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Abstract

We first compare the geometric frameworks behind the Uhlmann and Berry phases in a
fiber-bundle language and then evaluate the Uhlmann phases of bosonic and fermionic
coherent states. The Uhlmann phases of both coherent states are shown to carry geo-
metric information and decrease smoothly with temperature. Importantly, the Uhlmann
phases approach the corresponding Berry phases as temperature decreases. Together
with previous examples in the literature, we propose a correspondence between the
Uhlmann and Berry phases in the zero-temperature limit as a general property except
some special cases and present a conditional proof of the correspondence.
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1 Introduction

The Berry phase [1] reveals geometric information of quantum wavefunctions via their phases
acquired after an adiabatic cyclic process, and its concept has laid the foundation for under-
standing many topological properties of materials [2–13]. The theory of Berry phase is built
on pure quantum states. For example, the ground state fits the description as the limit of a
statistical ensemble at zero temperature. At finite temperatures, the density matrix describes
thermal properties of a quantum system by associating a thermal distribution to all the states
of the system. Therefore, it is an important task to generalize the Berry phase to the realm of
mixed quantum states.

There have been several approaches to address this problem [14–21], among which the
Uhlmann phase has attracted much attention recently since it has been shown to exhibit topo-
logical phase transitions at finite temperatures in several 1D, 2D, and spin- j systems [22–26].
A key feature of those systems is the discontinuous jumps of the Uhlmann phase at the criti-
cal temperatures, signifying the changes of the underlying Uhlmann holonomy as the system
traverses a loop in the parameter space. However, due to the complexity of the mathematical
structure and physical interpretation, the knowledge of the Uhlmann phase is far less than
that of the Berry phase in the literature. Moreover, only a handful of models allow analytical
results of the Uhlmann phase to be obtained [22–30]. The Berry phase is purely geometric
in the sense that it does not depend on any dynamical effect during the time evolution of the
quantum system of interest [31]. Therefore, the theory of the Berry phase can be constructed
in a purely mathematical manner. As a generalization, the Uhlmann phase of density matrices
was built in an almost parallel way from a mathematical point of view and shares many geo-
metric properties with the Berry phase. We will first summarize both the Berry and Uhlmann
phases using a fiber-bundle language to highlight their geometric properties.

Next, we will present the analytic expressions of the Uhlmann phases of bosonic and
fermionic coherent states and show that their values approach the corresponding Berry phases
as temperature approaches zero. Both types of coherent states are useful in the construction
of path integrals of quantum fields [32–37]. While any number of bosons are allowed in a
single state, the Pauli exclusion principle restricts the fermion number of a single state to be
zero or one. Therefore, complex numbers are used in the bosonic coherent states while Grass-
mann numbers are used in the fermionic coherent states. The bosonic coherent states are also
used in quantum optics to describe radiation from a classical source [38–41]. Moreover, the
Berry phases of coherent states can be found in the literature [42–45], and we summarize the
results in Appendix A. Our exact results of the Uhlmann phases of bosonic and fermionic co-
herent states suggest that they indeed carry geometric information, as expected by the concept
of holonomy and analogy to the Berry phase. We will show that the Uhlmann phases of both
cases decrease smoothly with temperature without a finite-temperature transition, in contrast
to some examples with finite-temperature transitions in previous studies [22–30]. As temper-
ature drops to zero, the Uhlmann phases of bosonic and fermionic coherent state approach the
corresponding Berry phases.

Our results of the coherent states, along with earlier observations [22,24,26], suggest the
Uhlmann phase reduce to the corresponding Berry phase in the zero-temperature limit. The
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correspondence is nontrivial because the Uhlmann phase requires full-rank density matrices,
which cannot be satisfied only by the ground state at zero temperature. Moreover, the fiber
bundle for density matrices in Uhlmann’s theory is a trivial one [46], but the fiber bundle for
wavevfunctions in the theory of Berry phase needs not be trivial. A similar question on why the
Uhlmann phase agrees with the Berry phase in certain systems as temperature approaches zero
was asked in Ref. [29] without an answer. In the last part of the paper, we present a detailed
analysis of the Uhlmann phase at low temperatures to search for direct relevance with the
Berry phase. With the clues from the previous examples, we present a conditional proof of
the correspondence by focusing on systems allowing analytic treatments of the path-ordering
operations.

Before showing the results, we present a brief comparison between the Uhlmann phase
and another frequently mentioned geometrical phase for mixed quantum states proposed in
Refs. [16, 47], which was originally introduced for unitary evolution but later extended to
nonunitary evolution [48]. This geometrical phase was inspired by a generalization of the
Mach-Zehnder interferometry in optics and was named accordingly as the interferometric
phase. It has a different formalism with a more intuitive physical picture and has been mea-
sured in experiments [49]. In general situations, the interferometric phase can be expressed
as the argument of a weighted sum of the Berry phase factors from each individual eigenstate.
Thus, its relation to the Berry phase is obvious. However, the concise topological meaning of
the interferometric phase is less transparent since it is not directly connected to the holon-
omy of the underlying bundle as the Uhlmann phase does. The reason has been discussed in
a previous comparison [50] between the two geometrical phases. The interferometric phase
relies solely on the evolution of the system state while the Uhlmann phase is influenced by
the changes of both the system and ancilla, which result in the Uhlmann holonomy. Although
Uhlmann’s approach can be cast into a formalism parallel to that of the Berry phase as we will
explain shortly, its exact connection to the Berry phase is still unclear. The Uhlmann-Berry
correspondence discussed below will offer an insight into this challenging problem.

The rest of the paper is organized as follows. In Sec. 2, we first present concise frameworks
based on geometry for the Berry and Uhlmann phases, using a fiber-bundle language. In
Sec. 3, we derive the analytic expressions of the Uhlmann phases of bosonic and fermionic
coherent states and analyze their temperature dependence. Additionally, the Uhlmann phase
of a three-level system is also presented. Importantly, the Uhlmann phases of both types of
coherent states and the three-level system are shown to approach the respective Berry phases
as temperature approaches zero. In Sec. 4, we propose the generality of the correspondence
between the Uhlmann and Berry phases in the zero-temperature limit and give a conditional
proof. In Sec. 5, we discuss experimental implications and propose a protocol for simulating
and measuring the Uhlmann phase of bosonic coherent states. Sec. 6 concludes out work. The
Berry phases of bosonic and fermionic coherent sates and the special cases with a 1D Hilbert
space are summarized in the Appendix.

2 Overview of Berry and Uhlmann phases

2.1 Berry phase in the bundle language

We adopt the natural units with kB = 1 = ħh. The first part of the overview of the Berry phase
follows Refs. [1,31,46]. The Berry phase arises under a cyclic adiabatic evolution experienced
by a quantum state through external parameters. The Hamiltonian of the system is given by
Ĥ(R), where R = (R1, R2, · · · , Rk)T ∈ M is the collection of the external parameters. If the
state |n(R(t))〉 evolves adiabatically along a closed curve C(t) := R(t) (0 ≤ t ≤ τ) in the
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parameter space M , at the end of the evolution the final state obtains a geometric phase

θn = i

∫ τ

0

dt〈n (R(t)) |
d
dt
|n (R(t))〉 , (1)

with respect to the initial state.
The theory of Berry phase can be cast into another equivalent formalism by introducing

the parallel-transport of quantum states. If two pure states |ψ1,2〉 are in phase with each other,
i.e. arg〈ψ1|ψ2〉 = 0 or 〈ψ1|ψ2〉 = 〈ψ2|ψ1〉 > 0, they are also said to be parallel with each
other. Thus, the parallel-transport of a state |ψ(t)〉 is defined via

〈ψ(t)|ψ(t + dt)〉= 〈ψ(t + dt)|ψ(t)〉> 0 , (2)

whose differential form is

〈ψ(t)|
d
dt
|ψ(t)〉= 0 . (3)

The parallel condition lacks transitivity, so it does not define an equivalence relation. There-
fore, even if a system follows parallel transport, its quantum state, say |n(R(t))〉, may gradually
acquire an extra phase other than the dynamical phase. We assume |ψ(t)〉 = eiθn(t)|n(R(t))〉
and substitute it into the condition (3) to get

i
dθn

dt
+ 〈n(R(t))|

d
dt
|n(R(t))〉= 0 . (4)

Solving this differential equation, we directly obtain the Berry phase shown in Eq. (1). Using
d
dt = Ṙ · ∇R, it can be also expressed as

θn = arg〈ψ(0)|ψ(τ)〉= i

∮

C
dt〈n (R(t)) |∇R|n (R(t))〉 · dR , (5)

which carries geometric information of C(t) in the parameter space. Accordingly, the Berry
phase is a geometric phase that a quantum state obtains after being parallel-transported along a
loop in the parameter space. This means that the Berry phase factor eiθn is actually a holonomy
in the language of differential geometry. Based on these discussions, the theory of Berry phase
can be elegantly illustrated in a principle-bundle description. Some details can be found in
Ref. [31], and here we present an improved and simplified discussion.

During an adiabatic evolution, no energy-level crossing occurs. Thus, once a quantum
system initially starts from the nth level |n(R(0)〉, it will stay in the instantaneous state |n(R(t)〉.
Hence, we will use the abbreviation |R〉 ≡ |n(R)〉 hereafter. Define P = {|R〉|〈R|R〉 = 1}.
Since |R〉 ∼ eiχ |R〉 where χ is an arbitrary phase, the genuine phase space of the system is
H = P/ ∼. We construct a fiber bundle P(H,U(1)), where P is the total space, H is the
base manifold and U(1) is the structure group. A projective operator π : P → H acts as
π(eiχ |R〉) = |R〉,∀eiχ ∈U(1). Conversely,

π−1(|R〉) = {g|R〉|g ∈ U(1)} (6)

is the fiber FR at the point |R〉, which is isomorphic to U(1). Thus, what we construct is a
U(1)-principle bundle. A section σ : H → P is a smooth map such that π ◦ σ = 1H , which
locally fixes the phase of |R〉 as σ(|R〉) = eiθ (R)|R〉.

The loop C(t) induces a loop in H as γ(t) := |R(t)〉 (|R(0)〉= |R(τ)〉). A curve γ̃(t) ∈ P is
called a lift of γ(t) if π ◦ γ̃= γ. The formerly mentioned |ψ(t)〉= eiθn(t)|n(R(t))〉 is actually a
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lift of γ. Let X and X̃ be the tangent vectors to γ and γ̃, respectively, then they satisfy π∗X̃ = X .
Moreover, we introduce a connection 1-form at |ψ〉 as

ω|ψ〉 = 〈ψ|dP |ψ〉 , (7)

where dP is the exterior derivative on P. Note X̃ can be locally expressed as X̃ = d
dt since γ̃ is

parameterized by t. Then Eq. (4) can be written in the more generic form

ω(X̃ ) = 0 , (8)

which is equivalent to the parallel-transport condition (3). This indicates that X̃ is a horizontal
vector belonging to T P. Here T P is the tangent bundle of P. Accordingly, γ̃(t) is called the
horizontal lift of γ(t). The pullback of ω by σ is AB = σ∗ω = 〈ψ|dH |ψ〉, where dH is the
exterior derivative on H. Since dH does not act on the fiber space, AB is also expressed as

AB = 〈R|e−iθndH

�

eiθn |R〉
�

= 〈R|dH |R〉 , (9)

i.e. it is the well-known Berry connection on the base manifold H. Let g(t) = eiθn(t). ω can
be conversely constructed as

ω= π∗AB + g−1dP g . (10)

A connection defined by Eq. (10) is also called an Ehresmann connection [51]. Using this, the
condition (8) becomes

0= π∗AB(X̃ ) + g−1dP g(X̃ ) = AB(π∗X̃ ) + g−1 dg
dt

, (11)

which is equivalent to

∇X g = 0 . (12)

Here ∇i =
∂
∂ Ri
+ ABi is the covariant derivative associated with the Berry connection. Hence,

the parallel-transport condition indicates that the phase factor, viewed as a vector in the fiber
space, is parallel transported along γ(t) ∈ H (or equivalently, C(t) ∈ M). Thus, g(τ) = e−

∮

C AB

is a holonomy of the bundle, called the Berry holonomy. The Berry phase θB = arg g(τ) is a
measure of the loss of parallelity after the system is parallel-transported along a loop.

There are more features in the fiber bundle. According to Eq. (8), the Ehresmann connec-
tion ω naturally separates T P into the horizontal and vertical subspaces as T P = HP ⊕V P. It
is also worthwhile to calculate ω(X̃ V ), where X̃ V ∈ V P is a vertical vector. Let u(t) =ω(X̃ V ).
Since X̃ V is vertical, it follows that π∗X̃

V = 0. Following a similar derivation as Eq. (11), we
get

u(t) = π∗AB(X̃
V ) + g−1dP g(X̃ V ) = g−1 dg

dt
, (13)

which further implies

g(t) = e
∫ t

0 u(t ′)dt ′ g(0) . (14)

Here e
∫ t

0 u(t ′)dt ′ is a phase transformation induced by a curve in the fibre space, and u ∈ u(1)

is its generator. Moreover, X̃ V is the tangent vector of the curve e
∫ t

0 u(t ′)dt ′ , and we follow the
terminology of Ref. [51] to write X̃ V = u#. Consequently, we have

ω(u#) = u (15)

if u# is a vertical vector. We emphasize that the generalizations of Eqs. (8) and (15) play
important roles in the theory of Uhlmann phase.
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2.2 Uhlmann phase in the bundle language

A generalization of the Berry phase to mixed states is both natural and necessary, given the
abundance of phenomena in nature described by mixed states. However, mixed quantum
states are usually represented by density matrices, which are Hermitian operators and carry
no explicit information about phase. Inspired by the structure ρ = |ψ〉〈ψ| for the density
matrix of a pure state, Uhlmann introduced [14] the decomposition ρ = WW † for a generic
full-rank density matrix ρ, where W is called the purification or amplitude of ρ. The decom-
position is not unique because W = pρU with U ∈ U(N) also satisfies the decomposition.
Here N is the dimension of the Hilbert space, and U is called the phase factor of W . One may
see the analogy of a pure-state wavefunction: ψ(x) =

p

|ψ(x)|2ei argψ(x). If ρ is diagonalized
as ρ =
∑

nλn|n〉〈n|, the purification is accordingly expressed as W =
∑

n

p

λn|n〉〈n|U . Impor-
tantly, there is a corresponding state-vector representation |W 〉 =

∑

n

p

λn|n〉 ⊗ U T |n〉, called
the purified state of ρ. The inner product of two purified states is the Hilbert-Schmidt product
between two purifications:

〈W1|W2〉= Tr(W †
1 W2) . (16)

A key point in the construction of the theory of Uhlmann phase is to extend the parallel-
transport condition (3) to mixed states. A direct and naive generalization seems to be

〈W (t)|
d
dt
|W (t)〉= 0 . (17)

However, this only leads to a single equation and cannot determine the N × N ma-
trix W . On the other hand, it can be found that the Fubini-Study length along a curve C(t),

LFS =

∫ τ

C ,0

Æ

〈ψ̇|ψ̇〉dt, is minimized if and only if Eq. (3) holds [52,53]. A similar result holds

for mixed states: The Hilbert-Schmidt length LHS =

∫ τ

C ,0

Æ

Tr(Ẇ †Ẇ )dt is minimized if and

only if [28,53]

ẆW † =W †Ẇ , (18)

which implies Im〈W (t)| d
dt |W (t)〉 = 0. Eq. (17) can be deduced from this condition by noting

that 〈W (t)|W (t)〉= 1. The matrix equation (18) has N ×N entries, giving N ×N restrictions.
Hence, the condition is much stronger than Eq. (17).

The Uhlmann phase was introduced from a purely mathematical manner, and its physical
interpretation still needs more work. Following the geometric description of the Berry phase,
we first construct a U(N)-principle bundle P(H,U(N)) for mixed states, where H is the base
manifold including all N -dimensional full-rank density matrices, P is the total space spanned
by W , and a projection π : P → H is defined by

π(W ) =WW † = ρ . (19)

Here U(N) is the structure group, which contains all unitary phase-factor transformations.
Conversely, a smooth map σ : H → P satisfying π◦σ = 1P is called a section. There is a global
section σ(ρ) =pρ defined on the entire H. Thus, this principle bundle is always trivial [46].
Nevertheless, many interesting and instructive results can still be inferred from the formalism,
as we will show below.

When the system traverses a closed curve C(t) := R(t) ∈ M (0 ≤ t ≤ τ), the density
matrix evolves along an induced loop γ(t) := ρ(t) ≡ ρ(R(t)) in H accordingly. Similar to
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the geometric description of the Berry phase, we set to find a horizontal lift γ̃ of γ such that
when the corresponding purification varies along γ̃, the parallel-transport condition (18) is
satisfied. This requirement can be fulfilled if a connectionω defined on P meets the condition
ω(X̃ ) = 0, where γ̃ is the tangent vector of X̃ . To find ω, we return to the parallel-transport
condition (18), which can be rewritten as

W †dPẆ (X̃ )− dPW (X̃ )W † = 0 . (20)

A trial form ofω isω=W †dPẆ −dPWW †. However, this does not meet the proper definition
for a connection. It can be shown that ω defined this way does not transform like a gauge
potential under a gauge transformation W ′→W V , where V ∈ U(N). To resolve the problem,
we make use of Eq. (15) and note that a curve in the fiber space π−1(ρ) can always be
expressed as W (t) = pρetu, where u ∈ u(N) is an anti-Hermitian matrix. Let X̃ V be the
tangent vector of this curve, which is by definition a vertical vector. It is straightforward to
find

dPW (X̃ V ) =Wu . (21)

Thus, by replacing the horizontal vector in the left-hand-side of Eq. (20) by X̃ V and using
u† = −u, we get

W †dPẆ (X̃ V )− dPW (X̃ V )W † =W †Wu− uW †W. (22)

Moreover, since u is the generator of the curve W (t) = pρetu, whose tangent vector is X̃ V ,
we can also write X̃ V = u# as before. A generalization of Eq. (15) is ω(X̃ V ) = u. Substituting
this into the right-hand-side of Eq. (22), we have

W †dPẆ (X̃ V )− dPW (X̃ V )W † =W †Wω(X̃ V )−ω(X̃ V )W †W. (23)

The identity holds even for a horizontal vector X̃ H due to Eq. (20) and ω(X̃ H) = 0. Thus, the
connection ω satisfies the following equation

W †dPW − dPWW † =W †Wω−ωW †W . (24)

It can be verified that under a gauge transformation W ′→W V , ω defined by Eq. (24) trans-
forms as ω′ = V †ωV + V †dP V and qualifies as a non-Abelian gauge potential. In Uhlmann’s
original paper [15], Eq. (24) is introduced as an ansartz to define a connection over the whole
bundle. Here we find that it can be directly obtained from the condition ω(u#) = u.

The pullback of ω by σ is the Uhlmann connection AU = σ∗ω. Let U = etu, and we have
ω(X̃ V ) = u= U† dU

dt . Based on these results andω(X̃ H) = 0, ifω is the Ehresmann connection,
it can be expressed as

ω= U†π∗AU U + U†dP U , (25)

which is the non-Abelian generalization of Eq. (10). Moreover, contracting both sides of Eq.
(25) with a horizontal vector X̃ leads to AU(X ) = −

dU
dt U†, or equivalently,

∇X U =
dU
dt
+ AU(X )U = 0 . (26)

Here X = π∗X̃ is the tangent vector to γ. Similarly, the equation shows that the phase factor U
is parallel-transported along the loop γ. Solving the equation, we get

U(τ) = Pe−
∮

C AU U(0) , (27)
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where P is the path-ordering operator. Note Pe−
∮

C AU is the Uhlmann holonomy, and the
Uhlmann phase is

θU = arg〈W (0)|W (τ)〉= argTr
�

ρ(0)Pe−
∮

C AU
�

. (28)

To derive an explicit expression of AU , we plug W =pρU into Eq. (24) and obtain

U†[
p
ρ, dP
p
ρ]U + U†ρdP U + U†dP UU†ρU = U†ρUω+ωU†ρU . (29)

Next, we use Eq. (25) to get

ρπ∗AU +π
∗AUρ = −[dP

p
ρ,ρ] . (30)

When restricted on H, it reduces to

ρAU + AUρ = −[dH
p
ρ,ρ] . (31)

Evaluating the matrix elements of both sides in the eigenstates of ρ, we get

AU = −
N
∑

n,m=1

|n〉
〈n|[dpρ,

p
ρ]|m〉

λn +λm
〈m| , (32)

where we have omitted the subscript H for convenience. We note that only when N > 1, AU
may be nonzero since the representation of a commutator is trivial in a 1D Hilbert space (see
Appendix. B for details).

We further simplify the expression (32) of AU , which will be useful in our latter discussion
on the similarity with the Berry connection AB. Using

p
ρ =
∑

n

p

λn|n〉〈n|, we have

[
p
ρ, d
p
ρ] =
∑

n

λn (|n〉d〈n| − d|n〉〈n|) +
∑

nm

Æ

λnλm (|n〉〈n|d|m〉〈m| − |m〉(d〈m|)|n〉〈n|) . (33)

By interchanging the indices n ↔ m in the last term and using (d〈n|)|m〉 = −〈n|d|m〉, it
becomes

[
p
ρ, d
p
ρ] = −
∑

nm

�
Æ

λn −
Æ

λm

�2
|n〉〈n|d|m〉〈m| , (34)

and the Uhlmann connection becomes

AU = −
∑

n̸=m

�p

λn −
p

λm

�2

λn +λm
|n〉〈n|d|m〉〈m| . (35)

3 Uhlmann phase of coherent states

Here we apply the framework to find the Uhlmann phases of bosonic and fermionic harmonic
oscillators. The corresponding Berry phases are summarized in Appendix A.

3.1 Bosonic coherent state

Here we evaluate the Uhlmann phase of bosonic coherent states, which may be constructed
from bosonic harmonic oscillators [35,39]. The Hamiltonian of a single harmonic oscillator is
Ĥ = ħhω(a†a+ 1

2), where a, a† are the annihilation and creation operators satisfying [a, a†] = 1.
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The energy levels of system are characterized by Ĥ|n〉= ħhω(n+ 1
2)|n〉with n= 0, 1,2, · · · . Pre-

viously studied examples of the Uhlmann phase of low-dimensional systems [22, 26, 28] and
spin- j systems [24, 25] are both in finite-dimensional Hilbert spaces. The bosonic harmonic
oscillator will give an infinite-dimensional example. The parallel transport of a canonical en-
semble of harmonic oscillators can be realized with the help of coherent states defined by
operating the translation operator on the ground state: |z〉 = D(z)|0〉 ≡ eza†−z̄a|0〉. Here D(z)
satisfies

D(z)aD†(z) = a− z , D(z)a†D†(z) = a† − z̄ . (36)

Moreover, |z〉 is the ground state of the translated Hamiltonian Ĥ(z) = D(z)ĤD†(z). The
excited states are obtained in a similar manner: |n, z〉= D(z)|n〉, n≥ 1.

The parameter space is thus identified as the complex z plane, and a loop for generating
the holonomy may be chosen as C(t) := z(t) with z(0) = z(τ) (0≤ t ≤ τ). Our convention is
that the counterclockwise direction of C(t) follows the increase of t. The continuous transfor-
mation D(z(t)) generates an induced loop γ(t) := ρ(z(t)) in the manifold of density matrices,
where

ρ(z) =
1
Z

e−β Ĥ(z) = D(z)ρ(0)D†(z) . (37)

Here ρ(0) = 1
Z e−β Ĥ . Since D(z) is unitary, the eigenvalues of ρ are invariant under the action

of D(z), given by λn =
1
Z e−βħhω(n+

1
2 ). Decomposing the density matrix, one obtains the purifi-

cation W (z(t)) =
p

ρ(z(t))U(z(t)). As long as the phase factor U(t) ≡ U(z(t)) satisfies the
parallel-transport equation (26) along γ(t) (or C(t) equivalently), the final state will acquire
an Uhlmann phase relative to the initial state.

Using Eq. (35), the Uhlmann connection is given by

AU = −
∑

n̸=m

(
p

λn −
p

λm)2

λn +λn
|n, z〉〈n, z|d|m, z〉〈m, z|

= −
∑

n̸=m

χnmD(z)|n〉〈n|D†(z)dD(z)|m〉〈m|D†(z) , (38)

where χnm =
(e−

n
2 βħhω−e−

m
2 βħhω)2

e−nβħhω+e−mβħhω . It can be shown that

D†(z)dD(z) =
�

a† +
1
2

z̄
�

dz −
�

a+
1
2

z
�

dz̄ . (39)

Using the above equation and 〈n|a† =
p

n〈n− 1|, a|m〉=
p

m|m− 1〉, we get

AU =− D(z)
�

∞
∑

n=1

χn,n−1
p

n|n〉〈n− 1|dz −
∞
∑

n=0

χn,n+1

p
n+ 1|n〉〈n+ 1|dz̄

�

D†(z) . (40)

Changing the index by n → n + 1 in the first line and using the property
χn,n+1 = χn+1,n = 1− sechβħhω2 , the Uhlmann connection is finally expressed as

AU = −χD(z)

�

a†
∞
∑

n=0

|n〉〈n|dz −
∞
∑

n=0

|n〉〈n|adz̄

�

D†(z)

= −χ
�

(a† − z̄)dz − (a− z)dz̄
�

, (41)

where χ = 1− sechβħhω2 and Eq. (36) have been applied.
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Let gC = Pe−
∮

C AU be the Uhlmann holonomy as the system traverses C(t). In the Fock
space spanned by {|n〉}, both a and a† are matrices of infinite dimensions, making it chal-
lenging to find an analytical expression of gC . However, this can be achieved by solving the
differential equation for D(z). Using Eq. (36), it can be shown that Eq. (39) leads to a differ-
ential equation for D(z(t)). Explicitly,

dD(z(t))
dt

=
�

a†ż − a˙̄z −
1
2
(z̄ż − z˙̄z)
�

D(z(t)) , (42)

as z varies along the loop C(t) = z(t). The solution to the above equation gives

D(z(t)) = Pe
∫ t

0{a†ż(t ′)−a˙̄z(t ′)− 1
2[z̄(t ′)ż(t ′)−z(t ′)˙̄z(t ′)]}dt ′D(z(0))

= e−
1
2

∫ t
0 [z̄(t ′)ż(t ′)−z(t ′)˙̄z(t ′)]dt ′Pe

∫ t
0 [a†ż(t ′)−a˙̄z(t ′)]dt ′D(z(0)) . (43)

Since z(τ) = z(0), D(z(τ)) = D(z(0)) and it follows that

Pe
∮

C(a†dz−adz̄) = e
1
2

∮

C (z̄dz−zdz̄) = e2iSC . (44)

Here SC is the area enclosed by C(t) along its counterclockwise direction. Let
η= 1−χ = sechβħhω2 . The Uhlmann holonomy can be simplified as

gC = Pe(1−η)
∮

C[(a†−z̄)dz−(a−z)dz̄] = e−2i(1−η2)SC1∞ , (45)

where 1∞ is the identity matrix in the bosonic Fock space, which is infinite-dimensional.
Interestingly, although gC is generated by AU , which belongs to an infinite-dimensional Lie
algebra, it only forms a subgroup of U(1). Finally, the Uhlmann phase is given by

θU = argTr [ρ(z(0))gC] = −2(1−η2)SC , (46)

where Eq. (37) has been used.
In the zero-temperature limit, limβ→∞η = 0 and θU = −2SC , exactly agreeing with the

Berry phase shown in Eq. (A.4 ). In the infinite-temperature limit, limβ→0η = 1, so θU = 0
since ρ(z(t)) is always proportional to the identity operator in this case. While the physi-
cal meaning of the Uhlmann phase, especially the parallel-transport condition for W , awaits
deeper explanations, the agreement of the Uhlmann phase with the Berry phase as T → 0 in
the case of infinite-dimensional bosonic coherent states offers more hints that their relation
may be quite general.

3.2 Fermionic coherent states

Next, we verify if the Uhlmann phase approaches the Berry phase in fermionic coherent states,
which may be constructed from the fermionic harmonic oscillator [35, 37]. We note that the
Hamiltonian of a bosonic harmonic oscillator can be cast in the form Ĥ = ħhω{a†, a}. By
considering the anticommutation relations of fermions versus the commutation relations of
bosons, the Hamiltonian of a fermionic harmonic oscillator is Ĥ = ħhω2 [b

†, b] = ħhω
�

b† b− 1
2

�

.
Similar to its bosonic counterpart, the fermionic coherent state is also built via a translation
to the vacuum:

|ξ〉= D(ξ)|0〉 ≡ eb†ξ−ξ̄b|0〉 . (47)

Here ξ is a Grassmann number and anticommutes with any fermionic operator. The translation
operator D(z) satisfies

D(ξ)bD†(ξ) = b− ξ , D(ξ)b†D†(ξ) = b† − ξ̄ . (48)
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Similarly, parallel transport of a canonical ensemble of fermionic harmonic oscillators can be
generated by a series of continuous translation by D(ξ(t)), where ξ(t) is a closed curve of
Grassmann numbers with ξ(0) = ξ(τ). The corresponding density matrix is

ρ(ξ(t)) =
1
Z

e−βD(ξ(t))ĤD†(ξ(t)) = D(ξ(t))ρ(0)D†(ξ(t)) , (49)

where ρ(0) = e−β Ĥ

Z with the partition function Z = e
1
2βħhω + e−

1
2βħhω = 2 cosh βħhω2 .

Since the system has a two-dimensional Hilbert space, the denominator of Eq. (32) is
always λ0 +λ1 = 1. Consequently, the Uhlmann connection is simplified as

AU = −
�

d
Æ

ρ(ξ),
Æ

ρ(ξ)
�

. (50)

Let N̂ = b† b be the number operator satisfying N̂2 = N̂ . It can be shown that

ρ(ξ) =
1

1+ e−βħhω
− tanh
�

βħhω
2

�

(b† − ξ̄)(b− ξ) , (51)

which further implies

d
Æ

ρ(ξ) =
e

1
4βħhω − e−

1
4βħhω

Æ

e
1
2βħhω + e−

1
2βħhω

�

dξ̄(b− ξ) + (b† − ξ̄)dξ
�

. (52)

The Uhlmann connection then becomes

AU =

�

e
1
4βħhω − e−

1
4βħhω
�2

e
1
2βħhω + e−

1
2βħhω

�

dξ̄(b− ξ)(b† − ξ̄)(b− ξ)− (b† − ξ̄)(b− ξ)(b† − ξ̄)dξ
�

= −χ
�

b†dξ− dξ̄b+ dξ̄ξ− ξ̄dξ
�

. (53)

To evaluate the Uhlmann holonomy, we assume ξ(t) = ζz(t), where ζ is a constant Grassmann
number, and z(t) (0≤ t ≤ τ) forms a closed curve C in the z-plane. Thus, we have

gC = Pe−
∮

AU = e−4iχζ̄ζSCPeχ
∮

C(b†ζdz−dz̄ζ̄b) . (54)

Since the fermionic Fock space is only two-dimensional, the expression of gC of the fermionic
coherent state can be directly evaluated without using the method of the bosonic coherent
state. We expand the second term in the last line of Eq. (54) as

Peχ
∮

(b†ζdz−dz̄ζ̄b) = 1+χ2

∫ τ

0

dt1

∫ t1

0

dt2(b
†ζż1 − ˙̄z1ζ̄b)(b†ζż2 − ˙̄z2ζ̄b)

= 1+χ2

∫ τ

0

dt1

∫ t1

0

dt2ζ̄ζ
�

ż1˙̄z2 b† b− ˙̄z1ż2 bb†
�

. (55)

where the first-order term vanishes due to
∮

dz =
∮

dz̄ = 0. z1 := z(t1) and
z2 := z(t2) are introduced in the second-order term, and higher order terms vanish due to
ζ2 = ζ̄2 = 0 or b2 = b†2 = 0. We evaluate the integral over t2 and find the coefficient
of b† b becomes

∫ τ

0 dt1

∫ t1

0 dt2ż1˙̄z2 =
∫ τ

0 dt1ż(t1)[z̄(t1) − z̄(0)] =
∫ τ

0 dt1ż(t1)z̄(t1), where
∫ τ

0 dt1ż(t1)z̄(0) = [z(τ) − z(0)]z̄(0) = 0 has been applied. by the polar expression of z,
z(t) = r(t)eiθ (t), and substituting żz̄ = ṙ r + ir2θ̇ and ˙̄zz = ṙ r − ir2θ̇ into Eq. (55), the second
term becomes
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χ2ζ̄ζ

∫ τ

0

dt1

�

żz̄ b† b− ˙̄zzbb†
�

=
χ2ζ̄ζ

2

∫ r(τ)

r(0)
dr2(b† b− bb†) + iχ2ζ̄ζr2

∫ 2π

0

dθ (b† b+ bb†)

= 2iχ2ζ̄ζSC , (56)

where we have applied r(τ) = r(0) and SC =
1
2 r2
∮

C dθ . Once gain, by using ζ̄2 = ζ2 = 0, the
Uhlmann holonomy is given by

gC =
�

1− 4iχζ̄ζSC

� �

1+ 2iχ2ζ̄ζSC

�

12 = e−2i(1−η2)ζ̄ζSC12 , (57)

where 12 is the identity operator acting on the two-dimensional fermionic Fock space. With
the help of Eq. (49), the Uhlmann phase of fermionic coherent state is

θU = arg Tr [ρ(ξ(0))gC] = −2(1−η2)ζ̄ζSC . (58)

The expressions of both Uhlmann holonomy and Uhlmann phase are quite similar to their
bosonic counterparts except the factor ζ̄ζ, although they are obtained by different methods.
Moreover, θU = 0 as T → ∞, and θU agrees with the Berry phase shown in Eq. (A.9 ) as
T → 0.

Interestingly, the results of both bosonic and fermionic coherent states exhibit an exact
correspondence between the Uhlmann phase in the T → 0 limit and the Berry phase. Although
a full proof of the general case is challenging (see the next section), the results shown here
and the previous results [22, 24, 26] all support the Uhlmann-Berry correspondence in the
zero-temperature limit.

3.3 Additional example: Qutrit

After establishing the correspondence between the Uhlmann and Berry phases for both types
of coherent states, here we conduct an extra check of the Uhlmann-Berry correspondence for
a system with a finite-dimensional Hilbert space by examining the qutrit, a three-level system.
A generalization of the Berry phase via the geometric phase for the generalized Bloch-sphere
states of a three-level system has been discussed in Ref. [54]. The density matrix of a generic
three-level system can be expanded by the identity matrix 13 and eight Gell-Mann matrices
Λi (i = 1, 2 · · · , 8), containing 8 controllable real parameters n⃗ = (n1, n2, · · · , n8)T . Explicitly,
ρ = 1

3

�

13 +
p

3n⃗ · Λ⃗
�

, where ni =
1
2Tr(ρΛi). The set B8 = {n⃗ ∈ R8|n⃗ · n⃗ ≤ 1, n⃗∗ = n⃗} can be

thought of as an eight-dimensional generalized Bloch sphere. When discussing the Uhlmann
phase, a generic evolution path is a loop in B8, which has many possibilities. To present
an exact correspondence between the Uhlmann and Berry phases, we instead simplify the
qutrit model to a spin- j paramagnet with j = 1, whose Uhlmann phase has been studied in
Refs. [24,25]. A loop in the parameter space of the spin-1 model corresponds to a loop on the
two-dimensional unit sphere S2. In the following, we verify the Uhlmann phase of the spin-1
model also reduces to the Berry phase as temperature approaches zero. We remark that the
spin-1 system is topological [24] with a finite Hilbert space while the coheret states discussed
previously are not topology but with infinite-dimensional Hilbert spaces.

Since the three components of the j = 1 angular momentum of a spin-1 paramagent
can be spanned by the Gell-Mann matrices via Ĵx =

1p
2
(Λ1 +Λ6), Ĵy =

1p
2

�

Λ2 +Λ7

�

, and

Ĵz =
1
2

�

Λ3 +
p

3Λ8

�

, the Hamiltonian of a spin-1 paramagnet in an external magnetic field

can be expressed as Ĥ = µBB · Ĵ = µB d⃗ · Λ⃗, where d⃗ = ( Bxp
2
,

Byp
2
, Bz

2 , 0, 0, Bxp
2
,

Byp
2
,
p

3Bz
2 )

T , ħhĴ
is the spin angular momentum of the particle, and µB is the Bohr magneton. The density
matrix of the spin- j paramagnet in canonical emsemble is ρ = 1

Z e−β Ĥ . Therefore, the spin-
1 model can be realized by a suitable choice of the parameter (n1, · · · , n8)T of the original
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qutrit model. The external magnetic field B can be parameterized by the polar and azimuthal
angles θ ,φ as B = B(sinθ cosφ, sinθ sinφ, cosθ )T. The Hamiltonian can be diagonalized as
Ĥ = V (θ ,φ)ω0JzV †(θ ,φ), where V (θ ,φ) = e−iφJz e−iθ Jy eiφJz . Thus, the eigenstates of Ĥ can
be constructed as

|ψ j
m(θ ,φ)〉= e−iφ( Jz

ħh −m)e−
i
ħhθ Jy | jm〉 , m= − j,− j + 1, · · · , j − 1, j . (59)

To simplify the notations, we adopt the natural unites such that kB = ħh = 1, and introduce
ω0 = µBB. A loop on S2 can be expressed as (θ (t),φ(t)), and V (θ (t),φ(t)) actually defines
an Uhlmann process if Uhlmann’s parallel-transport condition is satisfied. By using

[d
p
ρ,
p
ρ] =
{dV V †, e−βH}

Z
+

2e−
βH
2 VdV †e−

βH
2

Z
, (60)

it can be shown that the Uhlmann connection is

AU = −iχ(Jx sinφ − Jy cosφ)dθ − iχ
�

(Jx cosφ + Jy sinφ) cosθ − Jz sinθ
�

sinθdφ. (61)

More details can be found in Ref. [24]. The Uhlmann phase depends on the path-ordered
integral involving the matrix-valued AU . If the evolution path is chosen as a circle of longi-
tude or the equator (i.e., great circles), the exact expression of the path-ordered integral can
be obtained. Interestingly, the Uhlmann phases for the two types of paths share the same
expression:

θU = arg
j
∑

m=− j

e−βω0m

Z(0)
d j

mm(2πΩχ) , (62)

where χ = 1− sech(βω0/2), Ω is the winding number and d j
mm′(Θ) = 〈 jm|e

−iΘJy | jm′〉 is the
Wigner d-function. For j = 1, the explicit expression of the Uhlmann phase is

θU = arg
1

Z(0)

§

cosh(βω0)
�

1+ cos
�

2πΩsech
βω0

2

��

+ cos
�

2πΩsech
βω0

2

�ª

, (63)

where Z(0) = 1 + 2 cosh(βω0). As T → 0 or β → ∞, sechβω0
2 = 0, and

θU = arg 1= 2π= 0 (mod 2π).
According to Eq. (59), the Berry phase of the m-th eigenstate along a loop C(t) is evaluated

as

θBm(C) = i

∫ τ

0

dt〈ψ j
m|

d
dt
|ψ j

m〉

=

∫ τ

0

dt〈 jm|
�

−Jx sinθφ̇ + (Jz cosθ −m)ϕ̇ + Jy θ̇
�

| jm〉

= −m

∮

C
(1− cosθ )dφ . (64)

For the ground state of j = 1 along the equator, we have m= −1 and θ = π
2 . The Berry phase

is then θB−1 = 2π = 0 (mod 2π), which coincides with the value of θU as T → 0. Therefore,
the simplification of a qutrit to a spin-1 paramagnet offers another exactly solvable example
of the correspondence between the Uhlmann and Berry phases.
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4 Correspondence between Uhlmann phase and Berry phase

As shown in Sec. 2, the geometric frameworks of the Berry phase and Uhlmann phase are
quite similar. The theory of the Uhlmann phase is built by following almost analogous steps as
those of the Berry phase. They both start from the parallel-transport conditions, from which
the corresponding Ehresmann connection ω is introduced to satisfy

ω(X̃ ) = 0 , if X̃ is a horizontal vector,

ω(u#) = u , if u# is a vertical vector. (65)

The Berry and Uhlmann connections are the pullbacks of the corresponding ω. This is why
Uhlmann phase is a suitable generalization of the Berry phase to finite temperatures, at least
from the point of view of geometry. The comparison leads to the question on whether the
Uhlmann phase always reduces to the Berry phase as T → 0.

In the following, a conditional proof will be constructed in a progressive manner. Firstly, we
point out a class of special case that should not be considered in the correspondence by noting
that the theory of the Uhlmann phase is built on the assumption that the density matrix must
be full rank, which excludes pure states if the dimension of the Hilbert space is larger than one.
Therefore, systems with a 1D Hilbert space should be treated as special cases because there
is no sensible meaning of thermal distribution, as the system has no other states to distribute
the weight. In Appendix B, we show the Uhlmann connection vanishes identically for systems
with a 1D Hilbert space, leading to a vanishing Uhlmann phase for those special cases. In
contrast, the Berry phase of a system with a 1D Hilbert space needs not vanish since a pure
state may be considered as a 1D Hilbert space during an adiabatic evolution.

For the more general cases, it has been reported that the Uhlmann phase indeed approaches
the Berry phase as T → 0 for two-level and four-level systems [22, 26]. We already demon-
strated that the spin-1 system supports the correspondence, and one may verify this is the case
for generic spin- j paramagnets in magnetic fields by following Refs. [24,25]. However, it has
not been proven if the correspondence between the Uhlmann and Berry phases is a general
conclusion since at first look, the expressions of the Berry phase and the Uhlmann phase are
in general different. If the question has a positive answer, it will provide a correspondence
between the geometric phases of pure and mixed states even though the underlying bundles
are very different, in the sense that the fiber bundle associated with the Berry phase may be
nontrivial while that associated with the Uhlmann bundle is always trivial [46]. Thus, the
correspondence cannot be at the level of the underlying bundles.

To understand the correspondence between the Berry and Uhlmann phases, we analyze
the Uhlmann connection (35) and search for any relation to the Berry connection. We assume

the quantum system is in a thermal-equilibrium state at temperature T with ρ = e−β Ĥ

Z , where
Z is the partition function. Since ρ =

∑

nλn|n〉〈n| and Ĥ share the eigenvectors, we assume
Ĥ|n〉 = En|n〉. Furthermore, we will write |n〉 ≡ |En〉 in the following and only consider the
case without energy degeneracy for simplicity. Let E0 < E1 < · · · , then

lim
T→0

λn

λm
= lim
β→∞

e−β(En−Em) = 0 , if n> m . (66)

Note that λn ̸= λm in Eq. (35). Thus, we set λmin = min{λn,λm} and λmax = max{λn,λm}.
This implies

lim
T→0

�p

λn −
p

λm

�2

λn +λm
= lim

T→0

�

1−
r

λmin
λmax

�2

1+ λmin
λmax

= 1 . (67)
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The Uhlmann connection (35) in the zero-temperature limit then becomes

AU →−
∑

n̸=m

|n〉〈n|d|m〉〈m|

= −
∑

nm

|n〉〈n|d|m〉〈m|+
∑

n

|n〉〈n|d|n〉〈n|

= −
∑

n

d|n〉〈n|+
∑

n

〈n|d|n〉|n〉〈n| . (68)

Interestingly, the second term of AU is the Berry connection for each energy level. When
evaluating θU by Eq. (28), every step must be treated carefully. We emphasize that the trace
must be taken after evaluating the path-ordered integral since the path-ordering and Taylor-
expansion operations may not commute with each other. Moreover, the path-ordered integrals
themselves are also challenging. For example, when dealing with θU of bosonic coherent states
in the previous section, we have developed a technique to handle the difficulties. In some
other situations [22, 24, 25], AU may be proportional to a constant matrix when the system
follows a special path in the parameter space, thereby making the the path-ordering operator
P manageable. However, those cases depend on the details of the loop C(t) and even the
specific coordinates chosen to evaluate AU , so they are not easy to be generalized to generic
systems. The challenge of evaluating the Uhlmann phase is somewhat similar to the difficulties
in dealing with the time-ordering operation in quantum field theory, where techniques like the
Feynman diagrams have been developed to facilitate a perturbative expansion [33,55].

Nevertheless, a conditional proof can be obtained to show that the Uhlmann phase in-
deed approaches the Berry phase in the zero-temperature limit. An examination the bosonic
and fermionic coherent states discussed previously reveals two important features: (1) The
Uhlmann and Berry phases are both generated by unitary processes, and (2) the Berry con-
nection of each energy level has the same expression, as indicated by Eqs. (A.2 ) and (A.7 ).
Here the unitary Uhlmann process means the density matrix follows Eq. (37) with z = z(t),
and the eigen-energies En’s remain unchanged during the process. Hence, we consider a class
of unitary Uhlmann processes characterized by those two features. When the parameter takes
the value t, each energy level satisfies |n(t)〉 = D(t)|n(0)〉 with an unitary operator D(t) sat-
isfying the cyclic condition D(τ) = 1. The Berry connection for each level is assumed the
same:

AB = 〈n(t)|d|n(t)〉= 〈n(0)|D†dD|n(0)〉 . (69)

According to Eq. (68), in the T → 0 limit, the Uhlmann connection is

lim
T→0

AU = −
∑

n

d|n(t)〉〈n(t)|+
∑

n

〈n(t)|d|n(t)〉|n(t)〉〈n(t)|= AB − dDD−1 , (70)

where the completeness of the instantaneous energy eigenstates has been applied. Interest-
ingly, Eq. (70) indicates that the Uhlmann and Berry connections are off by a gauge transfor-
mation, which actually renders no contribution after a contour integral along a closed loop.
Explicitly,
∮

dDD−1 =
∮

d lnD = 0. Hence, the Uhlmann phase in the zero-temperature limit
is given by

lim
T→0

θU = argTr[ρ(0)Pe−
∮

AU ] = arg
¦

Tr[ρ(0)]e−
∮

AB
©

= θB , (71)

where Eq. (70) has been used, and the path-ordering is dropped in the second line since
AB ∈ u(1).

Importantly, the two conditions of the previous proof may be relaxed or changed further.
Firstly, the condition that the Uhlmann process is unitary can be dropped. We recall the generic
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expression (68) and introduce the unitary transformation D(t) =
∑

n |n(t)〉〈n(0)| satisfying
|n(t)〉=D(t)|n(0)〉. Although D†D =DD† = 1, it does not necessarily imply the correspond-
ing physical process is unitary since the condition En(t) = En(0)may not be guaranteed during
the process. Therefore, the density matrix does not necessarily obey the transformation (37).
Moreover, the condition that the Berry connection of each level is the same can be replaced by
introducing the Berry connection matrix:

ÂB =
∑

n

ABn|n(t)〉〈n(t)|=
∑

n

〈n(t)|d|n(t)〉|n(t)〉〈n(t)| . (72)

In this more general case, it can be shown that AU = ÂB − dDD−1. Once again, we have
∮

dDD−1 = 0. According to Eq. (66), the weight factor of the ground state is infinitely larger

than that of any excited state when T → 0, i.e., λ0 =
e−βE0

Z ≈ 1. Thus, the initial density matrix
can be reasonably approximated as

ρ(0)≈ |E0(0)〉〈E0(0)| , (73)

and the Uhlmann phase is then

lim
T→0

θU = arg〈E0(0)|Pe−
∮

AU |E0(0)〉= arg〈E0(0)|Pe−
∮

ÂB |E0(0)〉 . (74)

Since ÂB ∈ u(N), the path-ordering operation P is nontrivial in general. Therefore, we need
to add a condition here. When ÂB is a diagonal matrix in the space spanned by {|n(0)〉} or
a constant matrix as the system traverses a specific loop in the parameter space, the path-
ordering operation P is trivial, and the integrals can be carried out. In those situations, the
Uhlmann phase becomes

lim
T→0

θU = arg〈E0(0)|e−
∮ ∑

n ABn|n(t)〉〈n(t)||E0(0)〉

= arg
�

|〈E0(0)|En(t)〉|2〈E0(0)|e−
∮ ∑

n ABn|n(0)〉〈n(0)||E0(0)〉
�

= θB0 , (75)

where |En(t)〉 = |n(t)〉 has been used, and θB0 is the Berry phase of the ground state. The
proof of the correspondence between the Berry and Uhlmann phases is already quite general
although we still need the relaxed assumption of the form of ÂB. We expect the most general
proof, which still needs to exclude the special cases with a 1D Hilbert space, will be completed
in future research of the Uhlmann phase.

5 Experimental implications

Since bosonic coherent states play a fundamental role in quantum optics [39–41], we discuss
possible experimental realizations and measurements of the Uhlmann phase of bosonic coher-
ent states. We first outline the basic ideas for constructing a protocol and leave the detailed
techniques for future studies. There have been many ways to realize and manipulate coher-
ent states by various experimental strategies [56–60], which may be implemented to fill in
the necessary steps for the experimental demonstration of the Uhlmann phase of many-body
systems, exemplified by the bosonic coherent states.

There are two important issues that need to be addressed in the protocol. The first is to
suitably represent a mixed state, which can be characterized by the purification or purified
state of a density matrix. The purification W = pρU is not necessarily a Hermitian matrix,
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and its physical interpretation is still under debate. With the advancement of quantum com-
putation, the purified state |W 〉 has become realizable [24, 61]. Therefore, the purified state
is a more viable way for physical realizations. Explicitly, one can construct an entangled state
between the system of interest and an ancilla encoding the environmental effects in the form
|W 〉 =
∑

n

p

λn|n〉s ⊗ U T |n〉a. Here the subscripts s and a respectively represent the system
and ancilla. The thermal distribution determines the coefficients while the U(N) factor acts
on the ancilla.

The second issue is to design a proper physical process for simulating the parallel transport
of |W 〉 and generating the correct Uhlmann process. This is complicated by the fact that |W 〉
is formally a state vector and cannot satisfy a matrix-valued equation that is fully equivalent
to the condition (18). A solution [24] is to follow the condition (17) to perform parallel
transport of the state. An explicit construction is as follows. An Uhlmann process can be
generated by controlling the parameter z, which forms a closed curve C(t) = z(t) (0≤ t ≤ τ)
in the parameter space, which in this case is the complex plane. Thus, the density matrix of a
bosonic coherent-state harmonic oscillator is given by

ρ(z(t)) =
∞
∑

n=0

λn|n, z(t)〉〈n, z(t)|=
∞
∑

n=0

λnD(z(t))|n〉〈n)|D†(z(t)) , (76)

where λn =
1
Z e−βħhω(n+

1
2 ) is independent of t since D(z(t)) is a unitary transformation. The

corresponding purified state is given by

|W (z(t))〉=
∞
∑

n=0

Æ

λnD(z(t))|n〉s ⊗ D∗(z(t))|n〉a , (77)

where D∗ = (D†)T has been applied. However, we emphasize there is a subtlety about the
transpose [24,62], as the purified state needs to satisfy the Hilbert-Schmidt inner product (16).
Moreover, Eq. (39) leads to an equivalent identity:

[dD(z)]D†(z) =
�

a† −
1
2

z̄
�

dz −
�

a−
1
2

z
�

dz̄ . (78)

Using these two equations and

d
dt
|W (z(t))〉=

∞
∑

n=0

Æ

λn(Ḋ⊗ D∗ + D⊗ Ḋ∗)|n〉s ⊗ |n〉a , (79)

the weakened parallel-transport condition (17) can be verified straightforwardly:

〈W (z(t)|
d
dt
|W (z(t))〉=

∞
∑

n=0

λn

�

s〈n|D†Ḋ|n〉s + a〈n|ḊD†|n〉a
�

= 0 . (80)

Therefore, if the purified state follows the parallel-transport condition of Eq. (80), the
evolution simulates an Uhlmann cycle as t goes from 0 to τ. The Uhlmann phase is then given
by the phase difference between the initial and final purified states:

θU = arg〈W (0)|W (τ)〉 . (81)

The expression now involves (I) the transition amplitude between the initial and final purified
states and (II) phase extraction. For bosonic coherent states, the former may be realized by
entangling two coherent states with one acting as the system and the other as the ancilla and
evolve the system according to the parallel-transport condition. The latter may be performed
by interferometric or tomographic means on the overlap between the initial and final purified
states. Since a bosonic coherent state is a many-body state involving infinite particles, both
tasks are challenging and await future experimental realizations.
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6 Conclusion

Through the bundle language, we concisely show the analogous frameworks of the Berry phase
and Uhlmann phase via the concepts of parallel transport and holonomy. As concrete examples,
we present the analytic expressions of the Uhlmann phases of bosonic and fermionic coherent
states and reveal the geometric information carried by them. In addition to the smooth depen-
dence on temperature, the Uhlmann phases of both cases approach their corresponding Berry
phases as T → 0, providing another set of exactly solvable examples supporting the agreement
between the Uhlmann and Berry phases in the zero-temperature limit. Except special cases
like those with a 1D Hilbert space, we propose that the correspondence between the Uhlmann
and Berry phases is a general property of quantum systems. The conditional proof of the cor-
respondence lays the foundation for a complete proof in the future and provides more insights
into the relations between pure and mixed states.

Funding information H. G. was supported by the National Natural Science Foundation of
China (Grant No. 12074064). C. C. C. was supported by the National Science Foundation
under Grant No. PHY-2011360.

A Berry phase of coherent states

A.1 Bosonic coherent state

We assume the state |n, z〉 = D(z)|n〉 of a bosonic harmonic oscillator evolves adiabatically
along the curve C(t) := z(t) with z(0) = z(τ) (0≤ t ≤ τ). The Berry phase generated during
the evolution is

θBn(C) = i

∫ τ

C ,0

dt〈n, z(t)|
∂

∂ t
|n, z(t)〉= i

∮

C
dx · 〈n|D†(z)∇D(z)|n〉 , (A.1)

where ∇= e⃗x
∂
∂ x + e⃗y

∂
∂ y is the gradient at the point z = x + i y . The Berry connection is given

by

ABn = 〈n|D†(z)dD(z)|n〉=
1
2
(z̄dz − zdz̄) . (A.2)

Further calculations show that

D†(z)
∂ D(z)
∂ x

= −iy + (a† − a), D†(z)
∂ D(z)
∂ y

= ix + i(a† + a) . (A.3)

Therefore,

θBn(C) =

∮

C
(ydx − xdy) =

i
2

∮

C
(z̄dz − zdz̄) = −2SC . (A.4)

We emphasize that the contour integral is evaluated along the counterclockwise direction of
C(t).

A.2 Fermionic coherent state

Similarly, the Berry connection of the fermionic coherent state |n,ξ〉= D(ξ)|n〉 is

ABn = 〈n,ξ|d|n,ξ〉= 〈n|D†(ξ)dD(ξ)|n〉 . (A.5)
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Using

D†(ξ)dD(ξ) =
�

b† +
1
2
ξ̄

�

dξ+
�

b+
1
2
ξ

�

dξ̄ , (A.6)

we get

ABn =
1
2

�

ξ̄dξ+ ξdξ̄
�

=
1
2

�

ξ̄dξ− dξ̄ξ
�

, (A.7)

which has a similar expression to its bosonic counterpart (A.2 ). Substituting ξ= ζz, where ζ
is a constant Grassmann number, into Eq. (A.7 ), it becomes

ABn =
1
2
ζ̄ζ (z̄dz − zdz̄) . (A.8)

The Berry phase is

θBn = i

∮

C
ABn = −2ζ̄ζSC . (A.9)

The expression is also similar to the Berry phase of bosonic coherent states except the factor
of ζ̄ζ.

B Uhlmann connection in 1D Hilbert space

If we consider the density matrix of a 1D Hilbert space, ρ(t) = |ψ(t)〉〈ψ(t)|, it is straightfor-
ward to show that

[d
p
ρ,
p
ρ] = d|ψ〉〈ψ|+ |ψ〉(d〈ψ|)|ψ〉〈ψ| − |ψ〉d〈ψ| − |ψ〉〈ψ|(d|ψ〉)〈ψ| . (B.1)

Thus, 〈ψ|[dpρ,
p
ρ]|ψ〉 = 0, which leads to AU = 0. This also implies that the Uhlmann

connection and Uhlmann phase of a pure state are always zero. In contrast, the corresponding
Berry connection after a cyclic adiabatic process, AB = 〈R|d|R〉, and the Berry phase θB = i

∮

AB

is not zero in general. Here |ψ(t)〉 = e−
∫ t

0 〈R(t
′)| d

dt′ |R(t
′)〉dt ′ |R(t)〉. Since a single pure state is

equivalent to a system in a 1D Hilbert space and may accumulate a nontrivial Berry phase, the
Uhlmann phase does not reduce to the Berry phase as T → 0 in this type of special cases.
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