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Abstract

Confining two dimensional Dirac fermions on the surface of topological insulators has
remained an outstanding conceptual challenge. Here we show that Dirac fermion con-
finement is achievable in topological crystalline insulators (TCI), which host multiple
surface Dirac cones depending on the surface termination and the symmetries it pre-
serves. This confinement is most dramatically reflected in the flux dependence of these
Dirac states in the nanowire geometry, where different facets connect to form a closed
surface. Using SnTe as a case study, we show how wires with all four facets of the 〈100〉
type display novel Aharonov-Bohm oscillations, while nanowires with the four facets of
the 〈110〉 type such oscillations are absent due to strong confinement of the Dirac states
to each facet separately. Our results place TCI nanowires as a versatile platform for
confining and manipulating Dirac surface states.
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1 Introduction

The interplay between symmetry, geometry, and topology in quantum materials allows for
novel states to be synthesized, and offers countless possibilities for engineering and manipulat-
ing quantum effects in mesoscopic systems and devices [1–3]. These materials provide access
to fundamental effects difficult to observe and study in other settings, and offer new function-
alities by demonstrating unique transport, mechanical and optical properties [4,5]. In parallel,
tuning mechanisms such as controlled breaking of space or time reversal symmetry, make it
possible to gain a high level of control over such effects [6, 7]. This potential has not been
fully realized to date. In particular, the surfaces of three dimensional topological insulators
host Dirac fermion states responsible for most of their unique functionality [8]. These typically
are extended on the two dimensional surface. Tuning the properties of the surface has been
an outstanding problem in the field, where different hetero-structures have been predicted to
function as interferometers or switches based on their low energy surface excitations [9–13].
Specifically, confining Dirac fermions has proven to be challenging [14–17], and have currently
been achieved mainly in Graphene-based hetero-structures and devices [18–23].

In this work, we explore topological crystalline insulator (TCI) materials in a mesoscopic
geometry and show that depending on how TCIs grow and cleave, their surfaces can naturally
host confined two dimensional anomalous Dirac fermions. Until now such a configuration of
surface states has required coupling to magnetism [15], complex hetero-structures [16], or a
dimensional reduction [17]. Here, we show that these states emerge naturally in TCIs due to
controlled symmetry breaking.

TCIs [24–26] have their topological properties arising from the presence of certain crystal
symmetries. This raises the question of how these can be used for innovative tuning mecha-
nism, and what novel states will emerge when breaking and restoring such symmetries, com-
bined with time reversal. Recent studies have shown that strain can induce higher order topol-
ogy in TCIs [27], and be used to engineer various electronic states [28,29]. In parallel, topo-
logical insulator (TI) nanowires have been explored in recent years as promising candidates
for applications such as quantum switching and quantum computing. [7,30–36]. For a strong
TI nanowire, the band structure and transport properties of the surface states is tunable by
flux: it features a gap which can be closed by applying a magnetic field parallel to the wire, re-
sulting in a perfectly transmitted mode around half integer values of flux. Tuning the chemical
potential or flux controls the number of modes at the fermi level and places TI nanowires as a
promising platform for switching and controlling of current channels. When placed in proxim-
ity to an s-wave superconductor and with the application of flux, topological superconductivity
is expected to emerge. [31,32,37]

We demonstrate the effect of geometry on confinement in TCIs by examining TCI nanowires
with different lattice terminations and cross sections. We focus on the canonical example of
SnTe and we show that different choices for lattice termination radically affect the response of
the wires to magnetic flux. In particular, we show that for certain geometries, surface states
are extended across the wire’s surfaces and exhibit novel Aharonov-Bohm (AB) oscillations,
while other geometries lead to confinement of the Dirac fermions on the wire’s facets. This
practically freezes the response to flux and eliminates the AB oscillations. The existence of
confined vs. extended states depends on the arrangement of the surface Dirac cones, and on
the particular spatial symmetries that are broken at the hinges connecting two surfaces. Such
breaking of symmetries introduce mixing of the Dirac points which can introduce strong gaps
at the corners and lead to confinement. While the effect is demonstrated for SnTe, we argue
that it applies in a much more general setting, and can be explained using general symmetry
considerations.

Our findings are supported by a combination of analytical and numerical calculations. The
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paper is organized as follows. In Sec. 2 we discuss a low-energy model for a TCI in a cylindrical
geometry, and predict the AB response in these wires from the simplest considerations. In
Sec. 3 we analyze the bandstructure of the SnTe nanowires for different sizes and geometries,
via tight-binding calculations. We contrast between two types of lattice terminations, and
show that one of them shows AB oscillations, while the other does not. In Sec. 4 we discuss
the results from symmetry considerations relevant for SnTe.

2 General considerations: multiple Dirac points in a compact ge-
ometry

The fate of AB oscillations and confinement vs. deconfinement of the Dirac surface states of
TCIs can be understood by considering the basic building blocks of their low energy theory and
how they are accommodated in a compact geometry. To demonstrate how compactification of
multiple Dirac points is different from that of a single Dirac point positioned at a time reversal
invariant momentum (TRIM) as in strong TI, we begin with a simplified low-energy model
of a TCI in a cylindrical wire geometry under flux. We first account for the behavior of the
finite size quasi-one dimensional resolved energy bands of a single Dirac cone located around
a generic point in the BZ as a function of flux. The only remaining crystal symmetry at this
stage, unlike the case in Ref. [38], is that we still assume that the surface respects the bulk
symmetries despite being of cylindrical shape (an assumption we will relax later on).

We therefore begin with a low-energy model of the form H=ħhvx(kx−kx0)σx+ħhvz(kz−kz0)σz .
Here, vx , vz are the Fermi velocities in x and z directions, kx , kz are the surface momenta,
(kx0, kz0) is the location of the Dirac cone, and σ are a set of Pauli matrices. Assuming that the
wire is perfectly cylindrical with a radius R, we perform a coordinate transformation [37,39]
and take the wire to be along z axis, with x coordinate going around the wire. The magnetic
flux enters the Hamiltonian as an Aharonov-Bohm phase, a shift to the angular momentum l,
where φ = Φ

Φ0
is the number of flux quanta through the wire’s cross section, Φ = B · A is the

total magnetic flux through the wire for a magnetic field B and a wire cross section A. Φ0 =
h
e

is the magnetic flux quantum. The spectrum of the transformed Hamiltonian is then given by

E = ±ħh
�

v2
x

�

l +φ
R
− kx0

�2

+ v2
z (kz − kz0)

2

�1/2

, (1)

where the quantum number l takes values of the form l = n+ 1
2 with n an integer, due to the

anti-periodic boundary conditions. Writing the momentum shift kx0 =
α
a , with a the lattice

constant and α a number, we note that a gapless point will appear in the one dimensional
spectrum, located at kz = kz0 (momentum along the wire) at flux values given by

φ = α
R
a
− l . (2)

The addition of a Zeeman term to this model may change the values of these parameters but
not the essence of the effect, as discussed in the supplementary material.

In strong TI wires, the Dirac cone is constrained to sit at a TRIM and therefore α always
vanishes. In contrast, in TCI wiresα is a material parameter determined by the crystal structure
and the perturbations that shift the position of the cones from the high-symmetry points [40].
The flux values that generate a gap closing therefore depend on the position of the cones in
the surface BZ, as well as the wires’ cross section. Hence, this low energy model predicts a
different pattern of Aharonov Bohm oscillations as a function of flux.

The model containing a single Dirac point on a cylinder oversimplifies the description of
a TCI nanowire in several ways. First, a TCI wire is usually not cylindrical. In order to host
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gapless surface states, it must have a geometry in which the wire’s surfaces respect some
non-trivial crystalline symmetry of the material [24, 38]. The specific bulk symmetries that
are preserved or broken on the facets of the wire determine the exact composition of the
surface states on each facet, namely the number, chirality, and location of the surface Dirac
cones. Second, a non-cylindrical wire has hinges and corners, which break the full rotational
symmetry of the cylindrical wire, but may also break the surface symmetries. This results in the
angular momentum l no longer being a good quantum number, but becomes rather conserved
up to an integer number reflecting the discrete rotational symmetry should it exist. Additional
symmetry breaking will introduce further mixing to the surface bands.

The breaking of rotational symmetry exists also in strong TI wires where it does not cru-
cially affect AB oscillations. This is not the case for a TCI wire. The crystalline symmetries im-
pose additional Dirac cones in each surface’s BZ, with positions related to the cone at (kx0, kz0)
by symmetry operations. A simplistic description of the low-energy model of the surface of a
TCI wire as a superposition of these cones, results in a modified AB oscillation pattern that
is a superposition of the one described above, with more gap closings. However, as we show
next, due to the breaking of symmetries close to the corners of the wire, additional terms can
be added to the surface Hamiltonian in the wire geometry. These terms can, in some cases,
confine the Dirac surface states per surface, thereby effectively disconnecting them from one
another. This confinement unlocks the possibility of studying the Dirac surface states on a
bounded two dimensional flat space.

In the following section we study specifically the flux response of SnTe wires, and we show
that the interplay between the number and location of the surface Dirac cones in two different
wire configuration lead to the behavior described above.

3 Flux response in SnTe wires

To demonstrate the differences in flux response arising from confined vs. deconfined surface
states in TCI, we now turn to consider two nanowire configurations of SnTe. SnTe was reported
and confirmed to be a TCI [25, 26, 41], as well as a HOTI [27], due to the non trivial mirror
Chern number nM = −2 of the crystal {110} mirror planes. As a result, protected gapless
states would exist on surfaces and hinges that are invariant under one or more of the bulk
{110} planes. Such lattice terminations will host an even number of Dirac cones, that can be
located off the TRIM [40,42]. The diversity of the surface states of SnTe allows us to consider
different configurations and surface state composition and demonstrate how those affect the
physics discussed above.

We model a SnTe crystal which is infinitely long along the cubic crystal’s z-axis ([001]
direction), and finite in the two other directions, using a tight-binding model, as described in
the Materials and Methods section. Since the system is periodic along z, kz remains a good
quantum number. Next, we demonstrated how the spectrum of this quasi - 1D system depends
on the type of terminations, and the overall symmetries of the wire.

3.1 SnTe nanowire in the (100) configuration: Aharonov Bohm oscillations

The first configuration considered is of an infinite wire in the z direction, with two surfaces
in the [100] direction and two in the [010] direction. It will be referred to as the (100)
wire, and is depicted in Fig. 1(a). This configuration was recently shown to be experimen-
tally accessible [43, 44]. In this case, each of the facets in the [100] direction and in the
[010] direction respect two bulk mirror symmetries: (011), (011̄) and (101), (101̄), respec-
tively. Therefore, each facet will host, in a slab geometry, four Dirac cones in the surface
BZ, located at (kx/y , kz) = (k0, k0), (−k0, k0), (k0,−k0), (−k0,−k0), see Fig. 1(f). These mirror
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Figure 1: Suggested configurations for a SnTe nanowire: (a) the (100) wire, and (b)
the (110) wire. The non-trivial mirror symmetries of the surfaces and hinges in each
wire are indicated and marked by dotted lines. A flux φ is inserted along the wire’s
z-axis.(c) Cross sections of the (100) wire, shown with 7 atoms in height and 7 in
width. Blue and purple dots correspond to Sn and Te atoms. (d) Cross sections of
the (110) wire, shown with 4 atoms in height and 4 in width. We note that for the
purpose of this calculation, the wire’s cross section was chosen such the outermost
layers are always the one atom longer, so that the hinges are a sharp step without a
missing atom. For example, in order to make the 4x4 (110)wire depicted in Fig. 1(d)
into a 5x4 wire, a layer of three Te atoms and four Sn atoms should be added to one
of the facets. In this method, the intersection between the facets remains the same
for all wire sizes. (e) The bulk’s crystal structure. Surface BZs and the existing Dirac
cones of (f) a plane in the [010] direction, with four Dirac cones on the lines invariant
under (101) and (101̄) mirror symmetries, and (g) a plane in the [11̄0] direction,
with two Dirac cones on the (110) mirror invariant line. Band structures at zero flux
of (h) a (100) wire with a size of 46 atoms in height and width, and of (i) a (110)
wire with a size of 28 atoms in height and width. The spectra are symmetric around
kz = π, with all bands doubly degenerate.

symmetries are preserved on the surfaces of a large wire, but would be broken close to the
hinges. Another important feature of the square (100) wire is the existence of hinge states:
the corners of the wire are in the [110] and [11̄0] directions, and are invariant under (11̄0)
and (110) mirror symmetries, respectively, see Fig. 1(g). Therefore, they are expected to host
four pairs of helical hinge modes [27].

The crystalline symmetries of the (100) wire presented above raise two questions: what
is the fate of the two dimensional surface states at the corners of the wire, and how do they
interplay with the hinge modes? In strong TI wires, the single Dirac cones are essentially
unaffected by the corners of nanowires and nanoribbons due to the topological protection
imposed by time reversal symmetry. This is not the case for TCI, which is different both in
terms of locally lifting the protection as well as in terms of the number of Dirac cones per
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surface that may mix at the corners.
We diagonalize the Hamiltonian in Eq. (4) for a square (100) wire with 46 atoms in each

finite direction. A sketch of the cross section of the wire is shown in Fig. 1(c). In the spectrum
obtained at zero flux, shown in Fig. 1(h), all bands are doubly degenerate. We identify the
surface Dirac cones, which are gapped due to the finite geometry and, presumably, also by the
breaking of mirror symmetry of each surface near the hinges. We also identify four pairs of
hinge modes.

When adding the magnetic flux, the double degeneracy of the bands is removed. The
spectrum, which is symmetric around the point kz = π at zero flux, remains symmetric for
every flux value, see Fig. 7 in the supplementary material. This symmetry exists because the
two surface Dirac cones located at (k0, k0), (−k0, k0) are projected onto the same kz point
along the axis of the wire. While according to the low energy model presented in Sec. 2
each Dirac cone will respond differently to the flux, there are two additional Dirac points with
interchangeable roles located on the wire’s axis on the other side of kz = π, such that the total
spectrum remains symmetric.

When increasing the flux, we observe a gap closing at a flux value which is neither zero nor
half of a flux quantum, but aroundφ = 0.3 andφ = 0.7 (Fig. 2). In addition, when calculating
the spectrum for square wires with increasing size, a similar gap closing and re-opening is
observed (Fig. 2). This is the behavior expected from the effective model, in which the gap
closing in the 1D spectrum depends on the dimension of the wire (in the simple cylindrical
case- the radius), the location of the Dirac cone on the surface and the number of flux quanta.
Interestingly, the gap closing occurs between surface states and hinge state, and not at the
gapped surface Dirac cones. We note, however, that in the vicinity of the surface gap, the

𝜙 = 0.0 𝜙 = 0.3 𝜙 = 0.75 𝜙 = 1.1𝜙 = 0.1 𝜙 = 0.55

40x40 42x42 44x44 46x46 48x48 50x50

𝑘! 𝑘! 𝑘! 𝑘! 𝑘! 𝑘!

E(
eV
)

E(
eV
)

Figure 2: Zoom in on low energy bands in the (100) wire’s spectra. First row: Gap
closing and re-opening under flux, of a 46x46 atoms wire. At zero flux, there are gaps
between the surface and hinge bands (although the hinge states are extended to 2D
close to the gap, see text). When turning on the flux, the degeneracy is removed.
At certain flux values, around φ = 0.3 and φ = 0.7 flux quantum, a gap closing
is observed between the surface and hinge bands. Around half flux quantum, most
but not all bands restore their double degeneracy. Around one flux quantum, the
spectrum without flux is restored. These values are close to, and not precisely at
half and one flux quantum due to finite size effects, see text. Second row: Spectra
of square (100) wires with varying sizes, at zero flux. The numbers on each figure
represent the number of atoms in height and width of each wire. The dimensions of
the wire affect the gaps between the surface and hinge bands.
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Figure 3: Spread of wavefunctions of the hinge bands on the cross section of the
46x46 (100) wire , marked A-C. As can be seen, away from the surface gap, the
wavefunctions are localized in the corners of the wire. Close the gapped Dirac cone,
the wavefunction is spread across the two dimensional surfaces of the wire.

wavefunctions belonging to bands identified as hinge modes are in fact spread over the entire
two dimensional surface of the wire and become essentially indistinguishable from those of
the higher surface bands. This is unlike the situations of a strained wire where the 2D surface
bands are gapped on the entire facet of the wire due to symmetry breaking rendering the wire
a higher-order topological insulator. In a strained wire, the hinge modes are further isolated
from the other surface bands and their one-dimensional nature is manifested also close to the
gap. In our case, only when moving away from the small surface gap, these hinge modes
regain their 1D character, see Fig. 3. This observation makes the gap closing between the
surface bands and the hinge modes slightly less mysterious and compatible with the intuition
gained by the effective modes described in Sec. 2 where hinge modes are absent. We note
also that close to half of a flux quantum threaded through the wire, some, but not all of the
bands restore a double degeneracy. The reason this degeneracy is restored close to, and not
exactly at half flux quantum, is due to the finite penetration depth of the surface states into
the bulk. [31,37,45]

Our analysis of the (100) wire is compatible with the prediction presented in Sec. 2, for AB
oscillations as a sum of those arising from projections of several Dirac points with a finite size
gap tunable by flux. The interplay of the surface and hinge modes at the corners of the wire
clearly demonstrates that the surface is 2D in character, and sensitive to flux via modification of
the boundary conditions. Next, we turn to explore a wire with a different lattice termination,
where the behavior markedly different.

3.2 SnTe nanowire in the (110) configuration: surface state confinement

The next configuration we examine is that of an infinite wire along the z direction with two
facets in the [110] direction and two in the [11̄0] direction, as depicted in Fig. 1(b), which will
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Figure 4: Band structure of the (110) wire with flux. In all figures, the wire is square
with 28 atoms in the outermost layer in both dimensions. Flux value is indicated
on each figure. First row: Low energy bands, showing a very weak response the
flux. Insets Zoom-in on the lower bands reveal groups of four bands that change
degenerate partners under flux sweep. Second row: High energy bands, showing a
strong response to flux.

be referred to as the (110) wire. These facets are crystallographically equivalent and invariant
under (11̄0) and (110) mirror symmetries, respectively. In a slab geometry, each such surface
is expected to host two Dirac cones in the surface BZ, located in (k1, kz) = (0, k0), (0,−k0), see

Fig. 1(g), where k1 =
kx+kyp

2
. The hinges of this wire do not respect any additional non-trivial

symmetry of the bulk.
We diagonalize the Hamiltonian in Eq. (4) for the (110) wire configuration, for a square

wire with a size of 28x28 atoms in the outermost layer. A sketch of the cross section of the
(110) wire is presented in Fig. 1(d). We emphasize that the wire is periodic in z direction,
and due to the rock-salt structure of the lattice, the cross sections for consecutive layers will
be of alternating atoms. For example, the cross section of the next atomic layer of the wire in
Fig. 1(d) will have Te atoms in the outermost layer. This implies that these wire terminations
are not atom-type dependent.

The spectrum at zero flux is shown in Fig. 1(i). All bands are doubly degenerate. As with
the (100) wire, the spectrum remains symmetric around kz = π, see Fig. 7 in the supplemen-
tary material. Tuning the flux away from zero flux and up to one flux quantum, we note a clear
distinction in the behavior of the low vs. high energy surface bands: while the low energy sur-
face bands experience a weak response to the flux and appear to be hardly moving, the upper
bands experience the conventional pair switching (see Fig. 4) similar to the flux response ob-
served both in the (100) wire as well as strong TI wires. Zooming in on the low energy bands
(insets of Fig. 4 first row), we observe that the bands are arranged in groups of four nearly
degenerate bands, which are pairwise degenerate at zero flux. At half flux quantum, two of the
four bands restore this degeneracy, while the other two are left non-degenerate. Tuning away
from these flux values, the bands do experience pair switching, but this switching is confined
within the four band subspace. This suggests a different picture from the one for the (100)
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wire.
The conjecture, which will be supported by additional numerical calculations below, is

that the in contrast with the (100) wire in which the surface states at all energies extend over
the two dimensional surface of the wire and slightly perturbed by its corners, the surface of
the (110) wire is characterized by having each of the wire’s facets hosting a confined Dirac
semi-metal. Namely, the (110) wire’s surfaces represent four copies of the same surface that
are slightly mixed at the corners of the wires. Indeed, when examining the (110) spectrum,
the twofold degenerate bands come in "pairs" of bands that are very close in energy. It can be
observed that these partners, or a pair of pairs, result from fourfold degenerate bands that were
mixed when projected on top of each other onto the one dimensional axis of the wire - four
"copies" of the same spectrum. The addition of flux through the wire removes the degeneracy
associated with time-reversal, and as the flux approaches half flux quantum, pair switching
occurs, and two of the four bands restore the twofold degeneracy. This behavior can be easily
captured by a simple “toy model" of four sites, each site representing a single surface, with a
weak coupling between them, as detailed in the supplementary material.

The observation of weak coupling between states that are localized on each surface can
be supported first by examining the spectra of (110) wires with various sizes, shown in Fig. 5.
First, looking at spectra of square wires with different sizes, we observe that the overall features
remain similar, while the bands move closer in energy for increasing wire’s cross section. This
is in contrast with the (100)wire where the change in cross section can introduce gap closings,
as discussed extensively in Sec. 3.1.

Second, we consider rectangular wires. If the conjecture of effectively decoupled surfaces
is correct, then we expect the bands to split into two sets, corresponding to opposite surfaces
with gaps determined by the width of each surface. This is a result of the C4 symmetry being
reduced to C2. Note that in a rectangular wire each face still holds the same properties in
terms of cone arrangement and symmetry conservation, the only difference is in the width of
the two faces. We fix the width of the wire in one direction and examine the bands structure
as we increase the width of the perpendicular direction. The effect of this change is shown in
Fig. 5. Focusing on the low energy bands, half of the bands indeed remain unchanged, while
half of the bands move closer in energy (similar to what occurs when increasing size of square
wire). If two bands overlap, they mix and open a small gap. This behavior further supports
the claim that the low bands in the spectrum of the (110) wire contains four spectra, resulting
from the four facets, which are weakly coupled.

To conclude this section, the spectrum of the (110) wire and its flux response is drastically
different from that of the (100) wire. While in the (100) wire the flux induces a mixing and
gap closing between surface and hinge states, a richer variation of the behavior of a strong TI
wire, the (110) wire shows completely different behavior and a much weaker flux response.
The surface states on the (110) are "localized" on each of the faces, and are connected via
weak coupling, similar to a system of four sites described by a tight binding model, in which
hopping terms between the sites slightly lifts the degeneracy of the energies on each site.

4 Understanding confinement from symmetry considerations

To understand why certain geometries allow for surface states confinement while some do not,
we now consider the differences between the two types of wires in terms of their symmetries.
As we argue, the symmetries that break at the corners of the wires conspire with the number
of cones projected onto a particular momentum along the translationally invariant direction
(the axis of the wire) to allow for particular gaps at the corner to open, that in turn result in
effective confinement only in one case but not the other. To solidify the simplified arguments
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Figure 5: First row: Spectra of square wires with various sizes, the numbers indicate
the number of atoms in the outermost layers in both finite directions. The spectra
are similar in features, with the bands get denser for increasing sizes. Second row:
Spectra of rectangular wires with a fixed width of 28 atoms and increasing height
(blue), compared to the spectrum of a square wire with 28 atoms in width and height
(red). Some of the bands do not change with size, and are located close to the four
nearly degenerate bands of the 28x28 wire bands, these bands originate from the two
facets of width 28 atoms. Other bands get denser as the size of the rectangular wire
increases, they originate from the facets with increasing width. When two doubly
degenerate bands overlap, a small mixing occurs.

of Sec. 2 we refer in particular to the two geometries of SnTe discussed in this text, though a
generalization in straight forward.

We start from the (110) wire. As previously stated, each of the wire’s facets, when con-
sidered in the infinite size limit, hosts two Dirac cones, related by mirror symmetries, time
reversal symmetry, and a C2 rotation around the surface’s normal. The surface theory of a
surface in the [11̄0] crystallographic direction, in the infinite surface limit, is captured by the
low energy Hamiltonian [40]

H(k1, k2) = (v1k1σ2 − v2k2σ1) +mτ1 +δσ1τ2 , (3)

hosting two Dirac points sitting at
−→
k = (0,±k0

2). This is the low energy model of the surface

spectrum depicted in Fig. 1(g), with k1 =
kx+kyp

2
and k2 = kz . The Pauli matrices −→σ ,−→τ repre-

sent the spin and flavor degrees of freedom, respectively. Given these definitions, the surface
respects two mirror symmetries, represented by the operators M1 = −iσ1 and M2 = −iσ2τ1,
along with the operators representing twofold rotation around the surface’s normal,
C2 = −iσ3τ1, and time reversal T = iσ2K as usual, with K standing for complex conjuga-
tion. Note the two Dirac cones have the same chirality, and are mapped into each other by M2
and C2.

Compactifying the wire in the k1 direction is an action that breaks M1 and C2 locally near
the corners. Each Dirac cone is broken into a set of energy bands, that are projected onto the
one dimensional axis of the wire and disperse as a function of k2. The mirror symmetry M2
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that relates the two cones to one another is still preserved in the wire geometry. While the two
terms mτ1,δσ1τ2 are the only masses allowed to be added to the Hamiltonian (3) when all
symmetries of the infinite surface are intact, the breaking of M1 and C2 allows for an additional
mass term to be added, of the form γσ3τ2, with γ a parameter determined by the details of
the lattice and the corner. This term, when added to the low energy Hamiltonian (3), creates
a gap for both Dirac cones. To respect mirror symmetry, the masses must be of opposite sign
for the two cones.

The additional gap in each Dirac cone introduced by breaking one of the mirror symmetries,
is added to the gaps generated due to the finite-size effects, as described in the effective model
in Sec. 2, however, it does not depend on angular momentum or magnetic flux, and therefore is
not affected or closed with the application of magnetic field along the wire. Such a gap, if large
enough, confines the Dirac fermion states onto each surface. Note that these considerations
are only compatible with the low energy theory, and therefore are not expected to hold for
energies beyond the linear regime. Indeed, from the numerical calculations it is obvious that
the confinement is manifested in the low energy bands (see Fig. 4). The overall symmetries of
the wire geometry, such as the bulk mirror symmetries combined with any rotation symmetry
around the wire’s axis, need to respected, allowing for a particular mass configurations to
appear in terms of their spatial distribution. For details on the particular mass configurations
see supplementary material.

Now consider compactifying the low energy model in Eq. (3) in the orthogonal direction,
namely in the direction of k2 coordinate, thereby breaking M2. Since M2 is now broken, but
M1 is preserved, only a term of the form γσ0τz can be added to the Hamiltonian. This term
does not open a gap in the Dirac cones, but only shifts their location along k2. In this case,
the gaps in the spectra of the cones due to finite-size effects are the dominant ones, and the
usual flux response is expected with gap closures in flux values that are compatible with the
momentum shift of the cones.

The (100) wire is more complex, but encapsulates the two behaviors described above.
When considered in the infinite size limit, it hosts four Dirac cones, located at (±k0,±k0), re-
lated by four mirror symmetries and a fourfold rotation symmetry around the surface’s normal.
In consistence with the axis of the two-dimensional BZ in Fig. 1(f), compactifying the wire in
the x direction is an action that breaks the mirror symmetries Mx , Mxz , Mxz̄ and C4 near the
corners of the wire. The breaking of these symmetries may introduce additional terms that
would mix and gap the Dirac cones when projected to the one-dimensional BZ of the wire and
disperse around kz = k0 and around kz = −k0. The added mass terms may introduce shifts
of the Dirac cones, that will result in two minima split around kz = ±k0, (which can indeed
be observed in Fig. 2), as well as open magnetic-like gaps. The magnitudes of these masses
will be determined by the microscopic details of the material and the specific geometry of the
nanowire. However, if the magnitude of the terms that shifts the Dirac cones is significant, they
can eliminate the effect of the magnetic-like masses, and leave the surface theory sensitive to
the flux threaded through the wire even at low energies.

5 Summary and conclusions

Our work suggests that TCI wires are a rich platform that supports confined or extended Dirac
surface states, depending on the lattice termination and the associated symmetry breaking. As
a result, TCI wires display different flux responses, including modified AB oscillations which
are beyond a simple generalization of the flux response in strong TI, or absence of oscillations.
To determine which of the scenarios applies, one must take into consideration the number
of Dirac cones appearing at each facet, and how they mix due to the breaking of the spatial

11

https://scipost.org
https://scipost.org/SciPostPhysCore.6.1.011


SciPost Phys. Core 6, 011 (2023)

symmetry at the corners. This is translated into the mixing of cones projected onto one another
in the quasi one-dimensional band structure of the wires, and manifested in the ability of the
finite size resolved bands to respond to flux. Most of these features can be reproduced from
effective low energy models, but the magnitude of the mixing terms at the corners strongly
depends on the microscopic details of the wire.

The mixing of Dirac cones has also been demonstrated to result in one dimensional states
at step edges on surfaces of the TCI Pb1−xSnxSe [46,47]. A recently published work [48] also
discussed SnTe nanowires. However, it considered a single wire geometry, and did not treat
the behavior of surface states in the confined wire geometry, or the expected Aharonov-Bohm
oscillations when applying a magnetic field parallel to the wire. Another recent publication
[49] predicted Aharonov-Bohm oscillations in a different system, that of a chiral HOTI with
1D hinge channels.

In this work we have considered for simplicity wires with four identical facets, with the
same lattice termination and Dirac cone arrangement. This allowed us to single out cleanly
the two extreme scenarios discussed above. It is possible to consider cases where the facets are
different, that may introduce more novel features intermediate to the two extremes studied
here.

The predictions of AB responses in the different wire setups can be ideally and directly
probed in scanning tunneling microscopy of SnTe nanowires. Using spectroscopic mapping
[19,50], both the evolution of induced surface gaps and the formation of hinge states, as well
as the interplay among them, can be visualized as a function of threaded magnetic field. Our
theoretical results thus mark a clear and unique path for the exploration and characterization
of topological boundary modes in experiment.

In addition, presence or absence of AB oscillations in the spectrum may be also probed
in transport measurements, similar to experiments performed on strong TI nanowires [33].
Ref. [51] reported measurements of AB oscillations in single crystalline SnTe nanowires of a
typical width of 59nm and at temperatures as high as 30K . The surfaces of the wires, however,
are not specified and therefore the surface theory is unknown. The absence of AB oscillations
will be measured in a geometry that introduces masses in the wire’s corners, like the (110)
wire presented, with the chemical potential inside the energy range that is affected by the gap
induced by symmetry breaking. Since the gap at the corners is caused by a local perturbation
due to the breaking of symmetries near the hinges, it is not expected to depend on the overall
wire’s dimensions, but on the details of the hinge and the particular bulk material. From the
spectra of the (110) wire in Fig. 4, the energy scale in which there are no AB oscillations,
namely the energy cutoff above which bands start to respond to flux in the usual way, is ap-
proximately 150meV . In transport experiments on strong TI nanowires, gate voltage control
over the chemical potential with a resolution of the order of 10meV was achieved. Although
the level of control over the chemical potential is determined by the specific details of the ex-
periment, such as the density of states of the bands near the Fermi level, the dimensions of the
device and its fabrication process, a similar resolution in SnTe nanowires may be accessible.

Confinement of Dirac fermions on the surfaces of three dimensional strong TI can in prin-
ciple be achieved by introducing magnetism which, as mentioned earlier on, has proven to be
hard [14,16]. Such confinement has been achieved in Graphene [18–21], by means of spatially
limiting to small geometries or by creating electrostatic gating. The latter requires coupling
to external materials such as superconductors, gates, or substrates. The alternative presented
here based on TCIs and relying solely on the geometry of the wire represents a breakthrough
and has the potential to affect their use as well as have implications for the fate of induced
superconducting states in such wires. In addition, in contrast with Graphene, while the surface
of a TCI also hosts multiple Dirac cones, they are non-degenerate and can be anomalous.
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6 Materials and Methods

For the purpose of the simulation we use a tight binding model for SnTe [41]:

H = m
∑

j

(−1) j
∑

r,α

c†
jαr · c jαr

+
∑

j, j′
t j j′

∑

r,r′,α

c†
jαr · d̂r,r′ d̂r,r′ · c j′αr′ + h.c.

+
∑

j

iλ j

∑

r,α,β

c†
jαr × c jβr · sαβ ,

(4)

with the following parameters [27, 52]: m = −1.65, t11 = −t22 = 0.5, t12 = t21 = 0.9,
λ1 = λ2 = 0.7. The model describes a rock-salt lattice with staggered on-site potential on
the two atoms, spin orbit coupling, and hopping between three p-orbitals in each atom rep-
resented by three components of the c†, c operators. The operator c†

jαr creates an electron on
lattice site r, sublattice j = 1, 2 (for Sn,Te respectively) and spin α=↑,↓. The bulk spectrum is
therefore described by a 12x12 k-space Hamiltonian. The vector d̂r,r ′ is a unit vector pointing
in the direction of hopping between atoms in r and r′. The matrices d̂r,r ′ d̂r,r ′ describe σ-bond
hopping between nearest (t12, t21) and next nearest (t11, t22) neighbors, neglecting π-bond
hopping.

The magnetic field is added to the model as phases to the hopping terms: t → teϕi j . Using
the Peierls substitution, a phase of the form

ϕi j =
e
ħh

∫ r j

ri
A · dl ,

will be added to the term describing hopping from site ri to site r j , with A the vector potential
and dl an element in the direction of the hopping process.
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Supplementary material

Effect of Zeeman coupling

In the low energy model in Sec. 2 and in the numerical calculations, we neglected the Zeeman
effect, coupling the magnetic field to the electron spin.

First, we stress that the magnitude of the magnetic field required to see AB oscillations in
nanowires is small: considering a typical cross section of 60 × 60nm2, the field required for
one flux quantum is B = 1.1T . This statement is independent of the type of wire, and depends
only on the wire dimensions. For these field values, and for a g factor g = 57 measured for
SnTe [53], the Zeeman splitting is gµBB

2 = 1.9meV , which is small compared to the sub-band
spacing in our case.

Next, we point out that Zeeman coupling is also relevant for strong TI wires, where it breaks
TR symmetry. For example, in TI wires made from Bi1.33Sb0.67Se3 the g factor is estimated to
be approximately 23. In experiments done on such wires, AB oscillations were observable
but the details are slightly modified compared to predictions [33], as was also discussed in
theoretical works [31, 37]. We believe this should also be the case for our system as we now
explain.

The changes induced by the Zeeman coupling will modify the details of the observed band
structure, but not the main conclusions of our work. This can be seen as follows: A Zeeman
term can be added to the surface Hamiltonian which may change the surface theory and as a
result, the effects discussed in the paper. We consider, for example, adding a Zeeman term to
the low energy model of the surfaces of SnTe. Since the magnetic field is parallel to the wire,
it is parallel to each one of its facets. Such a term does not gap the surface Dirac cone, but
shifts their location, as detailed in Ref. [41] and specifically its correction [54]. The low energy
model of SnTe surfaces as presented in this reference is of the from k×σ = kxσz−kzσx . If the
wire is along the z axis, and a Zeeman term gµBBσz is added, the location of the Dirac cone in
the surface theory will shift along the x coordinate. Performing a coordinate transformation
and taking x around the wire as in Sec. 2, this shift will modify the flux values needed for gap
closing. In terms of the general low energy model presented in Sec. 2, a Zeeman term will
shift the location of the Dirac cones along kz .

“Toy model" of four sites in a circle

To support this picture of slightly mixed copies of the same surface theory we first show that
band mixing and pair switching can be captured by a simple “toy model" of four sites, each site
representing a single surface with an identical on-site energy ϵ, and a coupling that gives rise
to hopping terms between the sites, t, in a circle. To this system we also add a Berry phase of
π, incorporating the effect of spin momentum locking which is reflected in such a phase that
is acquired when completing a closed loop around the wire. Such a system is described by the
simple Hamiltonian

H =







ϵ −t 0 −teiπ

−t ϵ −t 0
0 −t ϵ −t
−te−iπ 0 −t ϵ






. (5)

Solving for the energies of the system, we observe that the fourfold degenerate on-site
energy is split to two twofold degenerate energy levels: E1,2 = ϵ −

p
2t, E3,4 = ϵ +

p
2t.

Adding a flux as an additional phase to the hopping parameters removes the degeneracy. At
half flux quantum (an additional π phase compensates for the Berry phase) there are three
energy levels, with the middle one doubly degenerate: E1 = ϵ − 2t, E2,3 = ϵ, E4 = ϵ + 2t.
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This is precisely the behavior a sub-space of four bands in the surface spectrum of the (110)
experiences under flux tuning. We therefore conclude that the lifted fourfold degeneracy in
the spectrum results from four identical copies of the spectra of each face.

Mass configurations

The possible mass configurations at the surface of the two wires discussed in the main text
must respect the symmetries of the full wires, and not just those of the surface theory. For the
square (100) wire, these are additional two mirror planes that cut the wire diagonally (see
Fig. 6). These mirror planes are those protecting hinge model in the HOTI phase [27]. In the
(110) wire, two mirror planes cross the middle of the two facets (see Fig. 6). In addition, in
square or rectangular geometries there is a C4 and C2 discrete rotation symmetry with respect
to the wire’s axis.

For the purpose of the discussion here, we consider the quasi-one dimensional low energy
band structure of the surface bands with k > 0, where k is the momentum along the wire’s
axis. It is sufficient to consider positive k only since we discuss the time-reversal invariant
system.

The (110) wire has a single Dirac cone. We now consider what mass configurations are
possible following symmetry constraints. The mass term can break time-reversal as shown in
the main text, since the cone at negative momentum will have a similar mass but opposite in
sign. Considering a square wire, there is one mass configuration that respects both C4 and
mirror symmetry, which is that of masses of alternating signs as depicted in the Fig. 6. In this
configuration, masses have equal magnitude but opposite signs when approaching the corners
on a single facet of the wire, and are also constrained to switch sign when traversing a corner.

In the (100) square wire there are two Dirac cones at k > 0, for which the mass profile is
opposite in sign as constrained by mirror symmetry. The combination of C4 and the diagonal
mirror symmetries enforces that per Dirac cones, the mass at each facet has either a positive
or a negative sign, and switching sign on neighboring facets (see Fig. 6). This is because C4
interchanges the two Dirac cones.

+ +

+ +
- -

--
+-

+ -
-

+

+

-

110 100

Figure 6: Two mass sign configurations respecting bulk and surface mirror symme-
tries as well as C4 symmetry for the positive momentum surface cone of the (110)
wire (left) and one of the two surface cones of the (100) wire (right). The second
cone of the (100) wire replaces all blue with red, red with blue.

Symmetry of spectra under flux

As mentioned in the main text, the spectra of the (100) and the (110) wires are symmetric
around the point kz = π in the 1D BZ at zero flux and remain symmetric for all flux values.
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Figure 7: Spectra of the (100) wire (left column) and the (110) wire (right column),
remain symmetric around kz = π also for non-zero flux values: φ = 0,0.25, 0.5,075,
for first, second, third and fourth rows, respectively.

For this reason, the spectral response to flux and to dimensional changes is presented in the
main text for kz < π values only. The Spectra of a square (100) wire of size 46x46 atoms and
a square (110) wire of size 28x28 atoms at various flux values around kz = π are presented in
Fig. 7.
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