
SciPost Phys. Core 6, 007 (2023)

A standard convention for particle-level
Monte Carlo event-variation weights

The MCnet Community

Editors: Enrico Bothmann1, Andy Buckley2, Christian Gütschow3,
Stefan Prestel4, Marek Schönherr5 and Peter Skands6

Supporters: Jeppe R. Andersen5, Saptaparna Bhattacharya7, Jonathan Butterworth3,
Gurpreet Singh Chahal5, Louie Corpe8, Leif Gellersen6, Matthew Gignac9, Stefan

Höche10, Deepak Kar11, Frank Krauss5, Jan Kretzschmar12, Leif Lönnblad4,
Josh McFayden13, Andreas Papaefstathiou14, Simon Plätzer15, Steffen Schumann1,

Michael H. Seymour16, Frank Siegert17 and Andrzej Siódmok18

1 Institut für Theoretische Physik, Georg-August-Universität, Göttingen, Germany
2 School of Physics & Astronomy, University of Glasgow, Glasgow, UK

3 Department of Physics & Astronomy, University College London, London, UK
4 Department of Astronomy & Theoretical Physics, Lund University, Lund, Sweden

5 Institute for Particle Physics Phenomenology, Durham University, UK
6 School of Physics & Astronomy, Monash University, Clayton VIC 3800, Australia

7 Department of Physics and Astronomy, Northwestern University, Evanston IL, USA
8 CERN, Meyrin, Switzerland

9 University of California Santa Cruz, Santa Cruz CA, USA
10 Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

11 University of Witwatersrand, Johannesburg, South Africa
12 University of Liverpool, Liverpool, UK

13 Physics and Astronomy Department, University of Sussex, Brighton, UK
14 Department of Physics, Kennesaw State University, Kennesaw, GA 30144, U.S.A.

15 Institute of Physics, University of Graz, 8010 Graz, Austria
16 University of Manchester, Manchester, UK

17 Institut für Kern- und Teilchenphysik, TU Dresden, Dresden, Germany
18 Jagiellonian University, Cracow, Poland

Abstract

Streams of event weights in particle-level Monte Carlo event generators are a con-
venient and immensely CPU-efficient approach to express systematic uncertainties in
phenomenology calculations, providing systematic variations on the nominal prediction
within a single event sample. But the lack of a common standard for labelling these
variation streams across different tools has proven to be a major limitation for event-
processing tools and analysers alike. Here we propose a well-defined, extensible com-
munity standard for the naming, ordering, and interpretation of weight streams that will
serve as the basis for semantically correct parsing and combination of such variations in
both theoretical and experimental studies.

Copyright E. Bothmann et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 05-04-2022
Accepted 20-10-2022
Published 08-02-2023

Check for
updates

doi:10.21468/SciPostPhysCore.6.1.007

1

https://scipost.org
https://scipost.org/SciPostPhysCore.6.1.007
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysCore.6.1.007&domain=pdf&date_stamp=2023-02-08
https://doi.org/10.21468/SciPostPhysCore.6.1.007

SciPost Phys. Core 6, 007 (2023)

1 Introduction

With the inexorable rise in CPU cost of high-precision Monte Carlo (MC) collision-event sam-
ples [1–3], and the experimental need for huge volumes of such samples, reweighting as op-
posed to explicit re-running of MC event samples has become the norm. In this approach, a
systematic variation to the nominal MC generator configuration — the one used to perform
the original sampling of event properties — can be obtained without regeneration by identify-
ing the ratio of probability density between the variation and the nominal for each event. In
MC programs this ratio is often easily calculable by rapid re-evaluation of a matrix-element or
parton-shower kernel formula. The ratio factor is multiplied on to the nominal-configuration
event weight (resulting from weighted or kinematically biased generation strategies [4]) to
give the event-specific variation weight.

Events which are more likely under the variation than the nominal assumptions have a
variation weight greater than the nominal weight, and vice versa. Provided each systematic
variation’s phase-space distribution has sufficient overlap with the nominal distribution from
which the events are sampled (i.e. that the two distributions have common support), using the
variation weight in place of the nominal one for histogramming or other physics applications
with the single event sample produces observable distributions asymptotically equal to those
from explicit generation from the variation model. In practice, weighting dilutes the statistical
power of an MC event sample, but for mild variations and for uncertainty estimation purposes,
the convenience, speed, and reduced storage requirements make this compromise acceptable.

Including hard-process scale variations, PDF error sets, variations in parton-shower tunes,
electroweak corrections, heavy-flavour schemes, BSM physics, and more besides, in current
usage it is not uncommon for hundreds of physics variations to be found in each MC event,
stored in its weight vector1 [5–23].

However, the character-string names used to identify these vectors’ elements — the weight
elements corresponding to one variation through an event dataset being called a weight stream
and having a unique name — are not yet standardised between generators, leading to complex-
ity, duplicated decoding attempts, and inevitably errors in analysis codes within experimental
collaborations and in public MC tools such as Rivet [24] and MadAnalysis [25]. Previous at-
tempts [26] have been made to standardise the names and values in weight streams for the
parton-level LHE format [27], and are heavily used. However, the connected attempt to stan-
dardise the propagation of such event weights to particle-level, i.e. fully exclusive events in the
absence of detector interactions and primarily in the HepMC format [28], have not in practice
seen sufficient uptake and a variety of de facto naming formats are in circulation via different
generator codes. This situation causes problems and effort-duplication for the many direct
and indirect users of particle-level events.

In this document we address these issues with a new, more complete, extensible, and for-
mally defined format for particle-level weight-stream naming, in particular for event genera-
tors producing the HepMC format and for users of such events. We additionally place essential
requirements on the ordering of such variations in generator weight-vectors, for efficient and
reproducible downstream processing, and codify the semantic meaning of the variation-weight
values. This summarises the consensus from a year-long discussion process among representa-
tives of the main ME+shower+hadronisation event generator teams, which combines the best
features of the various preceding ad hoc schemes, and defines a new community standard for
LHC Run 3.

1An ordered tuple, rather than a physics vector in the sense of vector spaces.

2

https://scipost.org
https://scipost.org/SciPostPhysCore.6.1.007

SciPost Phys. Core 6, 007 (2023)

2 Particle-level weight-name structure

The main role of event weights is to indicate the shifts of differential cross-sections due to
variations in the physics model — from alternative hard-process scales and PDFs, to parton
shower options, heavy-flavour treatments, electroweak corrections, and so on. Simultaneous
combinations of such elementary variations are also commonplace. The component variations
hence need to be clearly identifiable from the names of the weight streams.

In HepMC these stream-names are simple character strings: there is no more complex
data-structure available, and hence particle-level variations need to be encoded in a “flat”
form, with each stream treated as independent, i.e. there is no opportunity for “grouping” of
streams or “inheritance” of common variations into subsets of streams. In this proposal we
hence describe a scheme for structuring of the available string to specify in a uniform way the
parameters varied in each stream. This notably does not specify exact rules for combination,
although in many standard cases these are well-established: we leave this possibility, which
requires also detailed discussion and perhaps updating of the LHE event format, as a possible
extension to be built on the foundation of this particle-level standard.

Our agreed general form for particle-level weight names is the following: either a special
nominal weight name, preferably the empty string but with a few acceptable alternatives, or
a variation weight name, in the format

PREFIX__LEVEL.KEY1=VALUE__LEVEL.KEY2=VALUE ...

i.e. a prefix and a non-empty set of key=value blocks separated by double-underscores. The
double-underscore serves the dual purpose of both allowing single underscores to appear in
block components, and of more clearly visually distinguishing the blocks; both features aid
human readability. The keys may have multiple levels, separated by dots. The prefix and the
=VALUE part of each block are optional, and the prefix and blocks obviously cannot themselves
contain the double-underscore separator. A practical example could be

MUR =1.0 __MUF =2.0 __PDF =123456 __CKKW.MUQ=20 .

A more formal specification of weight names in general may hence be given in W3C EBNF [29]
notation:

WEIGHTNAME ::= NOMNAME | VARNAME
NOMNAME ::= "" | "NOMINAL" | "DEFAULT" | "WEIGHT" | "0"
VARNAME ::= (PREFIX "__")? BLOCK ("__" BLOCK)*
PREFIX ::= "USER" | "AUX" | "EXTRA" | "IRREG"
BLOCK ::= KEY ("=" VALUE)?
KEY ::= IDENT ("." IDENT)* - NOMNAME
VALUE ::= IDENT | NUM
IDENT ::= ALPHA (ALPHA | DIGIT | "_")* - "__"
NUM ::= ("+" | "-")? DIGIT+ ("." DIGIT+)? EXPO?
EXPO ::= ("e" | "E") ("+" | "-")? DIGIT+
DIGIT ::= [0-9]
ALPHA ::= [A-Za-z]

where NOMNAME represents the special-case name for the default or nominal weight stream,
to be discussed in Section 2.2. Analysis tools must always perform a case-insensitive string
comparison, as all conceivable case-conventions already exist in established MC generator
outputs.

The context given, we now explain in turn the allowed characters, the nominal weight
name, the role and allowed values of the variation prefix, and the formatting principles and
predefined types of variation key/value block.

3

https://scipost.org
https://scipost.org/SciPostPhysCore.6.1.007

SciPost Phys. Core 6, 007 (2023)

2.1 Allowed characters

For both nominal and variation weights, there is little argument for use of a character set
beyond the ASCII set, especially as extended “wide” character sets are problematic in many
older or numerically focused languages and it is simplest to avoid issues around use of ex-
tended character encodings. All weight names are hence restricted to the basic alphanumeric
characters and the following minimal set of punctuation characters:

• equal sign: =

• underscore: _

• full stop: .

• plus: +

• minus: -

where the plus and minus symbols are only allowed as a sign for numerical values or in expo-
nentials, but not in level or key names, e.g. as a hyphen.

This set of characters has been arrived at by consideration of several factors that constrain
a free-for-all approach:

• Restricting the set to core Unix and bash file-name characters should minimise the need
for escaping, quoting or character translation in shell commands or file names. This
excludes characters such as quote marks, $, >, <, or ;, which have special meaning in
many scripting languages.

• For familiarity and for ease of translation to and from executable-code forms, the usual
programming language restrictions on identifier names to be made purely of alphanu-
meric characters apply, including a prohibition on starting an identifier name with a
digit.

• Weight names are often placed in brackets or parentheses of some sort to indicate that
they are variations — including bracketing characters in the weight names themselves
would therefore cause parsing difficulties that are best avoided.

• White-space characters are not permitted as they can be a source of headaches for the
user. The weight name is a key in a C++ map and so “Name”, “ Name ” (outer padding
using a single white-space character on each side) and “ Name ” (outer padding using
two white-space characters on each side) would be interpreted as distinct keys.

• In particular, newline and tab characters in a weight name lead to confusion when
printed, are difficult to distinguish from (also discouraged) spaces, and can cause parsing
difficulties in text-based formats.

• Comma or colon characters are not allowed, as they are natural separators or indicators
of hierarchies, and hence introduce confusion with the double-underscore and dot syntax
used for those concepts. Blocking their use in weight names means they remain available
for use as separator characters in higher-level applications which need to handle weight
names.

We also note that the minus, plus, and equals symbols and potentially other “operators”
can cause issues when trying to save branches in ROOT [30]. However, this is a reflection of
one format’s limitation, and when automatically handling numerical variations minus signs
are a natural occurrence both in the radix and exponent. Translators of event-weighted data

4

https://scipost.org
https://scipost.org/SciPostPhysCore.6.1.007

SciPost Phys. Core 6, 007 (2023)

to ROOT-based data formats (and any other base format with such naming sensitivity) are
advised to explicitly perform a translation between literal plus and minus signs and a ROOT-
safe alphanumeric encoding of them, e.g. -1.0 → _MINUS_1.0, and if necessary similar
replacement of the equals-sign key/value separators with text or a ROOT-safe symbol.

2.2 The nominal/default weight

While several MC-generator variation modes are of a priori equal physics validity, particularly
between the central members of several PDF global fits, a run of simulated events always has a
nominal or default configuration: the one from which the matrix element and parton shower
phase-spaces were rejection-sampled. This is typically unweighted, and hence the events will
have uniform or near-uniform rejection sampling weights in the nominal stream. The other —
variation — weight streams then re-evaluate the kinematics, mostly without the possibility of
rejection, to obtain a modified weight: as this modification depends on the full event phase-
space, each event’s variation weights will deviate from uniformity in a unique way.

Without making a judgement about the physicality of particular configurations, although
the nominal configuration is almost always a sensible one, it is extremely useful for an MC
sample to have an easily identifiable default weight. It is most obvious that this should cor-
respond to the nominal configuration used for the original sampling. Even for setups with
multiple equivalent candidates for the default weight, one of them should be assigned default
status, rather than forcing decoding on the user even for the simplest visualisation.

The nominal weight name should be easily identifiable even when parsing a list of jumbled
up weight names. Recognising the range of established conventions in long-public generator
codes, a set of acceptable names is required: these are NOMINAL, DEFAULT, WEIGHT, the digit
0, or the empty string. Exactly one instance from this set must appear in a given list of weight-
vector names.

2.3 Variation prefixes

The optional prefix and its delimiting double-underscore are for the purpose of discriminating
physically meaningful weight streams from debug or bookkeeping ones, and for distinguishing
between “official” and user-defined physical weights.

Much as every event-record graph contains elements intended more for debugging use by
MC authors than as physically-meaningful event history for analysers, it is natural that event
generator authors wish to encode debugging elements into their events’ weight vectors. These,
however, must appear in an unambiguous form which can be automatically skipped (at least
by default) in analysis tools.

In discussion, it has been identified that there are at least two reasons to prefix weights
with a “class” marker: one is this hiding of truly auxiliary, unphysical weight streams, and the
other is to distinguish between physical weight streams “blessed” by the generator authors,
and those which are physical but unblessed: “user” weights. The following prefixes may be
used to classify such auxiliary weights:

No prefix: Canonical cross-section variations: good to process and plot (e.g. standard scale
and PDF variations, for which a standard naming convention is given in the following
section). As many weights as possible should come in this minimal form.

USER, AUX: Optional indication of non-standard cross-section variations: good to process
and plot (e.g. user-defined shower variations). This prefix exists only to indicate the “un-
blessed” nature of the variations from the perspective of the generator authors: it should
be treated equivalently to the no-prefix form for observable calculations by downstream
tools.

5

https://scipost.org
https://scipost.org/SciPostPhysCore.6.1.007

SciPost Phys. Core 6, 007 (2023)

EXTRA: Supplementary information, exists for every event, but either not a cross-section vari-
ation (e.g. Sherpa’s NTrials) or requiring further manipulation to obtain a weight vari-
ation that can be used equivalently to the nominal weight. They are hence not required
to behave like “physical” weight variations, and are not to be plotted or otherwise used
as a physical variation by default.

IRREG: Irregular/generator specific: weights of this type are not processed by default (e.g.
fixed-order information). This type of variation weight should always be appended at the
end of the weight vector, such that it’s easier to skip the IRREG-type group of variation
weights (see Section 3).

While the choice between no-prefix and a USER/AUX prefix is largely a matter of taste, cor-
rectly indicating EXTRA and IRREG weight streams is mandatory, to ensure physically correct
processing of events.

2.4 Variation blocks

Each block should represent one distinguishing characteristic of the weight stream, with the
full set of blocks fully specifying how the stream deviates from the nominal configuration. The
expectation is that any implied run settings not listed take the values used by the nominal
stream, though null-variations such as scale multipliers of ×1.0 are allowed to be included if
desired, at the cost of a more lengthy weight name, whose physics purpose is less immediately
obvious to human readers.

It consists of a key, which can contain several dot-delimited levels, and an optional value
appended with a delimiting equal sign to the right-hand side of the key. Neither the key nor
the value can contain a double-underscore as this is the block delimiter, but single underscores
are permitted. If the equals-sign and RHS value are omitted, the key will be interpreted as
equal to a boolean “true” value.

Several standard key structures are established by existing practice and common use-cases,
with an eye to coherent extension of the scheme as MC generator mechanisms evolve in so-
phistication and ability to use variation weights:

• For PDF variations, the most common scheme will be to specify a single PDF set, either for
both beams or for the single composite-particle beam. In this case the key should either
be LHAPDF, to specify that the following value is the LHAPDF set ID [31] and can be used
for automatic uncertainty-band construction by standard analysis tools; or a custom key
ending in PDF — e.g. PY8PDF — to specify a PDF identifier specific to the generator
or application. In the latter case, it is recommended that the generator document the
custom key in the event metadata, e.g. in the HepMC GenEvent or GenRun objects’
custom attributes.

• For use-cases where multiple composite beams are in use at the same time, there may
be a need to specify separate PDFs and factorization scales for each beam. In this case,
the *PDF and MUF block names can be followed by an extra level specifying which beam
it refers to, e.g. LHAPDF.BEAM1 or MUF.BEAM2. The versions described above without
these qualifying beam identifiers are to be interpreted as a compact syntax for simulta-
neously setting equal values for both beams.

• For scale variations, similar structures using MUR and MUF keys (without underscores)
followed by scale-modifying multiplicative factors for renormalization and factorization
scale shifts should be used. These are easily extendable to other types of scale variations,
but should always include MU. In general, the scaling given should be linear in the energy

6

https://scipost.org
https://scipost.org/SciPostPhysCore.6.1.007

SciPost Phys. Core 6, 007 (2023)

scale, not the squared form. However, a squared scale (e.g. MUR2) may be specified to
avoid square roots in the token values.

• As well as SM parameters in the calculation, variations to encode changes in BSM-model
parameters are a major use-case of event weights. There are too many models to pre-
specify standard schemes for them all. They should, however, follow the general syntax
described here, and as consistency aids cooperation we advise that model developers and
users coordinate to match naming schemes as far as possible, e.g. based on the names
and parameters in established UFO packages.

In this context we can see that the variation name

MUR =0.5 __MUF =2.0 __PDF =42

represents scalings down and up respectively of the renormalization and factorization scales
by factors of two, and use of the internal PDF number 42. As there are no distinguishing levels
to these keys, they may be assumed to apply to all parts of the MC generation. Introducing
such levels we might find, e.g.

ME.MUR =0.5 __ME.MUF =2.0 __LHAPDF =123456 __CKKW.MUQ=20

where the scale variations apply only to the matrix element (ME), a new merging scale MUQ
has been introduced to the CKKW jet-merging component, and the PDF ID is now the global
LHAPDF ID code rather than a run-specific index. Further distinctions such as application of
different scalings to different parton showers can be applied, e.g.

ME.MUR =1.0 __ME.MUF =2.0 __ME.LHAPDF =123456 __ISR.MYPDF =14
__ISR.MUR =1.0 __ISR.MUF =2.0 __FSR.MUR2=2__FSR.MUR =1.0
__CKKW.MUQ=20

The keys used in variation blocks can be different from the exact forms used in these
examples, although certain weight name components are fairly well established already, and
uniformity is a virtue for users if there is no compelling reason to deviate. Values corresponding
to absolute energy scales shall be given in GeV.

Ideally, attention should be paid to how floating point values are represented, e.g.
MUR=1.000000E+00__MUF=2.000000E+00 is unnecessarily precise and impacts legibility.
However, this formatting control may be technically limited by implementation language, and
parsers should expect to recognise numeric tokens in a variety of standard forms. More exten-
sive descriptions of the functional forms of scales as well as weight combination prescriptions
can be added to the run meta if required.

3 Weight-vector selection and ordering

It has long been standard for the first weight in the vector to be the nominal, before weight
names became common. This ordering has been broken in recent years by some generators
using weight names, not helped by a bug in the HepMC ASCII-format writer which re-sorted
output names (but not their values!) into alphabetical order.2 While not an absolute re-
quirement if using the standardised nominal-stream names, we strongly recommend that the
nominal weight be placed first in the weight vector.

For analysis tools, the selection of weight subsets is typically very important. The benefit
of weighting is its great speed with respect to explicit re-generation with a different nominal

2This bug was fixed in HepMC 2.06.11 and should no longer be considered a viable excuse for not paying
attention to ordering.

7

https://scipost.org
https://scipost.org/SciPostPhysCore.6.1.007

SciPost Phys. Core 6, 007 (2023)

configuration. But having O(1000)weights in a Monte Carlo setup adds often-unwanted anal-
ysis overhead for users who do not always want to analyse all variations for every iteration
of their analysis. For example, the Rivet analysis toolkit permits both positive- and negative-
condition filtering of weight streams based on numeric-index and regular-expression matching.
As string processing is computationally slow and current generators use a stable ordering of
weight streams in the vector, this matching is performed only once: a list of the desired weight-
subset’s numerical indices is obtained from the first event, and used directly from then on. The
alternative of checking thousands of filter conditions for every event in case the weight-vector
ordering had changed would be prohibitively slow. This established behaviour and opportu-
nity for substantial performance optimisations in event processing means it is important to
codify this ordering stability:

• the number of physical weight streams and their weight-vector positions must not change
from event to event.

The existence of auxiliary weights, and of complex setups such as correlated NLO sub-
events (where the set of weight names can differ event-to-event, as each event type is produced
in an independent code block) can lead to situations where the maximal length of the weight
vector is often only known at the end of the run. However, these latter weight streams are
typically also auxiliary and not intended for analysis. Due to the “first event” inference of
physical weight locations, in such cases it is important to structure the weight vector in such
a way that the physical variation names for physics uses (and hence which need to be known
right from the start) come first:

• Auxiliary weights that might not even exist for every event must be appended at the
end such that only the unphysical tail of the weight vector changes in length and/or
ordering.

4 Weight manipulation

Finally, a note on the meaning of weight values:

• Standard weights (i.e. those with empty, USER, or AUX prefixes) must all have equivalent
semantic meaning to the nominal weight.3

This rule forbids use of partially-meaningful physical weight streams which need to be com-
bined with the nominal or with other variation weights in order to be used for physics pre-
dictions. Any weight-combining logic of this sort should happen inside the Monte Carlo event
generators and be hidden from the user. For example:

• if a setup contains a default prediction and renormalisation-scale variations, the scale-
variation weight should correspond to the final cross-section contribution (apart from
global normalisation factors);

• if a setup contains a default prediction and a weight that allows to filter out a subset
of the events, satisfying certain selection properties, the filter weight should be equal to
the nominal weight if the event is to be accepted or zero otherwise.

Of course, this does not mean that sets of variations, e.g. for PDF uncertainties, should be
subjected to a combination attempt prior to the generator writing out the event, provided each
variation in the set corresponds to a standalone physical variation of the event prediction.

3The careful wording here reflects that the nominal stream may not represent an entire physical event, cf.
correlated counter-events in higher-order MC simulations. But weight streams are orthogonal to this: they must
not introduce new semantic meanings to the event over those already in use for the nominal.

8

https://scipost.org
https://scipost.org/SciPostPhysCore.6.1.007

SciPost Phys. Core 6, 007 (2023)

5 Summary

Variation weight-streams for MC-generator events are an increasingly important tool for prop-
agating systematic uncertainties in the phenomenology calculations into observables for both
theoretical and experimental studies. A major limitation on this usefulness is the lack of a
common standard for labelling — and hence semantically correct processing and combination
— of the variation streams. In this document we have proposed a well-defined base standard
for such naming, including a general syntax and a minimal set of agreed names for the most
common variation concepts. This format has been agreed by the signed MC-generator au-
thors and users, and will serve as the basis for more portable event processing, and further
community standards.

Acknowledgements

This work was supported in part by the European Union as part of the Marie Sklodowska-
Curie Innovative Training Network MCnetITN3 (grant agreement no. 722104). Of the editors,
AB thanks the Royal Society for University Research Fellowship grant UF160548; AB and CG
thank STFC for funding through the UK experimental particle physics consolidated grants pro-
gramme; CG also thanks STFC for supporting the SWIFT-HEP project (grant ST/V002627/1);
SP would like to acknowledge funding from the Swedish Research Council (Vetenskapsrådet),
contract numbers 2016-05996 and 2020-04303; MS is funded by the Royal Society
through a University Research Fellowship (URF\R1\180549) and an Enhancement Award
(RGF\EA\181033 and CEC19\100349), and supported by the STFC under grant agreement
ST/P001246/1.

References

[1] A. Valassi et al., Challenges in Monte Carlo event generator software for high-luminosity
LHC, Comput. Softw. Big Sci. 5, 12 (2021), doi:10.1007/s41781-021-00055-1.

[2] A. Buckley, Computational challenges for MC event generation, J. Phys.: Conf. Ser. 1525,
012023 (2020), doi:10.1088/1742-6596/1525/1/012023.

[3] E. Yazgan et al., HL-LHC computing review stage-2, common software projects: Event gen-
erators, (arXiv preprint) doi:10.48550/arXiv.2109.14938.

[4] A. Buckley, C. White and M. White, Practical Collider Physics, IOP Publishing, Bristol, UK,
ISBN 9780750324441 (2021), doi:10.1088/978-0-7503-2444-1.

[5] E. Bothmann et al., Event generation with Sherpa 2.2, SciPost Phys. 7, 034 (2019),
doi:10.21468/SciPostPhys.7.3.034.

[6] E. Bothmann, M. Schönherr and S. Schumann, Reweighting QCD matrix-element and
parton-shower calculations, Eur. Phys. J. C 76, 590 (2016), doi:10.1140/epjc/s10052-
016-4430-0.

[7] E. Bothmann, D. Napoletano, M. Schönherr, S. Schumann and S. L. Villani, Higher-order
EW corrections in Z Z and Z Z j production at the LHC, J. High Energy Phys. 06, 064 (2022),
doi:10.1007/JHEP06(2022)064.

9

https://scipost.org
https://scipost.org/SciPostPhysCore.6.1.007
https://doi.org/10.1007/s41781-021-00055-1
https://doi.org/10.1088/1742-6596/1525/1/012023
https://doi.org/10.48550/arXiv.2109.14938
https://doi.org/10.1088/978-0-7503-2444-1
https://doi.org/10.21468/SciPostPhys.7.3.034
https://doi.org/10.1140/epjc/s10052-016-4430-0
https://doi.org/10.1140/epjc/s10052-016-4430-0
https://doi.org/10.1007/JHEP06(2022)064

SciPost Phys. Core 6, 007 (2023)

[8] E. Bothmann, M. Schönherr and S. Schumann, Fast evaluation of theoretical uncertainties
with Sherpa and MCgrid, Proc. Sci. DIS2015, 136 (2016), doi:10.22323/1.247.0136.

[9] L. Del Debbio, N. Hartland and S. Schumann, MCgrid: Projecting cross section calculations
on grids, Comput. Phys. Commun. 185, 2115 (2014), doi:10.1016/j.cpc.2014.03.023.

[10] E. Bothmann, N. Hartland and S. Schumann, Introducing MCgrid 2.0: Project-
ing cross section calculations on grids, Comput. Phys. Commun. 196, 617 (2015),
doi:10.1016/j.cpc.2015.07.002.

[11] Z. Bern, L. J. Dixon, F. Febres Cordero, S. Höche, H. Ita, D. A. Kosower and D. Maître,
Ntuples for NLO events at hadron colliders, Comput. Phys. Commun. 185, 1443 (2014),
doi:10.1016/j.cpc.2014.01.011.

[12] E. Bothmann and L. Del Debbio, Reweighting a parton shower using a neural network: The
final-state case, J. High Energy Phys. 01, 033 (2019), doi:10.1007/JHEP01(2019)033.

[13] O. Mattelaer, On the maximal use of Monte Carlo samples: Re-weighting events at NLO
accuracy, Eur. Phys. J. C 76, 674 (2016), doi:10.1140/epjc/s10052-016-4533-7.

[14] A. Kalogeropoulos and J. Alwall, The SysCalc code: A tool to derive theoretical systematic
uncertainties, (arXiv preprint) doi:10.48550/arXiv.1801.08401.

[15] R. Frederix et al., Four-lepton production at hadron colliders: aMC@NLO pre-
dictions with theoretical uncertainties, J. High Energy Phys. 02, 099 (2012),
doi:10.1007/JHEP02(2012)099.

[16] V. Bertone, R. Frederix, S. Frixione, J. Rojo and M. Sutton, aMCfast: Automa-
tion of fast NLO computations for PDF fits, J. High Energy Phys. 08, 166 (2014),
doi:10.1007/JHEP08(2014)166.

[17] S. Carrazza, E. R. Nocera, C. Schwan and M. Zaro, PineAPPL: Combining EW and QCD
corrections for fast evaluation of LHC processes, J. High Energy Phys. 12, 108 (2020),
doi:10.1007/JHEP12(2020)108.

[18] W. T. Giele, D. A. Kosower and P. Z. Skands, Higher-order corrections to timelike jets, Phys.
Rev. D 84, 054003 (2011), doi:10.1103/PhysRevD.84.054003.

[19] S. Mrenna and P. Skands, Automated parton-shower variations in Pythia 8, Phys. Rev. D
94, 074005 (2016), doi:10.1103/PhysRevD.94.074005.

[20] L. Lönnblad, Fooling around with the Sudakov veto algorithm, Eur. Phys. J. C 73, 2350
(2013), doi:10.1140/epjc/s10052-013-2350-9.

[21] J. Bellm, S. Plätzer, P. Richardson, A. Siódmok and S. Webster, Reweighting parton show-
ers, Phys. Rev. D 94, 034028 (2016), doi:10.1103/PhysRevD.94.034028.

[22] J. Bellm, G. Nail, S. Plätzer, P. Schichtel and A. Siódmok, Parton-shower uncertain-
ties with Herwig 7: Benchmarks at leading order, Eur. Phys. J. C 76, 665 (2016),
doi:10.1140/epjc/s10052-016-4506-x.

[23] K. Cormier, S. Plätzer, C. Reuschle, P. Richardson and S. Webster, Parton showers and
matching uncertainties in top quark pair production with Herwig 7, Eur. Phys. J. C 79, 915
(2019), doi:10.1140/epjc/s10052-019-7370-7.

[24] C. Bierlich et al., Robust independent validation of experiment and theory: Rivet version 3,
SciPost Phys. 8, 026 (2020), doi:10.21468/SciPostPhys.8.2.026.

10

https://scipost.org
https://scipost.org/SciPostPhysCore.6.1.007
https://doi.org/10.22323/1.247.0136
https://doi.org/10.1016/j.cpc.2014.03.023
https://doi.org/10.1016/j.cpc.2015.07.002
https://doi.org/10.1016/j.cpc.2014.01.011
https://doi.org/10.1007/JHEP01(2019)033
https://doi.org/10.1140/epjc/s10052-016-4533-7
https://doi.org/10.48550/arXiv.1801.08401
https://doi.org/10.1007/JHEP02(2012)099
https://doi.org/10.1007/JHEP08(2014)166
https://doi.org/10.1007/JHEP12(2020)108
https://doi.org/10.1103/PhysRevD.84.054003
https://doi.org/10.1103/PhysRevD.94.074005
https://doi.org/10.1140/epjc/s10052-013-2350-9
https://doi.org/10.1103/PhysRevD.94.034028
https://doi.org/10.1140/epjc/s10052-016-4506-x
https://doi.org/10.1140/epjc/s10052-019-7370-7
https://doi.org/10.21468/SciPostPhys.8.2.026

SciPost Phys. Core 6, 007 (2023)

[25] E. Conte, B. Fuks and G. Serret, MadAnalysis 5, a user-friendly framework for collider phe-
nomenology, Comput. Phys. Commun. 184, 222 (2013), doi:10.1016/j.cpc.2012.09.009.

[26] J. Butterworth et al., Les Houches 2013: Physics at TeV colliders: Standard Model working
group report, (arXiv preprint) doi:10.48550/arXiv.1405.1067.

[27] J. Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun.
176, 300 (2007), doi:10.1016/j.cpc.2006.11.010.

[28] A. Buckley et al., The HepMC3 event record library for Monte Carlo event generators, Com-
put. Phys. Commun. 260, 107310 (2021), doi:10.1016/j.cpc.2020.107310.

[29] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler and F. Yergeau, Extensible Markup
Language (XML) 1.0 (Fifth Edition), Tech. Rep., W3C, EBNF definition, (2008), https:
//www.w3.org/TR/xml/#sec-notation.

[30] R. Brun and F. Rademakers, ROOT — An object oriented data analysis framework, Nucl.
Instrum. Methods Phys. Res. A 389, 81 (1997), doi:10.1016/S0168-9002(97)00048-X.

[31] A. Buckley et al., LHAPDF6: Parton density access in the LHC precision era, Eur. Phys. J. C
75, 132 (2015), doi:10.1140/epjc/s10052-015-3318-8.

11

https://scipost.org
https://scipost.org/SciPostPhysCore.6.1.007
https://doi.org/10.1016/j.cpc.2012.09.009
https://doi.org/10.48550/arXiv.1405.1067
https://doi.org/10.1016/j.cpc.2006.11.010
https://doi.org/10.1016/j.cpc.2020.107310
https://www.w3.org/TR/xml/#sec-notation
https://www.w3.org/TR/xml/#sec-notation
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1140/epjc/s10052-015-3318-8

	Introduction
	Particle-level weight-name structure
	Allowed characters
	The nominal/default weight
	Variation prefixes
	Variation blocks

	Weight-vector selection and ordering
	Weight manipulation
	Summary
	References

