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Abstract

Spontaneous parametric down-conversion (SPDC) sources are an important technology
for quantum sensing and imaging. We demonstrate a general simulation method, based
on modeling from first principles, reproducing the spectrally and spatially resolved abso-
lute counts of a SPDC experiment. By additionally simulating parametric up- and down-
conversion processes with thermal photons as well as effects of the optical system we
accomplish good agreement with the experimental results. This method is broadly ap-
plicable and allows for the separation of contributing processes, virtual characterization
of SPDC sources, and enables the simulation of many quantum based applications.
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1 Introduction

Entangled and correlated photon pairs have become the basis for many applications in quan-
tum optics. They are used in various quantum based schemes such as ghost imaging [1, 2],
optical coherence tomography [3], spectroscopy [4, 5], quantum sensing [6], and imaging
with undetected photons [7–9]. One of the most prominent methods for generating entan-
gled photon pairs is spontaneous parametric down-conversion (SPDC), where a pump laser
photon decays into two lower-energy photons in a medium with a second-order nonlinearity.
The entanglement can exist in many of the photon properties, such as polarization, wave-
length, or momentum, making SPDC a versatile source for entangled photons. Additionally,
the process is easy to implement and well understood experimentally. However, an accurate
simulation method for SPDC sources is required as the foundation for simulations of many
applications with entangled photons. The availability of detailed simulations can help resolve
problems such as finding limitations to the resolution or visibility of quantum imaging [8, 9].
This issue is becoming more relevant as applications for SPDC sources are on the verge of a
breakthrough, but their limiting factors need to be understood better to exploit the full poten-
tial of such quantum based applications.

The theory of SPDC is well developed and multiple approaches to simulating the proper-
ties of the created photons are available [10, 11]. Existing SPDC simulations are tailored for
specialized applications limiting their general applicability. The limitations include restriction
to the paraxial regime [11,12] and narrow frequency or wave vector spreads [12–14]. Many
works do not predict absolute photon conversion rates [12–16]. In this letter we propose and
demonstrate a novel simulation method for SPDC sources and the subsequent measurement
setup. The sparse use of approximations makes the underlying model applicable to a wide
range of SPDC sources from the ultraviolet to the terahertz regime.

Our method reproduces the spectrally and spatially resolved absolute photon count rates.
This is demonstrated on an experiment with idler photons in the terahertz range and signal
photons in the visible range. The extreme wavelength spread between signal and idler leads
to a setup that covers a large range in frequency and emission directions and further has
multiple quasi-phasematching (QPM) orders overlapping in the same wavelength range. In
the terahertz range additional processes such as parametric up- and (nonspontaneous) down-
conversion occur parallel to SPDC. In order to adequately match the experimental data we
include these processes in our simulation. The high qualitative and quantitative agreement
with experimental results demonstrates the capabilities of our simulation method even for
complex SPDC sources.

2 Theory

Our model is based on the second-order nonlinear interaction of electromagnetic fields to-
gether with a first-order perturbation theory approximation. We start with the
Hamiltonian [17]

HNL(t) =
1
3

∫

drζ(2)jkl(r)D j(r, t)Dk(r, t)Dl(r, t) , (1)

where ζ(2)jkl is the second-order inverse susceptibility tensor and D are the displacement fields.
This formulation is necessary to ensure consistency after quantization [18,19].

We describe the pump beam as a classical monochromatic Gaussian beam with linear po-
larization. We assume that the pump is undepleted. In addition, we use the approximation of
a collimated beam such that the curvature and the Gouy phase can be neglected. The pump
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propagates along the z-axis, which we define parallel to the optical axis of the system. The
signal and idler fields are described using a plane-wave decomposition separated into positive
and negative frequency components D̂+ and D̂− with

D̂+(r, t) =
∑

k,σ

i

√

√

√ϵ0n2
kħhωk

2V
âk,σεk,σei(k·r+ωk t) , (2)

and D̂− being the hermitian conjugate of D̂+. Here, V is the quantization volume, âk,σ is
the annihilation operator for a photon with momentum k, and εk,σ is the direction of the
displacement field vector indexed with the polarization σ.

We then approximate the two-photon state |ψ(t)〉 using first-order perturbation theory.
Under the assumption that the quantization volume is large, we can make a transition from
sums to integrals in Eq. (2). From this we obtain the signal count rate density:

Γd(ks) =
1
TI
〈ψ(TI)|â†(ks)â(ks)|ψ(TI)〉

= Z
∑

σs,σi

∑

m odd

∫

dk3
i ∥A(ks,ki)∥

2 , (3)

with

A(ks,ki) =
χ
(2)
eff

m

√

√ωsωi

n2
s n2

i

sinc
�

1
2
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�

exp
�

−
1
4
(∆k2
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2
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�

sinc
�

1
2
∆ωTI

�

, (4)

and

Z =
16Pw2

p L2TI

(2π)7ϵ0npc
. (5)

Here TI is the interaction time for a pump photon with the nonlinear medium, m denotes
the odd QPM orders, and we sum over permutations of the indices j, k, l and substitute new
indices to denote pump (p), signal (s) and idler (i). ∆kz = kpz−ksz−kiz+kΛ and∆k j = ks j+ki j
with j = x , y are the longitudinal and transversal phase mismatches, and ∆ω=ωp−ωs−ωi
corresponds to the energy mismatch. The width of the transverse part is determined by the
waist radius wp of the pump beam. The periodic poling offset kΛ = 2mπ/Λ depends on
the poling period of the crystal Λ and the QPM order m. P denotes the power of the pump
beam and L the length of the crystal. The refractive indices n and χ(2)eff are functions of the
wave vectors kp, ks, ki and their corresponding polarizations. The spectral dependence of

the nonlinear coefficient is modeled with Miller’s rule [20]. The spatial variation of χ(2)eff is
considered by calculating the effective value from the tensor components and displacement
field directions [21]. Spatial variation in the refractive indices is considered following [22].
The spectral dependencies are especially relevant since we simulate a large spectral range in
the terahertz regime, from ∼ 0.1 THz to 3.6THz. The spatial variation cannot be neglected
here, because the transverse momentum conservation dictates a large emission angle range
for the idler photons.

With the idler in the terahertz range, at room temperature, thermal photons at the idler
wavelength have to be taken into account [23]. These thermal photons interact with the pump
laser as well. Through parametric down-conversion, additional photons at the signal wave-
length are created. We derive this process analogously to SPDC. Instead of an initial vacuum
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state we have a thermal state for the idler. This leads to the same phasematching properties,
but instead of a ”1” from the vacuum fluctuations we obtain the thermal fluctuations

Nth =
1

exp(ħhωi/kBTc)− 1
, (6)

where Tc is the temperature of the crystal. The influence of thermal fluctuations for the signal
can be neglected.

The emitted spectrum is propagated from the crystal onto a detector through an optical
system. The number of counts for a single detector pixel is obtained by integrating over all
signal wave vectors that are propagated to this pixel. However, not all photons created in the
crystal arrive at the detector. We consider the losses from internal reflection in the crystal,
during propagation through the optical setup and the efficiency of the detector summarized
into a single factor η(ks). With this we obtain the photon counts for the detector pixel with
indices (i, j)

R(i, j)d = T (1+ Nth)

∫

Ω(i, j)
dksη(ks)Γd(ks) , (7)

where T is the illumination time of the detector and Ω(i, j) is defined such that every ray with
kΩ ∈ Ω(i, j) at the crystal exit is propagated through the optical system onto the detector pixel
(i, j). Along the same lines we obtain the rate for the parametric up-conversion process, where
a thermal photon and a laser photon merge into a signal photon. The only changes are the
signs of the terahertz frequency ωi in the terms ∆ω and the wave vector ki j in the respective
∆k j terms with j = x , y, z. Up-conversion is only caused by thermal fluctuations, such that
the up-conversion rate is given by:

R(i, j)u = T Nth

∫

Ω(i, j)
dksη(ks)Γu(ks) . (8)

sCMOS 
camera

PPLN

f = 150 mm1 f  = 125 mm2 f = 400 mm3 

grating
1908 lines/mm

M

pump laser
659.58 nm

vertical slit
d = 1.1 mm

(b)(a)

Figure 1: Layout of the experimental setup. Only the components used in the sim-
ulations are included. f: lens. PPLN: periodically poled MgO-doped LiNbO3-crystal.
M: mirror. Length of optical paths are not to scale. (a) represents a cross section of
the spectrum after the slit. (b) sketches the separation of spectral components by the
grating. The ratio da/db quantifies the asymmetry introduced in this step.
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2.1 Simulated Setup

A sketch of the model for the experimental setup is shown in Fig. 1, where only the simulated
components are shown. The setup consists of a narrow bandwidth laser, a nonlinear crystal
and an imaging system. The spatial and spectral components of the created signal photons
are separated by the imaging system and imaged onto the detector. The imaging system con-
tains a slit to limit the transmission of rays with large kx , shown in Fig. 1 (a), resulting in a
sharper image on the detector. This effect is shown in Fig. 1 (b), where the remaining parts
of the ellipses are separated along the θs axis. A transmission grating separates the spectral
components of the photons. Photons with a fixed wavelength are emitted in a cone shape,
shown in Fig. 1 (a). This leads to an imperfect separation of spatial and spectral components,
which is shown by the full and partial ellipses in Fig. 1 (b). The ratio da/db is a measure of
how much an ellipse is squeezed. As it approaches zero, the ellipses are imaged as vertical
lines, making the spread in θs large and the one in λs small. The system further contains sev-
eral filters and Bragg gratings to suppress the pump radiation that are not considered in this
model. A detailed description of the experimental realization is given by Haase et al. [24].
The laser is modeled with a wavelength of λp = 659.58nm and a beamwaist wp = 43µm. The
nonlinear crystal is a periodically poled MgO-doped lithium niobate crystal with dimensions
5×1×10mm3 (H×W× L) and a poling period of 170µm. Due to symmetries in the nonlinear
susceptibility only the values of the χ(2)333 and χ(2)311 components need to be considered. The χ(2)222

component is not relevant to any processes in our setup. We use a value of χ(2)333 = 327 pm/V
at 661nm and 0.75 THz which we obtained from a fit to the experimental results. The value
of χ(2)311 = 49 pm/V at 661 nm and 0.75THz is a scaled value from [25]. The contributions
of this parameter are small such that a reliable fit is not possible. The refractive indices, for
∼ 5 mol.% MgO-doped LiNbO3, are taken from [26,27].

2.2 Optical Propagation

The propagation through the optical system is modeled by paraxial ray optics assuming ideal
optical components. The paraxial approximation is reasonable as only the signal photons are
detected. The idler photons which are emitted at larger angles are not considered. Since the
longitudinal positions of the optical components are not exactly known, they are estimated
from the imaging properties of the setup. This is done using numerical optimization to min-
imize the squared difference of three experimentally measured values: the transformation of
wavelength into a position on the x-axis, the relation between emission angle and position on
the y-axis, and the squeezing of a monochromatic circular beam, defined by the ratio da/db.
We also penalize deviations from the measured positions. This procedure of estimating the
parameters of the setup mimics the alignment process performed in the experiment, where
the components are moved around their nominal positions to obtain a sharper image. The
calculated values deviate from the nominal distances of the setup, but reproduce the imag-
ing properties of the actual experiment. Further sources of errors in the optical system such as
misalignment transverse to the optical axis or deviations from nominal values are not included
in our model.

2.3 Numerical Methods

We employ a Monte-Carlo integration scheme to evaluate the integrals in Eq. (3), approxi-
mating each squared sinc functions with the sum of three scaled Gaussians. This allows for
efficient sampling while maintaining a small error in the approximated function. Other ap-
proximations [10, 28] are either less accurate or less efficient. The sum in Eq. (3) is evalu-
ated up to the seventh QPM order. Since positive and negative orders are possible, a total of
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Figure 2: Experimental (a) and simulated (b) frequency-angular spectrum. The av-
erage dark count rate is subtracted from the experimental spectrum. The dashed
lines in (a) denote the location of the cuts presented in Fig. 3 and 4. The numbers
m in (b) indicate the contributions of the different QPM orders. The tails on the left
correspond to up-conversion, the ones on the right to down-conversion.

eight summands are evaluated. Higher orders contribute less than 70 counts per pixel to the
spectrum in the observed range and are therefore neglected. We consider both ordinary and
extraordinary polarization for signal and idler. Type 0 parametric conversion contributes most
of the spectrum in the investigated range, type I contributes less than 165 counts per pixel in
the region above 663.7 nm and less than 2 counts per pixel elsewhere. Type II contributes less
than 1 count per pixel in the whole range.

3 Results

The experimental and numerical results for the full spectrum are shown in Fig. 2. The exper-
imental spectrum is a single image as recorded by the sCMOS camera with the average dark
count rate subtracted. Simulated and experimental spectrum show four distinct tails for up-
as well as down-conversion. The contributing QPM orders for each tail are given in panel
(b) of the figure. The tails corresponding to the fifth QPM order are barely visible, while the
contributions of the seventh order cannot be distinguished at all due to the lower conversion
efficiency of higher orders. The experiment is limited to a scattering angle of around ±2.3◦ by
the apertures of the optical components. The simulated spectrum extends beyond this angle
as the limiting apertures are not included in the model.

The simulation shows more counts than the experiment at wavelengths lower than 655 nm
and higher than 663.5nm for up- and down-conversion, respectively. Potential reasons are
limiting apertures in the experiment or an incorrect model for the terahertz refractive indices.
The idler photons in this range have a frequency of over 2.5 THz which is beyond the mea-
sured range of our reference, covering frequencies from 0.3THz to 1.9THz. The value of χ(2)eff
depends on the refractive indices in our model such that an overestimation of n increases the
counts.

Figures 3 and 4 show horizontal and vertical cuts of the spectrum. The positive and nega-
tive values for θs correspond to the sign given in Fig. 2. As the simulated spectrum is symmetric
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Figure 3: Horizontal cut through the experimental and simulated spectra at θs = 0.2◦.
The positive and negative sign for θs correspond to cuts through the upper and lower
half of Fig. 2 respectively. The simulated spectrum is symmetric in θs, thus only one
line is shown.
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Figure 4: Vertical cuts through the experimental and simulated spectra. Panel (a)
shows a cut in the up-conversion regime, panel (b) in the down-conversion regime.
The color coding is the same as in Fig. 3.

in θs only one line is shown. Both cuts show good agreement in position, width and height
of the peaks. The experimental spectrum shows some remaining pump light around the laser
wavelength at the center of Fig. 3. This is more pronounced for the +θs case. In the model we
assume the pump to be blocked completely, therefore the simulated spectrum does not show
the pump rest.

The tails of the experimental spectrum are slightly narrower and more pronounced, which
is due to the experiment being adjusted for a maximally sharp image, while the simulated setup
is not. It is optimized to reproduce three imaging characteristics of the experiment. Observed
differences between simulation and experiment are of the same order of magnitude as the
differences between the two experimental results. Peaks found in the cuts from larger angles
or larger wavelengths match in shape and position. The peaks of the simulated spectrum are
significantly higher for this region. Note that the simulated spectrum exhibits some minor
modulation along the θs-axis which are numerical artifacts caused by the employed sampling
method.

Compared to our previous results [24] the simulated images show smoother tails and
prominent peaks at emission angles around 0◦. In our previous result there were gaps with
vanishing count rates in this region. The better agreement in spectrum shape allows for the
estimation of the nonlinear coefficient χ(2)333 from a fit to a large range of the simulation. Previ-

ously it was determined separately from a fit to the collinear count rate. The fitted χ(2)333 value
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agrees with a scaled value from the infrared range [25] but is ∼ 1.5 times larger than other
scaled values from the terahertz range [29, 30]. The difference can be explained by different
factors for the Hamiltonian (1

2 and 1
3) used in the classical and quantum approaches. Com-

pared to our previous estimation [24] this value is two times larger. There are two reasons for
this: First, we did not use Miller’s rule in the previous method, but assumed a constant value.
Second, we added the full optical model to the simulation, which changes the shape of the
spectrum.

In the new simulations the ratio of height of the peaks in the up- and downconversion
regime match the experiment more accurately (see Fig. 3) due to the inclusion of higher QPM
orders as well as the spectral dependence of the nonlinear coefficient. This spectral depen-
dence leads to an increase, the spatial dependence to a decrease of χ(2)eff . The net effect is an
increase of counts at larger angles which was not as prominent in the previous work.

4 Conclusions

The demonstrated simulation of parametric conversion spectra shows good agreement with the
experiment in spectral and angular distributions as well as absolute photon counts. Qualitative
and quantitative features of the experimentally obtained spectrum can be reproduced. Vari-
ous effects such as SPDC, the influence of thermal photons and parametric up-conversion were
simulated. This shows the potential of applying our model to predict accurate characteristics
of photon sources. And the possibility of identifying the contributions of different processes.
The model can be simplified for faster computation times. An important step to improve the
simulation results is to use better estimates for the crystal characteristics in the investigated
frequency range. The method provides significant benefits over traditional methods such as
the calculation of phasematching curves as no information about the width or intensity of
the spectrum is provided there. Our numerical method also allows for reconstruction of the
spectrum at the crystal face which allows to investigate spatial, spectral and correlation prop-
erties without the need of building optical setups for measuring them. Compared to previous
results [24], the propagation of the spectrum through the measurement setup improves the
simulation results. Further research is needed to separate influences of model errors in the
up- and down-conversion model from those in the optical measurement setup. Nonetheless,
the presented model provides the necessary basis for the simulation of many quantum optic
applications such as quantum imaging.

Funding information Fraunhofer-Gesellschaft (Lighthouse project QUILT).
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