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Abstract

The Spectral Form Factor (SFF) is a convenient tool for the characterization of eigen-
value statistics of systems with discrete spectra, and thus serves as a proxy for quantum
chaoticity. This work presents an analytical calculation of the SFF of the Chern-Simons
Matrix Model (CSMM), which was first introduced to describe the intermediate level
statistics of disordered electrons at the mobility edge [1]. The CSMM is characterized
by a parameter 0 ď q ď 1, where the Circular Unitary Ensemble (CUE) is recovered for
q Ñ 0. The CSMM was later found as a matrix model description of UpNq Chern-Simons
theory on S3 [2], which is dual to a topological string theory characterized by string
coupling gs “ ´ logq . The spectral form factor is proportional to a colored HOMFLY
invariant of a p2n, 2q-torus link with its two components carrying the fundamental and
antifundamental representations, respectively. We check explicitly that taking N Ñ 8

whilst keeping q ă 1 reduces the connected SFF to an exact linear ramp of unit slope,
thereby confirming the main result from [3] for the specific case of the CSMM. We then
consider the ‘t Hooft limit, where N Ñ8 and q Ñ 1´ such that y “ q N remains finite.
As we take q Ñ 1´, this constitutes the opposite extreme of the CUE limit. In the ‘t Hooft
limit, the connected SFF turns into a remarkable sequence of polynomials which, as far
as the authors are aware, have not appeared in the literature thus far. A gap opens in the
spectrum and, after unfolding by a constant rescaling, the connected SFF approximates
a linear ramp of unit slope for all y except y « 1, where the connected SFF goes to zero.
We thus find that, although the CSMM was introduced to describe intermediate statistics
and the ‘t Hooft limit is the opposite limit of the CUE, we still recover Wigner-Dyson
universality for all y except y « 1.
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1 Introduction

Random matrix theory provides a phenomenological description of a wide variety of systems
appearing in physics and beyond, starting with nuclear physics [4], and later finding appli-
cations in quantum chaos [5], disordered electronic [6] and mesoscopic [7] systems, chro-
modynamics [8], models of 2d quantum gravity and string theory [9], economics [10], infor-
mation theory [11], and number theory [12]. One of the central concepts in the theory of
random matrices is the Wigner-Dyson (WD) universality that is exhibited by the eigenvalue
correlation properties of a wide variety of ensembles. For ensembles defined by the proba-
bility density with the weight function wpxq “ expp´V pxqq where V pHq „ trpH2q ` . . . for
Hermitian N ˆ N matrix H, the density of eigenvalues x has the famous, “universal” semi-
circular form ρpxq “

?
2N ´ x2{π. This does not depend on the precise form of V pxq for a

broad range of potentials and the matrix size N . Rescaling the eigenvalues such that ρ̄puq “ 1
near the origin, typically called unfolding, leads to the two-level eigenvalue kernel function
Gpu, vq “ sinrπpu´ vqs{πpu´ vq. As a consequence, this leads to the universal form of the
Spectral Form Factor (SFF), a Fourier transform of the density-density correlation function,
Kpξq “ 1´

ş

Gpx , 0q2 exp pi xξqd x resulting for ξą 0 in the linear ramp until the Heisenberg
“time" ξ “ TH “ 2π followed by a plateau for ξ ą TH . Integrable systems, on the other
hand, display uncorrelated Poisson statistics leading to a constant SFF for all times. For sys-
tems with statistics intermediate between Poissonian and WD, the SFF has mixed features.
Typically, it is of a dip-ramp-plateau shape, where, for small ξ, the SFF dips until it reaches a
minimum at Thouless time, after which it transitions into a linear ramp which saturates at a
plateau at Heisenberg time. These features make the SFF a convenient tool for characterizing
level statistics which has found extensive use in the RMT and quantum chaos community. We
also mention here that the SFF has recently became popular in the string theory community,
predominantly in the context of the AdS/CFT correspondence, as well as the SYK model and
JT-gravity [13–18].

Certain systems which are somewhere in between chaotic and integrable, such as disor-
dered electrons at the mobility edge of Anderson localization [19], or pseudo-integrable bil-
liards [20], display so-called intermediate statistics. Various random matrix ensembles have
been introduced which exhibit these statistics. To the best of our knowledge, the first such
model was a solvable random matrix ensemble interpolating between Poisson and Wigner-
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Dyson statistics that was introduced by Gaudin [21]. The same model was rediscovered later
by Yukawa [22] in the context of a so-called Pechukas-Yukawa gas. Another type of RME that
was introduced to describe intermediate statistics are the so-called banded RME’s [23], for
which the entries of the random matrices decay in a power-law fashion away from the main
diagonal. Another such is the Moshe-Neuberger-Shapiro (MNS) ensemble [24], where the
unitary invariance of the ensemble is explicitly broken by a potential term involving a fixed ma-
trix, typically chosen to be diagonal. Bogomolny et al. [25] discovered a number of ensembles
which are based on the Lax matrices of various integrable systems. These ensembles exhibit
intermediate statistics and multifractal eigenfunctions [26]. Further, a generalization [27] of
the Rosenzweig-Porter model [28] was shown to have a region in parameter space with mul-
tifractal behavior. Moreover, a standard β-ensembles, introduced in [29] have intermediate
statistics [30].

Another class of matrix models was proposed in [1, 31] to describe intermediate level
statistics. These ensembles are defined in terms of a UpNq-invariant measure, as opposed
to the aforementioned ensembles with intermediate statistics. It was observed that WD-
universality is lost for sufficiently shallow confining potentials, which asymptotically behave
as V pHq „ g´1

s log2 H for |H| " 1. Such potentials are associated with indeterminate moment
problems, which is to say that the weight function wpxq is not uniquely determined by its
moments m j “

ş

x jwpxqd x [32, 33]. A typical signature of this intermediate class of statis-
tics is a lack of a simple translationally-invariant kernel of sin x{x-form as before, which now
becomes dependent on some parameter q. This opens up the possibility of non-unique (and
more complicated) scaling limits, [34,35].

The connection of the CSMM with intermediate statistics was seen to arise in earlier works
as follows. It was shown that taking N Ñ8 and then q “ e´gs Ñ 1 leads to a kernel that is of
the form Gpθ ,ϕq “ gs

2π
sinrπpθ´ϕqs

sinhrgspθ´ϕq{2s
[1,32]. This was found to be precisely the kernel [31] for

the aforementioned banded random matrix ensembles and the MNS-ensemble. The relation
of the (UpNq-invariant) CSMM to the (non-UpNq-invariant) banded and MNS-ensembles has
been argued to arise due to a spontaneous breaking of UpNq-invariance [36]. It was found
that the CSMM reproduces both the nearest neighbor spacing and the level number variance
at the same value of the parameter q [37]. From the level number variance, one can determine
certain properties of the eigenvector statistics as well, in particular their multifractal dimen-
sion(s) [38,39]. The SFF was previously calculated using the limiting sinh-kernel in [40]. The
CSMM appears in unitary guise as a one-parameter dependent generalization of the circular
unitary ensemble (CUE), see e.g. [41] for a map between the unitary and Hermitian ensembles.
Denoting the parameter as q “ e´gs , the CSMM reduces to the CUE for q Ñ 0 and produces
Poissonian statistics for q Ñ 1 such that qN “ 1. This paper focuses on the unitary version of
the CSMM. The CUE also exhibits WD-universality, consisting of a linear ramp of unit slope
that saturates at a plateau [42].

The CSMM was later found by Mariño as a matrix model representation of type A topo-
logical open string theory on the cotangent space of S3 [2], which reduces to UpNq Chern-
Simons theory on S3 [43]. The orthogonal polynomials associated to this ensemble are the
Stieltjes-Wigert or Rogers-Szegö polynomials in Hermitian and unitary description, respec-
tively [33, 44]. Witten famously showed that Wilson line expectation values in SUp2q Chern-
Simons theory equal topological (Jones) invariants of knots and links [45], which was later
generalized to UpNq for general N . Indeed, the SFF,

@

|trUn|2
D

, is proportional to the HOMFLY
invariant of a p2n, 2q-torus link with one Wilson line in the fundamental and the other in the
antifundamental representation.

In the string theory literature on the CSMM, the ’t Hooft limit has been considered, where
one takes N Ñ8 and simultaneously q Ñ 1 such that y “ qN remains finite. This idea goes
back to pioneering work by ‘t Hooft in the context of UpNq gauge theories at large N . In the
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type A topological open string theory on T˚S3 described by the UpNq Chern-Simons theory,
certain large N dualities appear. In particular, it has been argued that the topological A-type
open string theory on T˚S3 undergoes a conifold transition to a closed type A topological string
theory on the resolved conifold [46]. The magnitude of the B-field on the S2 blowup of the
conifold is given by t “ N gs, the ‘t Hooft parameter. The mirror dual of the conifold geometry
can be seen to arise from the resolvent of the matrix model in the large N limit [47, 48], see
also [49, 50]. These dualities and related results have important applications in enumerative
geometry and intersection theory.

As far as the authors are aware, the ‘t Hooft limit has heretofore not been explicitly con-
sidered for the CSMM in the RMT literature. In [51], a closely related limit was considered
for a Hermitian version of the q-deformed ensemble considered here, where the weak disor-
der (GUE) limit corresponds to q “ e´γÑ 1 and N Ñ8 such that γN Ñ 0, while the strong
disorder limit involves γN “ constant. In the latter limit, which is essentially the ’t Hooft limit,
an approximate expression for the parametric density correlation function was found in [51].
Further, a similar limit was considered for another, closely related, q-deformed circular unitary
ensemble in [52], see also [32]. It was found that deviations from the CUE level density only
persist in the infinite N limit if one simultaneously scales q such that p1´ qqN remains finite,
which is essentially the ‘t Hooft limit.

In [3], we calculated the spectral form factor (SFF) for N Ñ 8 invariant unitary matrix
models satisfying the assumptions of Szegö’s theorem. In this limit, we found that for all such
ensembles, the SFF is of a surprisingly simple form, where the connected SFF always consists of
an exact linear ramp and plateau, and the disconnected part constitutes a dip which consists
of a squared simple power sum polynomial with of variables that can be read off from the
weight function. In the present work, we extend the calculation of the SFF for the CSMM to
finite N and explore first how our previous results are recovered in the N Ñ8. The present
calculation proceeds from the expansion of the SFF in terms of Toeplitz minors, which are
proportional to the product of two hook-shaped Schur polynomials of different specialization.
The simplification that occurs for N Ñ 8 [53] is not present here, which precludes us from
generalizing these results to other matrix models as we did for infinite N [3].

We then proceed to take the ’t Hooft limit, where N Ñ8 and qÑ 1. Since the CSMM was
introduced to describe intermediate statistics and reduces to the CUE for q Ñ 0, one would
naturally expect the CSMM to exhibit deviation from WD-universality in the opposite limit, i.e.
q Ñ 1. This is our main physical motivation for studying the ‘t Hooft limit. We find that the
connected SFF, which we denote by Fpnqc , turns into a remarkable sequence of polynomials
of degree 2n ´ 1 in y “ qN , which we computed for n “ 1, . . . , 11. These polynomials do
not seem to have appeared in the literature thus far. Their somewhat complicated form belies
the fact that they are very close to linear ramps, with slope decreasing from 1 to 0 as we
increase y from 0 to 1. In fact, we find that the Fpnqc is an exact linear ramp of slope 1{2
for y “ 1{2, with the SFF’s for y and 1´ y exactly adding up to a linear ramp of unit slope.
Although the form of low-lying expansion coefficients can be found, the general structure of
these polynomials (beyond those which calculated explicitly) remains elusive. Further, a gap
opens in the eigenphase density, which we will simply refer to as level density, for any y ą 0.
We unfold by rescaling the spectrum so that the level density has support on an interval of
length 2π. After calculating the connected SFF using the unfolded eigenphases, we find that
it is very close to a linear ramp of unit slope for all y other than y close to 1, with precision
increasing with n. Indeed, we recover an exact linear ramp of unit slope for y “ 1{2, in spite of
the fact that our unfolding procedure involves only a rescaling, and the unfolded level density
is not flat at all (in fact it closely resembles a semicircle). We thus recover WD-universality
for y sufficiently far from 1, in spite of the fact that the ‘t Hooft limit involves q Ñ 1, which
is the opposite limit of the CUE limit. This the main result of the present work. Lastly, we
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consider the non-commutativity of the limits qÑ 1 and N Ñ8, which was already noted for
the partition function and trace averages xtrUny in [54].

The outline of the paper is as follows. In section 2, we review the calculation of UpNq
integrals “twisted” by the insertion of UpNq characters (Schur polynomials), and we explic-
itly consider a few examples relevant for the calculation of the SFF. In section 3, we present
the calculation of the SFF. In particular, in section 3.1, we calculate the SFF for general N
and q, and show how the connected SFF reduces to a linear ramp for y “ qN Ñ 0, thereby
confirming one of the main results of [3]. We further demonstrate explicitly that the linear
ramp emerges from UpNq averages over characters corresponding to identical (hook-shaped)
representations, which confirms a result derived in [3] for N Ñ 8 with q ă 1. In section
3.2, we demonstrate how a plateau emerges sufficiently far from the origin and explain its
arising from the properties of Schur polynomials sλ, in particular from the simple fact that
sλpx1, . . . , xN q “ 0 if the number of non-empty rows in partition λ exceeds the number of vari-
ables N . In section 3.3, we consider the ‘t Hooft limit and compute the SFF and level density.
We unfold by a linear rescaling and demonstrate how WD-universality is recovered as a result.
Then, in section 3.4, we explore the non-commutativity of the limits N Ñ8 and q Ñ 1 and
calculate the SFF for small ‘t Hooft parameter. We finish this work by presenting our outlook
and conclusions.

2 Twisted UpNq integrals

Consider the weight function of some ensemble, expressed here as

f pzq “
ř

kPZ dkzk “
ś8

j“1p1` x jzqp1` x jz
´1q “ Epx; zqEpx; z´1q , (1)

where x “ px1, x2, . . . q are the variables of Epx; zq, the generating function of elementary
symmetric polynomials. For U P UpNq with eigenvalues eiφ j , we write

f̃ pUq “
N
ź

j“1

f peiφ j q , sλpUq “ sλpe
iφ j q . (2)

In the limit N Ñ8, the twisted UpNq integral goes to [55]

@

sλpU
´1qsµpUq

D

:“

ş

UpNq f̃ pUqsλpU
´1qsµpUqdU

ş

UpNq f̃ pUqdU
“
ÿ

ν

spλ{νqt pxqspµ{νqt pxq , (3)

where the superscript t denotes transposition and where the sum is over all partitions ν such
that µ Ě ν Ď λ. Further, x “ px1, x2, . . . q, the set of variables appearing in (1). If we have a
finite number of distinct non-zero x j , (3) can be valid even for finite N [3]. We denote by |x |
the number of distinct, non-zero x j . Then, (3) remains valid as long as both `pλq and `pµq are
greater than N ´ |x |. However, we are most interested in the CSMM, for which f pzq “ Θ3pzq.
Using the Jacobi triple product expansion, we see that x j “ q j´1{2 in equation (1) for all
j P Z`, so that we cannot apply (3). In particular, the partition function of the CSMM can be
written as

Z “
ż

dU
8
ź

j“1

det
´

1` q j´1{2U
¯

det
´

1` q j´1{2U´1
¯

. (4)

All expectation values x. . .y that we write from now on are with respect to the above partition
function. To calculate the SFF of the CSMM, then, we will consider twisted UpNq integrals for
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general N and weight function. These can be expressed as a minors of a Toeplitz matrix of
symbol f pzq “

ř

kPZ dkzk, i.e. a Toeplitz matrix with dk on the kth diagonal [56],

Dλ,µ
N´1p f q “ detpdλ j´ j´µk`kq

N
j,k“1 “

ż

UpNq
f̃ pUqsλpU

´1qsµpUqdU . (5)

The weight function under consideration in the present work is the third theta function, which,
for 0ă |q|ă 1, can be expressed in the triple product expansion as

Θ3pzq “
ÿ

kPZ

qk2{2zk “ pq; qq8
8
ź

j“1

p1` q j´1{2zqp1` q j´1{2z´1q

“ pq; qq8Epq j´1{2; zqEpq j´1{2; z´1q . (6)

Note that, with this definition, dk “ qk2{2 rather than dk “ qk2
, the latter being another com-

mon convention. We then have

Dλ,µ
N´1pΘ3q “ det

´

qpλ j´ j´µk`kq2{2
¯N

j,k“1
. (7)

First taking λ“H“ µ, we have

DN´1pΘ3q “ det
´

qpk´ jq2{2
¯N

j,k“1
“
ź

jăk

p1´ qk´ jq “

N´1
ź

k“1

p1´ q jqN´ j . (8)

Taking only λ“H gives

DµN´1pΘ3q “ detpdk´µk´ jq
N
j,k“1 “

ż

UpNq
f̃ pUqsµpUqdU “ det

´

qpk´µk´ jq2{2
¯N

j,k“1
. (9)

We have (see e.g. the appendix of [54]),

detpqpµk`k´ jq2{2qNj,k“1 “ q
ř

k µ
2
k{2

ź

jąk

p1´ qµ j´µk`k´ jq . (10)

Then,

Wλµ :“
@

sλpU
´1qsµpUq

D

“
DλµN´1

DN´1
. (11)

Up to a simple framing factor, this equals the Chern-Simons average over a pair of Wilson
lines tied into a Hopf link, where one Wilson line carries a UpNq representation λ and the
other carries µ. For µ“H, the Hopf link reduces to an unknot carrying rep λ, and vice versa
for λ“H. Using (10), we then have

Wµ “

det
´

qpk´µk´ jq2{2
¯

det
`

qpk´ jq2{2
˘ “ q

ř

j µ
2
j {2

ś

jăkp1´ qk´ j´µk`µ j q
ś

jăkp1´ qk´ jq
(12)

“ q´npµq`
ř

j µ
2
j {2sµp1, q, . . . , qN´1q , (13)

where npµq “
řN

j“1p j´ 1qµ j . When we take N Ñ8, this equals [53]

W8
µ “ sµt pq j´1{2q “ q|µ|{2`npµtq´npµqsµpq

j´1q . (14)
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The power appearing in the prefactor is given by the sum of the content, cpxq, over the partition
µ. Specifically, cpxq “ j´ i for x “ pi, jq P µ, and [57]

ÿ

xPµ
cpxq “ npµtq ´ npµq . (15)

For general λ and µ, finite N , and |q|ă 1, we have

Wλµ “
1

ZN

ż

sλpU
´1qsµpUq f pUqdU

“ q
řN

j“1pλ
2
j {2`µ

2
j {2´p j´1qpλ j`µ jqqsµpq

j´1qsλpq
´µ1 , q1´µ2 , . . . , qN´1´µN q

“ q´npλq´npµq`
řN

j“1pλ
2
j {2`µ

2
j {2qsµpq

j´1qsλpq
´µ1 , q1´µ2 , . . . , qN´1´µN q , (16)

which, for N Ñ8, goes to [53]

W8
λµ “

ÿ

ν

spλ{νqt pq
j´1{2qspµ{νqt pq

j´1{2q . (17)

Consider, for example, λ“l“ µ. Then, using [equation (5.9) in [57]]

sλpx , yq “
ÿ

µ

sλ{µpxqsµpyq , (18)

and limNÑ8rN sq “ limNÑ8
1´qN

1´q “
1

1´q for |q|ă 1, we have

Wll “ rN s ` q2rN srN ´ 1s NÑ8
Ñ

1
1´ q

`
q2

p1´ qq2
. (19)

On the other hand,

W8
ll

“
ÿ

ν

pspl{νqpq
j´1{2qq2 “ pslpq

j´1{2qq2` psHpq
j´1{2qq2 (20)

“ qrN s2` 1“
q

p1´ qq2
` 1“ lim

NÑ8
Wll . (21)

As one can see, the fact that terms of the form qN go to zero as N Ñ8 leads to the agreement
between these expressions. Consider the Schur polynomial appearing in the unknot and Hopf
link, given by the q-hook length formula,

sλpq
j´1q “ qnpλq

ź

xPλ

rN ` cpxqs
rhpxqs

“ qnpλq dimqpλq , (22)

where hpxq is the hook-length of x P λ. The quantity dimqpλq is known as the quantum
dimension, or q-dimension. Its expression in (22) is simply the usual hook length formula

where numbers are replaced by q-numbers rN s “ 1´qN

1´q . Using the q-hook-length formula, one
finds that the hook-shaped Schur polynomial is given by

spa,1bqpx i “ qi´1q “ qbpb`1q{2 rN ` a´ 1s!

rN ´ b´ 1s!ra´ 1s!rbs!ra` bs
. (23)

For cpxq ! N , @x P λ and N Ñ8, (22) gives

sλpq
j´1q “

qnpλq

p1´ qq|λ|
ź

xPλ

rhpxqs´1 “ qnpλq
ź

xPλ

p1´ qhpxqq´1 . (24)
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In particular, sλpq
j´1q depends only on npλq and the hook lengths, so that e.g.

rN`a´1s
rN´b´1s “ p1´ qq´pa`bq. Therefore, for a partition λ for which

ÿ

xPλ

cpxq “ npλtq ´ npλq “ 0 , (25)

the unknot W8
λ

is invariant under taking λÑ λt . One can clearly see from equation (22) that
this is not the case for finite N . These examples illustrate the simplification which occurs as
qN Ñ 0, which we will further comment on in the following section.

2.1 The ‘t Hooft limit

The ‘t Hooft limit is given by the following double scaling,

N Ñ8 , gs Ñ 0 , such that t :“ N gs “ finite . (26)

The ‘t Hooft limit of the CSMM has been considered in the context of topological string theory
in e.g. [46, 48, 49]. In this case, one has y “ qN “ e´t ‰ 0. In this limit, q taken to a finite
power will simply give 1, whereas q to the power of multiples of N will give powers of y ,
which we need to keep track off to calculate the SFF. In the ‘t Hooft limit, the hook-shaped
Schur polynomial in (23) goes to

lim
qÑ1´

1
pa´ 1q!b!pa` bq

ˆ

1´ y
1´ q

˙a`b

, (27)

which we write as a limit as it is a divergent quantity. However, we will find that the connected
SFF is in fact not divergent for the explicit examples we calculated. For the connected SFF not
to be divergent, a precise cancellation between various powers of p1´ qq´1 has to take place,
which means that we cannot simply use (23) in this calculation. Instead, we will write,

spa,1bqpx i “ qi´1q “
qbpb`1q{2

ra´ 1s!rbs!ra` bs
loooooooooomoooooooooon

“Aa,b

rN ` a´ 1s!

rN ´ b´ 1s!
“ Aa,b

śa`b´1
k“0 p1´ yqa´1´kq

p1´ qqa`b
!

“
Aa,b

p1´ qqa`b
pyqa´1; q´1qa`b , (28)

where one should keep in mind that we take the limit qÑ 1´. In particular, for m finite, one
can write

„

N `m
k



“
pyqm; q´1qk

rks!p1´ qqk
, (29)

as a convenient way to extract factors of y .

3 Spectral form factor

We proceed to calculate the SFF, which is given by

Kpnq :“
1
N

@

|trUn|2
D

“
1
N

n´1
ÿ

r,s“0

p´1qr`s
A

spn´r,1rqspn´s,1sq

E

, (30)
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where we applied the expansion of the power sum polynomial,

trUn “

N
ÿ

j“1

einφ j “

n´1
ÿ

r“0

p´1qrspn´r,1rqpe
iφ j q . (31)

Plugging equation (30) into (16), we have

Kpnq “
qn2

N

n´1
ÿ

r,s“0

p´1qr`sq´npr`sqspn´s,1sqpq
j´1qspn´r,1rqpq

´pn´sq, 1, . . . ,qs´1, qs`1, . . . , qN´1q . (32)

The first Schur polynomial appearing in the sum, spn´s,1sqpq
j´1q “ spn´s,1sqp1, . . . , qN´1q, is

given in (23). The second Schur polynomial on the right hand side of (32), of the form
sλpq

j´µ j´1q for hook-shaped λ and µ, is more complicated. We write λ “ pa, 1bq and
µ “ pc, 1dq. Defining the sets of variables x “ q´c , y “ qd`1, . . . , qN´1, z “ 1, . . . , qd´1,
we use the following expression [equation (5.10) in [57]],

sλpx , y, zq “
ÿ

ρ,ν
sλ{ρpxqsρ{νpyqsνpzq , (33)

where the sum runs over all partitions satisfying ν Ă ρ Ă λ. For λ “ pa, 1bq and x , y, z as
defined above, we get non-zero contributions only when λ{ρ is a horizontal strip, as x “ q´c

consists only of a single variable. We then have to carefully distinguish between two types of
partitions ρ.

1. For ρ “ pe, 1bq, we again have λ{ρ “ pa´eqwhich is obviously a horizontal strip. Then,

sλ{ρpq
´cq “ q´cpa´eq . (34)

The requirement that ν Ă ρ then gives ν “ p f , 1gq so that ρ{ν “ pe´ f q b p1b´gq for
ν‰H and ρ{ν“ µ for ν“H.

2. For ρ “ pe, 1b´1q, we have λ{ρ “lb pa´ eq so that

sλ{ρpq
´cq “ q´cpa´e`1q . (35)

Then, ν “ p f , 1gq so that ρ{ν “ pe ´ f q b p1b´g´1q and ρ{ν “ ρ for ν “ H. This
situation of course does not occur for b “ 0, in which case λ“ paq.

Note that spaqpxq “ hapxq and sp1aqpxq “ eapxq, the complete homogeneous and elementary
symmetric polynomials of degree a, respectively. We then have, for ρ{ν“ pe´ f q b p1b´gq

sρ{νpyq “ he´ f pyqeb´gpyq . (36)

We illustrate these two choices for ρ in equations (34) and (35) for λ “ p4, 12q. As a spe-
cific example, we set e “ 2, so that the first choice of ρ “ pe, 1bq “ p2,12q. This gives
λ{ρ “ p4,12q{p2, 12q “ p2q. λ{ρ is represented in terms of Young diagrams below:

O

=

9
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Consider now the second choice, ρ“pe, 1b´1q“p2,1q, so that λ{ρ“p4, 12q{p2,1q“p2qˆp1q,
represented in Young diagrams as follows:

O

= ˆ

The result is again a horizontal strip, consisting in this case of two disconnected components.
We consider these two choices for µ and sum over all partitions satisfying ν Ă ρ Ă λ to
calculate spn´r,1rqpx , y, zq1 and, with that, the full SFF. We discuss the results of this calculation
below.

3.1 Appearance of the linear ramp for nă N

For finite N ą n, we consider how the linear ramp appears for the connected SFF, which is
found by subtracting the disconnected contribution, xtrUny

2, from the full SFF. The discon-
nected contribution is thus given by the square of

xtrUny “ qn2{2
n´1
ÿ

r“0

p´1qrq´nrspn´r,1rqpq
j´1q . (37)

For n“ 1,2, 3, this equals

xtrUy “ q1{2rN s “
q1{2p1´ qN q

1´ q
,

@

trU2
D

“
p1´ qN qp´q` qN ` qN`1` qN`2q

1´ q2
, (38)

@

trU3
D

“
q3´ qN`1p1` q` q2q2` q2N p1` q2qp1` q` q2q2´ q3N p1` q2qp1` q` q2` q3` q4q

q3{2p1´ q3q
.

We write,

Fpnq “ NKpnq , Fpnqc “ NKpnqc . (39)

The connected SFF for small n is then given by,

Fp1qc “q sp1qpq
j´1qsp1qpq

´1, q, q2, . . . q ´ qpsp1qp1, q, q2 . . . qq2

“qrN sp1´ qq “ 1´ qN ,

Fp2qc “
p1´ qN qp2q´ qN ` q2N ´ q2`N ` 2q1`2N ` q2`2N q

q
,

Fp3qc “´
1
q4
p´3q4` q3N ´ 2qN ` q5N ` q2`N ` 2q3`N ` 3q4`N ` 2q5`N ` q6`N

´ 2q1`2N ´ 4q2`2N ´ 8q3`2N ´ 8q4`2N ´ 8q5`2N ´ 4q6`2N ´ 2q7`2N

` 6q1`3N ` 10q2`3N ` 16q3`3N ` 18q4`3N ` 16q5`3N ` 10q6`3N ` 6q7`3N

` q8`3N ´ 6q1`4N ´ 12q2`4N ´ 16q3`4N ´ 18q4`4N ´ 16q5`4N ´ 12q6`4N

´ 6q7`4N ´ 2q8`4N ` 2q1`5N ` 5q2`5N ` 6q3`5N ` 8q4`5N ` 6q5`5N ` 5q6`5N

` 2q7`5N ` q8`5N q . (40)

1In particular, we sum over g from 0 to minpb, d ´ 1q or to minpb´ 1, d ´ 1q, corresponding to ρ “ pe, 1bq or
ρ “ pe, 1b´1q, respectively. We then sum over f from 1 to e and lastly over e from 0 to a.
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Examples of the SFF for higher n are too long to print here. One thing one can see from (40),
which persists for higher n, is that the SFF is of the form,

Fpnqc “ n`OpqAq , A“ N ` . . . (41)

Therefore, for N Ñ 8 and q ă 1 fixed, qN Ñ 0 and Fpnqc Ñ n. This reproduces the exact
linear ramp that was found for all RME’s satisfying the assumptions of Szegö’s theorem in our
previous work [3], thus recovering our main result for the case of the CSMM via a different
computation.

3.1.1 Linear ramp from Schur bilinears

As mentioned above, as we take N to infinity for q ă 1, the connected SFF for n{N ă 1 is
a linear ramp of unit slope [3]. In this limit, in the expansion of the form factor in terms of
averages of bilinears of hook-shaped Schur polynomials,

Fpnq “
n´1
ÿ

r,s“0

p´1qr`s
A

spn´r,1rqpU
´1qspn´s,1sqpUq

E

, (42)

we get a contribution equal to 1 when considering two identical hook-shaped partitions
pn ´ r, 1rq “ pn ´ s, 1sq. Since there are n hook-shaped partitions containing n boxes, we
get a contribution equal to n, which is the linear ramp. More details can be found in [3].

The above consideration leads us to conclude that, for finite N and for r “ s ď N ´ 1, we
should have that the summand of the SFF in (32) is of the following form

ApN , n, q, r, rq :“
A

spn´r,1rqspn´r,1rq

E

“ qn2´2nrspn´r,1rqpq
j´1qspn´r,1rqpq

´pn´rq, 1, . . . ,qr´1, qr`1, . . . , qN´1q

“ 1`Opqq . (43)

Further, we should have

ApN , n, q, r, sq “Opqq , r ‰ s . (44)

There are two types of terms of Opqq in the above expressions. First of all, there are terms of
the form qN`..., which go to zero as we take N Ñ8 for fixed q ă 1. Secondly, there are powers
of q not containing factors of N , which do not go to zero as N Ñ 8. Therefore, to recover
the linear ramp as N Ñ8, all the lower powers of q should mutually cancel out between the
various terms in the sum in (32). It should be clear from equation (32) that the fact that such
a cancellation occurs is a priori far from obvious.

We start by verifying (43). Note that q-numbers and products thereof (such as q-factorials
and q-binomials) are themselves of Op1q. For example,

rN sq “
1´ qN

1´ q
“ p1´ qN q

8
ÿ

k“0

qk “ 1` q` q2` ¨ ¨ ¨ ´ qN ´ qN`1` . . . (45)

Let us consider ApN , n, q, 0, 0q. Plugging

spnqpq
´n, q, . . . , qN´1q “ q´n2

`Opq´n2`1q , (46)

into (43) leads to

qn2
spnqpq

j´1qspnqpq
´n, q, . . . , qN´1q “ qn2

„

N ` n´ 1
n



´

q´n2
`Opq´n2`1q

¯

“ 1`Opqq , (47)
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where we use the aforementioned fact that q-binomials are of the form 1 ` Opqq. When
r “ s ‰ 0, the calculation is slightly more involved. First, we read off from (22) that

spn´r,1rqpq
j´1q “ qrpr`1q{2 p1`Opqqq . (48)

We then determine the lowest power of q appearing in

spn´r,1rqpq
´pn´rq, 1, . . . ,qr´1, qr`1, . . . , qN´1q (49)

“
ÿ

µ,ν
spn´r,1rq{µpq

´pn´rqqsµ{νp1, . . . , qr´1qsνpq
r`1, . . . , qN´1q , (50)

where we used (33) on the right hand side. Consider the case where µ “ p1rq and ν “ H.
This gives λ{µ “ pn´ r ´ 1q ˆ p1q, so that spn´r,1rq{µpq

´pn´rqq “ q´pn´rq2 . Further, we have
sµpq, . . . , qr´1q “ qrpr´1q{2, and sν “ sH “ 1. Therefore,

spn´r,1rqpq
´pn´rq, 1, . . . , qr´1, qr`1, . . . , qN´1q “ q´pn´rq2qrpr´1q{2p1`Opqqq . (51)

Plugging this into (43) gives

ApN , n, q, r, rq “ qn2´2nrqrpr`1q{2q´pn´rq2qrpr´1q{2p1`Opqqq “ 1`Opqq . (52)

One can readily check that any other choice of µ and ν leads to higher powers of q. For
example, choosing ν “ p1q increases the power of q by 2, and choosing a different partition
for µ either increases the power of q by n´ r or gives zero (when `ppn´ r, 1rq{µq ą 1). This
demonstrates equation (43).

Let us now consider the case where r ‰ s, to derive equation (44). We take r ă s without
loss of generality. Taking first r “ 0, we have

ApN , n, 0, s, qq “ qn2´nsspn´s,1sqpq
j´1qspnqpq

´pn´sq, y, zq

“ qn2´nsqsps`1q{2q´npn´sqp1`Opqqq “ qsps`1q{2p1`Opqqq “Opqq , (53)

where y “ p1, . . . , qs´1q and z “ pqs`1, . . . , qN´1q, as before. Lastly, we check the case where
0 ‰ s ‰ r ‰ 0, choosing again r ă s without loss of generality. Following the same procedure
that lead to (51), we find

spn´r,1rqpq
´pn´sq, 1, . . . ,qs´1, qs`1, . . . , qN´1q “ q´pn´rq2qrpr´1q{2p1`Opqqq , (54)

so that this term, too, appears with a positive power of q,

ApN , n, r, s, qq “ qppr´sq2`r`sq{2p1`Opqqq . (55)

We have thus shown that terms with r “ s contribute 1`Opqq, whereas Schur bilinears with
r ‰ s contribute terms of Opqq. As mentioned above, powers of q which do not contain a
factor N cancel out in the sum over r and s, leaving only a linear ramp plus terms of the form
qpN`... q, as can be seen in (40).

The calculations described here have a simple knot-theoretical interpretation. Remember
that ApN , n, r, s, qq is proportional to the HOMFLY invariant of a Hopf link, where the two com-
ponents of the Hopf link carry UpNq respresentations corresponding to partitions pn´ r, 1rq

and pn´ s, 1sq, respectively. The above results entail that Hopf links of Wilson lines carrying
hook-shaped representations only give a contribution of (order) unity for two identical rep-
resentations. Therefore, in the limit q Ñ 0, where the CSMM reduces to the CUE, all Hopf
link invariants with different n-box hook-shaped partitions go to zero. On the other hand,
those with identical n-box hook-shaped partitions go to one. This means, for example, that
an unknot carrying pa, 1bq with b ‰ 0 has invariant equal to zero, but if we tie two of these
unknots together to form a Hopf link the resulting invariant equals one. On the other hand,
an unknot carrying representation paq has invariant equal to one, but if we tie it to an unknot
carrying pa´ b, 1bq with b ‰ 0 to form a Hopf link, the result is again zero.
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3.2 Relaxing the assumption that nă N

If we relax the assumption that nă N , the SFF will eventually reach a plateau for large enough
n. A well-known, heuristic way to see that such a plateau is eventually reached is as follows. If
we consider a diagonal matrix V “ diagpeiφ1 , eiφ2 , . . . , eiφN q with all φ j taking random values
in r0,2πq, and we average over φ j , we get

@

|trV n|2
D

“

C

N
ÿ

k,l“1

einpφk´φmq

G

“ N . (56)

Here, we use the fact that einpφk´φmq equals 1 for k “ m, whereas for k ‰ m it is a random
variable on (2n copies of) the complex unit circle, which averages to zero. A system with
eigenphases distributed randomly across the unit circle therefore has a constant SFF, as was
mentioned in the introduction. On the other hand, random unitary matrices U display level
repulsion with overwhelming probability, so that their eigenvalues tend to distribute more
evenly across the complex unit circle. Therefore,

@

|trUn|2
D

is much lower than N for small
values of n. However, for n close to N , we have that n becomes of the order of the average
spacingφk`1´φk. In that case, einpφk´φlq is an approximately random element of the complex
unit circle for all k ‰ l, so that these again average to zero and only the constant contribution
N coming from k “ l remains. This explains the origin of the plateau for nÁ N .

Alternatively, the emergence of the plateau can be understood to arise from the fact that
sλpxq “ 0 for `pλq ą |x |. In particular, the averages appearing on the right hand side
of (30), are weighted matrix integrals written in (5) over Schur polynomials of the form
spn´r,1rqpUq “ spn´r,1rqpe

iφ j q. If `pspn´r,1rqq “ r ` 1 ą N , then spn´r,1rqpUq “ 0. Therefore,
only Schur bilinears of the form

A

spn´r,1rqspn´s,1sq

E

, r, s ď N ´ 1 , (57)

give a non-zero contribution to (30). It was demonstrated in the previous subsection that, for
r, s ď N ´ 1,

A

spn´r,1rqspn´s,1sq

E

“ δr,s `Opqq , (58)

from which arises the linear ramp. From equation (58), it follows that the linear ramp arising
from r “ s ď N ´1, saturates at a plateau for n“ N . However, one should note that this does
not take into account terms of OpqN q, which will turn out to have a significant impact on the
shape of the SFF, delaying the onset of the plateau as one increases qN .

To implement n ą N in the expression for the SFF derived at the start of this section, one
should take into account that

1. spe,1bqpyq “ 0 for b ą N ´ d ´ 2 ,

2. eb´gpyq “ 0 for g ą d ` b` 1´ N ,

where x “ q´c , y “ qd`1, . . . , qN´1, and z “ 1, . . . , qd´1, as before. Note that the functions
above both arise as sρ{νpyq for ρ “ pe, 1bq in equation (33), where eb´gpyq is given in equa-
tion (36), whereas sρ{νpyq reduces to spe,1bqpyq for ν “ H. We plot Kpnq resulting from this
calculation for N “ 10 and N “ 20 and various choices of and q.

As one can see, the SFF is closest to a linear ramp for small values of q, which is to be
expected as the limit qÑ 0 corresponds to the CUE. Further, disconnected SFF becomes large
for small n as we increase q, leading to large, oscillating deviations close to the origin. Com-
paring figures 1 and 2 reveals that, for fixed q, deviation from a linear ramp decreases as we
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Figure 1: The SFF for N “ 10 and various values of q.
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Figure 2: The SFF for N “ 20 and various values of q.

increase N . This suggests that a combination of q and N controls the approximate slope away
from the origin.

The aforementioned observations that, as we increase q, a dip emerges and the slope of
the SFF decreases, are not unrelated. In particular, we find that

řk
n“1 Fpnq for large enough

k ě N is almost independent of q. That is, as we increase q, we get positive contributions to
Apkq arising from the disconnected SFF which are compensated by a decrease in the slope of
Fpnq. We define, for k ą N , the logarithm of the difference between the sum over the SFF of
the CSMM and the CUE (qÑ 0) SFF,

Apkq :“ log

«

k
ÿ

n“1

Fpnq ´ N2{2´ NpN ´ kq

ff

. (59)

We plot the results for N “ 10 and k “ 10, . . . , 20 below. It is clear that the difference decreases
quite rapidly with k until it stabilizes around some small value. Further, we see that the
difference decreases more slowly and acquires a larger minimum value as we increase q.

The SFF’s plotted above were found without unfolding. To see the effect of unfolding,
the connected SFF was computed numerically for N “ 10 and N “ 20 numerically, using the
Metropolis algorithm to generate the spectra. The unfolding is done via Gaussian kernel den-
sity estimation using the Silverman rule for bandwidth selection. The data sets for N “ 10 and
N “ 20 contain at least 10.000 and 5.000 samples, respectively, such that at least 100.000 lev-
els are involved in the calculation of both SFF’s. These are plotted below, where, to distinguish
them from the analytically calculated (and non-unfolded) SFF’s, we denote the numerically
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Figure 3: The logarithm of the difference between the sum over the CSMM SFF for
N “ 10 and the CUE (q Ñ 0) SFF, plotted for various values of q. We see that the
difference is very small and decreases quite rapidly with k but, conversely, increases
with q.
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Figure 4: The numerically computed connected unfolded SFF’s for N “ 10 and
N “ 20, which can be distinguished by the fact that they arrive at a plateau at n“ 10
and n“ 20, respectively. Note that we plot only the connected SFF here, as opposed
to figures 1 and 2, to simplify comparison with Wigner-Dyson universality. It is clear
that Wigner-Dyson universality is recovered to high precision for both N “ 10 and
N “ 20 and all q considered here.

computed SFF’s by Lpnq.2 We emphasize once more that these are the connected SFF’s, where
we omit the disconnected part to enable easier comparison with Wigner-Dyson universality.
The SFF’s for N “ 10 and N “ 20 are distinguished by the fact that they arrive at a plateau at
n“ 10 and n“ 20, respectively. As we can see, for both N “ 10 and N “ 20 and all values of
q we consider, the connected SFF’s exhibit Wigner-Dyson universality rather than intermediate
statistics. We will arrive at similar conclusions for the ‘t Hooft limit below, albeit via different
methods.

3.3 The SFF in the ‘t Hooft-limit

Taking the ‘t Hooft limit, N Ñ8 and gs Ñ 0 such that t “ N gs “ finite, leads to q Ñ 1 and
qN “ y with 0ď y ă 1. In this limit, the SFF turns into a remarkable sequence of polynomials
of degree 2n´ 1 in y . We will first consider these polynomials and their properties, before

2The data for these plots was kindly provided by Wouter Buijsman.
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turning to the question of unfolding. We have calculated the connected SFF for n“ 1, . . . , 11,
resulting in the expressions below.

Fp1qc “ 1´ y ,

Fp2qc “ 2´ 4y ` 6y2´ 4y3 ,

Fp3qc “ 3´ 9y ` 36y2´ 84y3` 90y4´ 36y5 ,

Fp4qc “ 4´ 16y ` 120y2´ 560y3` 1420y4´ 1968y5` 1400y6´ 400y7 ,

Fp5qc “ 5´ 25y ` 300y2´ 2300y3` 10150y4´ 26880y5` 43400y6

´ 41800y7` 22050y8´ 4900y9 ,

Fp6qc “ 6´ 36y ` 630y2´ 7140y3` 47880y4´ 200592y5` 544824y6´ 974160y7

` 1137780y8´ 834960y9` 349272y10´ 63504y11 ,

Fp7qc “ 7´ 49y ` 1176y2´ 18424y3` 173460y4´ 1042524y5` 4187736y6

´ 11565624y7` 22246686y8´ 29742020y9` 27087984y10´ 16024176y11

` 5549544y12´ 853776y13 ,

Fp8qc “ 8´ 64y ` 2016y2´ 41664y3` 522480y4´ 4237632y5` 23380896y6

´ 90830784y7` 253846296y8´ 515838400y9` 762521760y10

´ 810927936y11` 604107504y12´ 299065536y13` 88339680y14

´ 11778624y15 ,

Fp9qc “ 9´ 81y ` 3240y2´ 85320y3` 1372140y4´ 14394996y5` 103900104y6

´ 535847400y7` 2026445850y8´ 5713765200y9` 12118597920y10

´ 19364383584y11` 23165382240y12´ 20414698920y13`12853423440y14

´ 5468226192y15` 1407913650y16´ 165636900y17 ,

Fp10qc “ 10´ 100y ` 4950y2´ 161700y3` 3240600y4´ 42617520y5` 388588200y6

´ 2556668400y7` 12488661900y8´ 46202499200y9` 131172321280y10

´ 287919216000y11` 489596250000y12´ 642659556000y13

` 644511582000y14´ 484405727520y15` 263957736900y16

´ 98425126800y17` 22457091800y18´ 2363904400y19 ,

Fp11qc “ 11´ 121y ` 7260y2´ 287980y3` 7031310y4´ 113142744y5

` 1269259992y6´ 10345746840y7` 63147440070y8´ 295025713840y9

` 1071727584928y10´ 3059501029728y11` 6907003486240y12

´ 12358366232520y13` 17490417413040y14´ 19447530019632y15

` 16771920490182y16´ 10982054062980y17` 5272925154640y18

´ 1749762036880y19` 358415185128y20´ 34134779536y21 . (60)

To the best of the authors’ knowledge, the above polynomials have not appeared in the liter-
ature before. Their complicated form belies the fact that the SFF appears to be very close to
a straight line for any y , with decreasing slope for increasing y , see figure 5. We emphasize
again that the SFF’s plotted in figure 5 were found without applying any unfolding. We will
consider the issue of unfolding by rescaling the spectrum in section 3.3.2, see in particular
figure 7. In fact, there are three choices of y for which the SFF is a perfectly straight line.
Writing Fpn; yqc to indicate dependence on y , we have

Fpn; 0qc “ n ,
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Figure 5: The connected SFF in the ‘t Hooft limit, without unfolding, written in
equation (60). As one can see, the resulting SFF is very close to a straight line for
any choice of y .

Fpn; 1{2qc “
n
2

,

Fpn; 1qc “ 0 . (61)

The fact that Fpn; 0qc “ n was already mentioned in section 3.1 and is, in essence, one of
the results derived in [3]. The last equality, written as a limit for y , can easily be seen to be
generally true and will be further commented on in section 3.4. The middle equality, on the
other hand, is a priori completely unexpected (at least to the authors).

One can see from the above plot that the SFF appears to be symmetric around Fpn;1{2qc“
n
2 .

Indeed, we find that

Fpn; yqc ` Fpn; 1´ yqc “ n . (62)

It can be seen that the polynomials Fpnqc appearing in (60) can factorized into the product of
a factor np1´ yq and polynomials pnpyq of degree 2n´ 2. The first few of them are given by

p1 “1 ,

p2 “1´ y ` 2y2 ,

p3 “1´ 2y ` 10y2´ 18y3` 12y4 ,

p4 “1´ 3y ` 27y2´ 113y3` 242y4´ 250y5` 100y6 ,

p5 “1´ 4y ` 56y2´ 404y3` 1626y4´ 3750y5` 4930y6´ 3430y7` 980y8 ,

p6 “1´ 5y ` 100y2´ 1090y3` 6890y4´ 26542y5` 64262y6´ 98098y7

` 91532y8´ 47628y9` 10584y10 ,

p7 “1´ 6y ` 162y2´ 2470y3` 22310y4´ 126622y5` 471626y6´ 1180606y7

` 1997492y8´ 2251368y9` 1618344y10´ 670824y11` 121968y12 ,

p8 “1´ 7y ` 245y2´ 4963y3` 60347y4´ 469357y5` 2453255y6´ 8900593y7

` 22830194y8´ 41649606y9` 53665614y10´ 47700378y11` 27813060y12

´ 9570132y13` 1472328y14 . (63)
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We were able to identify the coefficients for the following powers of y as

y0 : 1 ,

y1 : ´n ,

y2 : n2pn` 3q{2 ,

y3 : ´npn´ 1qp2` 10n` 6n2` n3q{6 ,

y4 : npn´ 1qp´72´ 224n´ 28n2` 87n3` 40n4` 5n5q{144 ,

y2n´1 : ´pC2n
n q

2p2n´ 1q{2pn` 1q ,

y2n : pC2n
n q

2{pn` 1q ,

where we have the binomial coefficient C2n
n “ p2nq!{pn!q2. It seems that no further informa-

tion about the expansion coefficients of pnpyq can be obtained easily. This prevents us from
generalizing the connected SFF beyond the 11 terms written in (60).

We list here some further observations on these polynomials. We notice that all pnpyq´ 1
are divisible by yp2y ´1q. Denoting snpyq “ ppnpyq´1q{pyp2y ´1qq, we find that these can
be expressed as functions of x , which reduces the degree even further. Finally, considering the
polynomials wnpyq “ sn`1pyq´snpyq one can realize3 that they have the following remarkable
properties:

a) all the roots of wnpyq are real;

b) they occupy the interval r0, 1s;

c) the roots have the interlacing property, meaning that the roots of lower degree polyno-
mials are located in between the roots of higher degree polynomials.4

This and other observations suggest that the polynomials wnpyq could form a family of or-
thogonal polynomials. However, the polynomials in (63) are only of even degree, while the
odd-degree polynomials are missing. It would be very interesting to extend the sequence of
polynomials to terms of higher degree and further explore some of the considerations described
above.

3.3.1 Level density

We now consider the question of unfolding in the ‘t Hooft limit, where we have

N´1 xtrUny “
1

2n log y

“

Pnp2y ´ 1q ´ Pn´1p2y ´ 1q
‰

, (64)

where Pn is the Legendre polynomial. This was already found in [54]. In particular, xtrUny

diverges in the ‘t Hooft limit in such a way that N´1 xtrUny is generally finite, as can be seen
from taking q Ñ 1 in (38). We thus have a level density which is no longer flat but contains
an oscillatory contribution as well,

ρpθ ; yq “ p2πq´1

«

1`
1

log y

8
ÿ

n“1

Pnp2y ´ 1q ´ Pn´1p2y ´ 1q

n
cospnθq

ff

. (65)

For |t|ă 1, the generating function of the Legendre polynomials reads

Ppx , tq “
8
ÿ

n“0

Pnpxqt
n “

1
?

1´ 2x t ` t2
, (66)

3We are very grateful to Dr. Denis Kurlov for pointing this fact out to us.
4Such interlacing has been observed in related contexts, see [58].
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Figure 6: The level density in the ‘t Hooft limit plotted for various values of y . For
y ą 0, a gap opens at θc “ arccosp2y ´ 1q which increases in size with y , with the
level remaining a convex function.

which can be integrated to find, for |z|ă 1,

ż z

0
Ppx , tq “

8
ÿ

n“1

Pn´1pxqz
n

n
“ log

´

z´ x `
a

1´ 2xz` z2
¯

´ log p1´ xq . (67)

Similarly,

8
ÿ

n“1

Pnpxqz
n

n
“ log2´ log

´

1´ xz`
a

1´ 2xz` z2
¯

. (68)

Using Abel’s theorem, one may find that

ρpθ ; yq “
1

2π
`

1
2π log y

rlog 2´ log Rpcosθ , 2y ´ 1qs , (69)

where

Rpz, xq “

#

p
?

1` z`
?

z´ xq2 , x ă z ,

1` x , x ě z .
(70)

It is easy to see that the second case listed above, x ě z, gives a zero level density, since then
log Rpz, xq “ log2y . In particular, a gap opens in the spectrum,5

ρpθ ; yq “ 0 , θ ą θc “ arccosp2y ´ 1q . (71)

This is plotted in figure 6 for y “ .1, .2, . . . , .9. One can see that these level densities are ap-

proximately of semicircular form. Indeed, writing rpθ ; yq “ ρp0; yq
b

1´ θ2

θ2
c

, the difference

between ρpθ ; yq and rpθ ; yq for y “ 0.1, 0.2, . . . , 0.9 remains smaller than 0.006 for all θ and
decreases with y .

5This critical angle was already found in [54], although our level density appears to be different from the
expression obtained there.
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3.3.2 Unfolding

To compare the connected SFF in the ‘t Hooft limit with the CUE result, we have to unfold the
spectrum. Strictly speaking, unfolding involves a change of variables to the staircase function,
(see e.g. section 5.19 of [59]),

σpθq “

ż θ

θc

dθ 1ρpθ 1q . (72)

The level density in terms of σ is a perfectly flat function. The unfolded SFF is then given by

1
N
x|

N
ÿ

j“1

e2πiσ j |2y . (73)

However, this unfolding procedure is often difficult in practice, and our case is no exception.
Finding σpθq using the closed form expression for the level density obtained above is not very
complicated, but the expression in (73) is not amenable to evaluation. For this reason, we
instead perform a constant rescaling to a variable s in terms of which the level density ρpsq
averaged over its support is independent of qN , that is, we simply rescale so that the average
spacing is the same for all y . For any value of y , we take the support of the level density and
imagine we can replace the level density by a box-shaped density of the same support. We
then rescale the support so that it is again of size 2π. To do so, we write

spθq “
πθ

θc
, s P r0,2πq , (74)

so that averaging over its (rescaled) support gives

ρ “
1

2π

ż 2π

0
dsρpsq “

1
2π
“ ρpθqCUE . (75)

In terms of the rescaled eigenphases, the level density ρpsq is of almost exactly the same shape
for any y ą 0, that is, the various densities in 6 are approximately related by rescaling. With
this unfolding, the SFF is given by

F̃pnq “

C

�

�

�

�

�

N
ÿ

j“1

e2πis j

�

�

�

�

�

2G

“ F
ˆ

πn
θc

˙

. (76)

The discrete SFF, F
´

πn
θc

¯

, can only be evaluated at integer πn
θc

. However, we saw in figure 5

that Fpnqc is very close to a linear ramp with slope ď 1. Since

Fpnqc « f pyqn , 0ď f pyq ď 1 , (77)

the unfolded connected SFF is approximately

F̃pnqc «
π

θc
Fpnqc “: Gpnq , (78)

which is plotted in 7.
It is clear that Gpnq closely resembles a linear ramp of unit slope for all y except close to

unity, with resemblance increasing with n. This entails that f pyq « θc
π . Only for y close to

1 do we get a significant deviation from WD-universality, with Gpnq Ñ 0 for y Ñ 1´. This
demonstrates that the unfolded connected SFF in the ‘t Hooft limit reproduces WD universality
to high precision for n “ 1, . . . , 11 and for all y except y « 1. Although it might be that
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Figure 7: The unfolded connected SFF, Gpnq “: π
θc

Fpnqc , for n“ 1, . . . , 11. At y “ 0,
we have exactly Gpnq “ n. For y ą 0, it is clear that Gpnq « n remains true to high
precision, especially for larger n, so that the unfolded connected SFF is very close
to a linear ramp with unit slope. Only for y Ñ 1´ does Gpnq go to zero and is any
resemblance to WD-universality lost.

deviations from WD universality will emerge for lower values of y as we increase n beyond
11, the aforementioned facts that Gpnq is close to a linear ramp and that this precision in fact
increases with n would appear to render such deviations rather unlikely. Conversely, it may be
that deviations from WD will continue to be squeezed into an ever smaller interval below y “ 1
as we increase n, but here, too, we cannot make definitive statements. We note again that the
unfolding implemented here involved only a constant rescaling of the eigenphases. Perhaps
unfolding as in (73) would remove what deviations from the linear ramp remain in the plot
below, but this is of course speculative. Further, spectral form factors of various systems often
display non-universal behavior close to the origin, which then disappear further away from the
origin where the SFF approaches a linear ramp. The deviations seen in the plot below, except
for the region y « 1, may be just such an effect.

As mentioned previously, the CSMM reduces to the CUE for q Ñ 0, where we know WD-
universality to hold. In our previous work [3], we demonstrated that WD-universality holds
for any q ă 1 and N Ñ 8 as well. The ‘t Hooft limit, which involves q Ñ 1´, should then
constitute the greatest possible deviation from the CUE result, yet WD-universality reappears
for all y other than y « 1 after even a very simple unfolding. This would appear to be rather
unexpected, as the CSMM was introduced and extensively studied as a random matrix model
for intermediate statistics, as described in more detail in the introduction. We further comment
on this result and its implications in the conclusion.

3.4 Non-commutativity of the limit qÑ 1 and N Ñ8

One can see from the expression of the SFF that the limits qÑ 1 and N Ñ8 do not commute.
Such non-commutativity has been discussed in the literature already decades ago, see [54].
In particular, if we take qÑ 1 into expression (16) for finite N , the Schur polynomials simply
give the dimension of the representation, that is

sλp1, 1, . . . , 1q “ dimλ . (79)
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Plugging this into (16) with λ “ pn´ r, 1rq and µ “ pn´ s, 1sq shows that the SFF would be
simply given by

˜

n´1
ÿ

r“0

p´1q
pN ` n´ r ´ 1q!

pN ´ r ´ 1q!pn´ r ´ 1q!r!n

¸2

“ N2 , (80)

for all n. In terms of knot theory, we see that taking qÑ 1 for N finite breaks the p2n, 2q-torus
link that is the SFF up into its separate pn, 1q-torus knot components, as we have

lim
qÑ1
x|trUn|2y “ lim

qÑ1
xtrUnyxtrU´ny “ lim

qÑ1
pxtrUnyq

2 . (81)

The connected SFF then equals zero, as was the case in section 3.3. We consider the case
where t “ N gs ! 1 is very small. This allows us to use the following expansion [ [57] I.3,
example 10],

sλp1` x1, 1` x2, . . . , 1` xN q “
ÿ

µ

dλµsµpx1, . . . , xN q , (82)

where we sum over all µĎ λ and where

dλµ “ det

ˆ

λi ` n´ 1
µ j ` n´ j

˙

1ďi, jďN
. (83)

Some simple examples are given by (see e.g. [60])

dλH “ dimλ , dλl “ dimλ
c1pλq

N
, (84)

where the first Casimir invariant is given by c1pλq “ |λ| “
ř

i λi . For q “ e´gs close to 1 and
N gs ! 1, we have

spa,1bqpq
j´1q » spa,1bqp1,1´ gs, 1´ 2gs, . . . q “

ÿ

µ

dpa,1bqµsµp0,´gs,´2gs, . . . q . (85)

Expanding up to linear order in gs, we only get contributions for µ “ H and µ “ l, which
gives

spa,1bqp0,´gs,´2gs, . . . q “ dimpa, 1bq

ˆ

1`
a` b

N
p´gs ´ 2gs ´ . . . q

˙

“ dimpa, 1bq

ˆ

1´
pa` bqpN ´ 1q

2
gs

˙

. (86)

Further,

spa,1bqpq
´c , 1, q, . . . , qd´1, qd`1, . . . , qN´1qq » spa,1bqpcgs,´gs, . . . ,´pd ´ 1qgs,´pd ` 1qgs, . . . q

“ dimpa, 1bq

„

1` pa` bq
ˆ

1´ N
2

`
c` d

N

˙

gs



.

(87)

Plugging this into (16) for λ“ pn´ r, 1rq and µ“ pn´ s, 1sq gives

xWλµy´ xWλyxWµy “ dimpn´ r, 1rqdimpn´ s, 1sq
n2 gs

N
`Opg2

s q . (88)

We thus see that, to first order in N gs, the Wilson loop factorizes, so that

Fpnqc “ tn2`Opt2q . (89)

If we now take N Ñ 8 in such a way that t remains small, we clearly get a very different
result from the linear ramp Fpnqc “ n that is found when taking qÑ 1 after N Ñ8. Indeed,
one may check that the connected SFF in the ‘t Hooft limit for small n and y À 1 is very close
to tn2.
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4 Conclusion

In this work, we calculate the SFF of the CSMM for general q “ e´gs and matrix size N . We
find that, as y “ qN Ñ 0, we recover our results in [3] for the case of the CSMM. That is, the
connected SFF, Fpnqc “

@

|trUn|2
D

´ xtrUny
2, is exactly given by a linear ramp of unit slope.

For y different from zero, we see that the (approximate) slope of the SFF becomes smaller
than one as we increase q. For n ą N , the SFF eventually saturates at a plateau, which takes
longer for larger q due to the fact that the slope decreases with q. The emergence of the linear
ramp and its saturation at a plateau is shown to arise from the properties of Schur bilinears
appearing in the character expansion of the SFF.

In the ‘t Hooft limit, the connected SFF reduces to a sequence of polynomials of degree
2n´1 in y , which we calculated up to n“ 11. As far as the authors are aware, this sequence
has not appeared in the literature thus far. Before unfolding, the connected SFF is again
approximately given by a linear ramp, but now with slope ď 1. As described in section 3.3,
the SFF is symmetric around y “ 1{2, where we have Fpnqc “

n
2 . Further, N´1 xtrUny is

generally finite, so that the level density is no longer flat. In particular, a gap opens up for
y ą 0, so that the support of the level density is given by p´θc ,θcq for θc “ arccosp2y ´ 1q.
To unfold the spectrum, we rescale the eigenphases so that the support is again an interval
of length 2π. Upon unfolding, the SFF is again very close to a linear ramp for all y except
y close to 1, with precision increasing with n. That is, we recover Wigner-Dyson universality
even in the ‘t Hooft limit as long as y is not too close to unity. It would be interesting to see
whether deviations from WD for y Ñ 1´ persist in Fpnqc for ně 12, whether they continue to
be squeezed in a smaller interval below y “ 1, or whether they perhaps disappear altogether.
The fact that we have to base our conclusions on 11 instances of the connected SFF prevents
us from making definitive statements on this point, but perhaps future investigation will shed
further light on it.

As described in the introduction, the CSMM was originally introduced [1] to describe
the intermediate statistics of disordered electrons at the mobility edge, and there is a sig-
nificant amount of literature on this application of the CSMM and related ensembles, see
e.g. [31, 32, 36, 37, 61–63]. Indeed, the ‘t Hooft limit involves q Ñ 1, which is the opposite
extreme of the CUE limit, qÑ 0, so it should come as a surprise that WD-universality is recov-
ered even here, and indeed for all y except y « 1. We emphasize that we do not mean to cast
doubt on the results derived in the aforementioned papers. Although their results may appear
hard to reconcile with ours at first sight, their analysis involves a different set of limits and
approximations, the approximation in our case being the unfolding by a constant rescaling and
in their case e.g. considering only a small eigenvalue window around the origin. Their anal-
ysis centers on the hermitian version of the CSMM where the weight function is „ e´α log2pxq

for x P R, and it employs the theory of orthogonal polynomials rather than the character ex-
pansion used here. The latter two points are not of fundamental importance as they should
be merely different descriptions of the same underlying structure, yet they do complicate the
comparison between these sets of results. Further, it was shown very recently [64] that defin-
ing the SFF as Kptq with t P C and taking Imptq Ñ 0 generally leads to different SFF than
when t is taken to be always real-valued, so it is clear that we have not exhausted the dif-
ferent limits in which one can calculate the SFF. It would be very interesting to understand
under what conditions the CSMM or related models exhibit deviations from WD-universality,
as apparently it is not enough to take the ‘disorder parameter’ q to its maximum value.

The authors believe that some of the results derived here are also of mathematical interest.
As mentioned in the introduction, the SFF is proportional to the HOMFLY invariant of a p2n, 2q-
torus link with components carrying fundamental and antifundamental representations. The
calculation of the SFF thus provides explicit expressions for new link invariants, both for gen-
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eral q, N as well as in the ‘t Hooft limit. Due to the appearance of UpNq Chern-Simons theory
at large N in the form of various topological string theories described in the the introduction,
and the relation of these large N dualities to enumerative geometry and intersection theory,
the results derived here could be of mathematical interest beyond knot theory.
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