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Abstract

We analyze a system of fermions in a one dimensional harmonic trap with attractive
delta-interactions between different fermions species, as an approximate description of
experiments involving atomic dimers. We solve the problem of two fermion pairs numer-
ically using the so-called “coboson formalism” as an alternative to techniques which are
based on the single-particle basis. This allows us to explore the strongly bound regime,
approaching the limit of infinite attraction in which the composite particles behave as
hard-core bosons. Our procedure is computationally inexpensive and illustrates how the
coboson toolbox is useful for ultracold atom systems even in absence of condensation.
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1 Introduction

The possibility to engineer atomic and molecular many-body systems by controlling and as-
sembling simpler components has made enormous progress thanks to Feshbach resonances.
In this way, molecular Bose-Einstein condensates have been formed starting from ultracold
atomic gases [1, 2]. Similar setups have been used for the controlled observation of relevant
phenomena in statistical physics such as Wigner crystals [3] and the BEC-BCS crossover [4,5].
Within the field of ultracold Fermi gases, one-dimensional systems are known to exhibit very
peculiar properties [6]. In particular, strongly bound fermion pairs reach a limit in which they
behave as hard-core bosons, which in turn are related with non-interacting fermion models [7].

We consider a one-dimensional scenario, with fermions of two different kinds in a har-
monic trap and an attractive contact interaction leading to fermion pairing. The first steps
towards the exact solution of the one-dimensional Fermi gas with contact interactions in a
ring are due to Gaudin and Yang in 1967 [8, 9]. For the trapped case most of the analytical
work focuses on the strongly repulsive case, see [10] and references therein. Numerical ap-
proaches for this system include multiconfigurational time-dependent Hartree method [11],
quantum diffusion Montecarlo [12], density matrix renormalization group [13] and a variety
of quantum-chemical treatments such as coupled-cluster methods [14], among others. The
vast body of literature in this field has been reviewed for instance in [6,15].

Even though much effort has been devoted to this system, the usual numerical treatment
takes as a basis the harmonic oscillator eigenstates, making computations very costly for strong
attraction [14, 16–20]. Alternative procedures which are more efficient for strong attraction
have been proposed in [21, 22]. Here, as a different approach, we tackle the problem of
two pairs with two fermions each in the context of coboson theory [23, 24]. This theoretical
framework, originally developed for excitons in semiconductors [23–25], has by now been
applied to a variety of systems, including Bose-Einstein condensates [26], superconductors
[27,28] and Feshbach molecules [29].

A very useful simplification often encountered in this treatment is the so-called coboson
ansatz, which is analogous to a condensate formed by composite bosons and is the canonical-
ensemble counterpart of the BCS ansatz [23,28]. Using tools from the coboson formalism, we
show that the coboson ansatz does not provide a good approximation of the true ground state
for the case of two pairs in the limit of strong interaction. This is to be expected in the light
of previous results [30, 31] and also because the limit of infinitely bound pairs corresponds
to hard-core bosons which are known to form only a quasi-condensate in 1D traps [32–34].
However, the coboson formalism also provides tools to describe the state beyond the coboson
ansatz [27,28]. We thus develop a representation of the problem in the coboson basis, i.e. in
terms of the eigenstates of one pair of interacting fermions in the trap.

This basis is specially convenient and expected to work better for the regime of strong
attraction, which is difficult to address numerically (see for instance Ref. [16]) and has been
not studied exhaustively as the repulsive regime [6,15]. In this respect, our method is related
with the perturbative approach in [35]. The case of two pairs is of particular relevance within
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the coboson formalism, however, the method we propose can be extended to larger systems.
The motivation of our work can then be stated as i) to show that even if the coboson ansatz
fails the correct ground state for this system can be recovered using the complete toolbox of
the coboson formalism ii) to show that the two-body coboson basis is useful in the strongly
attractive limit where the single-particle basis is not convenient.

Besides the numerical convenience of using the coboson basis, studying this system within
the coboson formalism leads to semi-analytical reliable results that can provide a safe ground
to quantify the fractional statistics [36,37] of the one-dimensional Fermi gas [38–40]. This is a
good starting point to analyze the relationship between anyonic statistics and the entanglement
of the constituent particles of the composite boson, which has been pointed out to be the key
to understand composite effects and ideal bosonic behavior [41–43].

The basic steps of our procedure to tackle the problem of two trapped fermion pairs are
the same as in [31] and are as follows:

1. We solve the problem of a pair of interacting fermions in the trap. The operators B†
n

that create each single-pair eigenstate, and the corresponding energies En, will be the
starting point of the treatment. We truncate the basis considering the states with the
lowest energies, up to some quantum number nmax.

2. From the single-pair basis operators B†
n we form the two-coboson basis generated by the

action on the vacuum of operators of the kind B†
nB†

m.

3. We calculate the form of the Hamiltonian in this truncated coboson basis.

4. Solving the corresponding generalized eigenvalue problem, we estimate the ground state
for two pairs and analyze its properties.

This method allows us to interpolate from the interaction strengths for which the single-particle
basis is suitable [17–20], all the way to very strongly bound pairs approaching the limit of
hard-core bosons. Using coboson-theory tools combined with Taylor expansions, we calculate
several quantities of interest, including the energy and two-particle correlators.

The work is presented as follows: in Sec. 2 we review how to write the problem in the
coboson framework. Section 3 is devoted to analytical considerations for infinite attraction.
In Sec. 4 we discuss our numerical results. A summary and conclusions are given in Sec. 5.
Finally, several appendices with detailed calculations are included.

2 The procedure, step by step

2.1 Single-pair solution

For definiteness we will assume that both fermion kinds, which we call a and b, have the same
mass, and that the creation and annihilation operators corresponding to different fermion
species commute (this last choice does not affect the final results). We also assume that the
trapping potential is the same for both species.

The first step requires the solution of the single-pair problem, with a Hamiltonian given
by:

H1 =
∑

α=a,b

�

p2
α

2m
+

mω2 x2
α

2

�

− γδ(xa − xb) . (1)

This problem can be solved by separation of the center-of-mass and relative variables. The
center-of-mass solution is given by the harmonic oscillator eigenfunctions corresponding to
mass 2m. The relative motion has been solved in the general case in Refs. [44, 45] but for
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simplicity we focus only on strongly bound pairs, so that the relative motion has a wavefunction
of the form of an exponential,

ψr(xr)≃
p

λ e−λ|xr | , (2)

and the energy associated with the relative motion can be approximated by:

Eγ = −
ħh2λ2

m
, λ≃

mγ

2ħh2 . (3)

In this regime, the single-pair eigenfunctions are then approximately of the form:

ψn(xa, xb)≃ ϕn

� xa + xb

2

�

p

λ e−λ|xa−xb|, (4)

where ϕn are the harmonic oscillator eigenfunctions for a particle of mass 2m. The corre-
sponding energies are:

En = ħhω
�

n+
1
2

�

+ Eγ . (5)

From these solutions, we define the coboson creation operators B†
n such that:

|ñ〉= B†
n|v〉 , (6)

where |ñ〉 is the n-th single-pair eigenstate, and |v〉 is the vacuum. In particular, the coboson
operators B†

n can be written in terms of field operators as:

B†
n ≃
∫

dxadxbψn(xa, xb)Ψ
†
a(xa)Ψ

†
b(xb) . (7)

For consistency, neglecting states where the internal motion is excited implies also a trun-
cation in the center-of-mass states, so that the basis includes all single-pair eigenstates up to a
certain energy cutoff. In particular, we keep only states where the index n associated with the
center-of-mass motion is such that the excited internal states are well above the energy scales
considered, i.e.:

n≪
|Eγ|
ħhω
= (λxω)

2 . (8)

For convenience here we have defined a spatial scale xω associated with the harmonic oscil-
lator,

xω =

√

√ ħh
mω

. (9)

The inequality in Eq. (8) stresses once more the fact that our restricted basis is only appropriate
for strong attraction, when the size of each bound pair is very small compared with the spatial
scale of the trap and thus λxω is large. It is also important to note that since Eq. (2) and
therefore Eq. (4) are valid for λ xω ⪆ 5 all of our results rely on this condition [46].

2.2 Basis for two pairs

From the set of states corresponding to the lowest energies of the single-pair Hamiltonian, one
can form states of the form:

|ñm̃〉= B†
nB†

m|v〉 , (10)

with n ≤ m (we note that the coboson creation operators commute) and |v〉 the vacuum.
Because of the fermionic character of the constituent particles, states generated in this form
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are neither normalized nor orthogonal [23]. We truncate this two-pair basis with the condition
n+m≤ nmax, and then approximate the ground state in the form:

|GS〉=
∑

m≤n

cm,n|ñm̃〉 . (11)

An often useful approximation for the ground state of dilute systems of N pairs with short-
range interactions is given by what we call the “coboson ansatz” [23]. This corresponds to the
state obtained from the repeated application on the vacuum of the operator B0 that creates a
single pair in its ground state:

|N〉=
(B†

0)
N

p

N !χN
|v〉 , (12)

where χN is a normalization constant. However, this can only provide a good approximation
of the true ground state in systems which are expected to exhibit condensation at zero tem-
perature. This is not the case in the problem we analyze [30,31,33,34]. In order to quantify
the quality of the approximation, we study the fidelity F between the true ground state for
two pairs, |GS〉, and the coboson ansatz:

F =
|〈GS|(B†

0)
2|v〉|2

〈v|B2
0(B

†
0)2|v〉

, (13)

where the true ground state |GS〉 is approximated numerically using the coboson basis given
in Eq. (10) for two-pairs (N = 2).

Even if the coboson ansatz is not a good approximation, one can still compute the ground
state by means of the coboson formalism. In order to do this, we will work with the space
generated by the coboson operators as in Eq. (10). First, we compute all overlaps between the
relevant states from the expression:

Skl,mn = 〈v|BkBl B
†
mB†

n|v〉= δmlδkn+δnlδkm−
�

〈k̃|⊗〈l̃|Xa|m̃〉⊗|ñ〉+〈k̃|⊗〈l̃|X b|m̃〉⊗|ñ〉
�

. (14)

Here Xα with α = a, b is an operator that exchanges the states of the two fermions of kind α,
and it acts on a fictitious space where fermions of equal kind are treated as distinguishable.
Since our goal is to find the ground state, instead of building an orthonormal basis, we keep
the overlap matrix S to solve the corresponding generalized eigenvalue problem.

The matrix S can be calculated following different strategies. In the coboson literature
[23], the overlaps are evaluated in terms of matrix elements of the change of basis between
single-pair eigenstates and the separable single-fermion basis. However, this procedure can
be numerically costly and lead to large errors when many coefficients are non-negligible and
no analytical expression exists for the sums required. Thus, we resort to a different form of
evaluation. Plugging the explicit form of the operators B†

n given by Eq. (7) in all formulas, and
using (anti)commutators, we can obtain an expression for the elements of the overlap matrix
as:

Smn, jk ≃
�

δmjδnk −λ2

∫

dx d y1 d y2 d y3 d y4 δ(y1 + y2 − y3 − y4)

×ϕm(x)ϕn

�

x + y3 −
y1 + y2

2

�

ϕ j

�

x +
y3 − y1

2

�

ϕk

�

x +
y3 − y2

2

�

e
−λ
∑

l
|yl |
�

+ same with j↔ k . (15)

Since we are interested in the case of strong attraction, the factors of the form e−λ|yl | allow
us to perform a Taylor expansion in 1/(xωλ) for the harmonic oscillator functions ϕn. This
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is possible given the truncation of our basis in Eq. (8), which implies that the spatial scale
associated with the center of mass is much longer than the pair size λ−1. In this form one can
find approximate expressions for S from a lengthy but straightforward evaluation of spatial
integrals. This procedure is explained in detail in Appendix A.

2.3 Construction of the Hamiltonian

We now need to compute the Hamiltonian in the coboson basis. The Hamiltonian can be split
in two parts, corresponding to the non-interacting terms and the interactions. The interaction
part is quartic and can be written in terms of field operators as:

Hint = −γ
∫

dx Ψ†
a(x)Ψ

†
b(x)Ψa(x)Ψb(x) . (16)

The Hamiltonian matrix elements in the coboson basis can be obtained from the expres-
sion:

〈v|BkBl HB†
mB†

n|v〉= (En + Em)Skl,mn + 〈v|BkBl

�

[Hint, B†
m], B†

n

�

|v〉 , (17)

which is just a rewriting of the formulas in [23]. Notice that when using the coboson formal-
ism the one-body term which contains the kinetic energy and trap potential is absorbed by
quantities that were calculated when solving the single-pair case (first term on the right-hand-
side in the above equation). In a similar spirit as for the calculation of the overlap matrix S,
instead of following the standard expressions in [23] we estimate the Hamitonian elements
using a Taylor expansion of spatial integrals.

In particular, the last line of Eq. (17) can be written as:

〈v|BmBn

�

[Hint, B†
j ], B†

k

�

|v〉 ≃

γλ2

�∫

dxd yd y ′e−λ(|y|+|y
′|+|y−y ′|)ϕm(x)ϕn

�

x + y ′ −
y
2

�

ϕ j

�

x +
y ′ − y

2

�

ϕk

�

x +
y ′

2

�

−
∫

dxdx ′d yd y ′e−2λ(|y|+|y ′|)ϕm(x)ϕn(x
′)ϕ j(x)ϕk(x

′)δ
�

x − x ′ +
y + y ′

2

�

�

+ same with n↔ m+ same with j↔ k+ same with { j, k}↔ {m, n} . (18)

The details of the procedure involving the Taylor expansion of the Hamiltonian elements are
also provided in Appendix A.

3 Analytical considerations for infinite attraction

Before presenting the results of our numerical approach, we note that the case of infinite
attraction can be solved exactly. In this limit, fermions of different species are so strongly
bound that they behave as point-like hard-core bosons of mass 2m, and the problem can be
solved by means of fermionization [7]. According to this procedure, one must first consider
the ground state of two identical non-interacting fermions of mass 2m in the trap. This state
is given by:

ψ2f(x1, x2) =
2mω
ħh
p
π

e−mω(x2
1+x2

2)/ħh(x1 − x2) , (19)

and corresponds to the antisymmetric combination of having one fermion in the trap ground
state and another in the first excited state. Then, one obtains the wavefunction of the hard-core
bosons as the symmetrized form of the previous expression, i.e.:

ψhc(x1, x2) =
2mω
ħh
p
π

e−mω(x2
1+x2

2)/ħh|x1 − x2| , (20)
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where the subindex “hc” stands for “hard-core”.
From these expressions we can calculate all properties of the ground state for λ→∞. For

instance, the asymptotic ground-state energy, excluding the binding energy Eγ of each pair,
is found to be given by the sum of the two lowest energies of the harmonic oscillator. Thus,
the total ground-state energy for very large λ is approximately 2Eγ + 2ħhω. We can define
an effective interaction energy between pairs as ∆E = E2 − 2E1, where EN is the ground-
state energy of N = 1,2 pairs. Considering that a single pair has a ground-state energy of
Eγ + ħhω/2, we then obtain an effective interaction energy which for very large attraction
approaches ∆E = ħhω.

Using the ground-state wavefunction as expressed above, one can also analytically calcu-
late the fidelity between the true ground state and the coboson ansatz for infinite attraction.
We find an asymptotic fidelity of F∞ = 2/π ≃ 0.64, which is lower than the one obtained in
the same regime for two fermion pairs in translationally invariant models [30,31].

Following the same lines, one can find the joint density of composite particles at positions
x and x ′ for the limit of infinite attraction. This is of the form:

Dhc(x , x ′) =
8
π2

�

x − x ′

xω

�2

e−2(x ′2+x2)/x2
ω . (21)

One can also write down the conditional probability P(x ′|x) of finding a composite point-like
particle at position x ′ provided that another one was found at position x:

Phc(x
′|x) =

1
xω

√

√ 2
π

(x − x ′)2

x2 + x2
ω/4

e−2(x ′/xω)2 . (22)

Furthermore, one can calculate the asymptotic values of the coefficients in the expansion
of the ground state in the coboson basis, Eqs. (10-11), obtaining for λ→∞:

c(∞)mn = −(2−δmn)
(−1)(m−n)/2
p

m!n!

√

√ 1
π

(m+ n)!
(m/2+ n/2)!

1
2m+n

1
m+ n− 1

. (23)

This expression is valid for even and nonzero n+m, and here δmn is the Kronecker delta. For
symmetry reasons the coefficients cmn vanish for odd n+m, and for n= m= 0 we find:

c(∞)00 =

√

√ 1
π

. (24)

Since the coboson ansatz corresponds to the repeated application of the coboson operator B†
0,

and for λ→∞ the wavefunctions associated with the different B†
m become orthogonal, the

asymptotic value of c00 determines the asymptotic fidelity between the correct ground state
and the coboson ansatz. The additional factor

p
2 in the fidelity comes from the definition of

the coboson basis in Eq. (10), which does not include a prefactor 1/
p

2 for m= n.
Before tackling the numerical treatment of the problem for strong but finite attraction,

we note that also the limit of infinitesimal attraction can be treated analytically. For γ = 0,
the ground state of the system is separable, with the two lowest oscillator levels occupied
for both kinds of fermions. Then, the energy ∆E approaches 2ħhω. It is very important to
notice that in this separable limit, the coboson normalization factor χ2 in Eq.(12) vanishes,
and thus the coboson ansatz is not defined for γ= 0. Nevertheless, using perturbation theory
together with analytical results for the Schmidt coefficients [46] one can calculate the limit
value of the fidelity between the true ground state and the coboson ansatz, and find that as the
attractive interaction strength approaches zero, F approaches a value of approximately 0.37.
Indeed, for γ∼ 0 we obtain χ2 ∼ 0.342θ2 and F ∼ θ2/8χ2 with θ ∼ γ/

p
2πħhωxω. We note,

however, that the weakly bound case is not within the scope of our present study, and it has
been extensively analyzed before [17–20].
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4 Numerical study of the ground state for strong attraction

In the following we perform a numerical study of the ground state according to the procedure
outlined in Sec. 2. A delicate point in the calculation is the choice of the number of basis
states. A very small number leads to a poor description of the system, whereas for a very large
number it becomes unjustified to leave out the excited states of the relative motion, and it
can also lead to numerical problems if the overlap matrix becomes worse conditioned. As a
compromise, we choose the maximum center-of-mass energy included in our description to
grow linearly with λ.

In Fig. 1 (a) we show our results for the interaction energy ∆E = E2 − 2E1 using a Taylor
expansion for the calculation of both the overlap and the Hamiltonian matrices. We also plot
in Fig. 1 (b) the fidelity F between the ansatz and the true ground state as a function of λ
when choosing the energy in the truncated basis to be given by nmax = λxω. We note that our
results show reasonable agreement with the known behaviour for infinite attraction. Notice
that the difference between the numerical ∆E obtained for λxω ≃ 200 and the asymptotic
value ħhω presented in Fig. 1 (a) is of about 4%, whereas the binding energy for this case is so
large that ∆E is five orders of magnitude smaller than the total energy.

(a) (b)

Figure 1: a) Energy for two pairs, excluding the trivial contribution equal to twice the
single-pair energy, as a function of λ. b) Fidelity between the coboson ansatz and the
numerically found ground state as a function of λ. The results are obtained from the
lowest non-trivial order of the Taylor expansion (green stars) and the next non-zero
higher-order corrections (black circles) as reported in Appendix A. The horizontal
dashed red lines indicate the asymptotic values for λ→∞.

As can be seen in the comparison provided in Fig. 2, for λxω = 30 the coefficients cm,n
of the ground state in the form of Eq. (11) are already very close to the ones obtained from
the hard-core boson limit given in Eqs. (23-24). This also hints at a procedure to perform
approximate computations more efficiently: instead of taking the full basis as in Fig. 2, one
can use a truncation inspired by the asymptotic values of the coefficients in Eqs. (23-24). One
can also directly approximate the state by taking the coboson basis in Eq. (10) to be a function
of λ but the coefficients in this basis to be given by the asymptotic values, which gives a fast
and compact approximation for the ground state. Indeed, the ground state found numerically
for λxω = 30 has a fidelity of 0.993 with the state obtained taking the asymptotic values of
the coefficients and truncating the basis in the same form.

From the numerical solution of the problem one can characterize the ground state through
several key properties. In particular, in Fig. 3 (a) we illustrate the spatial correlations between
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Figure 2: Coefficients in the coboson decomposition from the numerical resolution
of the problem based on a Taylor expansion for λxω = 30, in black circles. The index
k here refers to a particular ordering of the m, n coefficients using a single label. For
comparison we show the values according to the asymptotic expression in Eqs. (23-
24) as red four-pointed stars, which overlap with the numerical resuls within the size
of the symbols. The basis was truncated with nmax = λxω. The coefficients in the
plot are normalized taking c tSc = 1. The vertical dashed light-gray lines delimitate
sections of the basis containing states B†

mB†
n|v〉 with a fixed value of m+ n.

fermions of equal kind through the joint density distribution

Daa(x , x ′) = 〈ψ|Ψ†
a(x
′)Ψ†

a(x)Ψa(x)Ψa(x
′)|ψ〉 , (25)

evaluated for the case λxω = 30. The details of the calculation are provided in Appendix B.
This plot displays clear signatures of Pauli exclusion as a sharp diagonal feature. Two identical
fermions are most likely found apart from each other at a distance which is set by the spatial
scale of the harmonic trap.

For comparison, Fig. 3 (b) displays the joint density for fermions of different kinds:

Dab(x , x ′) = 〈ψ|Ψ†
b(x
′)Ψ†

a(x)Ψa(x)Ψb(x
′)|ψ〉 . (26)

This plot exhibits a strong diagonal correlation corresponding to particles that form a bound
pair, with additional much broader peaks corresponding to particles belonging to different
pairs. The calculation of Dab is explained in Appendix C.

Another quantity that reflects the spatial correlations present in the ground state is the
conditional probability Paa(x |0) to find one fermion of kind a at position x given that an-
other identical fermion was found at the origin. This function is plotted in Fig. 4 (a), for the
numerical solution with λxω = 30. For comparison we also show the conditional probabil-
ity Paa(x |0) obtained from the hard-core limit of λ → ∞ and from the coboson ansatz of
Eq. (12) evaluated for λxω = 30. The corresponding formulas are given in Appendix B. The
plots show qualitative agreement between the numerical results and the point-like hard-core
boson limit, in sharp contrast with the coboson ansatz in its standard form. Indeed, the form
of the conditional probability Paa(x |0) is similar to the probability distribution corresponding
to the first excited state of the harmonic oscillator, the maxima of which are indicated with
dotted vertical lines in the figure.

In a similar manner one can compare the predictions for the spatial correlations of fermions
of different kinds. To this aim, we consider the behaviour of the conditional particle density
Dab(x |x ′) indicating the density of fermions of kind a at position x conditioned on having
found a fermion of kind b at position x ′. We plot this quantity with x ′ = 0 for the numerical
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(a) (b)

Figure 3: a) Joint density distribution Daa(x , x ′) in units of x−2
ω , for two fermions of

kind a at positions x and x ′ simultaneously. b) Joint density distribution Dab(x , x ′),
in units of x−2

ω , for finding a fermion of kind a at position x and one of kind b at
position x ′ simultaneously. Both densities were obtained from the numerical solution
for λxω = 30. Details of the calculations are given in Appendices B and C.

(a) (b)

Figure 4: a) Conditional probability Paa(x |0) to find a fermion of kind a at position
x when another fermion was already found at the origin. b) Conditional density
Dab(x |0) indicating the density of fermions of kind a at position x conditioned on
having found a fermion of kind b at the origin. In both plots the solid black curve is
the numerical result with λxω = 30 and nmax = λxω. The dashed red curve is the
analytical result for the probability obtained for the point-like hard-core boson limit,
and the blue dash-dotted line is the probability predicted by the coboson ansatz in
Eq. (12) for N = 2 and λxω = 30. Details of the calculations are given in Appendices
B and C. The vertical light-gray lines indicate the positions ± xω/

p
2, which are the

locations of the maxima of the conditional probability for λ→∞.
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solution corresponding to λxω = 30 in Fig. 4 (b), where we also plot the predictions of the
point-like hard-core boson limit and the coboson ansatz for λxω = 30. The derivation of the
corresponding formulas is shown in Appendix C. All three curves have a narrow peak around
the origin, associated with the probability to find a fermion paired with the first one detected
(in the limit λ→∞ this peak is a delta function). The curves however differ strongly in the
behaviour related with the probability to find the remaining particle of kind a. This second
contribution to the conditional density has the same shape as Paa(x |0), and closely resembles
the probability distribution for the first excited state of the harmonic oscillator of mass 2m, a
behaviour which is not properly described by the standard coboson ansatz.

(a)

(b) (c)

Figure 5: a) Off-diagonal correlation function g2(x), b) off-diagonal matrix elements
and c) diagonal matrix elements of the reduced density matrix ρab. Black solid lines
correspond to numerical results for λxω = 30, red dashed ones to point-like hard-
core bosons and blue dash-dotted lines correspond to the prediction of the coboson
ansatz for N = 2 and λxω = 30. Details are provided in the main text and in Ap-
pendix D. Notice that the vertical axis of subplot (a) does not begin at zero.

Figures 3 and 4 were concerned with density distributions in space, associated with diago-
nal terms of the system’s density matrix in space representation. Figure 5 a) shows in contrast
an off-diagonal feature, namely the off-diagonal correlation function [17]:

g2(x) =
ρab(0,0; x , x)

p

ρab(0, 0;0, 0)ρab(x , x; x , x)
, (27)

where ρab is the reduced density matrix for two fermions of different kind. The quantity g2
is an indicator of spatial two-particle coherence, and the coboson ansatz predicts a constant
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value g2(x) = 1 in the limit of infinite attraction. The numerical results (in black) show that
this coherence decays within the typical scale set by the harmonic oscillator, but it stays high
for all values with non-negligible particle densities. Nevertheless, the off-diagonal correlation
we find is always smaller than the one corresponding to the hard-core limit, depicted in red
for comparison. This is not due to a variation in the decay of the spatial coherence, as can be
seen in Fig. 5 b). Rather, the difference between our numerical results and the limit λ→∞
is given by a different density profile, since the particle density at the origin is lower for finite
λ than in the limit of infinite attraction.

Figure 6: Joint density distribution eDab(k, k′), in units of x2
ω, for finding a fermion

of kind a with momentum k and one of kind b with momentum k′ simultaneously,
obtained from the numerical solution for λxω = 30. Details are provided in the main
text and in Appendix E.

For the same numerically found ground state one can also characterize the properties in
momentum space using similar techniques. In Fig. 6 we show the joint probability distribution
for fermions of different kinds in momentum space. This plot displays a strong anti-diagonal
peak which is the counterpart of the diagonal peak found for the joint probability distribution
in position space, shown in Fig. 3 (b). The remaining features of the plot do not ressemble the
state of two identical trapped fermions of mass 2m; this difference in the behaviour of position
and momentum is typical of hard-core bosons [7,32,47]. The calculation of the joint density
in momentum space is similar to the one of Dab(x , x ′), but involves a Fourier transform of the
coboson basis. The details are explained in Appendix E.

5 Summary and conclusions

We have tackled the problem of two identical composite particles, each made of two distin-
guishable fermions, inside a harmonic trap and with contact attractive interactions between
fermions of different species. We explored the strongly bound regime using the coboson for-
malism to build a compact basis of states, greatly reducing the computational requirements
associated with the usual description in terms of single-particle eigenstates.

We have studied the approach of the interaction energy to the limit of infinite attraction,
corresponding to point-like hard-core bosons, and we have confirmed that the coboson ansatz
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in its standard form does not provide an accurate description of the ground state for any of the
interaction strengths within our analysis. Since the energy of the coboson ansatz for N pairs
can be approximated from the energy for one and two pairs [23] the coboson ansatz cannot
provide a good estimation for the energy of a system made of N pairs. We have also shown that
the point-like hard-core boson limit provides a good approximation of the coefficients when
writing the ground state in the coboson basis. Furthermore, we have used the numerical
results to characterize spatial correlations present in the ground state, both between fermions
of different and equal kinds, complementing previous work [17].

The composite-boson procedure presented can be generalized to higher numbers of parti-
cles and different forms of the trapping potential. Most importantly, we expect this approach
to provide an additional tool to the ones usually applied for the description of experiments in-
volving bosonic Feshbach molecules made of fermionic constituents in quasi one-dimensional
settings.
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A Calculation of Hamiltonian and overlap matrix in position basis

In the limit of very strong interaction, it makes sense to use that the wavefunctions for the
center of mass vary over a scale which is much larger than the one for the relative motion.
Thus, we start from Eq. (15) for the elements of the overlap matrix, use that all y j are of the
order of λ−1, and perform a Taylor expansion in these small displacements. The lowest orders
give:

Smn, jk ≃ δmjδnk +δn jδmk −
5
λ

Imn, jk +
7

8λ3

∫

dx(2ϕmϕnϕ
′
jϕ
′
k +ϕmϕ

′
nϕ jϕ

′
k +ϕ

′
mϕnϕ jϕ

′
k

+ϕmϕ
′
nϕ
′
jϕk +ϕ

′
mϕnϕ

′
jϕk + 2ϕ′mϕ

′
nϕ jϕk) . (A.1)

Here, all functions are evaluated at position x , the primes mean that a first derivative must be
taken, and Imn, jk is an integral of a product of four single-particle harmonic-oscillator eigen-
states:

I jk,lm =

∫

dx ϕ j(x)ϕk(x)ϕl(x)ϕm(x) . (A.2)

These integrals are evaluated using known properties of the Hermite polynomials. In turn, the
integrals with derivatives of the eigenfunctions can be written in terms of the elements Imn, jk
using the relation:

ϕ′n =
s

mω
ħh
(
p

nϕn−1 −
p

n+ 1ϕn+1) , (A.3)
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keeping in mind that the ϕ are defined as the eigenfunctions of the harmonic oscillator with
mass 2m.

In the same way one can write an expression for the part of the Hamiltonian involving the
commutator, Eq. (18). The dominant contributions give, after some manipulations:

〈v|BmBn[V
†
j , B†

k]|v〉 ≃ 2γImn, jk

−
γ

8λ2

∫

dx [ϕmϕnϕ
′
jϕ
′
k + 3(ϕmϕ

′
nϕ jϕ

′
k +ϕmϕ

′
nϕ
′
jϕk +ϕ

′
mϕnϕ jϕ

′
k +ϕ

′
mϕnϕ

′
jϕk) + 11ϕ′mϕ

′
nϕ jϕk]

+
γ

128λ4

∫

dx{21(ϕmϕ
′
nϕ
′
jϕ
′′
k +ϕmϕ

′
nϕ
′′
j ϕ
′
k +ϕ

′
mϕnϕ

′
jϕ
′′
k +ϕ

′
mϕnϕ

′′
j ϕ
′
k) (A.4)

+ 4(ϕmϕ
′′
nϕ jϕ

′′
k +ϕmϕ

′′
nϕ
′′
j ϕk +ϕ

′′
mϕnϕ jϕ

′′
k +ϕ

′′
mϕnϕ

′′
j ϕk) + 27(ϕmϕ

′′
nϕ
′
jϕ
′
k +ϕ

′′
mϕnϕ

′
jϕ
′
k)

− 22(ϕ′mϕ
′
nϕ jϕ

′′
k +ϕ

′
mϕ
′
nϕ
′′
j ϕk) + 57ϕ′′mϕ

′′
nϕ jϕk +ϕmϕnϕ

′′
j ϕ
′′
k } ,

where again all functions are evaluated at position x and the double primes mean that a second
derivative must be taken. This formula can be calculated using similar steps as before. Putting
this together with the part from (E j + Ek)Smn, jk we can find a consistent expansion for the
Hamiltonian up to this order.

For our numerical calculations, we include the orders reported for S and H. One could
improve this evaluation by considering higher orders of the Taylor expansion. However, we
checked that for the parameter regimes studied the results obtained with these formulas are
not significantly altered by excluding the higher order, as can be seen in Fig. 1.

B Spatial correlations for two fermions of equal kind

We first consider the joint density distribution for fermions of equal kind:

Daa(x , x ′) = 〈ψ|Ψ†
a(x
′)Ψ†

a(x)Ψa(x)Ψa(x
′)|ψ〉 , (B.1)

of course, taking two fermions of kind b leads in our model to the same result. We note that
this definition means that:

∫∫

dx dx ′Daa(x , x ′) = 2 . (B.2)

We now show how we calculate this joint density for the numerically found ground state.
Starting from the expansion of the state in the coboson basis, Eq. (11), we find:

Daa(x , x ′) =
∑

m≤n

∑

j≤l

cmn c jl [J
( jm)
1 (x)J (ln)1 (x ′)− J ( jn)2 (x , x ′)J (ml)

2 (x , x ′)]

+ same with n↔ m, j↔ l, and {n, l}↔ {m, j} . (B.3)

The result for the standard coboson ansatz corresponds to setting all c jl to zero except for c00.
In the formula above we have introduced auxiliary integrals given by:

J ( jm)1 (x) =

∫

dx ′ψ j(x , x ′)ψm(x , x ′) , (B.4)

and

J ( jm)2 (x , x ′) =

∫

dx ′′ψ j(x , x ′′)ψm(x
′, x ′′) . (B.5)
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The integrals J2 account for fermion-exchange terms and are negligible unless x and x ′ are
close together within a distance of order 1/λ.

From these formulas one can recover the vanishing of the conditional probability for x = x ′

for arbitrary states. For the limit λ→∞, the joint density Daa tends to the expression given in
Eq. (21) which was calculated from the ground state of two point-like hard-core bosons. In the
limit of very large but finite attraction, one can resort to a Taylor expansion for the calculation
of the integrals, in the same spirit as the calculations in Appendix A. For J1 we obtain:

J ( jm)1 (x)≃ ϕ jϕm +
1

16λ2
[2ϕ′jϕ

′
m +ϕ

′′
j ϕm +ϕ jϕ

′′
m]

+
1

256λ4
[6ϕ′′j ϕ

′′
m + 4ϕ(3)j ϕ

′
m + 4ϕ′jϕ

(3)
m +ϕ

(4)
j ϕn +ϕ jϕ

(4)
m ] . (B.6)

Here, all functions are evaluated at position x and we are using primes (double primes) over
the functions to denote derivatives (second derivatives), whereas derivatives of higher order
are indicated with superindices between parenthesis. We remind the reader that the ϕn indi-
cate the oscillator eigenfunctions for mass 2m.

The integral for J2 can be expanded as:

J ( jm)2 (x , x ′)≃ e−λ|x−x ′|
¦

ϕ j(x)ϕm(x
′)(1+λ|x − x ′|)

−
1

4λ

�

ϕ′j(x)ϕm(x
′)−ϕ j(x)ϕ

′
m(x
′)]λ(x − x ′)(1+λ|x − x ′|)

�

+
1

6λ2

�1
4
ϕ′j(x)ϕ

′
m(x
′)
�

3+ 3λ|x − x ′| −λ3|x − x ′|3
�

+
1
8

�

ϕ′′j (x)ϕm(x
′) +ϕ j(x)ϕ

′′
m(x
′)
��

3+ 3λ|x − x ′|+ 3λ2(x − x ′)2 + 2λ3|x − x ′|3
��©

. (B.7)

From the joint density Daa(x , x ′) one can also calculate the conditional probability
Paa(x |x ′) of finding a particle of kind a at position x when another of the same kind was
found at position x ′. This can be computed from:

Paa(x |x ′) =
Daa(x , x ′)

〈ψ|Ψ†
a(x ′)Ψa(x ′)|ψ〉

, (B.8)

so that:
∫

dx Paa(x |x ′) = 1 ∀ x ′ . (B.9)

For the limit λ→∞, the conditional probability Paa tends to the expression given in Eq. (22)
calculated from the ground state of two point-like hard-core bosons.

On the other hand, the standard coboson ansatz predicts for λ →∞ a behaviour of the
form:

Daa(x , x ′) =

¨

2ϕ0(x)2ϕ0(x ′)2 if x ̸= x ′ ,

0 if x = x ′ ,
(B.10)

so that

Paa(x |x ′) =

¨

ϕ0(x)2 if x ̸= x ′ ,

0 if x = x ′ .
(B.11)

C Spatial correlations for fermions of different kinds

We now calculate spatial correlations between fermions of different kinds. In particular, we
are interested in the joint particle density

Dab(x , x ′) = 4ρab(xa, xb; xa, xb) . (C.1)

15

https://scipost.org
https://scipost.org/SciPostPhysCore.6.1.012


SciPost Phys. Core 6, 012 (2023)

Here, ρab is the reduced density matrix of two different fermions in position basis and is given
by [17]:

ρab(xa, xb; x ′a, x ′b) =
1
4
〈ψ|Ψ†

a(xa)Ψ
†
b(xb)Ψb(x

′
b)Ψa(x

′
a)|ψ〉 . (C.2)

In the following we proceed to the calculation of the joint density for the general numerical
solution. Replacing the expansion of the state in the coboson basis leads to:

Dab(x , x ′) =
∑

m≤n

∑

j≤l

cmn c jl

¦�

δnlψm(x , x ′)ψ j(x , x ′) + J (ln)1 (x) J ( jm)1 (x ′)

−ψm(x , x ′)J ( jl|n)3 (x , x ′)−ψ j(x , x ′)J (mn|l)
3 (x , x ′)
�

+ same with n↔ m, j↔ l, and {n, l}↔ {m, j}
©

. (C.3)

Here, the J1 are given in Eq. (B.4), and the J3 contain interference terms given by:

J ( jl|n)3 (x , x ′) =

∫

d yd y ′ψ j(x , x − y)ψl(x
′ + y ′, x ′)ψn(x − y, x ′ + y ′) . (C.4)

Again, the result for the coboson ansatz is found setting all coefficients c jl to zero except for
c00.

Resorting to the Taylor expansion J ( jl|n)3 (x , x ′) can be approximated by

J ( jl|n)3 (x , x ′)≃ e−λ|x−x ′|
�

1

2
p
λ
ϕ j(x)ϕl(x

′)ϕn(x)
�

λ2(x − x ′)2 + 3λ|x − x ′|+ 3
�

+
1

12
p
λ

�

−ϕ′j(x)ϕl(x
′)ϕn(x) +ϕ j(x)ϕ

′
l(x
′)ϕn(x)− 3ϕ j(x)ϕl(x

′)ϕ′n(x)
�

× (x − x ′)
�

λ2(x − x ′)2 + 3λ|x − x ′|+ 3
�

+
1

24λ5/2

�

−
1
4
ϕ′j(x)ϕ

′
l(x
′)ϕn(x)−

3
4
ϕ j(x)ϕ

′
l(x
′)ϕ′n(x) +

1
4
ϕ′j(x)ϕl(x

′)ϕ′n(x)

+
1
2
ϕ j(x)ϕl(x

′)ϕ′′n (x)
�

×
�

λ4(x − x ′)4 + 2λ3|x − x ′|3 − 3λ2(x − x ′)2 − 15λ|x − x ′| − 15
�

+
1

12λ5/2

�1
2
ϕ′j(x)ϕl(x

′)ϕ′n(x) +
1
8
ϕ′′j (x)ϕl(x

′)ϕn(x) +
1
8
ϕ j(x)ϕ

′′
l (x
′)ϕn(x)

+
5
8
ϕ j(x)ϕl(x

′)ϕ′′n (x)
�

×
�

λ4(x − x ′)4 + 4λ3|x − x ′|3 + 9λ2(x − x ′)2 + 15λ|x − x ′|+ 15
�

�

. (C.5)

We note that just as in Paa, the terms with J1 are the only ones that are non-negligible when x
and x ′ are at a distance much larger than 1/λ. Thus, Paa and Dab behave in the same way for
e−λ|x−x ′|≪ 1, corresponding to detection of particles in different bound pairs. In the opposite
limit of x close to x ′, Dab has a peak of width 1/λ corresponding to detection of the particle
forming a pair with the fermion detected at x ′.

We now calculate a quantity analogue to Paa(x |x ′) but applying to fermions of different
kinds. In particular, we wish to calculate the conditional probability Pab(x |x ′) of finding a
fermion of kind a at position x conditioned on having found a fermion of kind b at position
x ′. This, however, is trickier because after the detection of one fermion of kind b there are
two remaining identical fermions of kind a.

Thus, we choose to work with a conditional particle density Dab(x |x ′) indicating the den-
sity of fermions of kind a at position x conditioned on having found a fermion of kind b at
position x ′. Since two identical fermions can never be found at the same place, this quantity is
related with the conditional probability Pab, but its interpretation is more straightforward and,
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in contrast with a probability, Dab must be normalized to 2. More precisely, the conditional
particle density is given by:

Dab(x |x ′) =
Dab(x , x ′)

〈ψ|Ψ†
b(x
′)Ψb(x ′)|ψ〉

. (C.6)

such that
∫

dx Dab(x |x ′) = 2 ∀ x ′ . (C.7)

For infinite attraction, it holds that Dab(x |x ′) = Paa(x |x ′)+δ(x− x ′) . For the coboson ansatz,
in the limit λ → ∞ one has Dab(x , x ′) = 2ϕ0(x)2[ϕ0(x ′)2 + δ(x − x ′)] and accordingly
Dab(x |x ′) = ϕ0(x ′)2 +δ(x − x ′) .

D Off-diagonal correlation parameter

Here we provide the expression for the off-diagonal correlation parameter g2(x) defined in
Eq. (27). The diagonal matrix elements appearing in the denominator are particular instances
of the calculation in the previous section, so that one can use Eq. (C.3) evaluated for x ′ = x .
For the off-diagonal part, we plug the decomposition of the state in the coboson basis and
apply (anti)commutators as in the previous sections.

ρab(0, 0; x , x)≃
1
4

∑

m≤n

∑

j≤l

cmn c jl

¦�

ψ j(x , x)ψm(0, 0)δnl + J (ln)2 (x , 0)J ( jm)2 (x , 0)

−ψ j(x , x)J (mn|l)
4 (0)−ψm(0, 0)J ( jl|n)4 (x)

�

+ same with n↔ m, j↔ l, and {n, l}↔ {m, j}
©

, (D.1)

where we have introduced a new integral expression:

J (mn|l)
4 (x) =

∫

d yd y ′ψm(y, x)ψn(x , y ′)ψl(y, y ′) , (D.2)

that can be Taylor-expanded as follows:

J (mn|l)
4 ≃

3

2
p
λ
ϕmϕnϕl

+
5

4λ5/2
[ϕ′mϕ

′
nϕl + 3ϕ′mϕnϕ

′
l + 3ϕmϕ

′
nϕ
′
l +ϕ

′′
mϕnϕl +ϕmϕ

′′
nϕl + 3ϕmϕnϕ

′′
l ] , (D.3)

with all functions evaluated at the same position.
In the limit of infinite attraction the form of g2 can be calculated using the point-like hard-

core boson solution. This gives:

g2−hc(x) =
4xp
2π
+ xωerfc(

p
2 x/xω)

Æ

4x2 + x2
ω

, (D.4)

where “erfc” is the complementary error function. This is a quite flat behaviour for g2, but still
clearly different from the totally flat profile, g2(x) = 1 ∀ x , that is obtained from the standard
coboson ansatz for λ→∞.
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E Correlations in momentum space

One can easily extend the results from the previous appendices to momentum space. In order
to do this, we resort to the expresion of the coboson wavefunctions in momentum space:

eψn(k1, k2) =

√

√ 2
πλ

xωe−iπn/2

1+
�

k1−k2
2λ

�2 ϕn[x
2
ω(k1 + k2)] , (E.1)

which is just the Fourier transform of Eq. (4). These functions are of order
p

xω/λ and decay
in a scale of order λ for the relative momentum (k1 − k2)/2 and of order

p
n/xω for the

center-of-mass momentum k1 + k2.
From this expression one can derive formulas for the correlations in momentum space

following similar steps as before. One should only keep in mind that, in contrast to position
space, the wavefunctions in momentum space are complex. In particular, we find for the
momentum correlations between fermions of different kinds an equation which is analogous
to Eq. (C.3):

eDab(k, k′) =
∑

m≤n

∑

j≤l

cmn c jl

¦�

δnl
eψ∗m(k, k′) eψ j(k, k′) + eJ (nl)

1 (k) eJ (mj)
1 (k′)

− eψ∗m(k, k′)eJ ( jl|n)3 (k, k′)− eψ j(k, k′)[eJ (mn|l)
3 (k, k′)]∗
�

+ same with n↔ m, j↔ l, and {n, l}↔ {m, j}
©

.

(E.2)

Here, the asterisk denotes a complex conjugation and we have defined:

eJ (nl)
1 (k) =

∫

dk′ eψ∗n(k, k′) eψl(k, k′) , (E.3)

and

eJ ( jl|n)3 (k, k′) =

∫

dqdq′ eψ j(k, q′) eψl(q, k′) eψ∗n(q, q′) . (E.4)

Replacing the form of the wavefunctions in momentum space one finds the integral ex-
pression:

eJ (nl)
1 (k) =

2x2
ω

πλ
eiπ(n−l)/2

∫

dk′
ϕn(x2

ωk′)ϕl(x2
ωk′)

�

1+ ( k′−2k
2λ )2
�2 . (E.5)

Taking into account the restriction on the values of n, l within our basis, one can perform
a Taylor expansion in k′/λ in the expression above. We stress that the values of k cannot
be assumed to be much smaller than λ, since λ is indeed the typical scale for the relative
momentum. In this way we obtain:

eJ (nl)
1 (k)≃

2x2
ω

πλ
eiπ(n−l)/2

∫

dk′ϕn(x
2
ωk′)ϕl(x

2
ωk′)

×





1
�

k2

λ2 + 1
�2 +

2kk′

λ2
�

k2

λ2 + 1
�3 −

(1− 5k2

λ2 )k′2

2λ2
�

k2

λ2 + 1
�4



 , (E.6)

which can be evaluated using properties of the Hermite polynomials.
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The integrals for eJ3 can be cast in the form:

eJ ( jl|n)3 (k, k′) =

�

2x2
ω

πλ

�3/2

e−iπ( j+l−n)/2

×
∫

dqdq′
ϕ j(x2

ωq′)ϕl(x2
ωq)ϕn[x2

ω(q+ q′ − k− k′)]
�

1+ ( q′−2k
2λ )2
��

1+ ( q−2k′
2λ )2
��

1+ ( k−k′+q−q′
2λ )2
� . (E.7)

Performing a Taylor expansion here is justified for the q, q′ divided by λ in the denominator,
but not for the same variables inside the wavefunction ϕ. This makes this calculation much
more involved. The Taylor expansion of the denominator gives:

eJ ( jl|n)3 (k, k′)≃
�

2x2
ω

πλ

�3/2

e−iπ( j+l−n)/2

∫

dqdq′ϕ j(x
2
ωq′)ϕl(x

2
ωq)ϕn[x

2
ω(q+ q′ − k− k′)]

×





1
�

k2

λ2 + 1
�2 � k′2

λ2 + 1
�2 � (k−k′)2

4λ2 + 1
�2

+
(k− 3k′)
�

k′(k−k′)
2λ2 − 1
�

λ2
�

k2

λ2 + 1
�2 � k′2

λ2 + 1
�3 � (k−k′)2

4λ2 + 1
�3 q+

(3k− k′)
�

k(k−k′)
2λ2 + 1
�

λ2
�

k2

λ2 + 1
�3 � k′2

λ2 + 1
�2 � (k−k′)2

4λ2 + 1
�3 q′



 , (E.8)

Here one is still left with a non-trivial integral in q, q′. This can be solved using the decompo-
sition formula

ϕn (x + y) =
∞
∑

i, j=0

Ai j|nϕi (x)ϕ j (y) , (E.9)

where the coefficients

Ai j|n =

∫ ∫

ϕn (x + y)ϕi (x)ϕ j (y)dxd y , (E.10)

can be evaluated using properties of the Hermite polynomials. For numerical evaluation this
summation must be truncated. Performing this one up to i, j = 100 good approximations are
obtained. Then we are left with terms similar to those found in the calculation for eJ1.

The first term in Eq. (E.2) contains contributions of order xω/λ which decay in a scale
of order λ for the relative momentum (k − k′)/2 and of order 1/xω for the center-of-mass
momentum k+ k′. The second term, involving eJ1, contains contributions of order 1/λ2 which
decay on a scale of order λ for k and k′ separately. We note that this contribution is broad and
has a Lorentzian decay, whereas the decay of the contributions in the first term is Gaussian for
the center of mass. Thus, they may be of the same order depending on the point where they
are evaluated. In any case, the dominant feature is the anti-diagonal resulting from the first
term. The remaining terms, containing eJ3, have a similar behaviour as the first (i.e. with a
strong anti-diagonal) but are one order smaller in 1/(λxω), which justifies using an expansion
for eJ3 to a lower order than for eJ1.
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