six-dimensional faces (6-faces) of the polyhedral cone and the configurations of
triangular plaquettes for these 6-faces. As an example, let us consider phase 13. The set of
basic vectors for this phase is {r?1, r2, r3, r?3, r4, r∼4 , r5, r−5 , r?6, r?−6 }. The sets of basic vectors for
its 6-faces (enumerated from 1 to 12) and corresponding sets of plaquette configurations are
given below. For each 6-face the corresponding neighboring phase is indicated in parentheses
on the right.

(1) {r?1, r2, r3, r4, r∼4 , r5, r−5 , r?6}, (3
?, 13)

‖ ‖ ‖

(2) {r?1, r2, r3, r4, r∼4 , r5, r−5 , r?−6 }, (3
?
, 13)

‖ ‖ ‖

(3) {r2, r3, r?3, r4, r∼4 , r5, r−5 , r?6}, (11?, 13)

‖ ‖ ‖

(4) {r2, r3, r?3, r4, r∼4 , r5, r−5 , r?−6 }, (11
?
, 13)

‖ ‖ ‖

(5) {r?1, r2, r?3, r∼4 , r5, r?6, r?−6 }, (22,13)

‖ ‖ ‖

(6) {r?1, r2, r?3, r∼4 , r−5 , r?6, r?−6 }, (22,13)

‖ ‖ ‖

(7) {r?1, r2, r?3, r4, r5, r?6, r?−6 }, (f22,13)

‖ ‖ ‖

(8) {r?1, r2, r?3, r4, r−5 , r?6, r?−6 }, (f22,13)

‖ ‖ ‖

(9) {r?1, r3, r?3, r∼4 , r5, r?6, r?−6 }, (23, 13)

‖ ‖ ‖

(10) {r?1, r3, r?3, r∼4 , r−5 , r?6, r?−6 }, (23,13)

‖ ‖ ‖

(11) {r?1, r3, r?3, r4, r5, r?6, r?−6 }, (f23, 13)

‖ ‖ ‖

(12) {r?1, r3, r?3, r4, r−5 , r?6, r?−6 }. (f23,13)

‖ ‖ ‖

In the 6-faces (1) to (4), in addition to the structures 13, there are other structures that
we have previously identified. This means that these 6-faces indeed bound the region for
phase 13. The remaining eight 6-faces, (5) to (12), also bound this region, since, in addition
to structures 13, some new structures can be constructed for these 6-faces. The structures
(among these new ones) containing the greatest number of plaquette configurations which are
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absent in structures 13 [configuration and for the 6-face (5); configurations and
for the 6-face (9)] are the structures of fully dimensional phases whose regions have common
boundaries with region 13. These structures are shown in Fig. 9 and we have therefore found
the complete set of basic vectors for phase 13.

The complete sets of basic vectors are also found for phases 4 ({r1, r?1, r2, r?3, r5, r6,
r?6, r?−6 , r7, r∼7 }), 11 ({r?2, r3, r?3, r?4, r∼?4 , r5, r?5, r?−5 , r6}), and 14 ({r2, r?2, r3, r?3, r4, r∼4 , r?4, r∼?4 ,
r5, r−5 , r?5, r?−5 }). For the rest of the phases the sets of basic vectors are incomplete. Consider,
for instance, phase 10. Its set of basic vectors, {r?2, r3, r∼4 , r∼?4 , r5, r?5, r6}, is incomplete. The
sets of basic vectors for the 6-faces of the corresponding polyhedral cone and sets of plaquette
configurations are as follows

(1) {r?2, r∼4 , r∼?4 , r5, r?5, r6}, (1,10)

‖ ‖ ‖
(2) {r?2, r3, r∼4 , r5, r?5, r6}, (2

?, 10)

‖ ‖ ‖
(3) {r3, r∼4 , r∼?4 , r5, r?5, r6}, (9,10)

‖ ‖ ‖
(4) {r?2, r3, r∼?4 , r5, r?5, r6}, (11,10)

‖ ‖ ‖

(5) {r?2, r3, r∼4 , r∼?4 , r5, r?5}, (14, 10)

‖ ‖ ‖
(6) {r?2, r3, r∼4 , r∼?4 , r5, r6}, (20, 10)

‖ ‖ ‖
(7) {r?2, r3, r∼4 , r∼?4 , r?5, r6}, (−, 10)

‖ ‖ ‖

6-face (6) gives a new phase, “nontriangular” phase 20 (Fig. 9). 6-face (7) of the polyhe-
dral cone is not a 6-face between two fully dimensional phase regions because, with the corre-
sponding set of triangular configurations, it is not possible to construct any structure different
from structures 10 (although it is possible to construct a new configuration of a “hexagonal
tube”). Therefore the set of basic vectors for phase 10 is incomplete.

Here we give the complete sets of basic vectors for phases 4, 11, and 14, their 6-faces
and corresponding sets of plaquette configurations. For each 6-face the neighboring phase is
indicated in parentheses on the right.

Phase 4 {r1, r?1, r2, r?3, r5, r6, r?6, r?−6 , r7, r∼7 }

{r1, r?1, r2, r5, r6, r?6, r7, r∼7 }, (1, 4)

‖ ‖ ‖

{r1, r?1, r2, r5, r6, r?−6 , r7, r∼7 }, (e1,4)

‖ ‖ ‖
{r1, r2, r?3, r5, r6, r?6, r7, r∼7 }, (2,4)

‖ ‖ ‖

{r1, r2, r?3, r5, r6, r?−6 , r7, r∼7 }, (e2, 4)

‖ ‖ ‖

{r?1, r?3, r5, r6, r?6, r?−6 , r7}, (6, 4)

‖ ‖ ‖

{r?1, r?3, r5, r6, r?6, r?−6 , r∼7 }, (e6,4)

‖ ‖ ‖

{r1, r?1, r?3, r6, r?6, r?−6 , r7}, (12, 4)

‖ ‖ ‖

{r1, r?1, r?3, r6, r?6, r?−6 , r∼7 }, (f12, 4)

‖ ‖ ‖

{r?1, r2, r?3, r5, r?6, r?−6 , r7}, (18,4)

‖ ‖ ‖

{r?1, r2, r?3, r5, r?6, r?−6 , r∼7 }, (f18,4)

‖ ‖ ‖

{r1, r?1, r2, r?3, r?6, r?−6 , r∼7 }, (19,4)

‖ ‖ ‖

{r1, r?1, r2, r?3, r?6, r?−6 , r7}. (f19,4)

‖ ‖ ‖

Phase 11 {r?2, r3, r?3, r?4, r∼?4 , r5, r?5, r?−5 , r6}
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{r?2, r?3, r?4, r∼?4 , r5, r?5, r?−5 , r6}, (3,11)

‖ ‖ ‖
{r3, r?3, r?4, r5, r?5, r6}, (8,11)

‖ ‖ ‖

{r3, r?3, r∼?4 , r5, r?−5 , r6}, (e8,11)

‖ ‖ ‖
{r3, r?3, r∼?4 , r5, r?5, r6}, (9,11)

‖ ‖ ‖

{r3, r?3, r?4, r5, r?−5 , r6}, (e9,11)

‖ ‖ ‖

{r?2, r3, r∼?4 , r5, r?5, r6}, (10,11)

‖ ‖ ‖

{r?2, r3, r?4, r5, r?−5 , r6}, (f10, 11)

‖ ‖ ‖

{r?2, r3, r?3, r?4, r∼?4 , r?5, r?−5 , r6}, (13?, 11)

‖ ‖ ‖

{r?2, r3, r?3, r?4, r∼?4 , r5, r?5, r?−5 }, (14, 11)

‖ ‖ ‖
{r?2, r3, r?4, r5, r?5, r6}, (21, 11)

‖ ‖ ‖

{r?2, r3, r∼?4 , r5, r?−5 , r6}. (f21, 11)

‖ ‖ ‖

Phase 14 {r2, r?2, r3, r?3, r4, r∼4 , r?4, r∼?4 , r5, r−5 , r?5, r?−5 }

{r2, r?2, r∼4 , r∼?4 , r5, r?5}, (1,14)

‖ ‖ ‖

{r2, r?2, r∼4 , r∼?4 , r−5 , r?−5 }, (1̄, 14)

‖ ‖ ‖

{r2, r?2, r4, r?4, r5, r?−5 }, (e1,14)

‖ ‖ ‖

{r2, r?2, r4, r?4, r−5 , r?5}, (e1,14)

‖ ‖ ‖

{r2, r?2, r?3, r?4, r∼?4 , r5, r?5, r?−5 }, (3,14)

‖ ‖ ‖

{r2, r?2, r?3, r?4, r∼?4 , r−5 , r?5, r?−5 }, (3,14)

‖ ‖ ‖

{r2, r?2, r3, r4, r∼4 , r5, r−5 , r?5}, (3
?, 14)

‖ ‖ ‖

{r2, r?2, r3, r4, r∼4 , r5, r−5 , r?−5 }, (3
?
, 14)

‖ ‖ ‖
{r2, r?2, r4, r?4, r5, r?5}, (7,14)

‖ ‖ ‖

{r2, r?2, r4, r?4, r−5 , r?−5 }, (7̄, 14)

‖ ‖ ‖

{r2, r?2, r∼4 , r∼?4 , r5, r?−5 }, (e7,14)

‖ ‖ ‖

{r2, r?2, r∼4 , r∼?4 , r−5 , r?5}, (e7, 14)

‖ ‖ ‖
{r3, r?3, r4, r?4, r5, r?5}, (8,14)

‖ ‖ ‖

{r3, r?3, r4, r?4, r−5 , r?−5 }, (8̄, 14)

‖ ‖ ‖

{r3, r?3, r∼4 , r∼?4 , r5, r?−5 }, (e8, 14)

‖ ‖ ‖

{r3, r?3, r∼4 , r∼?4 , r−5 , r?5}, (e8,14)

‖ ‖ ‖
{r3, r?3, r∼4 , r∼?4 , r5, r?5}, (9,14)

‖ ‖ ‖

{r3, r?3, r∼4 , r∼?4 , r−5 , r?−5 }, (9̄, 14)

‖ ‖ ‖

{r3, r?3, r4, r?4, r5, r?−5 }, (e9,14)

‖ ‖ ‖

{r3, r?3, r4, r?4, r−5 , r?5}, (e9,14)

‖ ‖ ‖
{r?2, r3, r∼4 , r∼?4 , r5, r?5}, (10, 14)

‖ ‖ ‖

{r?2, r3, r∼4 , r∼?4 , r−5 , r?−5 }, (10,14)

‖ ‖ ‖
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{r2, r?3, r∼4 , r∼?4 , r5, r?5}, (10?, 14)

‖ ‖ ‖

{r2, r?3, r∼4 , r∼?4 , r−5 , r?−5 }, (10?, 14)

‖ ‖ ‖

{r?2, r3, r4, r?4, r5, r?−5 }, (f10,14)

‖ ‖ ‖

{r?2, r3, r4, r?4, r−5 , r?5}, (f10,14)

‖ ‖ ‖

{r2, r?3, r4, r?4, r5, r?−5 }, (
?
f10, 14)

‖ ‖ ‖

{r2, r?3, r4, r?4, r−5 , r?5}, (?f10,14)

‖ ‖ ‖

{r?2, r3, r?3, r?4, r∼?4 , r5, r?5, r?−5 }, (11,14)

‖ ‖ ‖

{r?2, r3, r?3, r?4, r∼?4 , r−5 , r?5, r?−5 }, (11, 14)

‖ ‖ ‖

{r2, r3, r?3, r4, r∼4 , r5, r−5 , r?5}, (11?, 14)

‖ ‖ ‖

{r2, r3, r?3, r4, r∼4 , r5, r−5 , r?−5 }, (11
?
, 14)

‖ ‖ ‖
{r?2, r3, r4, r?4, r5, r?5}, (24,14)

‖ ‖ ‖

{r?2, r3, r4, r?4, r−5 , r?−5 }, (24, 14)

‖ ‖ ‖
{r2, r?3, r4, r?4, r5, r?5}, (24?, 14)

‖ ‖ ‖

{r2, r?3, r4, r?4, r−5 , r?−5 }, (24
?
, 14)

‖ ‖ ‖

{r?2, r3, r∼4 , r∼?4 , r5, r?−5 }, (f24, 14)

‖ ‖ ‖

{r?2, r3, r∼4 , r∼?4 , r−5 , r?5}, (f24,14)

‖ ‖ ‖

{r2, r?3, r∼4 , r∼?4 , r5, r?−5 }, (
?
f24,14)

‖ ‖ ‖

{r2, r?3, r∼4 , r∼?4 , r−5 , r?5}. (?f24,14)

‖ ‖ ‖
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