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Abstract

In the context of high-energy physics, a reliable description of the parton-level kinemat-
ics plays a crucial role for understanding the internal structure of hadrons and improving
the precision of the calculations. In proton-proton collisions, this represents a challeng-
ing task since extracting such information from experimental data is not straightforward.
With this in mind, we propose to tackle this problem by studying the production of one
hadron and a direct photon in proton-proton collisions, including up to Next-to-Leading
Order Quantum Chromodynamics and Leading-Order Quantum Electrodynamics correc-
tions. Using Monte-Carlo integration, we simulate the collisions and analyze the events
to determine the correlations among measurable and partonic quantities. Then, we use
these results to feed three different Machine Learning algorithms that allow us to find
the momentum fractions of the partons involved in the process, in terms of suitable com-
binations of the final state momenta. Our results are compatible with previous findings
and suggest a powerful application of Machine-Learning to model high-energy collisions
at the partonic-level with high-precision.
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1 Introduction

Thanks to recent technological advances and increased computational power, Machine Learn-
ing (ML) has taken by storm our everyday life. Applications of ML cover fields as diverse as im-
age and speech recognition, automatic language translation, product recommendation, stock
market prediction and medical diagnosis, to mention some examples. High-energy physics
has not remained indifferent to the opportunities offered by these techniques. In the last years
several applications have been developed, particularly in regards to data analysis. Novel jet
clustering algorithms that use improved classification to identify structures [1], reconstruc-
tion of the Monte-Carlo (MC) parton shower variables [2], and reconstruction of the kine-
matics [3,4] are just some of the explored uses. In particular, the high luminosity upgrade of
the Large Hadron Collider (LHC), the upcoming Electron-Ion Collider (EIC), and the planned
Future Circular Collider (FCC), International Linear Collider (ILC) and Compact Linear Col-
lider (CLIC) are feeding the interest of the community in ML.1 From a theoretical perspec-
tive there has been progress in the calculation of higher-order scattering amplitudes assisted
by ML algorithms [5] and, in phenomenology, the determination of the partonic structure
of hadrons greatly profited from powerful neural-network machinery (for instance, see the
works of NNPDF collaboration in Refs. [6–13]). Furthermore, very recent implementations of
ML algorithms in event generators and simulators for HEP were reported in Ref. [14].

The successes of the perturbative expansion of Quantum Chromodynamics (QCD) to de-
scribe processes involving hadrons lies in the factorisation of the physical observables into hard
(perturbative, process-dependent) and soft (non-perturbative, universal) terms [15]. The for-
mer describe the interaction between elementary particles while the latter encode all the in-
formation concerning non-perturbative physics, i.e., the description of the partons inside the
hadrons before the interaction and their posterior hadronisation into detected particles. For
these, only the scale evolution can be determined once they are known at some other scale,

1For more information concerning the LHC upgrade, we refer the reader to
https://home.cern/science/accelerators/high-luminosity-lhc. Details about ML developments for the up-
coming EIC were presented at the workshop AI4EIC - Experimental Applications of Artificial Intelligence for the
Electron Ion collider (https://indico.bnl.gov/event/10699/), whilst the Inter-experiment Machine Learning (IML)
group at LHC organizes a dedicated workshop series (https://indico.cern.ch/event/852553/).
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and thus must be obtained from data through global fits.2 The simplest description of a hadron
is that of a collection of partons moving in the same direction. The probability of finding a
particular parton a in a hadron H carrying a fraction x of its momentum is given by the par-
ton distribution function (PDF) fH/a(x ,µ), when the hadron is explored at scale µ. After the
hard interaction all outgoing coloured particles will hadronise; the probability of a parton a
to fragment into a hadron H with a fraction z of its original momentum is described by the
fragmentation function (FF) Da/H(z,µ). This collinear picture is the best explored and in this
framework several sets of PDFs and FFs have been extracted using standard regression tech-
niques (e.g. [17–21]), MC sampling (e.g. [22, 23]) and MC sampling with neural networks
(e.g. [6]).

In order to perform a meaningful calculation, the hard cross-section must be convoluted
with the PDFs and/or FFs, over the corresponding momentum fractions of the partons. In the
inclusive deep inelastic scattering (DIS) process, where a lepton and a parton inside a hadron
interact by exchanging momentum Q2 ≥ 1 GeV2, measuring the scattered lepton (and/or fi-
nal hadrons) provides the full kinematics of the event. Unfortunately, in proton-proton (p+ p)
collisions the situation is not so simple. One has to estimate the momenta of the initial partons
(that enter in the evaluation of the PDFs) using the measured momenta and scattering angles
of the final state particles. Depending on the process and the characteristics of the detectors, it
can become a complicated task. Despite its inherent complexity, it is of the utmost importance
in some situations. For example in the case of asymmetric proton-nucleus (p + A) collisions,
particles created in the the backward (nucleus-going) direction are linked to initial partons
in the nucleus with low-x , and those in the forward (proton-going) direction are related to
partons in the nucleus with large-x . Depending on its exact value, one could have an enhance-
ment or a suppression of the nuclear PDF w.r.t. the free proton one. Knowing the region of the
detector associated with the kinematics of interest for a given process is also relevant for the
efficient design and construction of the detectors [24]. The proper mapping of the measured
kinematics onto the partonic level is crucial for a correct evaluation of the cross-sections and
interpretation of the perturbative calculations. This can be done analytically at leading order
(LO) for processes involving few particles, but as one considers higher orders the emission of
real particles makes it hard to fully determine the kinematics, and normally phenomenological
approximations are used.

In the present work, we aim to use ML to determine the relation between the measurable
four-momenta of the final particles and the parton-level kinematics. In particular, we focus on
p+ p collisions with one photon plus one hadron in the final state, computed using QCD and
Quantum Electrodynamics (QED) corrections. This process has already been identified as an
interesting observable at the Relativistic Heavy-Ion Collider (RHIC) [25], and previous studies
were performed with DIPHOX [26–28] (including up to NLO QCD corrections). Our goal is to
obtain the functions that, depending on the four-momenta of the photon and hadron, give x i
(the fraction of momentum of the proton i carried by the parton coming from it, i = 1, 2) and
z, the fraction of energy of the parton coming from the hard interaction that is taken by the
hadron (in our analysis a pion).

This article is organised as follows. In Sec. 2 we describe the framework used to imple-
ment the MC simulation of hadron-photon production, with special emphasis on the isolation
prescription (Sec. 2.1). Relevant phenomenological aspects of the process are discussed in
Sec. 3. The distributions w.r.t. different variables are presented in Sec. 3.1, with the purpose
of identifying the most probable configurations. We also explore the correlations between
different measurable variables and the partonic momentum fractions in Sec. 3.2. In Sec. 4,
we detail the implementation of reconstruction algorithms based on ML to approximate the

2Significant progress in the ab-initio calculation of parton densities is being carried out in the field of Lattice
QCD [16].
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partonic momentum fractions using only measurable quantities. Finally, we discuss the results
and comment on potential future applications of our methodology in Sec. 5.

2 Computational setup

From the theoretical point of view, the calculation relies on the factorization theorem to sepa-
rate the low-energy hadron dynamics (i.e. the non-perturbative component embodied into the
PDFs and FFs) from the perturbative interactions of the fundamental particles. This approach
is valid in the high-energy regime, under the assumption that the typical energy scale of the
process is much larger than ΛQCD ≈ 300MeV. The process under consideration is described by

H1(P1) +H2(P2)→ h(Ph) + γ(Pγ) , (1)

and the differential cross-section is given by

dσH1H2→hγ =
∑

a1a2a3a4

∫

d x1 d x2 dz1 dz2 fH1/a1
(x1,µI) fH2/a2

(x2,µI)Da3/h(z1,µF )

×Da4/γ
(z2,µF ) dσ̂a1 a2→a3 a4

(x1P1, x2P2, Ph/z1, Pγ/z2;µI ,µF ,µR) , (2)

where {ai} denote the possible flavours of the partons entering into the fundamental high-
energy collision. fHi/a j

(x ,µI) is the PDF of the parton at the initial state factorization scale
µI , and Da j/h(z,µF ) is the FF of the parton at the final state factorization scale µF . The par-
tonic cross-section, dσ̂, depends on the kinematics of the partons as well on the factorization
and renormalization scales (µR) and can be computed using perturbation theory. It is worth
appreciating that we consider all the partons to be massless.

In Eq. (2) we consider the photon as a parton, i.e. ai ∈ {q, g,γ}. Namely, we rely on
the extended parton model to include mixed QCD-QED corrections in a consistent way [29–
33]. However, we will assume that the fragmentation of a photon into any hadron is highly
suppressed w.r.t. the same process initiated by a QCD parton. This implies that we neglect
Dγ/h and a3 is always a QCD parton (quark or gluon). Also, since we are looking for a photon
in the final state, we can write

Da4/γ
(z2,µF ) = δa4,γδ(z2 − 1) + (1−δa4,γ)D̃a4/γ

(z2,µF ) , (3)

which leads to

dσH1H2→hγ =
∑

a1a2a3

∫

d x1 d x2 dz fH1/a1
(x1,µI) fH2/a2

(x2,µI)Da3/h(z,µF )

×dσ̂a1 a2→a3γ
(x1P1, x2P2, Ph/z, Pγ;µI ,µF ,µR)

+
∑

a1a2a3

∑

a4∈QCD

∫

d x1 d x2 dz1 dz2 fH1/a1
(x1,µI) fH2/a2

(x2,µI)Da3/h(z1,µF )

×D̃a4/γ
(z2,µF ) dσ̂a1 a2→a3a4

(x1P1, x2P2, Ph/z1, Pγ/z2;µI ,µF ,µR) , (4)

where a4 is a QCD parton. By rewriting Eq. (2) in this way, it is possible to identify at least
two mechanisms originating photons in the final state.3 The first term describes the direct
production of an observed photon in the partonic collision; in the second term the observed

3Another mechanism is related to the presence of fracture functions, Ma3 ,a4/h,γ, which do not completely separate
the non-perturbative interactions in the final state. Since we are interested in the high-energy limit of this process,
such contributions will be suppressed by the same reasons supporting the validity of the factorization theorem.
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resolved photon is generated from a non-perturbative process initiated by the parton a4. These
contributions are not individually distinguishable; however the latter can be suppressed by
applying adequate prescriptions. By realising that the resolved component appears in the
context of hadronisation, the photon being produced together with a bunch of hadrons, one
can exploit this signature to enhance the direct photon: it is the motivation for introducing
isolation prescriptions. By selecting mainly those events that contain photons isolated from
hadronic energy, the total cross-section can be approximated by

dσH1H2→hγ ≈
∑

a1a2a3

∫

d x1 d x2 dz fH1/a1
(x1,µI) fH2/a2

(x2,µI)Da3/h(z,µF )

×dσ̂(ISO)
a1 a2→a3γ

(x1P1, x2P2, Ph/z, Pγ;µI ,µF ,µR) , (5)

i.e. neglecting the resolved component and summing over all QCD-QED partons. The partonic
cross-section dσ̂(ISO)

a1 a2→a3γ
incorporates the isolation prescription and is described in greater

detail in Sec. 2.1.
We can now move to the discussion of how to include the QED corrections. The next-to-

leading order (NLO) pure QCD corrections for this process were computed in Refs. [25, 34].
Since in this case we are dealing with mixed QCD-QED corrections, we have to consider the
two couplings involved in the perturbative expansion. From the computational point of view,
we can profit from the Abelianization techniques to directly obtain QED contributions from the
QCD ones [31,32,35–37]. Given that the energy scale of the process is roughly O(10 GeV), we
have αS ≈ 0.12 and α ≈ 1/129. This means α ≈ α2

S, indicating that the LO QED corrections
have the same weight as the NLO QCD ones. Therefore, the dominant contribution is given
by the partonic channels qq̄→ gγ and qg → qγ at O(αSα), i.e.

dσ̂ISO,(0)
a1 a2→a3 γ

=
αS

2π
α

2π

∫

dPS2→2 |M
(0)|2(x1P1, x2P2, Ph

3 /z, Pγ)

2ŝ
S2 , (6)

with S2 the measure function containing the definition of the kinematical selection cuts for the
2→ 2 sub-processes. We have then to include O(α2

Sα) and O(αSα
2) contributions, associated

to the partonic channels

qq̄→ gγg , qg → qγg , g g → qγq̄ , qq̄→QγQ̄ , qQ→ qγQ , (7)

and
qγ→ qγ , qq̄→ γγ , (8)

respectively. q and Q are used to indicate two different quark flavours. In this way, the correc-
tions to the partonic cross-section are given by [38]

dσ̂ISO,(1)
a1 a2→a3 γ

=
α2

4π2

∫

dPS2→2
|M(0)

QED|
2(x1P1, x2P2, Ph/z, Pγ)

2ŝ
S2

+
α2

S

4π2

α

2π

∫

dPS2→2 |M(1)|2(x1P1, x2P2, Ph/z, Pγ)
2ŝ

S2

+
α2

S

4π2

α

2π

∑

ar

∫

dPS2→3 |M(0)|2(x1P1, x2P2, Ph/z, Pγ, kr)
2ŝ

S3 , (9)

where ŝ is the partonic center-of-mass energy and r denotes the extra parton associated to the
real radiation correction. |M(0)|2 and |M(1)|2 are the squared matrix-elements for the tree-
level and one-loop corrections, respectively. In these expressions, S3 represents the measure
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function that implements the experimental cuts and the isolation prescription for the 2 → 3
sub-processes.

Since we are dealing with higher-order corrections, singularities will appear in the calcula-
tion. The LO QED is given by a (finite) Born level process. However, the NLO QCD corrections
involve both ultraviolet (UV) and infrared (IR) singularities that must be regularized and can-
celled to get a physical result. The regularization was done using Dimensional Regularization
(DREG) [39–42]. The virtual corrections were computed starting from one-loop QCD ampli-
tude for the process 0→ qq̄gγ, removing the UV poles through the renormalization in the MS
scheme. In order to cancel the IR singularities, we relied on the subtraction formalism [43–47],
splitting the real phase-space in regions containing only one kind of IR singularity. When com-
bining the real and the virtual corrections, some of the IR divergences associated to final state
radiation (FSR) cancel by virtue of the KLN theorem [48,49]. But to achieve a full cancellation,
counter-terms were added to remove the remaining initial-state and final-state contributions
absorbed into the PDFs and FFs, respectively. In this way, the master formula for the partonic
cross-section at NLO QCD + LO QED accuracy is symbolically given by

dσ̂ISO,(1),finite
a1 a2→a3 γ

= dσ̂ISO,(1),ren.
a1 a2→a3 γ

−
CUV

a1 a2→a3 γ

ε
× dσ̂ISO,(0)

a1 a2→a3 γ

− dσ̂ISO,cnt,(I)
a1 a2→a3 γ

− dσ̂ISO,cnt,(F)
a1 a2→a3 γ

, (10)

where dσ̂ISO,cnt,(I)
a1 a2→a3 γ

and dσ̂ISO,cnt,(F)
a1 a2→a3 γ

are the initial and final-state IR counter-terms, respectively.

Here, CUV
a1 a2→a3 γ

is the renormalization counter-term for the partonic process a1 a2 → a3 γ in

the MS scheme.4

2.1 Isolation prescription and other assumptions

In order to suppress events with photons originated from the decay of hadrons, it is necessary
to implement an isolation prescription. The idea behind most of the strategies available in the
literature consists in quantifying the amount of hadronic energy surrounding a well-identified
photon, and rejecting events with more hadronic energy than a certain threshold. Whilst most
of the prescriptions work nicely at LO, not all of them are infrared safe. For instance, it is
known that choosing a fixed cone eliminates events that play a crucial role in the cancellation
of IR singularities. Thus, special care is needed in the implementation of these methods.5

In this work, we rely on the smooth cone prescription introduced in Ref. [54]. Its main
advantage is that it suppresses the resolved component without preventing the emission of
soft/collinear QCD radiation, which makes it IR-safe and fully suitable for higher-order cal-
culations. In the first place, we fix a reference point in the rapidity-azimuthal plane (η0,φ0),
and define the distance

r( j) =
q

(η j −η0)2 + (φ j −φ0)2 , (11)

with (η j ,φ j) the angular coordinates of the parton j. Once we identify a photon in the detector,
we trace a cone of radius R around it and look for QCD partons inside. If no QCD radiation
lays inside the cone, the photon is isolated. If not, we identify the QCD partons inside the
cone, {a j}, and measure their distance to the photon following Eq. (11). Then, for a fixed
r ≤ R, we calculate the sum of the hadronic transverse energy according to

ET (r) =
∑

r j≤r

ET j
. (12)

4Explicit formulae for all the ingredients in this expression can be found in Refs. [45,50].
5An extensive study of different methods and their impact on the calculations is available in Refs. [51–53].
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We want to restrict ET by imposing an upper bound, thus limiting the amount of hadronic
energy surrounding the photon. In the fixed cone prescription, this limit is a constant. How-
ever, for the smooth prescription, we introduce an arbitrary smooth function ξ(r) satisfying
ξ(r) → 0 for r → 0, and require ET (r) < ξ(r) for every r < r0. Only if this condition is
fulfilled, the photon is isolated; otherwise, the event is rejected.

The experimental implementation of this criterion requires a very high angular resolution,
something that is usually not achievable in practise. This is one of the reasons why most of
the current experiments still rely (mainly) on the fixed cone prescription. Fortunately, the
difference between both approaches can be neglected for several relevant observables [51,
52]. In any case, technological improvements in detector science will certainly reduce the
experimental limitations in the near future.

Finally, let us mention one further detail about the implementation. We will neglect the
partonic channel qq̄→ γγ in Eq. (5), which would imply the introduction of the fragmentation
Dγ/h. From the point of view of perturbation theory, this fragmentation can be interpreted as a
collinear electromagnetic splitting γ→ a+X , with a a QCD-parton that undergoes hadroniza-
tion to generate the observed hadron h. Performing a naive counting, this contribution is
O(α3) and turns out to be sub-leading w.r.t. the NLO QCD + LO QED terms studied in this
work.6

3 Phenomenological results

Using the formalism explained in the previous Section, we calculated the unpolarized cross-
section via a code that uses adaptive MC integration. In this program, the different contribu-
tions to 2→ 2 and 2→ 3 processes are computed independently, and kinematic cuts can be
imposed. The events are randomly generated, using a different seed for each contribution: we
collect all the events compatible with certain cuts to define the histograms.

We considered two different experimental scenarios. On one side, we simulated RHIC
kinematics with centre-of-mass (c.m.) energy (

p

SC M ) 500 GeV and reproduced the cuts cor-
responding to the PHENIX detector, i.e.

|ηh| ≤ 0.35 , |ηγ| ≤ 0.35 , ph
T ≥ 2GeV , 5 GeV ≤ pγT ≤ 15GeV , (13)

with η the rapidity of the particles measured in the hadronic c.m. frame. On top of that, we
require |φh − φγ| > 2 to retain those events with the photon and hadron produced almost
back-to-back. On the other side, we simulated LHC Run II kinematics with

p

SC M = 13 TeV.
Regarding the detector cuts, we kept the same restrictions for ηh and ph

T given in Eq. (13).
However, the intensive hadron activity and pile-up associated to the high-luminosity LHC Run
II might contaminate the photon selection. Both ATLAS and CMS have performed dedicated
analyses of the trigger efficiency for different photon energies [55–57], showing a better trig-
gering and reconstruction efficiency for Eh

T > 30 GeV. For this reason, we set

|ηγ| ≤ 2.5 , pγT ≥ 30GeV , (14)

when simulating LHC Run II kinematics. The extended rapidity range w.r.t. PHENIX is due
to the geometry of the detector, even if there is a gap for 1.36 < |ηγ| ≤ 1.55. For the sake of
simplicity, we ignore this gap and assume that photons can be efficiently detected and recon-
structed when they fulfil Eq. (14).

6This topic deserves attention, specially because non-perturbative contributions could enhance the production
rate of hadrons from highly-energetic photons. Unfortunately, we were unable to find in the literature studies or a
proper definition of Dγ/h to be included within our simulations.
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Regarding the non-perturbative ingredients of the calculation, we used the LHAPDF pack-
age [58, 59] to have a unified framework for the PDF implementation. We relied on the
NNPDF4.0NLO [13] and NNPDF3.1luxQEDNLO [60–63] parton distributions for the pure QCD
and mixed QCD-QED calculations, respectively. In both cases, we use the set 0, which corre-
sponds to an average over the different replicas. For the fragmentation functions, we used
the DSS2014 set at NLO accuracy [20, 64]. Since the pion is the lightest hadron and is pro-
duced more copiously, we restrict our attention to the case h = π+. Also, we evolve the QCD
and QED couplings using the one-loop RGE with the initial conditions αS(mZ) = 0.118 and
α(mZ) = 1/128.

Finally, we fixed the factorization and renormalization scales to be equal to the average
transverse momenta of the hadron and the photon, i.e.

µF = µI = µR =
pπT + pγT

2
. (15)

Regarding the implementation of the smooth isolation criteria, we used the function

ξ(r) = EγT

�

1− cos(r)
1− cos(r0)

�4

, (16)

where EγT is the transverse energy of the photon and r0 = 0.4. As mentioned before, the only
requirement for ξ(r) is that ξ(r)→ 0 for r → 0, and Eq. (16) fulfils this condition.

3.1 One-dimensional distributions

Since we are looking at the process p+ p→ π+ γ+ X ,

VExp = {p
γ
T , pπT ,ηγ,ηπ, cos(φπ −φγ)} , (17)

are the experimentally accessible variables measured in the c.m. system. Notice that we con-
sider only the difference of the azimuthal angles, because the problem has rotational symmetry
around the collision axis. Moreover, it turns out that cos(φπ −φγ) is a variable often used by
experimental collaborations [65].
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Figure 1: Unpolarized cross-section for the production of one photon plus one pion
as a function of the transverse momentum of the pion (left) and the photon (right),
respectively. We considered the selection cuts described in the previous section, for
LHC Run II and RHIC, respectively.

In Figures 1, 2, 3, 4 and 5 we present the single differential cross-section as a function of the
variables VExp for RHIC and LHC Run II. Our predictions are shown for LO QCD (dotted red),
NLO QCD (solid black) and NLO QCD + LO QED (dashed blue), considering the default scale
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choice defined in Eq. (15). In first place, we study the pion (pπT ) and photon (pγT ) transverse-
momentum spectrum in Fig. 1. The cross-section increases for higher c.m. energies and the
impact of the QED corrections also becomes more sizable. In the case of RHIC, the distribution
in pπT decreases faster than the pγT -spectrum, mainly due to the convolution with the FFs and
the kinematical cuts. In fact, the experimental cuts imposed ensure an important contribution
of events with close-to-Born kinematics. When considering LHC Run II, we appreciate that the
pπT spectrum falls slower than for RHIC because pions can reach higher transverse momentum.
In this case, pγT is associated to the transverse momentum of the parton c which fragments
into a pion with momentum fraction z. Since the FFs tend to favour the region with z ≤ 0.2
[66], the suppression observed in Fig. 1 can be understood. Regarding the pγT -spectrum, it
is important to notice that different ranges for LHC Run II (left) and RHIC (right) were used,
because of the very different c.m. energies and the improved capabilities of ATLAS/CMS for
an efficient detection of high-energy photons.
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Figure 2: Same as Fig. 1, but now as a function of the rapidity of the pion (left) and
the photon (right), respectively.

Next, we present the distributions in the rapidities (Fig. 2) and the azimuthal variable
cos(φπ − φγ) (Fig. 3). In both cases, we show a comparison between RHIC and LHC Run
II. Even if the azimuthal range of ATLAS/CMS is wider, we restrict in these plots to the same
scale, in order to provide a more fair comparison. For the rapidity distribution, we observe a
significant NLO QCD correction, although the added LO QED effects are very small. Regarding
the azimuthal spectrum, we can observe in Fig. 3 a peak in the back-to-back region (i.e.
cos(φπ−φγ) = −1), with a fast suppression for configurations beyond Born-level kinematics.
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Figure 3: Dependence on cos (φπ −φγ) for LHC Run II (left) and RHIC (right).
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Besides the distributions w.r.t. the experimentally-accessible quantities, we can compute
the differential cross-section as a function of the partonic momentum fractions, x1, x2 and
z. For p + p collisions we consider only the distributions w.r.t. x1 due to the symmetry of
the system. In what follows, x and x1 will be used interchangeably. The corresponding plots
are shown in Fig. 4, for x = x1 (left) and z (right). In the case of RHIC, we notice that the
experimental cut pγT ≤ 15 GeV induces a restriction on the maximum value of x involved in
the collision. In fact, using a LO approximation, we get

xMax ≈
pγT

p

SC M
, (18)

beyond this value, the cross-section is drastically suppressed. For RHIC, we can estimate
xMax ≈ 0.03. Thus, we will use this information to restrict the x-range in the correlation
analysis presented in the next section. In this way, we will avoid dealing with regions with a
negligible amount of events. In the case of LHC Run II, both for ATLAS and CMS, there is no
explicit upper cut in the transverse momentum of the detected photon. However, from Fig.
1, we appreciate that the cross-section for pγT ≥ 150 GeV is very suppressed w.r.t. the region
with pγT ≈ O(10GeV). This imposes an indirect upper limit in the reconstruction of x , with
xMax ≈ 0.01 for LHC Run II data. Since this range is smaller than in the case of RHIC, we will
study the reconstruction of the partonic momentum fractions relying on simulations for RHIC
experiment. Furthermore, we decided to reconstruct the partonic momentum fractions for
RHIC kinematics since we can compare with previous results available in the literature [25].
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Figure 4: Cross-section as a function of the partonic momentum fractions x (left) and
z (right), for RHIC and LHC Run II . Since these experiments involve p+ p collisions,
we consider x = x1 as given by Eq. (2).

Regarding the dependence in z (right panel of Fig. 4), it reaches almost the endpoint
region (i.e. z = 1) with a reasonable amount of events. The fact that we impose pπT ≥ 2 GeV
translates into a lower bound for z given by

zMin ≈
pπT

p

SC M
, (19)

which corresponds to zMin ≈ 0.004 and zMin ≈ 0.0001 for RHIC and LHC Run II, respectively.
Opposite to the case of the x-distribution, here the higher the energy of the process, the wider
the accessible z-range. It is worthwhile noticing that the FFs used in this work do not include
in the fit data with z ≤ 0.05 and extrapolations into that region are most likely unreliable. The
distribution present a peak, located at zPeak ≈ 0.35 for RHIC (zPeak ≈ 0.25 for LHC Run II).
The position of the peaks depends on the explicit functional form of the PDFs and the FFs.
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Figure 5: Cross-section as a function of the partonic momentum fraction x1 (left)
and x2 (right), for Tevatron. x1 corresponds to the momentum fraction associated
to the proton, whilst x2 to the antiproton.

To conclude this section, we study the case of p + p̄ collisions at Tevatron, with
p

SC M = 1.96 TeV. This process is of interest because it might exhibit a different dependence
on PDFs and FFs, compared to p+p collisions. We use the same detector cuts as in the PHENIX
experiment to be able to compare with RHIC. In this case, the symmetry between x1 and x2 is
broken, since x1 (x2) corresponds to the momentum fraction of a parton inside a proton (an-
tiproton). In Fig. 5 we present the distribution for x1 (left) and x2 (right). We can appreciate
that the distribution in x2 reaches a peak around x2 ≈ 0.01 and then falls faster than the x1-
distribution. We know from previous studies that the partonic channel g g is dominant [25],
and thus we expect the differences to take place in the qq̄ and qQ channels. This also has an
impact when studying the x1 vs x2 correlations, as we will show in the next subsection.

3.2 Correlations with the partonic momentum fractions

Since one of the main goals of this work is to reconstruct the partonic kinematics starting
from experimentally accessible quantities, it is useful to first study the correlations among the
different variables. This helps us to prioritize certain ansatzes depending on their functional
form, in such a way that we capture the leading behaviour when exploring linear models.
In the following, we restrict the discussion to RHIC kinematics (with the cuts defined in the
previous section).

We start by considering the relation between x = x1 and the transverse momentum of
the particles in the final state. In Fig. 6, we present the correlation between x1 and pγT (left
column) and pπT (right column). Each bin contains the corresponding integrated cross-section
at LO QCD (upper row) and NLO QCD + LO QED (lower row) precision. Notice that the
inclusion of higher-order corrections leads to a broadening of the patterns, originated by the
presence of events in previously empty bins due to an extended phase-space. This is a general
behaviour that also manifests when studying the correlations of other variables. Events with
low pγT are associated with low x1, and there is a somehow linear correlation between these
variables. Events with low pπT are mostly uniformly spread in the region of x1 ∈ [0.02,0.6].
This behaviour is expected from the fact that the photon originates from the partonic event (its
energy is directly related to the energy of the colliding partons), whilst the pion comes from
a hadronization (which implies the convolution with the FF and the consequent spreading of
the distributions).

Next we move on to analyze the correlation between x = x1 and the rapidities of the

11

https://scipost.org
https://scipost.org/SciPostPhysCore.5.4.049


SciPost Phys. Core 5, 049 (2022)

6 8 10 12 14

pγT [GeV]

2

3

4

5

6

7

8

x
(×

1
0
−
2
)

10−9

10−8

10−7

10−6

10−5

σ
[µ

b
ar
n
]

6 8 10 12 14

pπT [GeV]

2

3

4

5

6

7

8

x
(×

1
0
−
2
)

10−10

10−9

10−8

10−7

10−6

σ
[µ

b
ar
n
]

6 8 10 12 14

pγT [GeV]

2

3

4

5

6

7

8

x
(×

1
0
−
2
)

10−9

10−8

10−7

10−6

10−5

σ
[µ

b
ar
n
]

6 8 10 12 14

pπT [GeV]

2

3

4

5

6

7

8

x
(×

1
0
−
2
)

10−10

10−9

10−8

10−7

10−6

σ
[µ

b
ar
n
]

Figure 6: The partonic momentum fraction x = x1 as a function of pγT (left) and pπT
(right). The color scale shows the cross-section at LO QCD (upper row) and NLO
QCD + LO QED (lower row). We simulated the events using RHIC kinematics with
p

SC M = 500 GeV.
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Figure 7: The partonic momentum fraction x as a function of the rapidity of the
photon. The color scale shows the cross-section at LO QCD (left) and NLO QCD
+ LO QED (right) accuracy. We simulated the events using RHIC kinematics with
p

SC M = 500 GeV.

particles in the final state. It is important to highlight that the analysis here does depend on
the momentum fraction being used, i.e. x1 or x2, since the rapidity introduces an asymmetry
in the direction of the colliding particles. We show, in Fig. 7, the plots of x1 vs. ηγ at LO
QCD (left) and NLO QCD + LO QED (right), respectively. Similar results were found when
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Figure 8: Partonic momentum fraction z as a function of pγT (left) and pπT (right). The
color scale shows the cross-section at LO QCD (upper row) and NLO QCD + LO QED
(lower row). We simulated the events using RHIC kinematics with

p

SC M = 500
GeV.

considering x1 vs. ηπ and are thus not presented here. Since the distributions are rather flat for
−0.3≤ η≤ 0.3, we find that most of the events are uniformly distributed for x1 ∈ [0.02,0.05].
Finally, notice that below x1 ≈ 0.02, the cross-section falls steeply as a consequence of the
imposed kinematical cuts, and the bins are empty.
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Figure 9: Partonic momentum fraction z as a function of the rapidity of the photon.
The color scale shows the cross-section at LO QCD (left) and NLO QCD + LO QED
(right) accuracy. We simulated the events using RHIC kinematics with

p

SC M = 500
GeV.
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The analogous results on the z dependence are presented in Fig. 8, the upper (lower)
row corresponding to the LO QCD (NLO QCD + LO QED) contributions. On the left column
we show the correlation between z and pγT , and between z and pπT on the right column. The
former seems to be slightly negative, i.e. smaller values of z tend to be favoured in events with
higher pγT , while the latter has a concentration of events in the low pπT region with z ≥ 0.4.
Also, as expected, events with high pπT require higher values of z since the amount of partonic
energy is limited by the cut pγT ≤ 15 GeV.
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Figure 10: Partonic momentum fractions x1 (left) and z (right) as a function of
cos (φπ −φγ). The color scale shows the integrated cross-section value per pixel
with NLO QCD + LO QED accuracy. We simulated the events using RHIC kinematics
with

p

SC M = 500 GeV.

The correlation between z and the rapidities of the final state particles shows a rather flat
dependence on η, as depicted in Fig. 9 for the case of ηγ (similar plots were obtained when
considering ηπ).

Then, let us consider the correlations with the azimuthal variable cos (φπ −φγ) in Fig.
10. Of course, the contributions associated to the Born kinematics are restricted to the first
bin because cos (φπ −φγ) = −1 (i.e. the pion and the photon are produced back-to-back). In
the remaining bins the cross-section is heavily suppressed, since it only receives contributions
from real radiation (i.e. they are associated to higher-orders). We see that the events are
strongly concentrated in the medium and low-x region without a clear trend or dependence
w.r.t. cos (φπ −φγ). For z, the distribution spreads over more bins, and there is a subtle trend
to favour events with a bigger azimuthal separation (smaller values of − cos (φπ −φγ)) and
slightly lower values of z.

Finally, we analyze the correlation between x1 and x2 for p + p collisions. In Fig. 11, we
show the correlation plots at LO QCD (left) and NLO QCD + LO QED (right) accuracy, for
RHIC kinematics. As expected, there is a compact region containing events at LO, reflecting
the kinematical constraints of a 2 → 2 process. The events are concentrated in the low-x
region and show a strong positive linear correlation between x1 and x2: this reflects the fact
that it is more probable to have events in the back-to-back region, in agreement with Fig.
10. When introducing higher-order corrections, the real emission phase-space gets enlarged
and the distributions are spread. In any case, the positive correlation between x1 and x2
remains, with a strong concentration of events in the middle and low-x region. Also, it is worth
appreciating that the NLO real corrections are not enough to enhance the number of events
with rather different values of x1 and x2. This is, in part, a consequence of the kinematical
cuts that favour central events rather than highly boosted ones.

To conclude this section, let us comment on the importance of the study of correlations.
Since we want to reconstruct the partonic momentum fractions by using the measurable vari-
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Figure 11: Correlation between x1 and x2 at LO QCD (left) and NLO QCD + LO
QED (right) accuracy. Even when including NLO real corrections, there is a strong
suppression for those events with rather different values of x1 and x2. We simulated
the events using RHIC kinematics with

p

SC M = 500 GeV.

ables, it is important to know which ones are the most relevant. From the previous discussion,
we expect that x strongly depends on pγT (positive correlation) but not on the other variables.
Analogously, z exhibits a negative correlation with pγT , a positive one with pπT and a slight
dependence on − cos (φπ −φγ). This knowledge will be applied to the construction of a basis
of functions for determining x and z in the next section.

4 Reconstruction of parton kinematics

We now focus on our main goal, which is to determine the partonic variables x1, x2 and z in
terms of the measured momenta of the final state particles. At LO this is fully determined by
energy-momentum conservation, and thus the LO case will serve as control. The real chal-
lenge appears at NLO, where real emissions prevent a straightforward determination of closed
analytic formulae: this is what we will attempt to approximate using ML.7

Before entering into the details of the methodology, let us briefly mention the importance
of such reconstruction in p + p collisions. In electron-electron (e + e) collisions, the initial
state is composed by fundamental particles and therefore the kinematics of the particles en-
tering the partonic process is well-known. In the DIS processes, where a lepton collides with
a nucleon, measuring the momenta of the scattered lepton provides access to the kinematics
of the exchanged particles. The complexity of this scenario is higher than the e + e case, but
it is possible to achieve an efficient reconstruction as discussed in Ref. [4]. However, as we
already explained in the Introduction, the presence of two composite colliding particles makes
it non-trivial to unveil the kinematics of the fundamental objects entering in the collision. Con-
straining x1 and x2 from measurements of objects in the final state allows to understand the
partonic dynamics and perform a more accurate comparison with theoretical models. We can
see a clear example of this in the case of proton-nucleus collisions, when one of the PDFs has
to be replaced by a nuclear PDF (nPDF). As one moves from low to high x , the nPDFs exhibit a
pattern of suppression-enhancement w.r.t. the proton PDF (for recent nPDF studies including
LHC and RHIC data, see e.g. [68]). Thus, the incorrect identification of the underlying kine-
matics can lead to assume that one observable is sensitive to e.g. a suppression region, when

7Doing a formal description of the ML methods that we used is beyond the scope of this work, and would take
much more than a simple article. Moreover much literature is available on the topic (see e.g. [67]), so we will
leave out such a discussion and mention just a few basic concepts needed in the rest of the section.
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it is actually the opposite case. In turn, this could lead to an inadequate interpretation of the
data or theoretical modelling of the initial state nuclear effects. Furthermore, as motivated in
Refs. [25,38], it could be used to impose more tight constraints on PDF fits. For all of these, our
goal is particularly relevant in the context of high-precision particle physics phenomenology.

In supervised ML, we have an initial set of data (the training set) and we want to map it
into another known set (the target). Each entry in the training set is a vector of dimension
d, with d the number of variables (features) that the target depends upon. We also assume
that there is some underlying function, the so-called target function, that connects the two;
the task of a ML algorithm is to find a good estimation of this function. This estimator, in
turn, depends on a set of parameters that is determined by minimising a function (the cost
function) that measures some distance between the prediction of the estimator and the actual
targets. As a last step, one takes another set of data with corresponding labels (test set) and
compares how well the estimator performs for it. To prevent the estimator from performing
well for the training data set but poorly for the test set (overfitting), the cost function includes
also some parameters to control the trade off between a low training cost and a low test cost.
The total number of regularization parameters depend on the specific method used, and the
optimal value/s have to be found by picking the one/s that minimize the test cost function.

Armed with these basic concepts, we first discuss the generation of our input and target
sets using the outputs of our MC code. After that, we present results obtained through the
application of supervised ML for estimating x ≡ x1 and z at LO QCD and NLO QCD + LO QED
accuracy. For the purpose of the present analysis, we explore three models: a Linear Model
(LM), a Gaussian Regression (GR) and the Multi-Layer Perceptron (MLP) algorithm based on
neural networks. These models have been implemented in Python using the scikit-learn
library [69].

Before discussing the work carried out, we would like to draw attention to an important
point. In the context of this analysis, data does not refer to experimental data, as this observable
is yet to be measured. What the reader should interpret as data are the outcome of numerical
simulations. Given that we are dealing with purely theoretical/phenomenological calculations,
we can work without further processing the results as one would need when comparing with
real data.8

4.1 Construction of the training data sets

The training and test sets were generated with the MC code used and described in the previous
sections. The training set was taken to be an 80% of the full set, with randomly selected
points, while the remaining data composed the test set. As was mentioned already, it deals
independently with each term of the computation (LO, NLO real radiation, NLO virtual terms,
NLO counter-terms). This poses two difficulties when generating the training set for feeding
the ML functions. On the one hand, only the LO calculations are finite on their own; for the
NLO cross-section, we have to combine all terms (real, virtual and counter-terms) to have a
meaningful finite quantity. On the other hand, each term is computed through an independent
MC integration. Since no two identical points are generated in the different samplings, the
fully local cancellation of the divergences is spoiled. Instead, one has to split the different
variables into bins and sum over all contributions entering each of them. If a sufficient number
of points is sampled, the divergences cancel and we obtain the finite cross-section per bin. This
is a common feature of MC integration, and many codes provide routines that take care of this
for one-dimensional binning. In our case we are interested in a more differential observable,
so that we had to generate a large number of points to meet this condition. Moreover, not all

8In that case, we would need to simulate the parton shower in the theoretical calculation or request the exper-
imental data to be unfolded.
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sampled points pass the selection cuts, e.g. from the 109 points sampled we retain ≈ 30% at
LO.

For the LO we can directly use the generated points, but for the NLO case we need to
discretize the differential cross-section w.r.t. the external kinematical variables defined in Eq.
(17). For this purpose, we create a five-dimensional grid by binning the variables in VExp.
Explicitly, we define 10 bins for pγT and pπT , 5 bins for ηγ and ηπ, and 6 bins for cos(φπ−φγ).
The set of discretized experimentally-measurable variables is denoted as

V̄Exp = {p̄
γ
T , p̄πT , η̄γ, η̄π, cos(φπ −φγ)} , (20)

where ā denotes the mean value of the variable a in a given bin. In total V̄Exp contains 15000
bins. Then, we define the cross-section per bin according to

σ j(p̄
γ
T , p̄πT , η̄γ, η̄π, cos(φπ −φγ)) =

∫ (pγT ) j,MAX

(pγT ) j,MIN

dpγT

∫ (pπT ) j,MAX

(pπT ) j,MIN

dpπT . . .

×
∫

d x1d x2dz dσ̄ , (21)

with x j,MIN (x j,MAX) the minimum (maximum) value of the variable x in the j-th bin, x̄ the
corresponding average of x over the j-th bin and

dσ̄ =
dσ

dVExp d x1d x2dz
, (22)

is the fully-differential hadronic cross-section as a function of the partonic momentum frac-
tions and the experimentally-measurable variables VExp. At LO, σ j can be straightforwardly
calculated since we only need to integrate the tree-level scattering amplitude in a 2→ 2 phase-
space. However, as we explained in Sec. 2, the NLO corrections include several contributions
calculated with different kinematics (virtual, real, counter-terms): all of these are taken into
account in dσ̄ and integrated over their corresponding phase-space to obtain σ j .

9

Once the grid and the discretized cross-section are defined, we use the MC code to gen-
erate three histograms per bin in the grid. These histograms corresponds to the distributions
dσ j/d x1, dσ j/d x2 and dσ j/dz, respectively. So, given a point in the grid

p j = {p̄
γ
T , p̄πT , η̄γ, η̄π, cos(φπ −φγ)} ∈ V̄Exp , (23)

we can define

(x1) j =
∑

i

(x1)i
dσ j

d x1
(p j; (x1)i) , (24)

(x2) j =
∑

i

(x2)i
dσ j

d x2
(p j; (x2)i) , (25)

(z) j =
∑

i

zi
dσ j

dz
(p j; zi) , (26)

which correspond to the weighted average of the partonic momentum fractions extracted
from the histograms generated with the MC code. This is done because, given a certain fi-
nal state, the partonic momentum fractions are not unambiguously defined. Beyond LO, the

9Binning could be avoided using a fully-local framework for computing higher-order corrections [70,71]. One
of these methods is the Four-Dimensional Unsubtraction (FDU) [72–75] based on the Loop-Tree Duality [76–78].
Since FDU leads to a fully-differential and finite representation of the cross-section, it constitutes a perfectly suited
candidate to improve the efficiency of the analysis presented in this article.
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real-radiation contributions include processes that contain extra-particles in the final state. As
a consequence, the momentum conservation equations for each event lead to a non-unique
value for the momentum fractions. Thus, in Eqs. (24)-(26), we define an equivalent event
using the fully-differential cross-section to weight the contributions of the different partonic
configurations.

At this stage, we can identify V̄Exp as the training set and {(x1) j , (x2) j , (z) j} as the target
one. Then, we can train the ML algorithms to find the target functions

X1,REC := V̄Exp −→ X̄1,REAL = {(x1) j} , (27)

X2,REC := V̄Exp −→ X̄2,REAL = {(x2) j} , (28)

ZREC := V̄Exp −→ Z̄REAL = {(z) j} , (29)

that will allow us to reconstruct the MC partonic momentum fractions X̄1,REAL , X̄2,REAL and
Z̄REAL .

To conclude this discussion, notice that the definitions given in Eqs. (24)-(26) are crucial
beyond LO. In fact, for a 2→ 2 process, fixing the bin p j ∈ V̄Exp leads to a unique value of the
partonic-momentum fractions. Explicitly, we have

X1,REC =
pγT exp(ηπ) + pγT exp(ηγ)

p

SC M
, (30)

X2,REC =
pγT exp(−ηπ) + pγT exp(−ηγ)

p

SC M
, (31)

ZREC =
pπT
pγT

, (32)

as explained in Ref. [25]. Due to the presence of 2→ 3 sub-processes contributing to the real
radiation, the value of {x1, x2, z} for a given p j is not unambiguously defined at NLO (and
beyond). If we pick an event with a fixed p j from our NLO MC generator, the real partonic
momentum fractions might take all the kinematically-allowed values. However, the probability
of the different outcomes is given by the differential-cross section of the event, which motivates
the definitions introduced in Eqs. (24)-(26). In the following, we explain how these data sets
are used with the different ML frameworks.

4.2 Linear regression

Linear methods, as the name indicates, provide the estimation of the target function as a linear
combination of the input set. However, the linearity occurs at the level of the parameters and
one can apply prior knowledge to construct new features upon which the target dependence is
simpler. Choosing a good set of features (basis) plays an important role to achieve an accurate
reconstruction.

For example, at LO we take inspiration from the exact analytical expressions given by Eqs.
(30)-(32) and propose the basis

BLO = {
pγT

p

SC M
exp(ηπ),

pγT
p

SC M
exp(ηγ),

pγT
p

SC M
exp(−ηπ),

pγT
p

SC M
exp(−ηγ), pπT/p

γ
T }. (33)

We then expect x1 to be well reconstructed by a linear combination of the first two elements
of the basis (with coefficient 1), whilst z should be mainly proportional to the last element. In
Fig. 12, we show the correlation between the MC partonic momentum fractions (vertical axis)
and the output of the linear regression (horizontal axis). Each bin contains the integrated
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Figure 12: Correlation between the MC momentum fractions (i.e. XREAL and ZREAL)
and the ones obtained at LO QCD accuracy using the LM approach. Each bin of the
correlation plot is filled with the integrated cross-section.

cross-section at LO QCD accuracy. The reconstruction is perfect, and the LM approach leads
exactly to the Eqs. (30)-(32).

When dealing with the NLO scenario, in principle, we should expect an enlargement of
the basis. The elements of BLO are not enough to fully capture the additional dependencies
introduced by the NLO real kinematics. In fact, in Ref. [25] the authors proposed

X1,REC =
pγT exp(ηπ)− cos(φπ −φγ) pγT exp(ηγ)

p

SC M
, (34)

X2,REC =
pγT exp(−ηπ)− cos(φπ −φγ) pγT exp(−ηγ)

p

SC M
, (35)

ZREC = − cos(φπ −φγ)
pπT
pγT

, (36)

that agree with Eqs. (30)-(32) at LO, but introduce an additional dependence on the azimuthal
variables at higher-orders. The study of correlations performed at NLO QCD accuracy using
these expressions showed a good reconstruction of the MC partonic momentum fractions.

With this precedent in mind, we propose here to include additional functional dependen-
cies to have a more flexible reconstruction. We start by defining a primitive set of functions

K = {
pγT

p

SC M
,

pπT
p

SC M
, exp(ηγ), exp(ηπ), cos(φπ −φγ)} , (37)

in such a way that the reconstructed variables take the form

YREC =
9
∑

i=1,i 6=5

(aY
i + bY

i K5)Ki +
∑

i≤ j,{i, j}6=5, j−i 6=5

(cY
i j + dY

i j K5)KiK j , (38)

with YREC = {X1,REC, X2,REC, ZREC} and Ki = K−1
i−5 for i = {6,7, 8,9}. The ansatz proposed in

Eq. (38) generalizes the basis BLO and includes products of up to three kinematical variables,
which gives more flexibility to fit the data. In total, there are eighty-one functions in the basis,
that we denominate general basis. However, as we will now explicitly see, a larger basis does
not imply a better reconstruction.
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Figure 13: Correlation between the MC momentum fractions (i.e. XREAL and ZREAL)
and the ones obtained at NLO QCD + LO QED accuracy using the LM approach (XREC
and ZREC). Upper row: using the general basis given in Eq. (38). Middle row:
physically motivated basis. Lower row: LO-inspired basis.

If we take Eq. (38), with Y = {x1, z} we obtain the results shown in the upper row of Fig.
13. In this figure, we indicate the strength of the correlation with the integrated cross-section
per bin at NLO QCD + LO QED accuracy. The coefficients aY

i , bY
i j , cY

i j and dY
i j are given in

App. B. The reconstruction is good in the low-x and low-z region. This is expected because
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the cross-section is larger in that region, so there are more data-points to perform the fit.
However, the reconstruction becomes noisy and imprecise for higher values of the momentum
fractions. The LM is unable to keep the functional dependencies that better approximate the
real momentum fractions in regions with low number of events.

For this reason, we explore a second approach. We profit from the findings in Sec. 3.2,
and distinguish different basis for Y = x1 and Y = z. It was shown that x1 exhibits a positive
correlation with pγT , so we remove the contributions involving K6 = (p

γ
T )
−1 from Eq. (38).

Regarding z, the conclusion of Sec. 3.2 was that it is correlated with K6 = (p
γ
T )
−1, K2 = pπT and

that also presents a mild correlation with K5. So, we remove the contributions that involve the
primitive functions K1 and K7. As a result, we propose a physically-motivated reconstruction
by taking Eq. (38) and setting

bX1
6 = 0 ,

cX1
6, j = dX1

6, j = cX1
i,6 = dX1

i,6 = 0 {i, j} ∈ {1, . . . , 9} , (39)

for x1 and

bZ
1 = bZ

7 = 0 ,

cZ
1, j = dZ

1, j = 0 j ∈ {1, . . . , 9} , j 6= {5,7} ,

cZ
i,7 = dZ

i,7 = 0 i ∈ {1, . . . , 9} , i 6= {1,5} , (40)

for z. The coefficients obtained with these assumptions are presented in App. B, whilst the
corresponding correlations with the real MC momentum fractions are shown in the middle row
of Fig. 13. The correlation is slightly better for z, but it is worse for x . Even if the physically-
motivated basis includes elements that are selected according to the correlations with physical
variables, it turns out that the abundance of points in a particular region of the parameter space
imposes a very tight constraint on the whole fit. For z, this is not a big problem since it seems
to be dominated by the ratio pπT/p

γ
T . However, the dependence of x w.r.t. the kinematical

variables is more complicated, and a linear fit is not enough to capture it. Thus, reducing the
basis does not lead to an improved reconstruction of the momentum fractions.

To conclude this discussion, let us mention that we tested the LM with another basis in-
spired by the LO formulae. Namely, this LO-inspired basis is given by

BX1
NLO = {

pγT
p

SC M
exp(ηγ) ,

pγT
p

SC M
exp(ηπ) ,

pπT
p

SC M
exp(ηγ) ,

pπT
p

SC M
exp(ηπ) ,

pγTK5
p

SC M
exp(ηγ) ,

pγTK5
p

SC M
exp(ηπ) ,

pπTK5
p

SC M
exp(ηγ) ,

pπTK5
p

SC M
exp(ηπ) } , (41)

for x ≡ x1 and

BZ
NLO = {p

π
T/p

γ
T , K5 pπT/p

γ
T , K5 pπT/

p

SC M , K5

p

SC M/p
γ
T } , (42)

for z. In this case, the reconstruction was even worse, as can be seen in the lower row of Fig.
13. In particular, X1,REC seems to be uncorrelated with X1,REAL. So, we can appreciate that the
approach followed in Ref. [25]was more efficient than the LM. In other words, forcing a linear
combination that describes the LO kinematics and then using the same formulae for higher-
orders, allows to achieve a more precise reconstruction. In the next subsections, we explore
other methods that will lead to a better approximation of the MC momentum fractions in a
more automatized way.
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4.3 Gaussian regression

While the LM method provides a good description for the LO case, at NLO the result strongly
depends on the variables used to feed the algorithm. As the larger basis seems to render a
slightly better reconstruction, we could use this as a motivation to further expand our basis,
e.g. by including higher-powers of its elements. However this relies on deciding i) which
appropriate combinations of Ki are needed, and ii) to which power it would be convenient to
go. The first point was addressed in Subsec. 4.2 by constructing several bases, with different
degree of success. Regarding the second point, we could try with different powers of a given
basis, but this would be a cumbersome task. A more general and computationally efficient
approach can be implemented by using the kernel trick (see e.g. [79, 80]). In this method,
the feature vector in the calculation is replaced by writing everything in terms of a function
(kernel) of the dot product of the elements of the training set. In particular we use the radial
basis function (RBF), defined as

k(x i , x j) = exp

�

−
d(x i , x j)

2l2

�

, (43)

where x i , x j are two elements of the training set, d(x i , x j) is the Euclidean distance between
them, and l is a distance parameter (not necessarily the same for all {i, j}). The RBF has the
advantage of including all possible powers of the exponent, and therefore we expect a better
reconstruction of the kinematic variables. Similarly to the LM, the GR requires a set of input
variables. In order to properly compare the methods, we take the same bases for both. The
GR also needs the user to select the width of each Gaussian function, l, which is by default
l = 1. In principle it could be different for each feature of the input set, but for simplicity we
keep it feature-independent. However we did find better reconstructions when using different
l for x and z. The optimal values of l for each basis can be found in Table 1.

Table 1: Values of the l-parameter to reconstruct the x and z momentum fractions in
three different basis used within the GR framework.

Reconstructed General Physically-motivated LO-inspired
quantity basis basis basis

x 26 30 1
z 21 25 1.5

We find that, when using the most general basis, a better agreement between the recon-
structed and the real data sets requires wide Gaussian functions. In addition, if we reduce the
basis the GR tends to require wider Gaussian functions to achieve a good description of the
data sets. Finally, we find that in the physically-motivated basis, the GR finds the best agree-
ment by choosing l = 30 for the prediction of x and l = 25 for z, i.e. sharp Gaussian functions
are needed meaning that a combination of these variables is enough to reproduce the full data
sets.

These facts can appreciated in Fig. 14 where we present the results obtained at NLO QCD
+ LO QED accuracy. As expected, the inclusion of higher-order terms (higher non-linearity)
in the training set brings a significant improvement with respect to the LM, in particular for
the reconstruction of x . In addition, we point out that among the three basis, in general, the
reconstruction of x is harder than the z momentum fraction. The general basis can extract the
information to almost determine completely a function for the prediction of the momentum
fractions but with wide Gaussian functions. In contrast, the physically-motivated basis makes
a good job in the determination of z but is not that accurate on the extraction of x , although
it requires sharp Gaussian functions, meaning that they are well localized and determined.

22

https://scipost.org
https://scipost.org/SciPostPhysCore.5.4.049


SciPost Phys. Core 5, 049 (2022)

2.6 3.8 5.0 6.2 7.4

XREC (×10−2)

2.6

3.8

5.0

6.2

7.4

X
R
E
A
L
(×

10
−
2
)

Gaussian Process
NLO QCD + LO QED
General Basis

0.0

0.2

0.4

0.6

0.8

1.0

3.7 5.1 6.5 7.9 9.3

ZREC (×10−1)

3.7

5.1

6.5

7.9

9.3

Z
R
E
A
L
(×

10
−
1
)

Gaussian Process
NLO QCD + LO QED
General Basis

0.0

0.2

0.4

0.6

0.8

1.0

2.6 3.8 5.0 6.2 7.4

XREC (×10−2)

2.6

3.8

5.0

6.2

7.4

X
R
E
A
L
(×

10
−
2
)

Gaussian Process
NLO QCD + LO QED
Physically-motivated basis

0.0

0.2

0.4

0.6

0.8

1.0

3.7 5.1 6.5 7.9 9.3

ZREC (×10−1)

3.7

5.1

6.5

7.9

9.3

Z
R
E
A
L
(×

10
−
1
)

Gaussian Process
NLO QCD + LO QED
Physically-motivated basis

0.0

0.2

0.4

0.6

0.8

1.0

2.6 3.8 5.0 6.2 7.4

XREC (×10−2)

2.6

3.8

5.0

6.2

7.4

X
R
E
A
L
(×

10
−
2
)

Gaussian Process
NLO QCD + LO QED
LO-inspired basis

0.0

0.2

0.4

0.6

0.8

1.0

3.7 5.1 6.5 7.9 9.3

ZREC (×10−1)

3.7

5.1

6.5

7.9

9.3

Z
R
E
A
L
(×

10
−
1
)

Gaussian Process
NLO QCD + LO QED
LO-inspired basis

0.0

0.2

0.4

0.6

0.8

1.0

Figure 14: Correlation between the MC momentum fractions (i.e. XREAL and ZREAL)
versus the ones obtained at NLO QCD + LO QED accuracy (XREC and ZREC). We show
the results corresponding to the GR approach, using the general basis (upper row),
the physically-motivated basis (middle row) and the LO-inspired basis (lower row).

To conclude this section, we appreciate that the GR method leads to a more reliable recon-
struction of the MC momentum fractions, compared to the LM. The best results are obtained
with a larger basis, in order to have more flexibility. Moreover, the non-linearity inherent to
the GR allows to overcome the limitation of the overfitting in the low-x and low-x region that
we observed in the LM, leading to a very accurate reconstruction in a wider range.
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4.4 Neural Networks

Before jumping into the results of this section, let us briefly remind the reader of what is
a neural network (NN). The mathematical formulation of artificial neural networks (ANN),
simply known as NN nowadays, was presented more than 70 years ago [81]. Inspired in
the real biological systems, ANN are a collection of connected nodes, which can transmit an
activation signal from one node to the other, thus emulating the behaviour of neurons.
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Figure 15: Graphical representation of a generic neural network (or artificial neural
network) architecture. Between the input (X) and output (Y) layers, additional neu-
rons can be added, organized in hidden layers. The arrows represent the so-called
activation functions, that connect the different layers of the system.

From the computational point of view, the building blocks of a NN are algorithms (called
Perceptrons) used in supervised learning to decide if an input belongs into a class or not (binary
classifier). They consist of a set of input values X , that will be linearly combined by weights
(W ) and independent terms B (biases), after which the sum will be transformed by the (usu-
ally non-linear) activation function f , giving an output Y : Y = f (z) with z = X ∗W +B. Each
Perceptron mimics a neuron, and a combination of them makes a NN. The standard nomen-
clature labels the inputs and outputs as input and output layers, respectively. To increase the
capabilities of the NN (and its complexity) one can add more neurons in between, organised
in hidden layers. The activation functions connecting one layer to the next do not need to be
the same, neither the number of neurons in each hidden layer. A graphical representation of
this architecture is displayed in Fig. 15. The learning proceeds in two steps. First, the NN
computes the output from the inputs (feed-forward). In a second step (back-propagation), it
calculates the cost and then minimizes it. This can be implemented in different ways, one of
the most popular being stochastic gradient descent.10

The choice of the activation function/s and relevant parameters is highly non-trivial, and
trial-and-error was required to find a configuration that could reproduce the momentum frac-
tions. A non-exhaustive comparison of different combinations is presented in App. C, but here
we limit ourselves to present the results corresponding to the parameters summarised in Table
2, which are used within the scikit-learn framework.

10This procedure depends on the size of a parameter called the learning rate, that also requires adjustment. For
more details about the implementation of NN in scikit-learn and specifics of the MLP algorithm we refer the
reader to Ref. [69].
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Table 2: Architecture for the MLP best fit parameters for the reconstruction of the mo-
mentum fractions at LO in QCD: XREC(LO) and ZREC(LO) (second and third columns),
and for the momentum fractions at NLO QCD + LO QED: XREC(NLO) and ZREC(NLO)
(fourth and fifth columns).

XREC (LO) ZREC (LO) XREC (NLO) ZREC (NLO)
# of hidden layers 2 1 5 5
# of neurons/layer 200 100 300 300
activation function ReLU ReLU ReLU ReLU
# iterations 1× 105 1× 105 1× 1012 1× 1012

learning rate 1× 10−3 1× 10−3 1× 10−4 1× 10−4

Regarding the cost/loss function, we rely on the default minimization strategy imple-
mented in present in scikit-learn. Explicitly, it defines a score function which should be
maximized to identify the optimal fit (thus, it is related to the inverse of the cost function). By
default, the MLP method uses the Pearson correlation coefficient as score function. Then, the
maximum is estimated by the stochastic gradient descent method [69].
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Figure 16: Left: Comparison of the momentum fractions XREAL and XREC obtained
with MLP neural networks with the parameters given in Table 2. The upper (lower)
row corresponds to the LO QCD (NLO QCD + LO QED) data set. Right: same as the
l.h.s but for ZREAL and ZREC.
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The results of the MLP algorithm are presented in Fig.16 for the LO QCD contribution
(upper row) and the NLO QCD + LO QED correction (lower row). In the LO case the recon-
struction is quite good, without reaching the level of accuracy of the LM or GR. This is a strong
evidence that the complexity of the NN machinery greatly exceeds that of the task to be solved.
In the NLO case, on the contrary, the reconstruction is much better than the one obtained with
the LM using any basis, and similar to the GR one with the general basis (upper row of Fig.
14). The plots show an almost perfect agreement in all bins for both x and z. The largest
discrepancy appears for x , which can be partially due to the higher complexity of the target
function for x than for z, already suggested by the analytic LO expressions. Indeed, almost
all trials performed with different methods and configurations arrive to reasonable relations
between ZREAL and ZREC. However for x , we have to either increase the number of elements
in our basis (GR) or the number of layers/nodes (NN).

In any case, we can highlight that the MLP algorithm does not require to choose any par-
ticular basis: the complexity is translated into defining the proper architecture. This task is
more suitable for automation, thus more appropriate for tackling generic physical processes
regardless of the number or kind of particles involved. Whereas LM or GR could take ad-
vantage from physically-motivated parameter’s choice to speed-up an accurate reconstruction,
the NN framework relies mainly on computational power to reduce the problem to a black-box
function.

4.5 Error propagation in the reconstruction

Since all the ingredients involved in the calculation of cross-sections have associated errors,
these are expected to propagate and affect the accuracy of the partonic momentum fraction
reconstruction. Of course, also the regression and MLP algorithms introduce errors in the
definition of XREC. In this section we briefly describe the strategies adopted to provide a quan-
titative estimation of the errors, and present our results. The methodologies are explained in
detail in App. A.

We started by considering the default dataset obtained by setting µR = µF = µI = ξµ
with ξ = 1 and µ given by Eq. (15). From this set, we obtained the reconstructed partonic
momenta X ξ=1

REC , for X = {x1, z} and using the different reconstruction techniques (LM, GR
and MLP) described along this Section. Then, we took the different datasets D(ξ=1/2,1,2), com-
puted the reconstructed momentum fractions and created histograms weighting each event
(i.e. datapoint) with the integrated cross-section per bin. The results are shown in Fig. 17,
where we plot the distribution in XREC and ZREC in the left and right columns, respectively.
The first row corresponds to the reconstruction using the linear method (LM), the middle one
uses Gaussian regression (GR) and the last one relies on MLP. We notice that, on average, the
width of the band around the central value of the distributions is O(50%). This is completely
expected since the NLO QCD K-factor for this process is also O(50%), as reported in Ref. [25].

Finally, we applied the second strategy explained in App. A. In this case, we trained dif-
ferent reconstruction functions using the different datasets D(ξ=1/2,1,2). Then, we selected the
default case (i.e. ξ = 1) and evaluated the reconstructed functions: we define the expected
value and the error according to Eq. (51). The last step consisted in calculating the average
relative error, i.e. ∆X (p j)/X (p j), for X = {x1, z}. For case of the MLP method, we found an
average error of 7.5 % and 5.4% for the reconstruction of x1 and z, respectively. Of course,
the error depends on the kinematic region that we are studying, which implies a dependence
on the value of XREAL that we are reconstructing. Thus, we report in Fig. 18 the correlation
error bands for the reconstruction of x1 (left) and z (right). In the y-axis, we show the re-
constructed momentum fraction, whilst in the x-axis we plot the real momentum fraction.
We considered the three machine-learning methodologies: we found that the error band is
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Figure 17: Histograms based on the datasets D(ξ=1/2,1,2), showing the distributions
in XREC (left column) and ZREC (right column). Each datapoint is weighted using
the integrated cross-section per bin. We explored the three reconstruction methods
mentioned in Sec. 4: linear method (first row), Gaussian regression (second row)
and neural networks (third row).

narrower for the NN estimation in the case of x1 reconstruction, but the linear method gives
a more stable result for reconstructing z. As explained previously, thus is due to a simpler
functional dependence for z, which is mainly dominated by the ratio pπT/p

γ
T . This effect is also

present in the additional correlation plots discussed in App. A (see Fig. 19).
To conclude this discussion, the second strategy provides a global error estimation with

more realistic predictions, since the first strategy drastically overestimates the reconstruction
errors by fully propagating the scale uncertainties of the original observable.
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Figure 18: Correlation plots for X = x1 (left) and X = z (right). We defined the
error bands following the strategy mentioned in App. A, and present the results for
the neural network (NN, blue), Gaussian process (GP, green) and the linear method
(LM, red) estimations.

5 Conclusions and outlook

In contrast with e + p collisions, where measuring the final lepton grants direct access to the
parton kinematics, in p+p collisions there is no such a clear relation between the partonic and
the hadronic momenta beyond the LO. In this work we have explored the reconstruction of
the parton-level kinematics for the process p+ p→ γ+ h using Machine-Learning (ML) tools,
aiming to improve the current estimates of the underlying connection between the parton
process and the measurable final state.

In first place, we implemented the calculation in a Monte-Carlo (MC) code with NLO QCD
and LO QED accuracy. We relied on the FKS algorithm to cancel the infrared singularities, and
the smooth cone isolation criteria to select those events with direct photons. This prescription
is crucial to have access to cleaner information from the hard process.

Then, we studied different kinematical distributions with the purpose of identifying the
regions with the largest number of events. After imposing selection cuts similar to those used
by experimental collaborations, dynamical cuts were induced in the x and z distributions.
These restrictions were taken into account when selecting events for analysing the correlations
between experimentally-accessible quantities (pT , η and φ for the photon and pion) and the
partonic momentum fraction. We realized that x strongly depends on pγT (positive correlation)
but not on the other variables, whilst z exhibits a negative correlation with pγT , a positive one
with pπT and a mild dependence with cos(φπ −φγ).

After that, we applied ML algorithms to reconstruct the partonic variables x1, x2 and z.
We started by introducing a proper discretization of the multi-differential cross-section w.r.t.
the set of variables {pπT , pγT ,ηπ,ηγ, cos(φπ − φγ)}, in order to have a reliable estimation of
the higher-order corrections in each bin. For these distributions, we generated the data sets
and explored three different ML reconstruction strategies: linear methods (LM), Gaussian Re-
gression (GR) and Multi-Layer Perceptron (MLP). For the first two approaches, we introduced
three bases of functions inspired by the results obtained from the analysis of two-dimensional
correlations in Sec. 3.2. In all the cases, the reconstruction at LO QCD accuracy was very suc-
cessful, and in agreement with the known analytical expressions. When dealing with the NLO
QCD + LO QED corrections, the flexibility of the MLP approach leads to a very reliable recon-
struction, achieving a better performance than the LM and comparable to the GR when using a
sufficiently large basis. In particular, the LM results were highly-influenced by the abundance
of data in the low-x and low-z region, leading to an unreliable fit when extrapolated outside
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these regions.
The number of assumptions related to the setup of the MLP framework is rather limited,

compared to the ones done for linear and Gaussian regression. In particular, we want to
highlight that there was no need to introduce an specific basis of functions, which makes this
approach fully process-independent and suitable for other analysis. Thus, this work can be
regarded as a proof-of-concept, pointing towards a highly-automatized framework to include
higher-order corrections in the reconstruction of the parton-level kinematics. For this reason,
we prefer to center into the conceptual details and present an analysis based on a few ML
approaches, rather than a deep study to find the optimal ML strategy to reach a fast and
accurate reconstruction.

The reconstruction of the partonic momentum fractions shown in Fig. 16 can be used
to ease the interpretation of the parton-level interactions. As we already mentioned, beyond
LO, several processes contribute to a given observable. These processes contain a different
number of particles in the final state, which are integrated over an extended phase-space. As
a consequence, the naive LO interpretation of x and z is no longer valid when higher-order
corrections enter into the game. Still, Eqs. (24)-(26) provide a probabilistic definition of an
equivalent momentum fraction. The equivalent momentum fraction contains information about
the differential cross-section: in fact, the different partonic processes, with different momen-
tum fractions, are weighted by the cross-section. This can be used to simplify the treatment
of Eq. (9), and consider a LO-like approximation in which the corrected PDFs/FFs are directly
convoluted with the cross-section at a given fixed equivalent momentum fractions. As a result,
this could lead to a more efficient computational implementation of the PDFs/FFs extraction,
by-passing the complications of having several integrations/convolutions when dealing with
higher-orders. We defer the explicit bench-marking of this implementation to future investi-
gations [82].

In conclusion, the application of ML-inspired methods (and Neural Networks in particular)
is suitable to unveil the partonic kinematics at hadron colliders, including also higher-order
corrections. In this way, ML-assisted event reconstruction might allow to achieve a highly-
precise description of the deepest constituents of matter and their interactions, complementing
the current developments in other areas of theoretical particle physics.
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A Details about the error propagation strategies

The theoretical predictions obtained in the context of perturbation theory have an explicit
dependence on the renormalization and factorization scales. This dependence is often used
to quantify the uncertainties of the prediction, due to missing higher-order corrections. On
top of that, the uncertainties associated to the PDFs/FFs fitting should also be considered in
the calculation of the theoretical cross-section. The full propagation of these errors would
require to run the Monte-Carlo integration for several hundreds of replicas and then perform
the associated statistical analysis, with a significant computational cost.
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Figure 19: First row: Comparison of the momentum fractions XREAL vs. XREC ob-
tained with MLP neural networks (using the parameters given in Table 2) for differ-
ent renormalization/factorization scales, µR = µF ≡ ξµ. We set ξ = 1/2 (ξ = 2) in
the left (right) plot. Second row: same as in the first row, but for ZREAL vs. ZREC.

In our case, the scale uncertainty at the level of one-dimensional distributions (as the ones
described in Sec. 3.1) is dominant w.r.t. the error induced by variations in the PDFs/FFs.
In fact, the scale dependence accounts for O(30 − 50%) corrections [25] whilst changing
the PDFs/FFs could induce O(10 %) error. Furthermore, the analysis presented in Ref. [38]

30

https://scipost.org
https://scipost.org/SciPostPhysCore.5.4.049


SciPost Phys. Core 5, 049 (2022)

refers to using different PDF/FF sets, which can be considered as an extreme or worst-case
scenario for estimating PDF/FF fit uncertainties. If we keep the same PDF/FF, this error will
be drastically reduced due to the high precision of the current fits. For all these reasons, in
this work we only propagate the errors associated to the scale variation.

The propagation of the error due to the scale uncertainty is achieved by running the Monte-
Carlo simulation for three different scenarios. There is no unique way to estimate the error
of the reconstruction, thus we propose two strategies. The starting point in both methods
consists in fixing the condition µR = µI = µF ≡ ξµ and generating the datasets

D(ξ) = {p̄γT , p̄πT , η̄γ, η̄π, cos(φπ −φγ), x1, x2, z,σ(ξµ)} , (44)

following the binning procedure described in Sec. 4.1. As it is conventionally done, we con-
sider ξ ∈ {1/2,1, 2}. In Eq. (44), the cross-section per bin (σ) depends on the renormaliza-
tion/factorization scales and this induces an implicit dependence on {x1, x2, z} according to
Eqs. (24)-(26).

Our first method puts more emphasis on the quality of the correlation among real and
reconstructed variables. We consider the target functions trained with the dataset D(ξ=1), i.e.
XREC ≡ X (ξ=1)

REC , but create three different correlations plots. For instance, given

(p j , x1, x2, z,σ) ∈D(ξ) , (45)

we compare x1 (y-axis) w.r.t. X1,REC(p j) (x-axis). When we use the dataset with ξ = 1, the
plots shown in Figs. 12-16 are recovered. In these plots, the datapoints tend to group in the
diagonal because the training optimizes the reconstruction. However, the correlation plots ob-
tained with the datasetsD(ξ=1/2) andD(ξ=2) use a reconstruction function that is not optimized
for those datapoints. As a consequence, a deviation from the diagonal is expected. Hence, we
can estimate the effect of scale uncertainty by comparing the three correlation plots. It is worth
mentioning that this approach mainly provides a qualitative estimation of the reconstruction
error, since a clearly defined diagonal would indicate a nearly perfect reconstruction.

For the sake of simplicity, we applied this procedure for describing the error propagation
in the case of using MLP neural network algorithm. We show in Fig. 19 a comparison of the
correlation plots XREC vs XREAL (ZREC vs ZREAL) in the first (second) row, using ξ = 1/2 (left)
and ξ= 2 (right) respectively. On one side, for XREC vs XREAL, the correlation gets diluted and
more extra-diagonal bins are populated. This suggests that the reconstruction of X = x1 is very
sensitive and enhances the scale uncertainties. On the other side, Z seems to be more stable
and rather independent on the scale variations because both plots present a clear diagonal.

A variation of this strategy consists in comparing the one-dimensional distributions in XREC
for the different datasets. Since it turns out that this methodology provides a clearer error esti-
mation, we present the results in the main text (Sec. 4.5). Explicitly, we train the reconstructed
momentum fractions using the dataset D(ξ=1). Then, we take the values of the binned datasets
D(ξ) and replace the real momentum fractions by the reconstructed ones, i.e.

(p j , x1, x2, z,σ)→ (p j , X1,REC(p j), X2,REC(p j), ZREC(p j),σ) . (46)

Using these datapoints, we draw the histograms for ξ= {1/2, 1,2} and compare the results. In
this way, we are able to provide an error band that quantifies the impact of the scale variation
in the X - and Z-spectra.

The second error estimation strategy consists in using the datasets D(ξ) to train different
target functions;

X (ξ)1,REC := V̄(ξ)Exp −→ X̄ (ξ)1,REAL = {(x1) j} ⊂D(ξ) , (47)

X (ξ)2,REC := V̄(ξ)Exp −→ X̄ (ξ)2,REAL = {(x2) j} ⊂D(ξ) , (48)

Z (ξ)REC := V̄(ξ)Exp −→ Z̄ (ξ)REAL = {(z) j} ⊂D(ξ) . (49)
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This procedure leads to three functions for reconstructing each momentum fraction: given a
kinematic point in the grid, p j ∈ V̄Exp, we have

X (p j)≡ {X
(ξ=2)
REC (p j), X (ξ=1)

REC (p j), X (ξ=1/2)
REC (p j)}, (50)

and define

XREC(p j) = X (p j)±
max(X (p j))−min(X (p j))

2
≡ X (p j)±∆X (p j) , (51)

with X ∈ {X1, X2, Z} and X (p j) the mean value of the list X (p j). This approach mainly esti-
mates the error of the fitting procedure due to the scale uncertainties in the cross-section and
the subsequent definition of the weighted momentum fractions in Eqs. (24)-(26). Again, we
present the results for the different reconstruction methods in Sec. 4.5.

B Coefficients for the Linear Method

For completeness, we present the coefficients associated to the linear regression for each of
the three bases studied in Subsec. 4.2. We restrict our attention to the fit of the data sets at
NLO QCD + LO QED accuracy, since the LO contributions were perfectly in agreement with
the analytical LO formulae. In Tab. 4 we present the coefficients of the most general basis, Eq.
(38), that reproduce the plots in the upper row of Fig. 13. The parameters of the physically-
motivated basis, given by Eq. (38) with the constraints of Eqs. (39)-(40), are in Tabs. 5 and
7 for x and z, respectively. The corresponding correlation with the real MC variables can be
seen in the middle row of Fig. 13. Finally, the coefficients for the LO-inspired basis, associated
to the constraints in Eqs. (41)-(42), can be found in Tab. 6. These fall short in the quality of
the fit, as we can appreciate from the lower row of Fig. 13.

C Comparison of different NN architectures

We summarize here some results that were obtained before the optimal architecture described
in Subsec. 4.4 was found. In Tab. 3 we present the parameters corresponding to three different
tests implemented.

Table 3: Architectures for the MLP of three different tests for the reconstruction of
the momentum fractions at NLO in QCD. All parameters are taken to be the same for
XREC and ZREC.

Parameters TEST 1 TEST 2 TEST 3
# hidden layers 2 4 3
# neurons/layer 50 100 100
tolerance 10−2 10−2 10−3

max. number of iterations 108 108 109

# iterations w/o change 14,000 21,000 100,000

In TEST1 (upper row of Fig. 20), we use a lower number of neurons/layer and less layers
than for obtaining the results in Fig. 16. We find a poor agreement between the real and re-
constructed quantities, in particular for low-z bins. An improvement is achieved by increasing
the number of layers and neurons/layer (TEST2), while simultaneously requiring the NN to

32

https://scipost.org
https://scipost.org/SciPostPhysCore.5.4.049


SciPost Phys. Core 5, 049 (2022)

2.2 3.6 5.0 6.4 7.8

XREC (×10−2)

2.2

3.6

5.0

6.4

7.8

X
R
E
A
L
(×

10
−
2
)

Neural-Network
NLO QCD + LO QED

0.0

0.2

0.4

0.6

0.8

1.0

1.9 3.7 5.5 7.3 9.1

ZREC (×10−1)

1.9

3.7

5.5

7.3

9.1

Z
R
E
A
L
(×

10
−
1
)

Neural-Network
NLO QCD + LO QED

0.0

0.2

0.4

0.6

0.8

1.0

2.2 3.6 5.0 6.4 7.8

XREC (×10−2)

2.2

3.6

5.0

6.4

7.8

X
R
E
A
L
(×

10
−
2
)

Neural-Network
NLO QCD + LO QED

0.0

0.2

0.4

0.6

0.8

1.0

1.9 3.7 5.5 7.3 9.1

ZREC (×10−1)

1.9

3.7

5.5

7.3

9.1

Z
R
E
A
L
(×

10
−
1
)

Neural-Network
NLO QCD + LO QED

0.0

0.2

0.4

0.6

0.8

1.0

2.2 3.6 5.0 6.4 7.8

XREC (×10−2)

2.2

3.6

5.0

6.4

7.8

X
R
E
A
L
(×

10
−
2
)

Neural-Network
NLO QCD + LO QED

0.0

0.2

0.4

0.6

0.8

1.0

1.9 3.7 5.5 7.3 9.1

ZREC (×10−1)

1.9

3.7

5.5

7.3

9.1

Z
R
E
A
L
(×

10
−
1
)

Neural-Network
NLO QCD + LO QED

0.0

0.2

0.4

0.6

0.8

1.0

Figure 20: Comparison of the momentum fractions XREAL vs. XREC (left) and ZREAL
vs. ZREC (right) obtained with MLP at NLO QCD + LO QED accuracy. The parameters
for TEST1 (upper row), TEST2 (middle row) and TEST3 (lower row) are given in
Table 3.
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Table 4: Coefficients for the LM with the general basis expressed in Eq. (38) for both
x and z momentum fractions.

Coefficient XREC (NLO) ZREC (NLO) Coefficient XREC (NLO) ZREC (NLO)
aY

1 −5.7× 101 −1.1× 103 cY
68 −6.7× 10−4 7.3× 10−2

aY
2 7.2× 101 3.3× 102 cY

69 3.6× 10−3 6.6× 10−2

aY
3 5.4× 100 −5.6× 101 cY

77 −1.2× 10−4 −1.9× 10−4

aY
4 −2.4× 100 2.7× 100 cY

78 −7.9× 10−3 3.6× 10−2

aY
5 −4.9× 100 8.0× 101 cY

79 −5.6× 10−3 5.5× 10−3

aY
6 −2.8× 10−2 −1.2× 10−1 cY

88 −1.3× 100 1.1× 101

aY
7 3.8× 10−2 1.6× 10−2 cY

89 5.6× 10−1 3.8× 10−2

aY
8 5.2× 100 −5.6× 101 cY

99 1.9× 10−1 −2.5× 100

aY
9 −2.1× 100 9.4× 10−1 dY

11 −6.9× 102 4.4× 103

bY
1 −6.8× 101 −1.2× 103 dY

12 2.5× 103 −1.3× 104

bY
2 5.8× 101 5.2× 102 dY

13 1.9× 100 2.3× 102

bY
3 4.9× 100 −5.6× 101 dY

14 6.3× 100 3.8× 102

bY
4 −2.2× 100 −1.6× 10−1 dY

17 3.2× 10−1 1.7× 100

bY
6 −3.1× 10−2 −9.1× 10−2 dY

18 4.0× 10−1 2.6× 102

bY
7 3.5× 10−2 3.2× 10−2 dY

19 9.7× 100 3.4× 102

bY
8 4.7× 100 −5.7× 101 dY

22 −7.6× 102 −3.2× 103

bY
9 −1.9× 100 −2.2× 100 dY

23 −3.2× 101 1.4× 102

cY
11 −4.9× 102 2.4× 103 dY

24 −1.4× 101 1.3× 101

cY
12 1.9× 103 −9.8× 103 dY

26 6.5× 10−1 −5.5× 100

cY
13 1.7× 100 2.4× 102 dY

28 −2.5× 101 1.5× 102

cY
14 6.2× 100 3.6× 102 dY

29 −1.1× 101 7.9× 100

cY
17 1.8× 10−1 1.6× 100 dY

33 −1.1× 100 1.1× 101

cY
18 1.4× 10−1 2.6× 102 dY

34 4.1× 10−1 −1.3× 100

cY
19 9.9× 100 3.1× 102 dY

36 −6.0× 10−4 6.7× 10−2

cY
22 −7.2× 102 −3.0× 103 dY

37 −9.6× 10−3 3.4× 10−2

cY
23 −3.1× 101 1.5× 102 dY

39 5.4× 10−1 −3.6× 10−1

cY
24 −1.4× 101 2.5× 101 dY

44 4.7× 10−1 −2.4× 100

cY
26 5.3× 10−1 −4.3× 100 dY

46 2.8× 10−3 8.1× 10−2

cY
28 −2.5× 101 1.5× 102 dY

47 −6.1× 10−3 3.0× 10−3

cY
29 −1.1× 101 1.9× 101 dY

48 4.9× 10−1 −1.3× 100

cY
33 −1.2× 100 1.0× 101 dY

66 1.5× 10−5 −2.1× 10−4

cY
34 3.6× 10−1 −7.7× 10−1 dY

67 1.9× 10−4 −1.0× 10−3

cY
36 −6.6× 10−4 6.9× 10−2 dY

68 −6.1× 10−4 7.2× 10−2

cY
37 −9.4× 10−3 3.5× 10−2 dY

69 3.6× 10−3 7.0× 10−2

cY
39 4.8× 10−1 5.3× 10−2 dY

77 −1.3× 10−4 −1.3× 10−4

cY
44 5.6× 10−1 −3.3× 100 dY

78 −8.1× 10−3 3.6× 10−2

cY
46 2.8× 10−3 7.6× 10−2 dY

79 −5.5× 10−3 1.2× 10−3

cY
47 −6.3× 10−3 7.8× 10−3 dY

88 −1.2× 100 1.1× 101

cY
48 4.4× 10−1 −8.0× 10−1 dY

89 6.1× 10−1 −3.8× 10−1

cY
66 2.2× 10−5 −2.2× 10−4 dY

99 1.0× 10−1 −1.6× 100

cY
67 1.4× 10−4 −7.9× 10−4

see no variation of the cost function (within a given tolerance) through a larger number of
iterations. As seen in Fig. 20 (middle row), this gives a better reconstruction, thought it is still
far from ideal. A third example, TEST3, reinforces the conditions for convergence and returns
a significantly improved result (lower row of Fig. 20). Each step towards a more complex
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architecture and more stringent requirements for convergence is translated into an increase
of the computational time required for the training. These, and other trials, have guided us to
the selection of the best architecture for our task, summarised in Tab. 2.

Table 5: Coefficients for the LM with the physically-motivated basis expressed in Eq.
(38) with the constraints given in Eq. (39) and Eq. (40) for the x momentum frac-
tion.

Coefficient XREC (NLO) Coefficient XREC (NLO)
aY

1 5.5× 101 cY
48 4.2× 10−1

aY
2 1.4× 102 cY

77 −1.0× 10−4

aY
3 5.4× 100 cY

78 −8.0× 10−3

aY
4 −2.3× 100 cY

79 −5.4× 10−3

aY
5 −8.4× 100 cY

88 −1.3× 100

aY
7 5.6× 10−2 cY

89 5.3× 10−1

aY
8 5.2× 100 cY

99 2.5× 10−1

aY
9 −1.8× 100 dY

11 −4.1× 102

bY
1 6.3× 101 dY

12 −6.4× 102

bY
2 1.4× 102 dY

13 3.9× 100

bY
3 4.9× 100 dY

14 −7.4× 100

bY
4 −2.1× 100 dY

17 −5.6× 10−1

bY
7 5.8× 10−2 dY

18 2.5× 100

bY
8 4.7× 100 dY

19 −8.0× 100

bY
9 −1.6× 100 dY

22 −6.5× 102

cY
11 −3.2× 102 dY

23 −3.2× 101

cY
12 −6.0× 102 dY

24 −1.4× 101

cY
13 4.1× 100 dY

28 −2.5× 101

cY
14 −7.3× 100 dY

29 −1.0× 101

cY
17 −4.8× 10−1 dY

33 −1.1× 100

cY
18 2.6× 100 dY

34 3.8× 10−1

cY
19 −7.8× 100 dY

37 −9.6× 10−3

cY
47 −6.1× 10−3

Table 6: Coefficients for the LM with the LO-inspired basis expressed in Eqs. (41)
and (42) for both x and z momentum fractions.

Coefficient XREC (NLO) Coefficient ZREC (NLO)
cY
13 3.8× 100 cY

26 −2.5× 10−1

cY
14 4.7× 10−1 dY

26 −5.2× 10−2

cY
23 2.0× 10−1 bY

6 2.0× 10−3

cY
24 1.6× 100 bY

2 5.4× 100

dY
13 3.6× 100

dY
14 1.7× 10−1

dY
23 −5.4× 10−1

dY
24 9.1× 10−1
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Table 7: Same as Tab. 5, now for the z momentum fraction.

Coefficient ZREC (NLO) Coefficient ZREC (NLO)
aY

2 −2.0× 102 cY
67 −1.7× 102

aY
3 −4.1× 101 cY

68 −4.2× 101

aY
4 1.5× 101 cY

69 1.3× 101

aY
5 5.0× 101 cY

88 −1.7× 10−2

aY
6 −3.5× 10−2 cY

89 −4.2× 101

aY
8 −4.1× 101 cY

99 9.1× 100

aY
9 1.2× 101 dY

11 6.7× 102

bY
2 6.6× 102 dY

22 1.2× 103

bY
3 1.4× 103 dY

23 4.0× 101

bY
4 4.4× 101 dY

24 1.0× 101

bY
6 7.2× 100 dY

26 3.2× 10−2

bY
8 7.0× 10−2 dY

28 4.0× 101

bY
9 4.5× 101 dY

29 9.6× 100

cY
11 6.8× 100 dY

33 1.0× 101

cY
22 9.6× 100 dY

34 −1.5× 100

cY
23 −1.0× 100 dY

36 2.0× 10−2

cY
24 2.1× 10−2 dY

39 −6.0× 10−1

cY
26 −1.9× 10−1 dY

44 −2.8× 100

cY
28 −3.6× 100 dY

46 6.7× 10−3

cY
29 6.8× 10−3 dY

48 −1.8× 100

cY
33 −1.2× 100 dY

66 −1.4× 10−4

cY
34 −9.7× 10−5 dY

67 −1.2× 10−4

cY
36 −8.5× 10−5 dY

68 2.0× 10−2

cY
39 2.1× 10−2 dY

69 4.9× 10−3

cY
44 5.1× 10−3 dY

88 1.0× 101

cY
46 9.7× 100 dY

89 −8.4× 10−1

cY
48 −3.9× 10−1 dY

99 −1.7× 100

cY
66 −2.6× 100
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