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Abstract

In this paper we propose ways to incorporate Machine Learning training outputs into a
study of statistical significance. We describe these methods in supervised classification
tasks using a CNN and a DNN output, and unsupervised learning based on a VAE. As
use cases, we consider two physical situations where Machine Learning are often used:
high-pT hadronic activity, and boosted Higgs in association with a massive vector boson.
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1 Introduction

The world of Particle Physics is a world of discoveries or, in their absence, of limit setting. We
perform measurements in the hope to establish firm evidence of the existence of a process.
To do so, we quote a level of statistical significance with some agreed convention e.g., a 3-σ
confidence level would mean a hint, and a discovery is only reached at 5-σ. In the context
of Particle Physics, these criteria help us validate the Standard Model (SM) paradigm, or find
new phenomena.

To make statements about discovery, we rely on very strict statistical criteria [1], i.e. those
σ’s are obtained after a lot of thinking on possible sources of systematic experimental errors
and theoretical uncertainties. At the Large Hadron Collider (LHC), the experimental collab-
orations have set an even higher bar on claims for discovery, including additional levels of
strictness like data-driven estimations, e.g. [2], and the look elsewhere effect [3].

In this context, Machine Learning (ML) is erupting as an exciting tool for experimental
analyses and theoretical studies in Physics [4] and particularly in Particle Physics.1 In its
simplest form, ML is used as supervised learning to perform classification. But the quick de-
velopment of ML techniques elsewhere is driving new uses of ML in Particle Physics, beyond
classification or regression. For example, the potential of unsupervised methods, specifically
Deep Generative Modeling, is being explored in many contexts: from Anomaly detection [5]
using Variational AutoEncoders (VAE), to Monte Carlo Generation where the concept of data
amplification is applied to GANplify [6–8] samples. Machine Learning is also thoroughly used
in achieving effective inference [9, 10] and approximating likelihoods [11–13], uncertainty
quantification [14,15] and now even tackling symmetry identification [16–19].

This increase of ML analyses brings home the question of how to link ML outputs, typically
based on training with large amounts of synthetic data, with the traditional criteria for sta-
tistical significance. The answer to this question is not unique, as ML techniques are diverse
and could be applied at many different levels in an analysis. In this paper we go some way
to fill this gap, proposing simple ways of translating ML outputs into statistical criteria. We
hope this first approximation leads to the development of better, more sophisticated methods,
which fully use the power of expression of Deep Learning modelling.

The paper is organised as follows. In Sec. 2 we discuss how to translate the typical classifi-
cation problem in ML into a statistical significance based on the Cousins et al. proposal [20,21]
of computing the Log-Likelihood Ratio (LLR). We will apply this procedure to Hypothesis Test-
ing. In Sec. 3 we will propose a method to use the outputs of unsupervised ML models, specif-

1To gauge the extent of ML in this area, have a look at the living review in https://github.com/iml-wg/
HEPML-LivingReview.
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ically VAEs and GANs, to estimate a separation significance. We will present our conclusions
in Sec. 4.

The numerical computations of hypothesis testing presented in this paper can be found in
the following GitHub repository:
https://github.com/high-energy-physics-ml/hypothesis-testing.

2 Supervised Machine Learning and hypothesis testing

A common task within Machine Learning is that of classification. This requires a labelled
dataset to train on and it will typically output a predicted probability P of some input data,
which ideally would closely match the label for testing data. From this learning, metrics such
as accuracy, F-score, and ROC curves can be constructed [22]. For an event-by-event analysis,
such quantities are useful. However, if we want to claim discovery of new phenomena, then
we will want to perform a proper hypothesis test. Here we shall outline how one can perform
a simple hypothesis test using the predicted probability from a classification task.

2.1 Simple hypothesis testing

With a given set of data, we often want to ask a simple questions with a ’yes’ or ’no’ answer.
For example, ’does this data contain new physics events?’ is a question with a binary answer,
testing a hypothesis H0 (’There is no New Physics’) with the alternative hypothesis H1 (’There
is New Physics’).

To test the hypotheses we require some test statistic which measures how well data favours
either hypothesis. If one were to obtain data which yields some value for the test statistic, we
can quantify how much such a value agrees with the test statistic values expected under either
hypothesis. We refer the reader to Refs. [1,23–25] for very pedagogical resources on hypoth-
esis testing in the context of Physics, and here we will just briefly summarize the framework
and set the notation.

We can set a cutoff value for this test statistic that defines the point at which the null is
accepted or rejected. In doing so we will have, by construction, a probability α that if the null
were true of incorrectly rejecting it (also called a type I error, or false positive) which is the
significance level of the test. We can also obtain a probability β if the alternative were true of
incorrectly not rejecting the null (not accepting the alternative) also called a type II error, or
false negative. The power of the test is defined as 1 − β . Additional background details on
these two types of errors are provided in Appendix B.

The Neyman-Pearson lemma [26,27] states that for a test between two simple hypotheses
the optimal test statistic is the Likelihood Ratio. As is typical in Particle Physics, we can perform
simulations to generate synthetic data under the assumption that H0 or H1 are correct. Then,
one can obtain a Likelihood Ratio for both types of data (or in other words the Likelihood given
either hypothesis being true).

More generally, if we have a Likelihood that depends on some parameter θ i (which can
be a a vector or a single value) given some hypothesis Hi with i = {0, 1} is true, then the
Likelihood Ratio is

λHi
=

L(θ 0 | Hi)
L(θ 1 | Hi)

. (1)

Note that the given Hi notation here is synonymous with saying given observed data that hap-
pened to be generated under Hi which is sometimes written L(θ | D) or L(θ | x) in other liter-
ature, but when we take the Likelihood Ratio it is necessary to write the hypotheses explicitly.
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Figure 1: The CNN used. A jet image of dimensions 25x25 is fed through two 2D
Convolutional layers and a 2D Max Pooling layer followed by two more two 2D Con-
volutional layers and another 2D Max Pooling layer, each layer reducing the size
of each dimension. Finally this is flattened and fed into a Densely connected layer
before reaching the output layer with a shape of 2. The output layer use Softmax
activation and all other layers use ReLU.

We will actually work with the Log-Likelihood Ratio (LLR)

ΛHi
= −2 lnλHi

. (2)

We obtain our Likelihoods from the Probability Density Functions (PDFs) that describe the
distribution of data, which are comprised of two terms: a term for the Poisson PDF, since the
number of events follows a Poisson distribution, and a term for the PDF p of whatever observed
quantity is used.2

This Likelihood is called a marked Poisson Likelihood [24]. This total PDF can describe any
general detector experiment and the observed quantity could be e.g. η, φ, pT etc., however
we shall here say the observed quantity of the PDF in the second term is the predicted output
from the binary classification Machine Learning task, a probability P.

2.2 Use case I: Top vs QCD Jet images

To explain the procedure to incorporate ML outputs into the significance computation, we start
with a benchmark for top tagging studies. This is a well-known case of classification task in
the LHC, where high-energy hadronic tops are tagged against the main competing background
of QCD. The use of ML, and in particular Convolutional Neural Networks (CNNs), to improve
top tagging was proposed in Ref. [28] and has been thoroughly studied, e.g. [29, 30]. This
task is usually presented as a image to label task, where the labels are Top and QCD classes.

We use a Convolutional Neural Network (CNN) which, once trained, will attempt to clas-
sify any given jet image as either QCD or Top. Details on how we generated the events and
produced the images can be found in Appendix A. We use a combination of convolutional lay-
ers and pooling layers as well as a dense layer, and finally an output using a softmax activation
as depicted in Figure 1. All other activations are ReLU. We train on 40K each of QCD and Top

2Note that in statistics literature PDFs are often called models - here we shall refer to them as such and distinguish
Particle Physics models and Machine Learning models.
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Figure 2: ROC curve for the Top vs QCD task.

jet images. The CNN architecture was optimised by considering accuracy and ROC curves from
testing data of 20K of each.

With the CNN trained, we can feed it new jet images and it will return a value P of the
image belonging to either class. Since this P is given in the one-hot encoding form, we translate
it into a predicted probability P(Top) of the image being a Top jet.

We perform Bootstrapping [31] to evaluate the change in model performance over different
samplings of the training and test data. Bootstrap Aggregating, also called Bagging, involves
sampling from the dataset many times with replacement (i.e. performing the random train-test
split and running the model many times) to obtain a distribution of the model performance.
Doing so allows us to obtain a statistical measure of how well the model is performing, since
in practice we can expect a Machine Learning model’s performance to fluctuate slightly. Over
1000 Bootstraps we find that our CNN performs with an average accuracy of 87.9% with a
95% confidence interval of 87.1% and 88.5%.

After the training is done, the algorithm takes an image and outputs a probability of be-
longing to the QCD or Top classes. One can represent thee learning of the algorithm using a
classical ROC curve which show the different working points for true and false positive rates
as we vary the probability threshold.

But in Particle Physics it is often more convenient to plot a modified version of the ROC
curve with background rejection and signal acceptance relations, as shown in Fig. 2. One could
use this representation of the output of the ML task to understand which optimal cuts maximize
interesting quantities, like the ratio of signal vs background events, or some other measure of
approximate significance. This procedure would be naive, especially with low statistics, but a
good first approximation to understand the gain in using ML.

In this paper we want go further and provide a more sophisticated, yet approachable,
way to use ML outputs. In the next three sections, we will start by identifying ML outputs as
probability distribution functions, use them to build a robust test statistic method and translate
into significance.

2.2.1 Obtaining PDF distributions for QCD and Top data

To get the LLR distributions we must first obtain the PDF pH j
under the different hypotheses

j = QCD and QCD+Top.
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Figure 3: Left plot: PDF distribution of the output of the classification task, P(top),
for samples with pure top events, pure QCD events and a mixture of QCD and top
events weighted by their respective cross-sections. Right plot: same as left plot but
with Pcut > 0.5.

We will adopt the distribution of the ML classifier output as the PDF distribution of the data.
To build the PDF, we train the algorithm with QCD and Top images. After freezing the trainig,
we feed a large number of new jet images into the CNN algorithm to provide a probability of
an image to be of a class. In our case, an image would lead to an output P(Top) = 1−P(QCD).
We build this distributions for a dataset containing only QCD images, only Top images, and for
a dataset with QCD images mixed with some Top images with the ratio of QCD to Top images
set by their cross-sections, as shown in the left panel in Figure 3.

In the figure we show the pure QCD and Top PDFs as well as the mixed PDF. The pure PDFs
show what one would expect from a good performing classifier with most QCD events having
P(Top) around zero and most Top events having P(Top) around one. Notice that the mixture
of Top events with the QCD events only slightly changes the PDF from the pure QCD one. This
is because the Top cross-section is much smaller than the QCD one. The LLR will essentially
be evaluating this difference between the QCD and QCD + Top PDFs, however we shall see
that is still able to do this to a good sensitivity.

Given the overwhelming dominance of the QCD events on an unbiased sample, one could
think alternative PDF inputs for the LLR computation which could more efficiently capture the
desired signal. One possibility would be to consider the output distribution with some cut on
the probability. For example, one could focus on the distribution of events whose classifier
P(Top) is above some threshold, as shown in the right panel of Fig. 3. In the next section we
will show the effect of this possible modification in the input PDF in the overall LLR.

The distributions shown in Fig. 3 correspond to the average over many runs for which we
have done bootstrapping to account for ML fluctuations. In Fig. 4 we show the effect of this
procedure in the P(Top) output.

2.2.2 Obtaining LLR distributions for QCD and Top data

After building the PDFs, we can now turn our attention to building the LLR. As mentioned
before, we will consider the marked Poisson Likelihood [24], which consists on two terms, a
term for the Poisson distribution of n events, and a term which accounts for the PDF density,
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Figure 4: The effect on P(Top), the Machine Learning output chosen as PDF, of boos-
trapping. Solid distributions represent the average and the black lines represent the
range of uncertainty in the average.

which in our case is given by ML outputs. The likelihood can be expressed as follows,

L(b, s j , P j(Top) | Hi) =
(b+ s j)n exp(−(b+ s j))

n!
·

n
∏

k=1

pH j
(Pk(Top) | Hi) . (3)

Let us discuss both terms. The Poisson term is the Poisson PDF values where data generated
under Hi is observed (Hi is true) but we assume H j to be true (hence the parameters b and s j).
This can be written generally as Pois

�

(n | Hi) | H j

�

≡ PoisH j
(n | Hi), where the H j subscript is

a shorthand notation to denote ’the PDF assuming H j is true’. Similarly the ML term is the ML
output PDF values where data generated under Hi is observed (the data corresponding to the
Pk(Top) observed) but H j is assumed to be true, and the same shorthand notation is used.

The Poisson term depends on n, the number of observed events for a given experiment,
such that under the null (H0= ’QCD only’) hypothesis E[n] = b, and under the alternative
(H1= ’QCD + Top hypothesis’), E[n] = b + s. Here b represents the mean number of back-
ground events, and s the mean number of signal events. Generally we can write the number
of signal events as s j where s0 = 0 and s1 = s to make compact our notation.

The second, Machine Learning output, term in Eq. 3 depends on the ML outputs after
training over a large number of simulated events. The resulting distributions for the output
P(Top) are shown in Fig. 3. We will use them to obtain for each event k (k =1 . . . n) a value
of Pk(Top).

The total Likelihood is then written as the likelihood of obtaining a distribution with pa-
rameters b, s j and P j(Top), given data generated under Hi . Here j = {0, 1} is an index for the
Hypothesis H j which is independent of Hi .

For example, assuming H j=0 was true, the events we would observe would be QCD only,
and one would be sampling over these n QCD events drawn from the green distribution. We
would obtain a ML contribution to L(b, s j , P j(Top) | H0) given by

∏n
k=1 p (Pk(Top) | H0). If the

truth was H j=1 = QCD + Top, the procedure would be the same, but now the events would
be drawn from the green distribution.
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Figure 5: The Log-Likelihood Ratio for QCD and QCD+top at a integrated luminosity
of 2 fb−2 using 100k toy experiments.

Now, for this Likelihood we can write the Likelihood Ratios as

λH0
=

L(b, s0 = 0, P0(Top) | H0)
L(b, s1 = s, P1(Top) | H0)

, (4)

and

λH1
=

L(b, s0 = 0, P0(Top) | H1)
L(b, s1 = s, P1(Top) | H1)

, (5)

from which we will obtain the LLRs using equation (2). Notice that these Likelihoods can
change under repeats of the experiment due to n and Pk(Top) subject to statistical variations.

We expect then that, if we were to repeat the same experiment a number of times, we
would obtain some distributions for the Likelihood Ratios or Log-Likelihood Ratios. Indeed,
with these PDFs we can obtain the Likelihood Ratios corresponding to equations (4) and (5)
by sampling n i.i.d. pH j

values (corresponding to different Pk(Top)) from them, with n drawn
from the Poisson distribution with means b and b+ s respectively. Note that b and s are found
from the cross-sections under different integrated luminosities after considering showering
effects. We can build distributions of the LLRs by simulating a number of toy Monte Carlo
experiments. We show the resultant distributions f0(Λ) ≡ f (ΛH0

) and f1(Λ) ≡ f (ΛH1
) in

Figure 5 for 100k toy experiments, in this case with 97658 QCD events and 106 Top events
(97764 QCD + Top combined) which corresponds to an integrated luminosity of 2 fb−2. Note
the good convergence to Gaussian distributions, which we fit to the histograms as expected
from the central limit theorem.3

3Note that we plot the histograms of LLR values rather than their normalised PDFs in line with other physically
motivated papers such aa [21,32].
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Figure 6: The significance level of symmetric and asymmetric tests for jet images
classifier, expressed in terms of number of standard deviations of the Gaussian for
Pcut(Top)=0, 0.5 and 0.8, respectively. Standard discovery significances are also
shown for comparison.

2.2.3 Obtaining a significance

The two distributions become more separated as the the number of events/luminosity in-
creases, leading to a more confident statement in accepting or rejecting the null. From these
distributions we can obtain the cutoff value which defines α and β . This cutoff value can be
defined in various ways, leading to different conclusions for discovery which we explain in
Appendix B. For the Top vs QCD classification, the results can be seen in Fig. 6.

This figure shows Significance as a function of the number of Top events present in the
dataset. The number of Top versus QCD events is set by the relative cross-sections, see Sec. A.
As expected, significance grows with the number of Tops present in the data, but this translates
into a different value for significance depending on the criteria applied. In solid-red we show
the results from an asymmetric criteria, whereas in dashed-red the result using a symmetric
criteria. In this figure we also show the naive measures for significance based on various prox-
ies for Z = Asimov, s/

p
b, and s/

p
s+ b, which are all aligned in this background-dominated
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Figure 7: The significance levels as shown previously but now with errors due to
uncertainty in the QCD cross-section, shown with 10%, 20% and 30% differences in
cross-section.

case.
We also present the effect of applying a cut on the output classifier. From top to bottom,

and left to right, we show results using the full output distribution, Pcut(Top)=0 (top panel),
and the effect of cutting on it, Pcut(Top)= 0.5 and 0.8 (bottom panel), respectively. Under
all the significance criteria, overall significance improves as one cuts on the classifier. This
improvement is limited, thought, as a very strong Pcut(Top) would significantly reduce the
statistics.

2.2.4 The effect of uncertainties

Here we shall show the effects of different sources of uncertainties on the significance level.
These uncertainties are not intended as a detailed assessment of sources of errors, but to show
how the significance can change due to various effects.

An obvious source of uncertainty is from not having a precise measurement of the number
of background events. So far we have been treating this as well known (the QCD background
is well known to a good precision) however if it were not then it could affect the Likelihood
Ratios. An estimate of uncertainty associated to this final state can be found in the ATLAS
measurement [33], where one founds that for pT (leading jet)> 750 GeV, the estimated un-
certainties4 range from 15 to 20% for statistical uncertanties and around 30% for systematics.

To give a sense of the effect of these uncertainties in the significance calculation, we can
compute the LLR with different numbers of background events. In Figure 7 we show the

4See also the HEPDATA link to this study https://www.hepdata.net/record/ins1646686.

10

https://scipost.org
https://scipost.org/SciPostPhysCore.5.4.050
https://www.hepdata.net/record/ins1646686


SciPost Phys. Core 5, 050 (2022)

separation significance one would obtain had QCD cross-sections of ± 10%, 20% and 30%
the given value been used (shown also for the Asimov significance). An alternative method to
account for uncertainty in the number of background events would be to take it as a nuisance
parameter for example as done in [25,34].

We also consider uncertainties which may arise from additional noise in the detector by
smearing the jet images with a Gaussian filter5 with a single parameter, a standard deviation
σ, which it creates noise in surrounding pixels. As we increase σ the image becomes more
blurry, as shown in Figure 8. Nevertheless, we found that the CNN classification is robust

Figure 8: Example of a QCD image (left) and the same image after blurring with
σ=0.5 (right).

under blurring. Indeed, despite varying σ in a reasonable range up to around 0.5, we found
no substantial change as compared to other sources of uncertainty discussed here. This may
be indicative that the structure of QCD and Top jets are distinct enough, and the CNN is robust
enough to distinguish between them even when blurred.

Finally, one should be aware that the performance of the CNN (or any ML method) can
change each time it is run due to the training procedure and how data is sampled. This has
the potential to affect the LLR obtained. As mentioned in Sec. 2.2.1 and shown in Fig. 4, we
have accounted for this effect by Bootstrapping and found that the significance change over
different trainings was subleading respect to the cross-section uncertainties considered above.

2.3 Use case II: Higgs EFT kinematics

Now we will perform the same simple hypothesis test, but this time using as input multiple
high-level kinematic features, instead of single images per event. We then move into another
physics context, namely searches for new phenomena within the Effective Field Theory (EFT)
framework.

Within the EFT, effects of new physics are encoded as an expansion in momenta, which
leads to modifications of the SM particles’ behaviour following this structure,

LEF T = LSM +LBSM , where LBSM =
1
Λ2n

∑

i

ciOi . (6)

Here Oi represents an operator made from SM fields and singlet under all SM symmetries, ci
is the corresponding Wilson coefficient and Λ is the scale of new physics.

To illustrate the use of ML methods and their translation into statistical significance, we
will choose a well-studied final state in the EFT context,

p p→ Z∗→ h Z , where Z → `+`− and h→ bb̄ , (7)
5The filter was applied using the scikit-image libraries in python [35], https://tinyurl.com/gaussian�lter.
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Figure 9: Associated production of a Higgs with a massive Z boson in the 2-lepton final
state.

leads to modifications of the SM particles’ behaviour following this structure,

LEFT = LSM + LBSM where LBSM =
1

⇤2n

X

i

ciOi . (6)

Here Oi represents an operator made from SM fields and singlet under all SM symmetries,
ci is the corresponding Wilson coefficient and ⇤ is the scale of new physics.

To illustrate the use of ML methods and their translation into statistical significance,
we will choose a well-studied final state in the EFT context,

p p ! Z⇤ ! hZ where Z ! `+`� and h ! bb̄ , (7)

also shown in Fig. 2.3.
EFT effects appear at the level of production of the Z h final state and, to a lesser

extent, in the decay products. Here we will choose a modification of the hZ Z coupling
coming from one of the possible operators O in Eq. 6 at leading-order,

LBSM � ig
cHW

m2
W

(DµH)† �a (D⌫ H) W a
µ⌫ , (8)

where we follow the notation in Ref. [36]. H denotes the Higgs doublet, where the field h
resides, and Wµ⌫ is the SU(2)L field strength.

After electroweak symmetry breaking, this term will affect the Higgs coupling to Z
bosons, producing a modification of the overall cross section. This modification can be
expressed as a quadratic polynomial in the BSM parameter cHW ,

�EFT = �SM + cHW �int.SM�BSM + c2
HW �pureBSM . (9)

In the limit cHW = 0 we recover the SM result. The linear term in cHW is an interference
term between the SM production and the new EFT effects. Finally, the quadratic term
in cHW represents the pure BSM cross-section.

The EFT will also modify the kinematic features of this final state [36, 37], which we
use in the classification task. In Appendix A we provide more details on the kinematic
features considered in this study, along the lines of what was already studied in Ref. [38].
Here we will use 13 parton-level kinematic variables as inputs for the ML algorithm.

Contrary to the Use Case I: Top vs QCD in the previous section 2.2, here we cannot
sensibly produce synthetic data to train on pure classes. What we need to consider instead
is a pure SM class, and a New Physics class which contains the SM as part of the kinematics
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Figure 9: Associated production of a Higgs with a massive Z boson in the 2-lepton
final state.

also shown in Fig. 9.
EFT effects appear at the level of production of the Z h final state and, to a lesser extent,

in the decay products. Here we will choose a modification of the h Z Z coupling coming from
one of the possible operators O in Eq. 6 at leading-order,

LBSM ⊃ i g
cHW

m2
W

(DµH)†σa (D
νH)W a

µν , (8)

where we follow the notation in Ref. [36]. H denotes the Higgs doublet, where the field h
resides, and Wµν is the SU(2)L field strength.

After electroweak symmetry breaking, this term will affect the Higgs coupling to Z bosons,
producing a modification of the overall cross section. This modification can be expressed as a
quadratic polynomial in the BSM parameter cHW ,

σEF T = σSM + cHW σint.SM−BSM + c2
HW σpureBSM . (9)

In the limit cHW = 0 we recover the SM result. The linear term in cHW is an interference
term between the SM production and the new EFT effects. Finally, the quadratic term in cHW
represents the pure BSM cross-section.

The EFT will also modify the kinematic features of this final state [36, 37], which we use
in the classification task. In Appendix A we provide more details on the kinematic features
considered in this study, along the lines of what was already studied in Ref. [38]. Here we will
use 13 parton-level kinematic variables as inputs for the ML algorithm.

Contrary to the Use Case I: Top vs QCD in the previous section 2.2, here we cannot sensibly
produce synthetic data to train on pure classes. What we need to consider instead is a pure
SM class, and a New Physics class which contains the SM as part of the kinematics entangled
by the interference term. This is seen explicitly in Eq. 9, where the EFT is a mixture of SM and
BSM effects.

To provide results, we choose to perform a test between SM only events (equivalent to
cHW = 0) and EFT = SM + BSM events with a small value cHW = 0.005 [39]. In other words
we want to test H0 = H(cHW = 0) against H1 = H(cHW = 0.005).

In this section we will assume the background b is a well known value, and the signal
s is taken to be the difference between the observed number of events and the background.
Over a large number of experiments, the average of this signal would approach the true (or
theoretical if the theory is correct) value.
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Figure 10: Left plot: PDF distribution of the output of the classification task, P(EFT),
for samples with pure SM events and with EFT (cHW = 0.005) events (the EFT man-
ifestly including SM events). Right plot: The significance level of symmetric and
asymmetric tests for parton-level kinematics classifier, expressed in terms of num-
ber of standard deviations of the Gaussian for no cut in P(EFT). Standard discovery
significances are shown for comparison.

We train a Deep Neural Network (DNN) to classify events as either SM or EFT by training
on pure SM and EFT events generated in MadGraph [36] (with no showering and detector
effects) in a similar fashion as we did with the CNN before, except now we use a DNN taking
parton-level kinematic data as input rather than a CNN taking detector-level jet images. The
DNN is better suited for higher dimensional data than a CNN, and the aim here is to show that
we can construct a good hypothesis test regardless of the ML method.

The DNN is trained using truth labels and optimised for the data at hand. It outputs a
predicted probability which we translate into the predicted probability P(EFT) of any given
event belonging to an EFT distribution.

The classifier output P(EFT) is shown in the left panel of Figure 10. Using this classifier
output as a PDF, we follow the same procedure as before; sampling a number of events to find
Likelihoods, and finding the LLR. We then apply the symmetric and asymmetric conditions to
find the significance level of the test, which we translate into nσ as shown in the right panel in
Figure 10. The improvement from the Asimov significance (yellow-dashed) to the significance
obtained by including ML outputs (purple solid) is an expected result. Note also that we show
results with no cut on P(EFT), since we have already discussed the effects of the cut in the
previous case, and there cutting gives a small improvement before falling off due to having
low number of total events.

3 Unsupervised Machine Learning and Generalised hypothesis
testing

Although the use of Machine Learning in Particle Physics is dominated by classification prob-
lems, exciting developments in the field of anomaly detection using unsupervised ML tech-
niques are quickly advancing. These techniques have the potential to detect new signals with-
out any prior knowledge of them. Whilst the concept of anomaly detection is not unique to
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ML, see for instance [40–43], ML methods offer much promise and huge potential [44] to
facilitate a discovery.

In the context of this paper, we will explain how to perform a hypothesis test using the
outputs of unsupervised ML, which we will showcase for a Variational Autoencoder (VAE)
trained to detect anomalous events from a SM background.

In the language of hypothesis testing, anomaly detection translates into assuming that the
background (null) is well known, however the signal (alternative) is not. Here we shall outline
how a generalised hypothesis test can be performed in such a case.

3.1 Composite hypothesis testing

As with simple hypothesis testing, the generalised test is usually performed using a Likelihood
Ratio but now the values of the parameters θ0 and θ1 are unspecified. That is to say, generally
data X is observed, which we say to be sampled from one of two PDFs p0 and p1 given two
general hypotheses:

H0 : X ∼ p0(x |θ 0) : θ 0 ∈ Θ0 ,

H1 : X ∼ p1(x |θ 1) : θ 1 ∈ Θ1 ,

where the sets Θ0 and Θ1 represent all possible values for the parameters.
In our case the null hypothesis is simple so there will be only one possible value for θ0 but

the alternative hypothesis is composite so θ1 could still be any possible value, representing
possibilities for new physics.

The generalised Likelihood Ratio is

λ(θ | Hi) =
maxθ 0∈Θ0 L(θ |Hi)

maxθ 1∈Θ1 L(θ |Hi)
. (10)

We can say that θ̂ 0 is the value of θ 0 which maximises the Likelihood under H0, called the
Conditional or Restricted Maximum Likelihood Estimate, and θ̂ 1 is the Maximum Likelihood
Estimate of θ 1. We will see that θ̂ 0 will be taken as the known value for the background and
θ̂ 1 will be the observed quantity to test against the background. We are left with

λ(θ | Hi) =
L(θ̂ 0 | Hi)

L(θ̂ 1 | Hi)
. (11)

3.1.1 Generalised hypothesis testing using VAE outputs

Applying this test to our scenario, we must be careful in considering what is the parameter of
our model. In a counting experiment the parameter of interest would be the mean number
of signal events s 6 but our model also contains a term describing the Likelihood of obtaining
a given value for the ML output. In particular, for a VAE we will consider the Reconstruction
Error R 7 as the PDF parameter and exemplify its use in the context of the EFT described in
the previous section. See section 3.2 for more details.

6Another parameter of the model could be the mean number of background events b - this is either treated as
a known quantity or as a nuisance parameter, the latter being done in [34].

7Although the Reconstruction Error is an obvious choice for output, one could think on other ways to represent
the VAE output which could serve as a PDF. For example, one could use information in the latent space to do cluster-
ing and building some distance on that space. Also a non-ML alternative would be the Mahalanobis distance [45],
which is a measure of how far a data point is from the center of a distribution - there usually a PCA is performed
on data and the Mahalanobis distance calculated on the resulting distribution.
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First, we write our Likelihood as

L(s, cHW | H(cHW )) =
(s+ b)n exp(−(s+ b))

n!
·

n
∏

k=1

p(Rk | H(cHW )) , (12)

where we are now saying that the possible hypotheses can be any number of hypotheses for
a given value of the parameter cHW - note that the SM can be described by the hypothesis
with cHW = 0; this fact will allow us to test between the SM and any hypothesis whose cHW
parameter is unknown (and potentially even other forms of hypotheses if the form of the PDF
is similar!). The Poisson term gives the dependence on s whereas the second term from the
VAE output depends on cHW which defines the signal. Notice that we need not write the
dependence on b explicitly since we take it to be known.

The Likelihood is allowed to depend on any number of parameters although we will see
later that the number of parameters will affect the test statistic LLR distribution.8 We can
actually say however that s = LintσEFT(cHW ) with Lint integrated luminosity. And since, in
this case, there is a strict dependence of the signal cross-section on cHW , then our Likelihood
will depend on just one parameter, which could be either s or cHW .

Be aware that this result may not be applicable to every signal and one should consider
the number of parameters of interest carefully for each unique experiment which would yield
their own Conditional Maximum Likelihood Estimate for the Likelihood. Also in principle
the Likelihood may contain a number of nuisance parameters such as the aforementioned
background mean b or even the integrated luminosity Lint if they are not well known. In
our setup we shall assume that they are well known and will not be considered nuisance
parameters. Note that we have also previously shown in Sec. 2.2.4 an alternative method for
accounting for uncertainties in the background.

Given all this, the Likelihood Ratio which compares some measured value ŝ to some value
s under the null can be expressed as

λ(s, ŝ | Hi) =
L(s | Hi)
L(ŝ | Hi)

. (13)

Remember here that we obtain the Likelihood Ratio given some hypothesis is true, but (without
truth information) we do not know which hypothesis is true.

We are interested in discovery, so we shall want to compare the observed value ŝ to s = 0.
We will use the test statistic

q0(ŝ | Hi) =







−2 ln
L(0 | Hi)
L(ŝ | Hi)

for ŝ ≥ 0 ,

0 for ŝ < 0 .
(14)

Here one should remember that ŝ is the observed value which would be distributed around
some unknown mean s′. Whilst in an normal well set-up experiment we cannot have negative
mean number of signal events9 we still write the condition for ŝ < 0 since in some experiments
the number of events could be observed to be less than the expected background simply be-
cause they values are Poisson or Gaussian distributed but we know that ŝ < 0 would not align
with our hypothesis. Also observe that if the observed data happened to be the true mean
s′ = 0 then one would obtain q0 = 0.

We will want to obtain the distribution of the test statistic under which we can find the
significance level α. However there are a few important points to mention here. The first is

8Note that we shall use ’test statistic’ rather than ’LLR’ to keep in line with other literature but the two are
interchangeable here.

9Although this could be obtained due to some systematic error or in an experiment such as neutrino oscillation
detection where the signal hypothesis may result in fewer events than the background.
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that since we do not know the alternative hypothesis, we cannot find the distribution of the
test statistic under it and hence cannot find β . The second is as another consequence of not
knowing the alternative hypothesis, we cannot even make any reliable claims on what the best
α to use even is since the average observed test statistic value would change under different
hypotheses. This may seem like it would be a problem for when we want to perform our test;
however it simply means that there is no reasonable way to find α based on the alternative
hypothesis as we did before (this test therefore has more in common with Fisher’s methods).
Whilst there is much merit to finding some optimal α e.g. through the symmetric condition
or ROC curves as in simple hypothesis testing, it is not required. All one requires to set the
claim one hypothesis in favour of the other is to obtain some observed test statistic that is
above below some significance level cutoff. One can set α before an experiment e.g. as 0.05
or 2.87 × 10−7 and compare the p-value obtained to that. Therefore what we shall outline
below is how to find the p-value and significance Z .

3.1.2 Obtaining p-values

We can find the area which is the p-value under the tail of the q0 distribution. Given some
measured value ŝ, we will compare the resultant q0,obs to the distribution f (q0(ŝ | H0)), that
is the distribution of q0 assuming that the null is true. Or in other words: assuming that the
null is true and we obtain some data from an experiment, what is the probability that our data
were not obtained from the null? If there was some sizeable deviation in our obtained data
from the background hypothesis, then the probability of the background being true would be
small and thus an indication that real signal is present.

But what is the distribution f (q0(ŝ | H0))? One could find it with costly Monte Carlo
simulations with different ŝ, with ŝ having expected value s′ = 0. Fortunately one can use the
brilliant theorem from Wilks and Wald that the test statistic is chi-square distributed [46,47].10

Given the our proper construction of the hypotheses, we only require that we have sufficient
data in order for Wilks theorem to hold. Going by the results of Ref. [34] we should meet that
criteria. See Ref. [48] for further discussion on the context and applicability of Wilks theorem.

Let us use the shorthand q0 ≡ q0(ŝ | H0) from now on. Since we have one parameter of
interest, we will have a chi-square distribution with one degree of freedom. To account for the
fact that our test statistic is zero for any non-physical ŝ < 0 (half of all events) q0 will follow a
half-χ2

1 distribution:

f (q0) =
1
2
δ(q0) +

1
2

1
p

2π

1
p

q0
exp

�

−
q0

2

�

. (15)

This is the distribution of the test statistic assuming that the null is true - if in an experiment
one measures some value q0,obs then the p-value is found by

p-value=

∫ ∞

q0,obs

f (q0) dq0 . (16)

We obtain a value for q0,obs with ŝ = n − b which we take to be the average value that
would be obtained; i.e. ŝ = Lintσ

pure
EFT (cHW = 0.005) then find the p-value using equation (16)

using the distribution in equation (15) and convert to a significance using equation (20), the
results of which we will show in the next section, Figure 12.

10This theorem formally it states: assuming that the distribution of some observable x in general depends on
m unknown parameters, and under H0 it depends on m0 unknown parameters, then if the null is true, and under
some regularity conditions, then the test statistic q0 converges to a χ2

ν
distribution, with ν= m−m0.
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Figure 11: The VAE used. The data input consists of 13 dimensions which are fed
into the encoder with three layers of 13,10 and 5 dimensions. The compressed in-
formation is split into parts, each with 2 dimensions which together comprise the
latent space vector which is then fed into a decoder with three layers of 5,10 and
13 dimensions to yield an output of 13 dimensions. All layers use a ReLU activation
function, except for the last which uses a sigmoid.

3.2 Use case: VAE output for EFTs

Autoencoders and Variational Autoencoders has emerged as potent tools for dimensionality
reduction, de-noising images and generation of new unseen data [49, 50] as a result of their
ability to learn a model distribution of data and to create a model able reconstruct it. They
have also been studied in the context of anomaly detection, see e.g. [51–53], whereby they
are trained on only background data such that when fed data which deviates from the norm
they are able to provide an indication of it being potentially anomalous.

Generally speaking, a VAE consists of a probabilistic encoder qφ(z|x) which takes the input
vector x to a latent vector space z. A probabilistic decoder pθ (x ′|z) takes the latent vector to a
reconstructed output x ′. Here φ and θ denote parameters in the two networks.

A VAE is trained by minimising the Kullback-Liebler divergence between qφ(z|x) and
pθ (x ′|z) as well as Log-Likelihood term, hence obtaining the optimal qφ(z|x) for encoding
the input data and pθ (x ′|z) for taking the latent space representation of the data into a recon-
structed output, for data of the same type as the training data.

When given data different to the training data (which can include more spurious back-
ground data), x ′ will be less similar to x than for data typically found in training. We will
make use of the Reconstruction Error

R=
�

�x ′ − x
�

�

2
, where x ′ = pθ

�

qφ(x)
�

,

to quantify this difference between input and output. We expect that the Reconstruction Error
is larger for more anomalous images.

If we were performing an event-by-event anomaly detection analysis, we could simply
choose a threshold value for the Reconstruction Error above which events are classified as
anomalous, and display the results in a ROC curve. However we have no need to do so when
we perform a hypothesis test, rather we only need to construct a PDF of the Reconstruction
Error without choosing any threshold value. It may still be useful to use one, however, to trim
the PDF data to include a higher proportion of signal candidates, but we are just interested in
demonstrating the testing process here.

At any rate, it is still useful to plot a ROC curve when building the VAE, since we can adjust
its architecture to maximise the AUC. Based on this procedure, we use an encoder with three
layers of 13, 10, 5 dimensions, a latent space in two dimensions and a decoder with three
layers of 5, 10, 13 dimensions as shown in Figure 11. The input and output layers both have
dimensions of 13 to match the number of parton-level variables.

However we have no need to pick a threshold value when we perform a hypothesis test,
rather we only need to construct a PDF of the Reconstruction Error. Once the VAE is optimised,
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Figure 12: Left plot: PDF distribution of the output of the classification task, Recon-
struction Error R, for samples with pure SM events and with EFT (cHW = 0.005)
events (the EFT manifestly including SM events). Right plot: The significance level
from a generalised Likelihood Ratio Test for EFT anomaly detection, expressed in
terms of number of standard deviations of the Gaussian.

we construct our PDF of the reconstruction error for a dataset containing a number of pure
SM events which shall serve as our background PDF to compare against, and also for a dataset
containing EFT events, the same data being used as in the supervised case, which we shall use
as our observed dataset.

We show in the left panel of Figure 12 the two distributions. The goal will be to obtain a
measure of the significance of our observed dataset containing signal. Note that without the
truth information we would not know what type of signal this were, only that it is indicative
of something not in the SM dataset.

Since we will not have an alternative distribution to compare against we will not be able to
find the significance level as we did before. Instead, as detailed in the previous section 3.1.2,
we can only quote the p-value which can be compared to some manually fixed significance
level, rather than one tailored to a specific experiment. The results of this procedure are shown
in the right panel of Fig. 12. In this plot we compare the VAE composite testing (turquoise
solid line), the previous results from the supervised task (purple solid and dashed lines) and
the Asimov (yellow) significances as a function of the number of EFT events.

One would expect that performing a simple hypothesis test with a VAE would give worse
results than performing a simple hypothesis test with the DNN, since the DNN is a supervised
algorithm and the VAE is not. Moreover, we would also expect that a simple hypothesis test
with the VAE would perform better than a generalised hypothesis test with the VAE. We find
both these points to be true, with the significance from the simple hypothesis test with the VAE
being slightly higher than the significance from the generalised hypothesis test with the VAE,
but lower than the simple hypothesis test with the DNN.

4 Conclusions

In this paper we proposed various ways to incorporate the outputs of Machine Learning su-
pervised and unsupervised tasks into the study of statistical significance.

We first described the method for a supervised task with two different types of searches, one
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where information was expressed as an image and another where it was introduced as a set of
tabular features. Firstly, we considered an image representation of events with hard hadronic
activity, thoroughly studied in the area of top-tagging. Then we looked into a typical channel
for SMEFT searches, the associated production of the Higgs with a massive vector boson. In
this second case, the inputs for the ML were high-level high dimensionality kinematic features.

In both use cases, we showed how from a ML output one could perform a simple hypothesis
testing. In one case, the test was distinguishing between a "pure QCD" hypothesis and a "QCD
with Top" hypothesis. In the second example, the test was to distinguishing between a "SM
only" hypothesis and a "SM with EFT effects" hypothesis for ZH kinematics.

We expressed the test statistic as significance using different methods. We showed how to
implement a symmetric and an asymmetric testing condition, based on computing the areas
under the Log-Likelihood Ratio distributions found from a number of toy experiments. These
areas can be used to determine the significance level α for simple hypotheses. We also showed
the number of signal events required for these conditions to match the fixed value of α typically
used for discovery.

As expected, we found that by incorporating ML outputs into a Log-Likelihood ratio we
obtain a stronger hypothesis test, leading to better significance, and quantified this gain by
comparing with the Asimov significance.

For unsupervised tasks, we proposed a generalised Likelihood Ratio Test, which can be
performed to test between a known SM background and an unknown signal. We discussed
options for hypothesis testing tailored to this case, and present results for a generalized hy-
pothesis testing where the New Physics is treated as a composite hypothesis. We incorporated
the PDF of the output from a VAE (Reconstruction Error) into the Likelihood Ratio, and ob-
tained a discovery significance Z for an average experiment by computing the area under the
Log-Likelihood Ratio, which we assumed to be chi-square distributed via Wilks theorem. We
again find an improvement in the significance when incorporating the VAE output.

Finally, let us mention that in this paper we have focused on relatively simple ML tasks,
but the proposal of adding the ML output as part of the likelihood as in Eqs. 3 and 12 could
be adapted to more complicated situations. For example, one could consider the addition
of ML supervised tasks as described in Sec. 2.3 in global fits to SM Effective Field Theory
(SMEFT) [39,54–66], where some channels like V H [38], Vector boson fusion [67] or di-Higgs
could greatly benefit from adding information on ML training in simulated events. Moreover,
future public releases of likelihoods from experiments [68] could incorporate information on
ML training outputs following the lines of this paper. Also, it would be interesting to undertake
a Bayesian model selection analysis [25, 69], namely finding the Bayes factor from the PDFs,
although doing so would require answering many more questions regarding the parameters
and priors [70] and how to implement them in noisy classifications, e.g. [71].

GitHub code: Note that the implementation of the calculation of hypothesis testing can be
found in the GitHub repository:
https://github.com/high-energy-physics-ml/hypothesis-testing.
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lenciana, and by PID2020-113644GB-I00 from the Spanish Ministerio de Ciencia e Innovación.
MS acknowledges support by the Data Intensive Science Center in the South East Physics Net-
work (DISCnet), an extension of the STFC, under grant number ST/P006760/1.
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A Details on event generation and data selection

We consider two different datasets for our analyses. The first dataset is intended as an example
of a preexisting search for the discovery of an expected particle, namely the Top quark against
a QCD background. This is not a search for new physics, but rather an example of how the
Top quark could have been discovered with Machine Learning prior to its 1995 discovery. This
search will showcase our methods in a setting where the data is well understood, so as to focus
on the methods themselves before moving on to new searches.

The second dataset we consider will be of associated production of the Higgs and a massive
vector boson, where effect of new physics modify the production in the context of the Effective
Field Theory (EFT).

A.1 Fat Jets

We considered boosted hadronic activity where the leading jet pT is very high (more than 750
GeV). The QCD dijet and hadronically decaying t t̄ processes are simulated using Madgraph

5 [72] and Pythia 8 [73]. All the processes are simulated for the LHC proton proton col-
lisions at

p
s=13 TeV. In case of t t̄, we use Madspin [74] for the decay. After parton-level

simulation and hadronization, we cluster the jets using an Anti-kt algorithm with R=1.
The cross-sections after accounting for efficiencies are σQCD=48829.2 fb, σtop=53.1684 fb.
We produce grey scale pT weighted calorimeter images (η and φ) of the leading jet con-

stituents. The η,φ resolution is 0.087 and 5 degrees, respectively. The centre of the images
is aligned with the jet centre, and then image size is set to 25 × 25. Images are zero-padded
in case the original images had fewer pixels. In Fig. 13 we show the averaged images for both
the cases.

Figure 13: Representation of the average QCD (left) and Top (right) events.

A.2 EFT effects in ZH associated production

We consider the ZH Channel in the EFT set-up. We also switch on a single EFT operator,
represeented by the cHW coefficient. In this channel, we consider the 2L option, where the
Higgs decays to bb̄, and Z to a pair of leptons.

The HEFT model [36] is used in the UFO format [75] in Madgraph [72]. For consistency,
background events (i.e. SM) are also simulated using the same model, setting zero values of
all EFT coefficients. The cross-sections, after taking into account efficiencies to the cuts shown
in Table 1, are σSM = 14.0 fb, σEFT(cHW = 0.005) = 17.1 fb.

Based on these simulated events, we construct the following kinematic variables :
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Table 1: Generation level cuts applied for both signal and background processes.

Particles Cuts

b partons pb
T > 20 GeV, |ηb|< 2.5,

Leading b-jet pT > 45 GeV
leptons pl

T > 7 GeV, |ηl |< 2.7, pV
T > 75 GeV

Leading lepton pT > 27 GeV

1. pb1
T : transverse momentum of the leading b parton.

2. pb2
T : transverse momentum of the sub-leading b parton.

3. pl1
T : transverse momentum of the leading lepton.

4. pl2
T : transverse momentum of the sub-leading lepton.

5. pH
T : transverse momentum of the Higgs.

6. ηH : pseudorapidity of Higgs.

7. φH : azimuthal angle of Higgs.

8. δRl1 l2: angular separation between leptons.

9. δRb1 l1: angular separation between leading b and leading lepton.

10. M ZH
T : transverse mass of ZH.

11. pZH
T : transverse momentum of the leading b parton.

12. δφl1b1: azimuthal separation between leading b and leading lepton.

13. dφl1b2: azimuthal separation between sub-leading b and leading lepton.

B Significance levels of tests

When it comes to choosing the significance level α one has some freedom. Actually one has
as much freedom as they like, however the smallest feasible values are typically best. We shall
explore two sensible options, a symmetric method and an asymmetric method to determine α.
We show these with the intent to display how the distinction between two hypotheses changes
with the number of observed events.

These options could be directly applied to experiments attempting to distinguish between
two relatively equally credible hypotheses e.g. distinguishing between Higgs spin hypothe-
ses [32], however for discovery against a background one might wish to use a set stronger
criteria. Indeed this is what is typically done for discovery; the standard 5-σ in HEP is to set
α= 2.87× 10−7 whereas the 3-σ for evidence corresponds to α= 1.35× 10−3.

We shall showcase these two options in the context of Top discovery and EFT effects as
it is useful to know the results one would get if they were to use them and also because
the asymmetric condition is actually, on average, what one would obtain for the significance
obtained from the p-value.
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However, in general there is no set correct α to use. One may also consider a ROC curve
of α and β (to see how to find this see Appendix A of [69]) to find some optimal value for a
specific experiment. This is where one’s preferences for the importance of type I errors against
type II errors and understanding of the two hypotheses would come into play.

B.1 Symmetric testing condition

We first consider the scenario where we want the probability of type I error to be equal to the
probability of type II error i.e. the two hypotheses are treated equally. Ergo once obtaining
the LLR distributions as in Figure 5 we find α as the area under the right-side tail of f (ΛH0

)
and β as the area under the left-side tail of f (ΛH1

), using

α=

∫∞
Λcut

f0(Λ)dΛ
∫∞
−∞ f0(Λ)dΛ

(17)

and

β =

∫ Λcut

−∞ f1(Λ)dΛ
∫∞
−∞ f1(Λ)dΛ

, (18)

and finding Λcut such that α = β . We can convert the α obtained into a number of standard
deviations nσ of the (one-sided) unit Gaussian by solving

α=
1
p

2π

∫ ∞

nσ

exp

�

−x2

2

�

dx . (19)

Note that this does not require that the LLR be Gaussian distributed,11 but we will assume
so for communication purposes, as quoting a very small value of α becomes unwieldy very
quickly. For example α = 0.05 corresponds to nσ = 1.64 and a 5-σ discovery corresponds to
α = 2.87× 10−7. This can be seen in the plots in Figure 6. We may increase the separation
of the distributions by taking some threshold Pcut(Top) that reduces the number of events
sampled from. The reasoning behind this is that in doing so we would consider a relatively
larger amount of signal events than background events as shown in the right plot in Figure 3.
We actually find that if we apply this cut to both terms in the Likelihood the separation actually
decreases. This seems counter-intuitive at first but makes sense when it is realised that the
whilst there will more relatively more Top events than QCD events after the cut than before
(although still less overall) and a higher chance of sampling a Top, the most important aspect
of the ML term of the Likelihood are the points where the PDF is highest i.e. the lowest values
of P(Top) - where the difference between QCD and QCD + Top PDFs is greatest (remember
that Figure 3 is in log-scale). By excluding these values the Likelihood Ratios are actually less
separated. However we can still use the same cut threshold to alter the number of events in
the Poisson term (hence making the most of both terms and still using the output of the CNN
for making this cut). When making such a cut we see that the separation significance increases
as we increase this cut threshold (up until around 0.8 Pcut, after which the number of events
left after the cut becomes low enough to reduce separation again) as shown in Figure 6. From
this we can see the number of events required for this method to reach the same strictness as
α = 2.87× 10−7, illustrating when it may or may not be appropriate to use these conditions
if one is looking for discovery. The separation significance nσ from this condition is always
lower than that of α = 2.87× 10−7 in the ranges shown, however the symmetric condition is

11This is indeed our case, and for all simple hypothesis test with sufficient data but we still use this quantity even
when the LLR is non-Gaussian.
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has more power than the asymmetric one and both conditions do get to the same significance
level as α= 2.87× 10−7 given enough events.

We show also in these figures some common discovery significances used in counting ex-
periments; s/

p
b, s/

p
s+ b and the Asimov significance. These are actually the average of

the significances that would be obtained from the p-value (see sec B.3) after an experiment
and are not exactly the same as nσ, however we can still compare them, as they will on av-
erage have the same value as the asymmetric nσ if one considered only the Poisson factor in
the Likelihood. We therefore show both the separation significances from the symmetric and
asymettric hypothesis tests alongside these discovery significances in the figure (and subse-
quent figures) with the general y-axis label of ’Significance’ being appropriate for both. These
discovery significances arise from of the Poisson term in the Likelihood finding a p-value as
shown in Appendix B.4 as well as evidence of the previous statement.

B.2 Asymmetric testing condition

We also consider another condition where one is favours accepting or rejecting the null with-
out consideration of the type II error. A test using such a condition could be performed in cases
where one is more concerned about finding whether or not data agrees with the null than if
the data actually suggests that the alternative is a good hypothesis. Such an approach draws
from the reasoning of Fisher [76]who was famously opposed to formulating an alternative hy-
pothesis, although here we must still know the form of the alternative in order to find the LLR.
Such an approach can be called a Fisher/Neyman hybrid (although both Fisher and Neyman
may both have disagreed with calling it such!).

Here we find α as the area under from tail of the LLR distribution under the null from
Λcut = 〈 f1(Λ)〉 to infinity: hence we use equation (17) with this new cutoff value. As before
we can convert this into nσ which we show in Figure 6. Only with a cut of 0.8 Pcut does this
condition reach the same strictness as α= 2.87× 10−7.

It is actually the case that the nσ obtained under this condition will be the same as the
average significance Z obtained from the p-value of an experiment. Therefore in understand-
ing this method, one should have all the tools required to obtain a p-value and report which
hypothesis their experiment favours. In the next section we shall explain the p-value in more
detail.

B.3 p-values and reporting of results after obtaining data

We have so far outlined two procedures for finding the significance level α of a simple hy-
pothesis test (which we translate into a separation significance nσ) by using toy experiments
to obtain LLR distributions. What then would the procedure for accepting or rejecting either
hypothesis look like in practice when one obtains data from a real experiment and how could
one quantify the extent to which observed data agrees or disagrees with the null? The answer
to the first part of this question is simply to find the LLR value obtained given observed data
and see whether or not it is above or below the cutoff value Λcut that defines the significance
level. One would then say whether the data favours the null or the alternative. Remember that
it cannot be said that data is proving one hypothesis or the other, only that in that experiment,
out of the two hypotheses tested the data agrees more with one than the other.

The answer to the second part of the question would to to report the p− value, that is the
area under the tail of the LLR distribution which assumes the null to be true from the observed
LLR value to infinity. This is just another way of saying the commonly given definition "The
p-value is the probability under the null of obtaining data as extreme or more extreme than
the observed data" [1]. The p-value is often translated into a number of standard deviations
of the one-sided unit Gaussian in the same way as equation (19), but we shall write it again
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here to avoid confusion:

p−value=
1
p

2π

∫ ∞

Z
exp

�

−x2

2

�

dx . (20)

Here one solves for the significance Z which is confusingly called the significance, not to be
confused with the significance level, which can be set prior to an experiment; the p-value and
subsequent significance Z are obtained only after an experiment. The p-value will also change
with each repeat of the experiment as differently randomly sampled data results in different
LLR values. We note however that on average, the discovery significance Z would have the
same value as the separation significance nσ under the asymmetric condition.

Finally as well as p-values or Z , one may also report Conditional Error Probabilities (CEPs).
For frequentists they correspond to the type I and type II error probabilities We will not explore
them here but [77] and [78] give good discussions on them.

B.4 Common discovery significance definitions and their relationship to Log-
Likelihood ratios

Commonly used discovery significances are s/
p

b, s/
p

s+ b and the Asimov significance
p

2((s+ b) ln(1+ s/b)− s. It is important to note that these are the average (median) sig-
nificances that one would obtain from computing the average significance over a number of
different experiments, although when the expected numbers of signal and background events
are well known, then they can be used directly and reliably. The former is considers there to be
no uncertainty on b and related to the Asimov significance when s� b. Although they can be
derived from more heuristic methods, these actually arise from considering only the Poisson
term in the Likelihood (i.e. are most applicable in any counting experiment). It is interesting
that the first two can be organically shown in the case of a simple hypothesis test whilst the
Asimov significance can be shown in the case of a generalised hypothesis test; the first two
being limiting cases of Asimov significances with and without uncertainty on s.

Let us see how the significances s/
p

b and s/
p

s+ b can be found from the ratio of Poisson
Likelihoods for a simple hypothesis test. If we take

Λ= −2 ln
�

Pois(b|n)
Pois(s+ b|n)

�

= 2
�

n ln
�

s+ b
b

�

− s
�

, (21)

then we can find the number of standard deviations which separates the mean of the LLR
assuming the null to be true from the LLR assuming the alternative to be true as

〈Λ〉s+b − 〈Λ〉b
σb

=
s
p

b
, (22)

using σs+b = 4b ln (1+ s/b)2 is the RMS of the null LLR. Similarly we can find

〈Λ〉s+b − 〈Λ〉b
σs+b

=
s

p
s+ b

, (23)

using σb = 4(s + b) ln (1+ s/b)2 is the combined RMS of both the LLR under the null and
the LLR under the alternative. By calculating the significances this way we can see directly
how they are a measure of the number of standard deviations that observed data is from the
expected null LLR.

We show this in Figure 14 (for example LLR distributions) in the upper left plot which
corresponds to s/

p
b and in the upper right plot we show that this is equivalent to the area

from the average alternative LLR distribution to infinity, under the null LLR distribution. This

24

https://scipost.org
https://scipost.org/SciPostPhysCore.5.4.050


SciPost Phys. Core 5, 050 (2022)

Figure 14: Upper left: visualisation of the naive significance as the number of stan-
dard deviations between two distributions. Upper right: visualisation of the signifi-
cance form the area under the null LLR tail - the agreement between Z in these two
plots highlights their equivalence and furthermore their equivalence to asymmetric
testing. Bottom: visualisation of symmetric test - notice this Z is half of the above
values. All plots made with example toy distributions.

is therefore both the average significance and also the seperation significance obtained under
the asymmetric condition. In the lower plot we also show the area under the tail of the null
LLR distribution from the midpoint between the two LLR distributions (actually where the
area under the two distributions are equal, but for distributions with the same standard devi-
ation this is the midpoint). The average significance calculated this way is equivalent to the
symmetric testing condition. If the standard deviations are equal then this significance will be
half of the significance that is equivalent to the asymmetric testing condition.

The Asimov significance is easily found by considering a generalised hypothesis test be-
tween a background with mean b and some observed dataset with n observed events. If b is
known then given n= ŝ+ b we have the LLR

Λ= −2 ln
�

Pois(b|n)
Pois(ŝ+ b|n)

�

= 2
�

n ln
n
b
+ b− n

�

. (24)
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Figure 15: A check (confirmed by matching curves) that the asymmetric separation
significance or average discovery significance calculated directly from the LLR with
only the Poisson factor are equivalent to the common discovery significances.

It has been shown [34] that under Wilk’s theorem

Z =
p
Λ

=
Æ

2((ŝ+ b) ln(1+ ŝ/b)− ŝ ,
(25)

yields the Asimov significance. If one were to take the median significance over an ensemble
of experiments (i.e. ŝ = s), then we obtain the median Asimov significance

med [Z] =
Æ

2((s+ b) ln(1+ s/b)− s . (26)

In the limit s� b this reduces to s/
p

b. Note that there an equivalent Asimov significance [79]
could be obtained by assuming an uncertainty on the background which reduces to s/

q

s+σ2
b.

As another check of the equivalence between the common discovery significances and the
asymmetric separation significance, we compute the nσ from our LLRs from the simple hy-
pothesis task on jet images using only the Poisson factor as shown in Figure 15 using the QCD
vs QCD + Top setup. The separation significance nσ obtained under the asymmetric condition
is also the same value as the average significance Z obtained from the LLR distributions, which
is also the same value as the common discovery significances.
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