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Abstract

Topological crystalline insulators are phases of matter where the crystalline symme-
tries solely protect the topology. In this work, we explore the effect of many-body inter-
actions in a subclass of topological crystalline insulators, namely the mirror-symmetry
protected topological crystalline insulator. Employing a prototypical mirror-symmetric
quasi-one-dimensional model, we demonstrate the emergence of a mirror-symmetry pro-
tected topological phase and its robustness in the presence of short-range interactions.
When longer-range interactions are introduced, we find an interaction-induced topolog-
ical phase transition between the mirror-symmetry protected topological order and a
trivial charge density wave. The results are obtained using density-matrix renormaliza-
tion group and quantum Monte Carlo simulations in applicable limits.

Copyright D. S. Bhakuni et al. Received 16-02-2022 ®)

This work is licensed under the Creative Commons Accepted 16-08-2022 check for
Attribution 4.0 International License. Published 10-10-2022 updates
Published by the SciPost Foundation. doi:10.21468/SciPostPhysCore.5.4.048

Contents
1 Introduction 2
2 Model Hamiltonian and Topological characterization 3

3 Results and discussion
3.1 Zero NNN hopping
3.2 Non-zero NNN hopping
3.3 Effect of interactions

\O 00 U1 U1

4 Summary and discussion 11
A QMC calculations 12

References 15


https://scipost.org
https://scipost.org/SciPostPhysCore.5.4.048
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysCore.5.4.048&amp;domain=pdf&amp;date_stamp=2022-10-10
https://doi.org/10.21468/SciPostPhysCore.5.4.048

Scil SciPost Phys. Core 5, 048 (2022)

1 Introduction

Topological phases of matter have gained enormous interest in condensed matter since their
discovery [1,2]. In particular, topological insulators (TIs) of non-interacting fermions are bulk
insulators that, in contrast to their conventional counterparts, admit protected gapless surface
states. These surface states are protected by the underlying symmetry of the system, and are
robust against any perturbations as long as the symmetries are respected.

Symmetry-protected topological states are mainly categorized into two groups based on the
symmetry type: non-spatial symmetries and spatial symmetries. Depending on the non-spatial
internal symmetries of the system, such as time-reversal, particle-hole and chiral symmetry,
topological phases of non-interacting fermions are classified in a 10-fold symmetry class [3-6].
Apart from this conventional classification, recent studies have shown that lattice symmetries
also play a crucial role and can be solely responsible for the protection of certain topological
phases. These topological phases, arising from spatial symmetries of the system, are called
topological crystalline phases [7-13]. One important member of this spatial symmetry group
is mirror-symmetry, which has been demonstrated to give rise to various novel phases [11,14—
24].

While the search for new topological phases is at the forefront of condensed matter re-
search, the investigation of topological crystalline phases and their robustness against various
perturbations and many-body interactions are in a nascent stage. A key question that arises
in such systems is how the presence of the many-body interactions affects the topological
phases solely protected by the crystalline symmetries and, in particular, in subclasses where
only mirror-symmetry protects the topological phase.

In this work, we propose a quasi-one-dimensional model of spinless fermions on a zigzag
ladder subjected to a staggered on-site potential along both of its legs (Fig. 1(a)). Its one-
dimensional embedding (Fig. 1(b)) admits only time-reversal and mirror symmetries placing
it in the class we are interested in here. We study the properties of this model in the absence
and presence of multi-range interactions and derive its phase diagram.

In the non-interacting limit, the model gives rise to a rich phase diagram consisting of
three insulating phases: a charge density wave (CDW) at half-filling and two dimer insulators
(DIs) at quarter and three-quarter fillings. The Berry-phase topological invariant as well as the
bipartite entanglement entropy identify one of the two DIs as a mirror-symmetry protected TI,
depending on the sign of the on-site potential. We obtain the projected Hamiltonians in the

Figure 1: (a): Pictorial description of the zigzag ladder considered in the main text.
The indices A and B stand for the two legs of the ladder. The red and black lines
represent the NN (inter-leg) and NNN (intra-leg) bonds with hopping strength t; and
t,, respectively. The dashed lines indicate the bonds which connect the ladder across
the boundary. Lattice sites denoted by yellow (blue) circles admit on-site potential
—W (W). (b): Mapping of the zigzag ladder to a 1D chain. The unit cells in both
lattices are highlighted by green dashed lines.
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two DIs separately which demonstrate an emergent chiral symmetry. This symmetry pins the
edge states in the middle of the respective bands also when next-nearest-neighbor (NNN) tun-
neling (t,) is present. Next, using a combination of exact diagonalization and density-matrix
renormalization group (DMRG) approach, we find that the topological phases are remarkably
robust against any amount of nearest-neighbor (NN) as well as NNN interactions. Interest-
ingly, the addition of next-to-next nearest-neighbor (NNNN) repulsion gives rise to a phase
transition from the topological dimer insulating phase to a topologically trivial CDW phase.
The results are also supported by quantum Monte Carlo (QMC) simulations in the limit of zero
NNN hopping, where spinless fermions can be mapped into hard-core bosons.

The paper is organized as follows. In Sec. 2 we describe the model and introduce the var-
ious tools we employ to characterize its topological phases. In Sec. 3 we detail our characteri-
zation considering various settings with zero and non-zero NNN hopping and in the presence
of long-range interactions. In Sec. 4 we conclude. In App. A we report QMC simulations.

2 Model Hamiltonian and Topological characterization

We consider spinless fermions hopping in a zigzag ladder with staggered on-site potential W
applied along its legs A and B as depicted in Fig. 1. Each leg of the ladder consists of N sites.
The Hamiltonian of the system can be written as,

H=-— tl Z (al‘bl + aij_l + HC)

i

- tz Z (a;i-al‘_;,_] + blr bi+1 + HC)

—W Y (=Dt + W > (~1)in? (1)

Here a;r (a;) is the creation (annihilation) operator of a fermion at site i in leg A and bj (b;)

represents the same in leg B. The operator nf‘ = a;.’Lai (n]i3 = b;.i'bi) denotes the number operator
atsite i in leg A (B), and W represents the strength of the on-site potential. The NN (inter-leg)
hopping is given by t, while t, denotes the NNN (intra-leg) hopping.

Under periodic boundary condition (PBC), the Hamiltonian can be written in momentum
space as

-w —t —tya*(k) —t;8%(k)
_ —t w —t —tya*(k)
k) = —tzal(k) —t; W1 Z—tl ’ 2)
—t18(k) —tya(k) —ty -w

where a(k) = 1+ ¢'* and B(k) = e*. The Hamiltonian #(k) is symmetric under the time-
reversal operation and also possesses mirror symmetry. Under the time-reversal operation,
with T being the anti-unitary time-reversal operator, the Hamiltonian in Eq. 2 behaves as
TH(k)T! = H(—k). In this case, the time-reversal operator is simply the complex conjugation
operator KC, i.e., T = I, which satisfies T2 = 1. On the other hand, under the mirror symmetry,
the Hamiltonian obeys: MH (k)M ™! = H(—k) where M = o, ® o, is the mirror symmetry
operator. Since the two symmetry operators T and M commute with each other: [T,M] =0,
the model is a member of the mirror symmetry class Al [7], which admits a Z topological
number in 1D.

The topological characterization can be done using the Berry phase associated with the
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Bloch Hamiltonian (Eq. 2) and it is related to the charge polarization P as

p=L f dkA(K) 3)
21 o

where A(k) =i, (uy |0|ug ) is the Berry’s connection and uy , are the Bloch states at mo-
mentum k and band index n. Generally, the Berry phase can take any value in between 0 and
271 (mod 27), however, for one-dimensional systems exhibiting the time-reversal symmetry
and mirror symmetry, the Berry phase provides a Z, invariant which is quantized to either 0
or 7 [22,25].

For the numerical purpose, the Berry phase can be calculated using the Fukui-Hatsugai-
Suzuki algorithm [26] which provides a discrete version of the Berry phase as

Ne i
V= lIrn |:log(l_[ L)] , 4)
where the Brillouin zone is discretized in N, = N/2 unit cells with lattice points
ki = —m + 2mi/N. with i = 1,2,---,N. and we have ky_; = k;. The elements of U® are
calculated as Ur(é,)i = (Y (kir ), (k;)), with [ ,,,(k)) being the single-particle eigenvectors of
H(k) participating in the relevant filling, and |[U®| denotes the determinant of U®,

In addition to the Berry phase, we characterize the phases using the bipartite entanglement
entropy. The entanglement entropy quantifies certain correlation between two subsystems of a
composite system AUB. It is defined as S, = —Trg(p log p), where p denotes the density matrix
of AUB and Try represents the partial trace over the subsystem B. The entanglement entropy
has been extensively used to characterize various underlying features of both interacting and
non-interacting systems including the characterization of quantum phase transitions, topolog-
ical phase transitions, localization-to-delocalization transitions, and many more [27-34].

For non-interacting particles, a computationally efficient method to calculate the entan-
glement entropy was demonstrated in Ref. [35]. The method reduces the complexity of the
problem by bringing down an exponential dependence on the system size to a polynomial
dependence. The procedure constitutes of diagonalization of a two-point correlation matrix,
Con = (c;cn), which inherently takes care of the filling fraction. Here, c;(cm) creates (anni-
hilates) a fermion at site m in the system. The entanglement entropy is then calculated from
the eigenvalues of the correlation matrix n; as

Sz—Z[nilnni+(1—ni)1n(1—ni)]. (5)

1

-2 -1

0
w
Figure 2: Energy spectrum with OBC with varying values of W. The calculations are
performed on a ladder with N = 2000 sites in each leg, with t; = 1.0 and t, = 0.0.
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Figure 3: Structures of the three insulating phases of Fig. 2 : (a) the dimer insulator at
p = 1/4; (b) the CDW at half-filling; and, (c) the dimer insulator at density 3/4. The
white (black) circles denote empty (filled) sites with density 0.0(1.0), whereas the
grey circles signify half-filled sites with density 0.5. The red dashed curves represent
the formation of dimers. (d) The corresponding Berry phase as a function of W for
filling fractions 1/4, 1/2 and 3/4 with t; = 1.0 and t, = 0.0.

(d) —— p=1/4

—— p=3/4

1 2

While this formulation is limited to the non-interacting case, we use DMRG to study the topo-
logical properties in the presence of many-body interactions. The numerical simulations for
the interacting case are performed using the TeNPy Library [36].

3 Results and discussion

3.1 Zero NNN hopping

We first consider the Hamiltonian in Eq. 1 without the NNN coupling by setting t, = 0. The
energy spectrum as a function of W under the open boundary condition (OBC) is shown in
Fig. 2. The spectrum mainly consists of three gapped phases, corresponding to densities 1/4,
1/2, and 3/4. Interestingly, as the sign of W is changed from negative to positive, an edge state
appears in the middle of the energy-gap at density p = 1/4 indicating a trivial-to-topological
phase transition at W = 0. This scenario is reversed for the insulator at density 3/4, where a
topological-to-trivial phase transition occurs on changing the sign of the potential strength W.
However, the insulator at half-filling remains trivial throughout.

In the absence of NNN hopping, the system of spinless fermions can be mapped onto a
system of hard-core bosons (HCBs). In order to characterize the three above-mentioned in-
sulating phases and investigate their underlying structures, we employ Stochastic Series Ex-
pansion (SSE) QMC [37,38] on the HCB system and study the following order parameters
as defined in App. A: the average HCB density p; the structure factor S(Q); and, the dimer
structure factor Sp(Q). The results obtained from QMC calculations, as detailed in App. A,
disclose Fig. 3(a),(b) and (c) as the underlying structure of the three insulating phases and
the origin of these structures can be understood in the following manner.

In the presence of a staggered potential, half of the lattice sites in the system (depicted
by yellow circles in Fig. 1) have lower on-site potential (—W) compared to the other half.
Therefore, upto half-filling the particles prefer to occupy the lower-potential sites. At 1/4-
filling, it is energetically favorable for the system to form dimers occupying the two sites in
each red dashed curve in Fig. 3(a), so that the particle can further lower the energy of the
system by hopping back and forth between these two sites. For a finite system, this leads to
two edge states at p = 1/4.

For the case of half-filling, all sites with on-site potential —W are completely filled, resulting
in a CDW structure as shown in Fig. 3(b). Finally, at 3/4-filling the sites with lower on-site
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Figure 4: (a) Entanglement entropy as a function of W for filling fractions 1/4, 1/2
and 3/4 with OBC. (b,c) AS as a function of W for PBC and OBC respectively. The
other parameters are: N = 2000, t; = 1.0, and t, = 0.0.

potential are completely filled and the rest are half-filled. Now the particles at these half-filled
sites hop back and forth between the two NN sites inside each red curve and form dimers
as depicted in Fig. 3(c). It is important to note that there is a major difference between the
structures of the two DIs. In case of the dimer insulator at 1/4-filling there exists a dimer which
involves two edge sites under OBC. Consequently, for W > 0 this dimer insulator displays the
existence of edge states as depicted in Fig. 2. However, for the case of p = 3/4, the dimers
are entirely formed in the bulk and the edge state does not appear when OBC is applied. We
should note that when the sign of the on-site potential is reversed, the appearance of edge
states is also changed. In this situation, the dimer insulator at p = 1/4 contains bulk dimers
only, whereas the insulator at 3/4-filling shows edge states.

The topological invariants corresponding to densities 1/4, 1/2 and 3/4, are shown in
Fig. 3(d) as a function of W. One can see that for the insulator at p = 1/4, the Berry phase is
quantized at —1 for positive values of W, whereas for negative values of W, it remains zero.
The situation is reversed for the insulator at density 3/4. In this case, the Berry phase remains
zero for all positive values of W and quantized at —1 for negative W values. Thus we can iden-
tify the DIs at p = 1/4 and p = 3/4 as TIs for W > 0 and W < 0, respectively. On the other
hand, for the insulator at p = 1/2, the Berry phase remains zero throughout for all values of
W, which makes it topologically trivial.

The presence of these distinct phases and the edge states can also be characterized by
studying the bipartite entanglement entropy of the ground state. We consider the left and right
parts of the ladder, constituting an equal number of sites, as two sub-systems. The entangle-
ment entropy for different filling fractions with OBC is plotted in Fig. 4(a). For p = 1/4, the
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Figure 5: (a) Energy spectrum as a function of W for a non-zero NNN hopping
ty = 0.5. (b,c) Entanglement entropy as a function of W for different values of
NNN hopping t, with OBC: (b) for p = 1/2; (c) for p = 3/4. Here N = 2000 and
t]. =1.0.

entanglement entropy increases with increasing W indicating a signature of quantum phase
transition at W = 0, after which it saturates to In2 in the topological phase. A reverse trend
can be seen for p = 3/4 where the topological phase exists for W < 0. On the other hand, for
p =1/2, we see a symmetric pattern. To observe the signature of edge state, we calculate the
change in the entanglement entropy when an additional particle is either added or removed.
We define the quantity ASI()il) as [34]

(1) _ gD _
ASGD =GV s, (6)

where S, is the entanglement entropy at filling fraction p and Séﬂ) is the same but with

a single particle either added or removed. For our calculation, the difference AS = ASCD
is calculated by considering the entanglement entropy at p = 1/4, 1/2, and 3/4, and then
removing a single particle from these filling fractions. The behavior of AS as function of W is
plotted in Fig. 4(b,c). While under PBC (Fig. 4(b)) the behavior remains the same for all the
filling fractions, the case of OBC (Fig. 4(c)) shows similar behavior as that of the Berry phase
(Fig. 3(d)). Specifically, for p = 1/4, we see a transition from AS =In2atW <0to AS=0
at W > 0; and, for p = 3/4, the trend reverses and a transition from AS = 0 to AS =1n2
is observed. These transitions are taken to signify the presence of edge states for these filling
fractions. In contrast, for p = 1/2, the behavior of AS is similar for OBC and PBC, suggesting
a trivial phase at this filling fraction.
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Figure 6: Comparison between the exact spectrum and the spectrum obtained from
the projected Hamiltonian. Left panel: the exact spectrum for PBC (blue) and for the
lower and upper projected two bands (red, orange, green, purple) as function of W.
Right panel: the spectrum for OBC (purple) and the dispersing centers ¢,(k) (blue)
and g((k) (orange) with k = m highlighted (bright blue and red respectively). Here
t; = 1.0, t, = 0.5, and N = 50.

3.2 Non-zero NNN hopping

We now consider the case of non-zero NNN hopping. The energy spectrum for t; = 1.0 with
to = 0.5 as a function of W is plotted in Fig. 5(a). It can be seen that while the edge state
for the filling p = 1/4 remains almost unchanged in the presence of a non-zero t,, a gapless
phase appears at 3/4-filling for small values of W. The same observation can also be seen
from the entanglement entropy plotted in Fig. 5(b,c) for different values of t,. For the case
of p = 1/4, we see that the behavior of the entanglement entropy is qualitatively similar for
different values of t, (Fig. 5(b)) which suggests that the topological phase in this filling remains
unaffected by t,. For p = 3/4, the quantization of the entanglement entropy and appearance
of the topological phase shifts to larger values of |W| with increasing t, (Fig. 5(c)). The
topological phase, however, remains stable for large enough value of the staggered potential
W. The robustness of these topological phases at p = 1/4 and p = 3/4 can be explained by
the presence of an emergent symmetry.

While the Hamiltonian in Eq. (1) admits a mirror symmetry which protects the topological
phases, there is no chiral symmetry in the system. However one can show that there is indeed
an emergent chiral symmetry, for the lower and upper bands separately, which pins the edge
states to the center of the respective bands. By a projection to the lower two bands of the
system for W > 0 (or the upper ones for W < 0), we can write an effective Hamiltonian

Hproj = EO(k)TO + Sx(k)Tx + Ey(k)T_y; (7)
with

262W + 2t, (2 + 2t,W) (1 + cos k)

go(k) = —W — =2 24 22) , ®)
4W?2 —t7
t2+2t2cosk(t2(1+cosk)+2W)}

e.(k)=—t; | cosk + L s 9

2ty sink (t, (1 +cosk) +2W
ey(k):—tl[sink+ 25ink (£ ( COZS) )]. (10)

4W?2 — 4

In Eq. (7) 7 is the 2 x 2 identity matrix and 7; (i = x,Y,2) is the i’th Pauli matrix. The
resulting bands are plotted in Fig. 6 (left panel, purple and red), matching quite well with the
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exact spectrum for larger values of |W|. The projected Hamiltonian of the lower two bands
reveals a partial chiral symmetry 7,. Moreover, it has a topological number for both positive
and negative larger values of W. Consequently, it admits an edge state which gets pinned
at the middle of the band gap at 1/4-filling for positive W and at 3/4-filling for negative W.
While the center of the band is dispersing with energy €,(k), the edge state gets locked to
k = 7 as demonstrated in Fig. 6, right panel.

Performing a similar projection to the upper two bands for W > 0 (or the lower ones for
W < 0), we get the projected Hamiltonian

Hpro_] = Eo(k)TO +e (k)'r +¢ (k)T (11D

where the expressions of ¢(k), ¢, (k) and s;,(k) in this case reduce to,

N (262w +2t, (26,W — £2) (1 + cosk))

go(k) =W Wi , (12)
(t2cosk + 2t, (t, —2W) (1 + cosk))
"()=—t;| 1+ s 13
e, (k) 1 PIZIE (13)
t2—4t,W)sink
e’y(k)=—t1( 14 14

4W2—¢?

The resulting bands are plotted in Fig. 6 (left panel, green and orange). Therefore the projected
Hamiltonian for the upper two bands also admits a chiral symmetry 7,. In contrast to the
previous case, this Hamiltonian has no topological number in its regions of validity.

3.3 Effect of interactions

We now study the stability of the TIs in the presence of many-body interactions. To demon-
strate the effect of interactions we choose the TI at density 1/4. We have confirmed that the
TI at p = 3/4 also behaves exactly the same way. We consider a NN repulsion between the
fermions by adding the following term to the Hamiltonian in Eq. (1),

H,= V1Z(n n? +ninl (15)

Fig. 7(a) shows the variation of the entanglement entropy S as we tune the NN repulsion
strength V;. We consider various different sets of (W, t,) values. As mentioned previously, for
V; = 0, the insulator at p = 1/4 is topological (non-topological) in nature for W > 0 (W < 0),
for both zero and nonzero values of t,. We see that in the presence of NN repulsion, the topo-
logical nature of the insulator at p = 1/4 remains unaltered as S remains quantized at In 2 for
all values of V; (Fig. 7(a)). In contrast, for W < 0, the topologically trivial insulator remains
the same as a function of increasing V; with a vanishingly small value of the entanglement
entropy. Fig. 7(c) represents the variation of Zak phase calculated using the twisted boundary
conditions [39-42] as a function of increasing NN repulsion V;, measured on a ladder with
N = 8 for the same sets of (W, t,) values using exact diagonalization. The quantization of the
topological invariant at 1(0) for the positive(negative) value of the on-site potential W essen-
tially supports the entanglement entropy results. In fact, one can argue that the topological
nature of the insulator at p = 1/4 will be protected against any amount of NN repulsion.
Since the dimers in the p = 1/4 dimer insulator are formed at every fourth NN bond, the
particles forming two neighboring dimers do not feel any repulsion among them. As a result,
the NN repulsion does not interrupt the hopping process necessary to form dimers. Thus, the
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Figure 7: Entanglement entropy S as a function of : (a) NN repulsion V; with V; = 0;
and, (b) NNN repulsion V, with V; = 5.0, both measured under OBC. The measure-
ments are performed for four different sets of (W, t,) values detailed in the legend
with N = 400. Zak phase as a function of (c) NN repulsion V; with V;, = 0; and, (d)
NNN repulsion V,, with V; = 5.0, measured for a ladder with N = 8 for four different
sets of (W, t,) values.

topological nature of the dimer insulator remains intact and unaffected in the presence of any
amount of NN repulsion.

We next consider the effect of NNN repulsion by adding another term in the Hamiltonian,
given by,

Hy =V, Z( i 1+1 + ny n1+1 (16)

In Fig. 7(b) we show the variation of the entanglement entropy S as a function of the NNN
repulsion strength V;, for a fixed value of NN repulsion, V; = 5. We see that the effect of NNN
repulsion on the dimer insulator is similar to the effect of NN repulsion. Since the entangle-
ment entropy remains quantized at In 2 with varying V,, the topological nature of the insulator
is robust against the NNN repulsion. The same feature emerges from the variation of topo-
logical invariant as well (see Fig. 7(d)). As the dimers are formed on every fourth NN bond,
the fermions on two neighboring dimers are shielded from the NNN repulsion. Therefore,
similarly to the case of NN repulsion, the TI is robust against any amount of NNN repulsion as
well.

Finally, we explore the stability of the topological phase in the presence of third nearest-
neighbor or next-to-next nearest-neighbor (NNNN) repulsion, by adding the following term to

10
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0.75-

0.601

0.451

0.30;

0.15-

Figure 8: Entanglement entropy S as a function of NNNN repulsion V3 with
V1 =5.0,V, =4.0,W = 3.0, t; = 1.0 and t, = 0.0, measured under OBC.

the Hamiltonian,
H3 - V3 Z( 1+1 + nl nl 2 (17)

The entanglement entropy in the OBC as a function of V5 is shown in Fig. 8, for different system
sizes using exact diagonalization (dashed dotted line), as well as DMRG (solid lines). We can
see that a sufficiently large value of V; destroys the topological phase, where the entanglement
entropy goes from a quantized value of In 2 towards zero. This result can be understood by
realizing that unlike the NN and NNN repulsions, the dimers formed at every fourth NN bond
do feel the presence of a NNNN repulsion. As a result the hopping back and forth of a particle
in a dimer gets interrupted. In order to avoid repulsion, for a sufficiently large value of Vs,
it becomes energetically favorable for the particles to just occupy all sites with negative W
in either leg A or leg B of the ladder. This leads to a topologically trivial CDW phase. The
emergence of this CDW phase is further supported by the QMC analysis (App. A) where the
dimer structure factor and the structure factor undergo a transition on varying the strength of
the repulsion V5 suggesting a dimer insulator at a small value of V; and a CDW phase for large
enough value of V;.

4 Summary and discussion

To summarize, we have considered spinless fermions, with NN as well as NNN hopping, on a
zigzag ladder subjected to staggered on-site potential along its two legs. The system reveals
the existence of three gapped phases at 1/4, 1/2 and 3/4 filling fractions. The insulator at 1/2-
filling turns out to be a CDW in nature, whereas the other two gapped phases are characterized
as DIs. One of these two DIs emerges as a TI, depending on the sign of the on-site potential W.
We have characterized the topological nature of these insulators using the Berry phase as well
as entanglement entropy. The topological phase is protected by mirror-symmetry which places
the system in the Al mirror-symmetry class. Additionally, performing a projection to the lower
and upper two bands separately, we have shown that the system admits an emergent chiral
symmetry which pins the edge states of the TIs to the middle of the corresponding energy
bands also in the presence of NNN hopping.
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Interestingly, since the dimers formed in the system are well-separated, the topological
phases become stable in the presence of repulsive interactions of any strength up to NNN.
However, introducing longer-range repulsive interactions (NNNN) destroys the topological
phase by transforming it into a topologically trivial CDW phase. We believe that our theoretical
proposal can be tested in artificially engineered systems, such as cold atoms in optical lattices,
which provide a precise control over the tunable parameters of the system and have become
a prolific venue for realizing various phases of non-interacting as well as interacting fermions
and bosons [43-53]. We note that if our system is realized as a zigzag ladder, rather than its
one-dimensional variant, the mirror symmetry should be implemented in the physical system
using a confining potential V(x, y) that is inversion-symmetric.

The model discussed here comprises in essence two effective intertwined Su-Shrieffer-
Heeger (SSH) models which are separated in energy due to the on-site potential. It should be
noted that a single SSH model admits, in addition to mirror symmetry, also a chiral symmetry,
which makes it unsuitable for our purpose here. Due to the one-dimensional nature of the
system, the topological insulating phases obtained are sometimes referred to as symmetry-
obstructed atomic insulators and have a very unconventional bulk-boundary correspondence.
For example, the presence of a boundary potential can move the edge states to the bulk without
changing the topology of the system [22]. Nevertheless, the eventual transition from the
topological phase into a CDW, driven by strong longer-range interactions, is a bulk effect, as
demonstrated by the supporting quantum Monte Carlo simulations.
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A QMC calculations

In this section we detail the QMC calculations and results obtained therefrom, for a system
of HCBs obeying the Hamiltonian given in Eq. (1), in the absence of NNN hopping. First,
we describe the three order parameters used in QMC calculations, namely: the average HCB
density p, the structure factor S(Q), and the dimer structure factor S,(Q).

The average density of a system containing N, sites can be calculated as

1
p=ﬁzni, (18)
S

where n; gives the number of HCBs ( 0 or 1) at site i.
The structure factor per site can be calculated as,

1 iQ(ri—r;
S(Q) = 15 2, niny), (19)
S 1,]

where (---) represents ensemble average and r; denotes the position of site i. The zigzag
ladder can always be represented as a one-dimensional chain by straightening the red bonds
(Fig. 1(b) in the main text). In the above expression for the structure factor we use the position
vectors of this transformed 1D chain and its corresponding momentum values as Q.
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Figure 9: Variations of the order parameters: (a) HCB density p and (b) structure
factor S(5) and dimer structure factor Sp(3), as a function of the chemical potential
w. Inset of (a): Splitting of p = 1/4 plateau under OBC. The measurements are done
on a ladder with N = 200, where t; = 1.0, t, = 0.0 and W = 4.0.
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Figure 10: (a) Variations of dimer structure factor Sp(%) and structure factor S(%),
as a function of V5. The measurements are done for three different sizes of ladder
with t; =1.0, t, = 0.0, W = 3.0, V; = 5.0 and V, = 4.0. (b-c) Schematic diagram of
two possible structures of the CDW at density p = 1/4 occurring for large values of
Vs.
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Next, the dimer structure factor is defined as

1 ; _
$p(Q) = —5 Qe WD, Dp), (20)
b ap

where R, denote the midpoints of the NN bonds of the transformed 1D chain and the dimer
operator D, = dlL do, + ledaL is defined on the a-th NN bond. Here a; and ay represent the

two lattice sites attached to this bond and, dlL (daL) and le (daR) create(annihilate) a HCB at
these two sites, respectively. The summation in the above expression runs over the NN bonds
in order to detect the formation of dimers along these bonds only.

Fig. 9 displays the variations of the order parameters, namely the HCB density p, structure
factor S(7t/2) and dimer structure factor Sp,(7/2) as a function of the chemical potential u for
a fixed value of on-site potential strength W = 4. Here we have set the NN and NNN hopping
to be t; = 1.0 and t, = 0.0, respectively. It is clear from Fig. 9(a) that in the absence of
NNN hopping, there exists three incompressible insulating phases corresponding to the three
plateaus. To characterize the nature of these insulators we have calculated the dimer structure
factor Sp(Q) and structure factor S(Q) for all values of Q and identify Q = 7t/2 to be the one
at which both of them peak. Fig. 9(b) displays the change in S;,(7t/2) and S(7t/2) as we tune
the chemical potential of the system. The dimer structure factor shows a peak at densities
1/4 and 3/4 with a value very close to 0.0625, whereas the structure factor attains a value
close to 0.125 at half-filling. The structures of the three above-mentioned insulating phases
are shown in Fig. 3(a),(b) and (c). In terms of the transformed 1D lattice, both of the DIs
consist of dimers at every fourth NN bond. Therefore in Fig. 9 the dimer structure factor peaks
at Q = m/2 with a value 0.0625. On the other hand for the CDW at half-filling the sites in
the red dashed curve corresponding to dimers in Fig. 3(a) become completely filled, while the
rest of the sites are empty. Therefore, for this structure the dimer structure factor vanishes
completely and the structure factor attains the maximum value 0.125 at wavevector Q = 1/2
as depicted in Fig. 9.

In QMC calculations the existence of the edge states is manifested in the following way. For
W > 0, under OBC the variation of the average HCB density p as a function of the chemical
potential u remains unchanged except for p = 1/4. For a ladder with N = 200 sites in each
leg, the plateau at 1/4-filling with PBC splits into two plateaus corresponding to densities
p1 =0.2475 and p, = 0.2525 once we open the boundary of the system (inset of Fig. 9(a)).
The values of p; and p, depend on the size of the system. For a system with 2N total number
of sites, the plateau at density p splits into p; = p —1/(2N) and p, = p + 1/(2N), such that
(pa—p1)*x 2N = 2 gives the number of edge states in the system. Therefore the splitting of the
plateau under OBC proves the existence of the edge states in the system. The lower plateau
(p1) corresponds to a situation when both of the edge sites are empty, while the upper plateau
(p3) signifies a situation when both of them are occupied.

Next, we study the effect of NNNN repulsion on the topological dimer insulator phase at
density p = 1/4. Fig. 10(a) depicts the variations of the dimer structure factor Sp(7/2) and
structure factor S(7t/2) as a function of NNNN repulsion V5. As V; is tuned from zero, the dimer
structure factor Sy, at wave vector 7t/2 starts decreasing from 0.0625 towards zero. Concomi-
tantly, the structure factor S(7t/2) increases from a value close to 0.03125 to a value close to
0.0625. These results can be understood in the following manner. At V5 = 0, at density 1/4 the
system is in a topological dimer insulator phase, whose structure is depicted in Fig. 3(a). As
discussed earlier in this phase the dimer structure factor Sp(7t/2) peaks with a value 0.0625,
whereas the structure factor S(7t/2) attains a value very close to 0.03125. Now, as the value
of V5 is increased the particles forming the dimers start to feel the repulsion. Consequently
beyond some critical value of V3, it becomes energetically favorable for the particles to occupy
the negative-potential sites in either leg A or leg B of the ladder. This gives rise to a CDW
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phase which has two possible structures as shown in Fig. 10(b,c). For this CDW the structure
factor should peak at wavevector 7t/2 with a value 0.0625, which can also be observed from
our results in Fig. 10(a). An interesting point to note is that, since the dimer insulator phase
at V3 = 0 can be thought of as the fluctuation between the two CDW structures (Fig. 10(b)
and (c)), the structure factor S(7t/2) in the dimer insulator phase is exactly half of the value
in the CDW phase.
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