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Abstract

The nature of superconductivity in newly discovered kagome materials, AV3Sb5 (A = K,
Rb, Cs), has been a subject of intense debate. Recent experiments suggest the presence
of orbital current order on top of the charge density wave (CDW) and superconductivity.
Since the orbital current order breaks time-reversal symmetry, it may fundamentally af-
fect possible superconducting states. In this work, we investigate the mutual influence
between the orbital current order and superconductivity in kagome metal with charac-
teristic van Hove singularity (vHS). By explicitly deriving the Landau-Ginzburg theory,
we classify possible orbital current order and superconductivity. It turns out that dis-
tinct unconventional superconductivities are expected, depending on the orbital current
ordering types. Thus, this information can be used to infer the superconducting order
parameter when the orbital current order is identified and vice versa. We also discuss
possible experiments that may distinguish such superconducting states coexisting with
the orbital current order.
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1 Introduction

Itinerant electron systems on the kagome lattice has long been considered as a fertile ground
for exotic quantum ground states due to the presence of flat band, van Hove singularity (vHS),
and non-trivial band topology [1–11]. The recent discovery of kagome materials, AV3Sb5
(A=K, Rb, Cs) has provided an excellent platform to explore such emergent collective phases
in full glory [12]. Particularly, most attention has been paid to unconventional charge density
wave (CDW) with a large unit-cell, and the subsequent appearance of superconductivity (SC)
at much lower temperature [12,12–25,25–33].

Interestingly, the anomalous Hall effect was observed below the CDW transition tempera-
ture [27,29] while no static magnetic order was detected in the neutron scattering and muon
spectroscopy [12,25,28]. A prime candidate is the orbital current order, which can be charac-
terized by an imaginary version of the CDW (iCDW) order parameter [19,24,34–38]. In this
case, the spin degrees of freedom plays an important role in determining the iCDW type as
distinct symmetry breaking patterns. Moreover, in the superconducting state, the orbital cur-
rent order and CDW may coexist [18,20,25,39]. It is therefore likely that understanding the
orbital current order with spin degrees of freedom is essential to clarify the superconducting
order parameter.

In this work, we focus on intertwining relationships between the spin-dependent orbital
current order and superconductivity in the kagome metal with characteristic vHS. Based on the
Landau-Ginzburg (LG) theory, we establish the relationship between different orbital current
orders and superconducting order parameters when their critical temperatures are energet-
ically close. Considering the spin degrees of freedom and three vHS of the kagome lattice,
we find that there are four possible orbital current orders and they are closely related to four
different SC order parameters. It turns out that the orbital current order is closely related to
both the non-trivial band topology and unconventional SC order parameters. We focus on how
these orbital current and superconducting orders are intertwined based on symmetry proper-
ties rather than the material specification where a variety of collective orders are involved.
In this case, the identification of the orbital current order would imply the emergence of a
particular kind of superconducting order and vice versa. We discuss the scanning tunneling
microscopy (STM) and Josephson junction experiments that may be able to distinguish differ-
ent orbital current orders and superconducting states. Our study provides a way to understand
the correlation between orbital current order and superconductivity in various kagome metals.
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Figure 1: Left panel: The kagome lattice, where the Vanadium sits on sublattice sites
Vα=1,2,3 with the primitive lattice vector a1 = (1,0) and a2 = (

1
2 ,
p

3
2 ) in unit of lattice

constant a = 1. (Inset: The BZ with vHS points, Mα.) Right panel: Chiral flux phase
band structure for t = 1, |Φασ| = 0.3. Due to the extended 2× 2 unit cell, the BZ is
folded with 12 bands per spin. Here, K′ = (2π

3 , 0), M′ = (π2 , π

2
p

3
). (Inset: The edge

spectrum near Eq = 0 for case (i) in Eq. (5).)

2 Patch model

Close to the vHS, the electronic structure of AV3Sb5 is described by the d-orbitals on the Vana-
dium sites, which form a kagome lattice structure shown in Fig. 1 [12, 18, 21, 24, 30, 31].
Focusing on the vHS, we consider the case where the vHS near the Fermi level is mainly de-
scribed by a single d-orbital, for simplicity.

Starting from the nearest-neighbour tight-binding model, there are three inequivalent vHS
points in the Brillouin zone (BZ).

M1 = (−π,−
π
p

3
) , M2 = (0,

2π
p

3
) , M3 = (π,−

π
p

3
) . (1)

For such vHS, the logarithmic divergence of the density of states (DOS) makes the low-energy
physics mainly dominated by excitations near the saddle points [38, 40]. Thus, we adopt the
patch model by defining the electronic fields ψkσ = (c1kσ, c2kσ, c3kσ) close to Mα=1,2,3. Then,
in the continuum limit, the dispersions near the vHS are represented as,

ε1,k =
t
2

kx(kx +
p

3ky) , ε2,k = −
t
4
(k2

x − 3k2
y) , ε3,k =

t
2

kx(kx −
p

3ky) , (2)

where k ≡ q −Mα is the momentum deviation from each vHS and is restricted to be inside
a patch with a finite size Λ around Mα. Here, t is the nearest-neighbour hopping parameter.
This simplification enables us to focus on the instabilities, concerning the particle-hole and
pair condensates only at Q= 0 or Q=Mα by integrating out ψkσ-fields.

3 iCDW patterns

To consider the orbital current order, we focus on the case where the CDW order parameters
are pure imaginary, so labelled as iCDW. Denoting the interaction strength responsible for
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Figure 2: The down-spin 3Q-iCDW patterns for 4 cases (a)
(Φ1↓,Φ2↓,Φ3↓) = (i, i, i), (Φ1↓,Φ2↓,Φ3↓) = (−i,−i,−i), (Φ1↓,Φ2↓,Φ3↓) = (−i, i, i),
and (Φ1↓,Φ2↓,Φ3↓) = (−i,−i, i). (from left to right, see Eq. (5) and Table. 1 in the
main text.) The arrow and filled circle mark the bond current and the plaquette flux
respectively. Here, φ is the Peierls phase along the nearest-neighbour hopping.

iCDW instability as IiCDW, the iCDW order parameter is represented as [37,41],

Φασ =
|IiCDW|
Λ2

∑

|k|<Λ
αβγ

εαβγ〈c
†
γkσcβkσ〉 , (3)

where {α,β ,γ} ∈ {1, 2,3} are sublattice indices. In the kagome structure with a single orbital
model, each vHS is composed of independent sublattice [4, 37, 42] and thus, the iCDW is
directly proportional to the bond current flowing from Vβ site to Vγ site.

Motivated by experimental observations [15, 16, 19, 22, 43], we now focus on 3Q-iCDW
states i.e., Φ1,2,3,↑,↓ ̸= 0. Their stability compared to 1Q- and 2Q-iCDW will be discussed later.
Here, we consider the equal amplitudes for Φ1,2,3,↑,↓ which is shown later to minimize the LG
free energy. Without loss of generality, we first fix the iCDW order parameters for spin-up
electrons Φ↑ ≡ (Φ1↑,Φ2↑,Φ3↑) = |Φ1↑|(i, i, i). One can easily check that the other cases are
related by an inversion I at the lattice site, or a mirror reflection M along the lattice plane.

I : (Φ1σ,Φ2σ,Φ3σ) → (−Φ1σ,−Φ2σ,Φ3σ) ,

M : (Φ1σ,Φ2σ,Φ3σ) → (−Φ1σ,−Φ2σ,−Φ3σ) . (4)

We note that I preserves the Chern number while M reverses it. Given the parameter {Φα↑},
there are 4 independent patterns of Φ↓ = (Φ1↓,Φ2↓,Φ3↓),

(i) Φ↓ = (i, i, i) , (ii) Φ↓ = (−i,−i,−i) ,

(iii) Φ↓ = (−i, i, i) , (iv) Φ↓ = (−i,−i, i) , (5)

up to the 3-fold rotation (the amplitude is omitted for brevity). In Fig. 2, we exhibit the
Peierls phases and the plaquette fluxes for 4 iCDW patterns. Unlike the spinless case, the 4
patterns in Eq. (5) are differentiated by the relative bond currents of spin-up and spin-down
electrons and are not related by any symmetries with each other. Only the case (ii) preserves
T -symmetry, Φ∗

α↑ = Φα↓, and the others break T -symmetry. Since the iCDW order preserves
the spin polarization, the spin-up and spin-down electronic bands are degenerate as shown in
Fig. 1. The degeneracy of 4 patterns is not an artifact of our model, rather it is a consequence
of symmetry properties Eq. (4) in the bulk.

The physical quantity characterizing each case in Eq. (5), is the topological invariant, the
Chern number. For spin-up electrons, the Chern number is obtained for the bands occupied
below the chemical potential µ= 0 and the total Chern number turns out to be C↑x y = +1 [34],
implying a spin-up edge mode.
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Table 1: Symmetry properties of 4 possible iCDW phases in Eq. (5) with the spin re-
solved total Chern numbers. Only the down-spin order parameters are shown below
while the reference up-spin components are given by (Φ1↑,Φ2↑,Φ3↑) = (i, i, i). The
mark O or × indicates whether the iCDW phase preserves the corresponding symme-
try or not.

(Φ1↓,Φ2↓,Φ3↓) T (T ×I) (T ×I×M) C↑x y C↓x y

(i) (i, i, i) × × × +1 +1
(ii) (−i,−i,−i) O × × +1 −1

(iii) (−i, i, i) × O × +1 −1
(iv) (−i,−i, i) × × O +1 +1

…

x

y

Figure 3: Left panel: The kagome lattice with an open boundary condition in
the y-direction. The edge boundaries are cut on the upper and lower bound-
aries of the extended 2 × 2 unit cell. The down-spin 3Q-iCDW edge spectra as a
function of kx ∈ [0,π) for (Φ1↓,Φ2↓,Φ3↓) = (i, i, i), (Φ1↓,Φ2↓,Φ3↓) = (−i,−i,−i),
(Φ1↓,Φ2↓,Φ3↓) = (−i, i, i), and (Φ1↓,Φ2↓,Φ3↓) = (−i,−i, i) (from left to right) with
|Φα↓|= 0.3.

The physical contents of the cases (i) and (ii) are rather obvious: case (i) is for the chiral
flux phase with broken T along all bonds Φα↑ = Φα↓ having C↓x y = +1, and case (ii) is for the

helical phase with preserved T having C↓x y = −1. Although both cases of (iii) and (iv) break
T , they preserve T ×I and T ×I×M-symmetries respectively. As a result, the corresponding
Chern number is C↓x y = −1 and+1 for (iii) and (iv), respectively. These results are summarized
in Table. 1.

Here, we exhibit the edge spectrum and spectral functions for all 4 cases. On the kagome
lattice with an open boundary condition, the edge mode at zero energy manifests the nonzero
Chern numbers in the bulk band structure. For down-spin electrons, the edge spectra for 4
cases are shown for |Φασ|= 0.3 in Fig. 3.

4 Landau-Ginzburg theory

4.1 iCDW free energy

We now derive the LG free energy up to the quartic order in the presence of iCDW and SC
order parameters. By integrating out ψkσ-fields, we first examine the free energy of iCDW
phase, fiCDW = f ↑iCDW + f ↓iCDW in terms of Φασ (Eq. (3)),

f σiCDW = a(T − TiCDW)
�∑

α

|Φασ|2
�

+
1
2

u1

�∑

α

|Φασ|2
�2
− (u1 − u2)
∑

α<β

|Φασ|2|Φβσ|2 . (6)
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Φ1↑𝑐2𝐤↑
† 𝑐𝟑𝐤↑

Φ1↓𝑐2−𝐤↓
† 𝑐3−𝐤↓

Δ3𝑐3𝐤↑
† 𝑐3−𝐤↓

†
Δ2
∗ 𝑐2−𝐤↓𝑐2𝐤↑

Figure 4: The diagrammatic representation for u4-term in fCDW&SC (Eq. (10)).

Here a > 0 is a constant and the cubic term, Φ1σΦ2σΦ3σ + c.c. vanishes in the free energy
since Φασ is purely imaginary. The iCDW order parameters Φασ (totally 6) are independent
and their magnitudes in equilibrium are determined by minimizing the free energies Eq. (6).
The inclusion of conventional CDW might promote 3Q-complex CDW or evenly the nematic
charge order [36] but these possibilities are not considered here.

At low temperature T ≪ tΛ2, the quartic coefficients based on the dispersions in Eq. (2)
are evaluated as,

u1 ≈
0.003
tT2

log
� tΛ2

T

�

, u2 ≈
0.006
tT2

, (7)

up to the leading order [44]. In Appendix A, we explicitly derive Eq. (7) for the perfect nesting.
Here, the condition u1≫ u2 guarantees the stability of 3Q-iCDW state over 1Q- and 2Q-states,
which is consistent with the experiments [15,16,19,22,43].

4.2 Total free energy

Now we include the SC order parameters. In the perfect nesting, Eq. (2), since the particle-
particle susceptibility on the same patch is predominant [40], we focus on the SC order pa-
rameters which pair intra-patch excitations. Considering the singlet SC order parameters,

∆α =
|ISC|
Λ2

∑

|k|<Λ

〈cαk↓cα−k↑〉 , (8)

the total free energy is ftotal = fiCDW + fSC + fCDW&SC where

fSC = a′(T − TSC)
�∑

α

|∆α|2
�

+
1
2

u3

�∑

α

|∆α|2
�2
− u3

∑

α<β

|∆α|2|∆β |2 , (9)

and

fCDW&SC =
∑

(αβγ)

�

− u4

�

Φα↑Φα↓∆
∗
β∆γ + c.c.
�

+ u5

�

|Φα↑|2 + |Φα↓|2
��

|∆β |2 + |∆γ|2
��

. (10)

Here, the summation runs over the even permutations, (αβγ) = (1, 2,3), (2,3, 1), (3,1, 2).
We iterate that the free energies Eqs. (6), (9), (10) are formalized based on the symmetry
properties of order parameters while the coefficients u1 ∼ u5 are evaluated as functions of
microscopic details such as t,Λ and T .
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Similar to the iCDW case in Eq. (6), the last term in Eq. (9) prefers the finite amplitude for
the SC order parameters at different patches, namely∆α ̸= 0 for allα. In this case, the coupling
terms between the SC order parameters at different patches prefer the same magnitudes and
the pairing symmetry is determined by the relative phases Arg(∆α). The irreducible channels
of ∆patch = (∆1,∆2,∆3) correspond to [40],

∆s =

√

√1
3
(1,1, 1) , ∆dx2−y2 =

√

√2
3
(1,−

1
2

,−
1
2
) , ∆dx y

=

√

√1
2
(0,1,−1) , (11)

so we consider s-wave or d-wave pairings and their mixtures. In Appendix B, the gap function
in the microscopic Hamiltonian is formulated whose evaluation at vHS reduces to the patch
model with Eq. (11).

The first term in Eq. (10) might be attractive depending on the phase relationship between
iCDW and SC while the second term is always repulsive (u5 > 0). Likewise, in Eq. (7), these
coefficients can be evaluated and turn out to be u1 ≈ u3 ≈ u4 ≈ u5 up to the leading order. See
Appendix A for computational details. As a result, the spin-singlet SC and 3Q-iCDW repulsively
interact each other, and fCDW&SC > 0 follows from the Cauthy-Schwartz inequality. This implies
the opposing behaviour between the two critical temperatures, which is consistent with the
tendency observed in experiments [45–48]. We emphasize that this opposing behavior is quite
independent of the pairing symmetry and the conventional CDW order parameter beyond our
simple model, since the condition, fCDW&SC > 0, is robust as long as u5 > u4/2.

Now one can explain how each iCDW pattern from Eq. (5) favors different pairing symme-
try {∆α} to minimize fCDW&SC below TSC. It is mostly determined by the u4-term in Eq. (10)
via the phase relationship between iCDW and SC order parameters (Fig. 4). Here, we assume
that Eq. (6) still stabilizes the 3Q-iCDW preserving the six-fold rotational symmetry even in
the presence of SC order parameters. Substituting Eq. (5) into Eq. (10), we find that each
iCDW pattern prefers the following SC order parameters,

(i) ∆patch =

√

√1
2

�

∆dx2−y2 + i∆dx y

�

,

(ii) ∆patch =∆s ,

(iii) ∆patch = −
1
3
∆s +

2
p

2
3
∆dx2−y2 ,

(iv) ∆patch =
�1

3
+ i

√

√1
3

�

∆s +
�

p
2

3
−i

√

√1
6

�

∆dx2−y2−

√

√1
6
∆dx y

, (12)

where we omit the overall amplitudes. Only the T -symmetric solution (ii) favors the pure
s-wave pairing while the others favour mixtures of the order parameters shown in Eq. (11),
namely, (i) (d + id)- (iii) (s+ dx2−y2)- (iv) (s+ d + id)-waves. Nevertheless, the amplitudes of
the order parameters at all patches are finite and equal to each other, |∆1|= |∆2|= |∆3|.

5 Experimental implications

We suggest some specific experiments for the detection of iCDW and SC discussed above. We
focus on the cases (i) and (iv) in the following and other cases are discussed in Appendix B.
First, we consider the STM experiment measuring the local density of states (LDOS) ρα(r,ω)
in real space, where r,α and ω represent the location of the unit cell, sublattice, and energy,
respectively [19,49,50].

For case (i), the STM image is expected to follow the C3-rotation symmetry as shown in Fig.
5. However, in case (iv), the C3-rotation is not preserved, whose symmetry breaking pattern is
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demonstrated in Fig. 5. The spectral function is also plotted in Fig. 6, which can be measured
in the angle-resolved photoemission spectroscopy (ARPES) experiment [18,51]. With an open
boundary condition, the spectral function of the case (i) manifests the topological edge state
in the presence of both CDW (|Φασ|= 0.3) and SC (|∆α|= 0.1).

Secondly, the oscillation patterns of the Josephson current as a function of magnetic flux
(Fraunhofer pattern) in the corner junction can be used to distinguish different pairing sym-
metries. The stacked junction between the s-wave SC and the kagome SC with (i) (d+ id) - or
(iv) (s+ d + id) - pairing is schematically illustrated in Fig. 6. For case (i), the perfect cancel-
lation of the critical current in zero field Hext = 0 is a result of the destructive interference at
the π/2-rotated interfaces, which is the common feature of the d-wave superconductor [52].
In Appendix C, we also plot the critical current and oscillation patterns in the flat junction.
Whereas, for case (iv), the s-wave component gives rise to a constructive interference in zero
magnetic field, leading to the peak at ΦB = 0.

6 Discussion

Explicit derivation and analysis of the Landau-Ginzburg theory enabled us to conclude that
there exist four possible spin-dependent orbital current orders and each one of them may
uniquely coexist with one of four possible superconducting order parameters. The relation-
ship between the orbital current order and superconductivity is largely based on symmetry
considerations and hence it is robust against various microscopic details. The identification
of the orbital current order would imply the presence of a particular kind of superconduct-
ing order and vice versa. The proposed experiments such as the STM, ARPES, and Josephson
junction tunneling would provide non-trivial checks on our studies.

In recent high pressure experiments, it was shown that the suppression of CDW leads to the
enhanced superconductivity upon increasing pressure and a second superconducting dome ap-
pears at even higher pressures [14,47,48,50,53–56]. It will be interesting to establish precise
relationship between the onset temperature of the anomalous Hall effect and superconductiv-
ity as well as CDW in pressurized systems. If the corresponding orbital current order can be
identified at different pressure regimes, it may provide an important clue as to whether the
same or different kinds of superconducting states arise as a function of hydrostatic pressure.

In the current work, we have not explicitly taken into account the conventional CDW (or
the real part of the complex CDW order parameter) for simplicity. The onset temperatures of

𝑦
/𝑎

𝑥/𝑎 𝑥/𝑎

A.U.

Figure 5: LDOS ρ̃α(r,ω= |∆α|)measured from the average background (relevant to
STM images) for cases (i) left panel and (iv) right panel respectively. Dashed circles
mark underlying lattice sites.
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𝑘𝑥

0.2
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𝜋/2 𝜋0

𝐸𝐪

A.U.

ΦB

A

Kagome SC

insulator
s-wave SC

𝐼/𝐼𝑐

Figure 6: Left panel: Spectral function (relevant to ARPES data) of case (i)
|Φασ| = 0.3, |∆α| = 0.1. Right panel: The Fraunhofer pattern on the conner Joseph-
son junction for case (i) (purple curve), case (iv) (cyan curve) in the presence of
(in-plane) magnetic flux ΦB.

these orders may change, for example, under high pressure or with other external perturba-
tions. We expect that triplet superconductivity such as f -wave order might be also significant
by tuning microscopic parameters on our simplified model. In addition, the presence of the
conventional CDW or multiple vHSs would diversify the kinds of symmetry breaking orders.
For realistic applications to the V-based kagome metals, the multi-orbital nature of the vHS
needs to be taken into account. These all possibilities and their relation to superconductivity
would be interesting questions to explore in future research.
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A Landau-Ginzburg free energy

In this section, we derive the total LG free energy of complex charge density wave (CDW), Φασ
and superconducting (SC) order parameters, ∆α. The real and imaginary parts of Φασ corre-
spond to conventional CDW and orbital current respectively. Here, all relevant coefficients of
GL free energy in Eqs. (6), (9) and (10) are explicitly evaluated for the perfect nesting, Eq.
(2). One can look for Ref. [44] for the similar calculations on the hexagonal lattice.

The total free energy density is

ftotal =
∑

ασ

1
2|IrCDW|

[ReΦασ]
2 +
∑

ασ

1
2|IiCDW|

[ImΦασ]
2 +

1
2|IsSC|

|∆s ·∆T
patch|

2

+
1

2|IdSC|

�

|∆dx2−y2 ·∆
T
patch|

2 + |∆dx y
·∆T

patch|
2
�

−
1
Λ2β

Tr log
�

− G−1
k

�

, (13)
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where Λ and β are the linear patch size and inverse temperature respectively. Here,
α ∈ {1,2, 3} and σ ∈ {↑,↓} are patch and spin indices and Iop are the interaction strength
for individual order parameters, Φασ and ∆patch = (∆1,∆2,∆3). The irreducible channels of
SC are [40]

∆s =

√

√1
3
(1,1, 1) , ∆dx2−y2 =

√

√2
3
(1,−

1
2

,−
1
2
) , ∆dx y

=

√

√1
2
(0, 1,−1) . (14)

Also −G−1
k = −(G(0)k )

−1 +V is the full single particle Green function where

G(0)k = diag(Ge1, Ge2, Ge3, Gh1, Gh2, Gh3) , Geα(hα)(iωn,k) =
1

iωn ∓ εα,±k
, (15)

are bare electron/hole Green functions at the momentum k and fermion Mastubara frequency
iωn. Also,

V = VCDW +VSC =

�

ṼCDW[Φα↑] ṼSC[∆α]
Ṽ†

SC[∆α] −ṼT
CDW[Φα↓]

�

,

ṼCDW[Φασ] =





0 Φ3σ Φ∗2σ
Φ∗3σ 0 Φ1σ
Φ2σ Φ∗1σ 0



 , ṼSC[∆α] =





∆1 0 0
0 ∆2 0
0 0 ∆3



 , (16)

are decoupled CDW/SC interactions on the basis of ψk = (ψk↑, (ψ
†
−k↓)

T ) with the electronic
field ψkσ = (c1kσ, c2kσ, c3kσ). Then, Eq. (13) becomes

ftotal = fCDW + fSC + fCDW&SC , fCDW = f ↑CDW + f ↓CDW , (17)

f σCDW[Φασ] =
� 1

2|IrCDW|
+χCDW

��∑

α

[ReΦασ]
2
�

+
� 1

2|IiCDW|
+χCDW

��∑

α

[ImΦασ]
2
�

+r
�

Φ1σΦ2σΦ3σ + c.c.
�

+
1
2

u1

∑

α

|Φασ|4 + u2

∑

α<β

|Φασ|2|Φβσ|2 , (18)

fSC[∆α] =
� 1

2|IsSC|
+χSC

�

|∆s ·∆T
patch|

2

+
� 1

2|IdSC|
+χSC

��

|∆dx2−y2 ·∆
T
patch|

2 + |∆dx y
·∆T

patch|
2
�

+
1
2

u3

∑

α

|∆α|4 ,(19)

fCDW&SC[Φασ,∆α] = −u4

�

Φ1↑Φ1↓∆
∗
2∆3 +Φ2↑Φ2↓∆

∗
3∆1 +Φ3↑Φ3↓∆

∗
1∆2 + c.c.
�

+
1
2

u5

∑

αβγ

|εαβγ|
�

|Φα↑|2 + |Φα↓|2
��

|∆β |2 + |∆γ|2
�

, (20)

with coefficients,

χCDW =
1
Λ2β

Tr
�

Ge1Ge2

�

, χSC =
1
Λ2β

Tr
�

Ge1Gh1

�

, r =
1
Λ2β

Tr
�

Ge1Ge2Ge3

�

,

u1 =
1
Λ2β

Tr
�

G2
e1G2

e2

�

, u2 =
1
Λ2β

Tr
�

G2
e1Ge2Ge3

�

, u3 =
1
Λ2β

Tr
�

G2
e1G2

h1

�

,

u4 =
1
Λ2β

Tr
�

Ge1Ge2Gh1Gh2

�

, u5 =
1
Λ2β

Tr
�

G2
e1Ge2Gh1

�

. (21)
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In the main text, we focus on the orbital current and its interplay with SC order parameters
by setting ReΦασ = 0 and IsSC ≈ IdSC.

The LG expansions, Eqs. (17)-(20) are determined by the symmetry properties of the order
parameters Φασ and ∆α while the coefficients Eq. (21) depend on the material and control
parameters. Now, we calculate all free energy coefficients, Eq. (21) for the dispersion, Eq.
(2). After the variable transformation, a = kx +

p
3ky , b = kx −

p
3ky (|a|, |b| < Λ), Eq. (2)

becomes

ε1 = t ′a(a+ b)−µ , ε2 = −t ′ab−µ , ε3 = t ′b(a+ b)−µ , (22)

where t ′ = t/4 is rescaled and the chemical potential µ≃ 0 is kept. Our calculation considers
the regime µ≪ T ≪ tΛ2 to obtain the leading behaviour as a function of µ/T and T/tΛ2.

χCDW =
1
Λ2β

Tr
�

Ge1Ge2

�

= T
∑

n

∫

Λ

d2k
(2π)2
� 1

iωn − ε1

�� 1
iωn − ε2

�

=
T
t ′

∑

n

∫

p
t ′Λ

−
p

t ′Λ

dad b

(2π)22
p

3

� 1
iωn − a(a+ b) +µ

�� 1
iωn + ab+µ

�

. (23)

After the contour integral
∫

d b along the upper (or lower) half plane, the integrand depends
on the Matsubara frequency sign, sgn(ωn).

χCDW =
T

(2π)22
p

3t ′

∑

n

∫

p
t ′Λ

−
p

t ′Λ
da

2πisgn(a)sgn(ωn)
a(a2 − 2µ− 2iωn)

=
T

(2π)22
p

3t ′

∑

ωn>0

∫

p
t ′Λ

−
p

t ′Λ
da

1
|a|

2πi · 4iωn

(a2 − 2µ)2 + 4ω2
n

≈
T

(2π)22
p

3t ′

∑

ωn>0

∫

p
t ′Λ

−
p

t ′Λ
da
−2π
|a|

� 1
ωn
−
µ2

ω3
n

�

≈ −
1

(2π)22
p

3t ′

��

log
t ′Λ2

πT

�2
−

µ2

(2πT )2
�

8.41 log
� t ′Λ2

πT

�

+ 5.28
��

. (24)

Here, the first term is the most dominant for µ≪ T ≪ tΛ2. Similarly,

χSC =
1
Λ2β

Tr
�

Ge1Gh1

�

= T
∑

n

∫

Λ

d2k
(2π)2
� 1

iωn − ε1

�� 1
iωn + ε1

�

=
T
t ′

∑

n

∫

p
t ′Λ

−
p

t ′Λ

dad b

(2π)22
p

3

� 1
iωn + ab+µ

�� 1
iωn − ab−µ

�

=
T

(2π)22
p

3t ′

∑

n

∫

p
t ′Λ

−
p

t ′Λ
da
−2πisgn(a)sgn(ωn)

a · 2iωn
≈ −

1

(2π)22
p

3t ′

�

log
t ′Λ2

πT

�2
, (25)

up to the logarithmic accuracy. For a conventional vHS, both the finite momentum CDW
and zero-momentum SC susceptibilities diverge as squares of logarithm [40], which results
in TCDW ∼ t exp

�

− Ap
|ICDW|

�

, TSC ∼ t exp
�

− Bp
|ISC|

�

for non-universal constants A, B. The

cubic coefficient r is,

r =
1
Λ2β

Tr
�

Ge1Ge2Ge3

�

= T
∑

n

∫

Λ

d2k
(2π)2
� 1

iωn − ε1

�� 1
iωn − ε2

�� 1
iωn − ε3

�
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=
T
t ′

∑

n

∫

p
t ′Λ

−
p

t ′Λ

dad b

(2π)22
p

3

� 1
iωn − a(a+ b) +µ

�

(26)

×
� 1

iωn + ab+µ

�� 1
iωn − b(a+ b) +µ

�

≈
T

(2π)22
p

3t ′

∑

ωn>0

1
|ωn|2

2Re

∫

Ç

t′
πT Λ

−
Ç

t′
πT Λ

dad b
� 1

i − a(a+ b) + µ
πT

�

×
� 1

i + ab+ µ
πT

�� 1

i − b(a+ b) + µ
πT

�

=
1

(2π)42
p

3t ′T

�

∞
∑

n=0

1

(n+ 1
2)2

�

r̃(

√

√ t ′

πT
Λ,
µ

πT
)≈

4.93

32π4
p

3t ′T
r̃(

√

√ t ′

πT
Λ,
µ

πT
) .

Here, r̃(x , y) is a dimensionless integral with r̃(∞, 0) = 13.1. It is remarkable that the cubic
coefficient sign r is reversed under t →−t (or εα→−εα).

u1 =
1
Λ2β

Tr
�

G2
e1G2

e2

�

= T
∑

n

∫

Λ

d2k
(2π)2
� 1

iωn − ε1

�2� 1
iωn − ε2

�2

=
T
t ′

∑

n

∫

p
t ′Λ

−
p

t ′Λ

dad b

(2π)22
p

3
(27)

×
∂

∂ µ1

∂

∂ µ2

� 1
iωn − a(a+ b) +µ1

1
iωn + ab+µ2

�

�

�

�

µ1=µ2=µ
. (28)

After the contour integral and the differentiation (∂µ1
∂µ2
),

u1 =
T

(2π)22
p

3t ′

∑

n

∫

p
t ′Λ

−
p

t ′Λ
da

2 · 2πi sgn(a)sgn(ωn)
−a(−a2 + 2µ+ 2iωn)3

=
T

(2π)22
p

3t ′

∑

ωn>0

∫

p
t ′Λ

−
p

t ′Λ
da

4πi
|a|

12i(a2 − 2µ)2ωn − 16iω3
n

((a2 − 2µ)2 + 4ω2
n)3

≈
T

(2π)22
p

3t ′

∑

ωn>0

∫

p
t ′Λ

p
ωn

2π
a

� 1
ω3

n
−

3µ2

ω5
n

�

=
T

8π
p

3t ′

∑

ωn>0

log(
t ′Λ2

ωn
)
� 1
ω3

n
−

3µ2

ω5
n

�

≈
1

64π4
p

3t ′T2

�

8.41 log
� t ′Λ2

2πT

�

+ 5.28
�

−
3µ2

256π6
p

3t ′T4

�

32.14 log
� t ′Λ2

2πT

�

+ 22.11
�

, (29)

up to the logarithmic accuracy.

u2 =
1
Λ2β

Tr
�

G2
e1Ge2Ge3

�

= T
∑

n

∫

Λ

d2k
(2π)2
� 1

iωn − ε1

�2� 1
iωn − ε2

�� 1
iωn − ε3

�

=
T
t ′

∑

n

∫

p
t ′Λ

−
p

t ′Λ

dad b

(2π)22
p

3

� 1
iωn − a(a+ b) +µ

�2

×
� 1

iωn + ab+µ

�� 1
iωn − b(a+ b) +µ

�
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≈
T

(2π)22
p

3t ′

∑

ωn>0

1
|ωn|3

2Re

∫

Ç

t′
πT Λ

−
Ç

t′
πT Λ

dad b
� 1

i − a(a+ b) + µ
πT

�2� 1

i + ab+ µ
πT

�

×
� 1

i − b(a+ b) + µ
πT

�

=
1

(2π)52
p

3t ′T2

�

∞
∑

n=0

1

(n+ 1
2)3

�

ũ2(

√

√ t ′

πT
Λ,
µ

πT
)

≈
8.41

64π5
p

3t ′T2
ũ2(

√

√ t ′

πT
Λ,
µ

πT
) , (30)

where ũ2(x , y) is the dimensionless integral with ũ2(∞, 0) = 5.81. With leading behaviours,
Eqs. (29) and (30) reduces to Eq. (7) in the main text.

Likewise, u3, u4, u5 are calculated,

u3 =
1
Λ2β

Tr
�

G2
e1G2

h1

�

= T
∑

n

∫

Λ

d2k
(2π)2
� 1

iωn − ε1

�2� 1
iωn + ε1

�2

=
T
t ′

∑

n

∫

p
t ′Λ

−
p

t ′Λ

dad b

(2π)22
p

3

� ∂

∂ µ1

∂

∂ µ2

1
iωn + ab+µ1

1
iωn − ab−µ2

�

�

�

�

µ1=µ2=µ

=
T

(2π)22
p

3t ′

∑

n

∫

p
t ′Λ

−
p

t ′Λ
da

2πi
a

sgn(a)sgn(ωn)
2iωn

≈
1

(2π)44
p

3t ′T2

∞
∑

n=0

1

(n+ 1
2)3

log
� tΛ2

2πT (n+ 1
2)

�

=
1

64π4
p

3t ′T2

�

8.41 log
� t ′Λ2

2πT

�

+ 5.28
�

, (31)

u4 =
1
Λ2β

Tr
�

Ge1Ge2Gh1Gh2

�

= T
∑

n

∫

Λ

d2k
(2π)2
� 1

iωn − ε1

�� 1
iωn − ε2

�� 1
iωn + ε1

�� 1
iωn + ε2

�

=
T
t ′

∑

n

∫

p
t ′Λ

−
p

t ′Λ

dad b

(2π)22
p

3

� 1
iωn − a(a+ b) +µ

�� 1
iωn + ab+µ

�

×
� 1

iωn + a(a+ b)−µ

�� 1
iωn − ab−µ

�

=
T

(2π)22
p

3t ′

∑

n

∫

p
t ′Λ

−
p

t ′Λ
da

2πisgn(a)sgn(ωn)
2iaωn

� 2
(a2 − 2µ)2 + 4ω2

n

�

≈
T

(2π)22
p

3t ′
π
∑

ωn>0

∫

da
1
|a|

� 1
ω3

n
−
µ2

ω5
n

�

≈
1

64π4
p

3t ′T2

�

8.41 log
� t ′Λ2

2πT

�

+ 5.28
�

−
µ2

256π6
p

3t ′T4

�

32.14 log
� t ′Λ2

2πT

�

+ 22.11
�

, (32)

u5 =
1
Λ2β

Tr
�

G2
e1Ge2Gh1

�

= T
∑

n

∫

Λ

d2k
(2π)2
� 1

iωn − ε1

�2� 1
iωn − ε2

�� 1
iωn + ε1

�
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=
T

(2π)22
p

3t ′

∑

n

∫

da
2πisgn(a)sgn(ωn)

4aω2
n

−(a2 − 2µ− 4iωn)
(a2 − 2µ− 2iωn)2

≈
T

(2π)22
p

3t ′
π
∑

ωn>0

∫

da
1
|a|

� 1
ω3

n
−

2µ2

ω5
n

�

≈
1

64π4
p

3t ′T2

�

8.41 log
� t ′Λ2

2πT

�

+ 5.28
�

−
µ2

128π6
p

3t ′T4

�

32.14 log
� t ′Λ2

2πT

�

+ 22.11
�

. (33)

In the last expressions, Eqs. (29)-(33), the first term is most dominant and the others are
subleading, which results in u1 ≈ u3 ≈ u4 ≈ u5≫ u2 up to the leading order. To estimate the
numerical factors in Eqs. (28)-(33), we refer the following table. With the zeta function value
at z, ζ(z),

∞
∑

n=0

1

(n+ 1
2)2
=
π2

2
≈ 4.93 ,

∞
∑

n=0

1

(n+ 1
2)3
= 7ζ(3)≈ 8.41 ,

∞
∑

n=0

1

(n+ 1
2)5
= 31ζ(5)≈ 32.14 ,

∞
∑

n=0

1

(n+ 1
2)3

log
�

n+
1
2

�

= −8ζ(3) log2− 7ζ′(3)≈ −5.28 ,

∞
∑

n=0

1

(n+ 1
2)5

log
�

n+
1
2

�

= −32ζ(5) log 2− 31ζ′(5)≈ −22.11 . (34)

B Microscopic Hamiltonian

Although the order parameters Φασ and ∆α are defined in the patch model, the microscopic
Hamiltonian can be established before the approximation close to vHS. Because of the kagome
lattice geometry, the eigenstate weight at Mα=1,2,3 is composed of the corresponding sublattice
Vα=1,2,3 respectively. As a result, the iCDW of finite momentum Mα generates the imaginary
hopping between nearest-neighbour sites with the angular momentum l = 1 [36,37]. For the
down-spin electrons, there are independent 4 cases in Eq. (5) whose Peierls phases and the
plaquette fluxes are shown in Fig. 2.

In the same manner, SC order parameter, Eq. (8) is the condensate of paired electrons at
the same sublattice. Then on-site and the third-neighbour interactions are responsible for the
s- and d-wave pairings respectively. In our calculation, the extended s-wave pairings beyond
the on-site interaction are not considered. Then, the gap function in the Bogoliubov-de Gennes
(BdG) Hamiltonian is

∆̃p =
� 1
p

3
∆s +

1
2
∆dx2−y2

�

√

√2
3

cos(p · (a2 − a1))−

√

√1
6

cos(p · a1)−

√

√1
6

cos(p · a2)
�

+
1
2
∆dx y

�

√

√1
2

cos(p · a1)−

√

√1
2

cos(p · a2)
��

·∆T
patch , (35)

for all three sublattices. Here, a1,2 are the primitive lattice vectors (Fig. 1) and p is the crystal
momentum (not the momentum deviation k in the patch model). At the vHS, ∆p reduces to
the SC order parameters in the patch model, i.e. ∆̃p=Mα

= ∆α. In the presence of iCDW, the
unit cell is extended to contain 12 sublattices, and the gap function Eq. (35) is appropriately
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modified. In the presence both iCDW and SC order parameters, the spectral functions for the
Bogoliubov Hamiltonian are shown in Fig. 7.

C Josephson junction

The Josephson junction measures the supercurrent between two superconductors separated
by an insulating barrier. The SC Hamiltonians of the patch model Eqs. (15) and (16) are given

Figure 7: Spectral functions of BdG Hamiltonian, Eq. (35) with an open
boundary condition for (Φ1↓,Φ2↓,Φ3↓) = (i, i, i), (Φ1↓,Φ2↓,Φ3↓) = (−i,−i,−i),
(Φ1↓,Φ2↓,Φ3↓) = (−i, i, i), and (Φ1↓,Φ2↓,Φ3↓) = (−i,−i, i) (from left to right). Here,
the order parameters are |Φασ|= 0.3, |∆α|= 0.1.

Figure 8: In first row, the schematic illustration of flat junction of kagome SC (case
(i)) and the conventional s-wave SC separated by an insulating barrier. The magni-
tude of critical currents as we tuned the iCDW (Φασ) and SC (∆α) order parameters
is plotted. In second row, the current-phase relation as we rotate the orientation,
ϕ = 0,π/4 and π/2 (from left to right) respectively. Here the current is evaluated
with order parameters |Φασ| = 0.3, |∆(1)α | = |∆

(2)
α | = 0.1, temperature kB T = 0.1,

and tunnelling amplitude ttunnel = 0.1 in unit of t = 1.
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by

H1 ≡ H1[cαkσ, c†
αkσ,Φ(1)ασ,∆(1)α ] , H2 ≡ H2[ fαqσ, f †

αqσ,Φ(2)ασ,∆(2)α ] , (36)

where the subsystem 1 is the conventional SC with s-wave pairing, Φ(1)ασ = 0,∆(1)patch = |∆
(1)
α |∆s

and the subsystem 2 is the kagome SC in which the order parameters {Φ(2)ασ,∆(2)α } are taken
from one of four cases in Eqs. (5) and (12).

Htunnel = ttunnel

∑

αkβq

∑

σ

�

c†
αkσ fβqσeiφ/2 + h.c.

�

,
�

ttunnel is real
�

, (37)

where φ is the phase difference of SC order parameters between two subsystems. Then the
total Hamiltonian is

Htotal = H1 +H2 +Htunnel , (38)

and the tunnelling current is

I1→2 = 〈
∂ Htotal

∂ φ
〉=

∂ Ftotal[φ]
∂ φ

, (39)

where 〈...〉 is the expectation value and Ftotal is the free energy with respect to the total Hamil-
tonian.

Since only the SC order parameter of case (i) is the pure d-wave pairing among 4 cases in
Eq. (12), the phase shift can be observed as the orientation of the flat junction, ϕ rotates. (Fig.
8). The presence of iCDW suppress the magnitude of the critical current, but the current-phase
relation (I/Ic versus φ) is apparent. The periodic function, I(φ+2π) = I(φ) is expanded as a
Fourier series up to the second harmonics. The π-shift under ϕ = π/2-rotation is the common
feature of d-wave SC [52]. In the main text, we also plot the Fraunhofer pattern in the conner
Josephson junction to compare cases (i) and (iv).
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