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Abstract

We show how the replica method can be used to compute the asymptotic eigenvalue
spectrum of a real Wishart product matrix. For unstructured factors, this provides a
compact, elementary derivation of a polynomial condition on the Stieltjes transform
first proved by Müller [IEEE Trans. Inf. Theory. 48, 2086-2091 (2002)]. We then show
how this computation can be extended to ensembles where the factors are drawn from
matrix Gaussian distributions with general correlation structure. For both unstructured
and structured ensembles, we derive polynomial conditions on the average values of the
minimum and maximum eigenvalues, which in the unstructured case match the results
obtained by Akemann, Ipsen, and Kieburg [Phys. Rev. E 88, 052118 (2013)] for the
complex Wishart product ensemble.
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1 Introduction

In this note, we describe how the replica method from the statistical mechanics of disordered
systems may be used to obtain the asymptotic density of eigenvalues for a Wishart product
matrix

K=
1

nL · · ·n1
X⊤1 · · ·X

⊤
L XL · · ·X1 , (1)

where the factors

Xℓ ∈ Rnℓ×nℓ−1 , (2)

are independent Gaussian random matrices. In the simplest case, the factors are real Ginibre
random matrices, i.e., they have independent and identically distributed standard real Gaus-
sian elements (Xℓ)i j ∼N (0, 1), though the complex Gaussian case is also often studied [1–15].
We will also consider cases in which the elements of each factor are correlated.

Not all of our final results are novel. Rather, our overarching objective in reporting these
replica-theoretic derivations are to note their simplicity, as the replica method has to the best
of our knowledge not seen broad application to the study of product random matrices [9],
despite its common usage in other areas of random matrix theory [16–22]. For a discussion of
the application of the cavity method to Wishart product matrices, we direct the reader to the
work of Dupic and Pérez Castillo [9], or to recent work by Cui, Rocks, and Mehta [23].

1.1 Applications of Wishart product matrices in science and technology

The spectral statistics of Wishart product matrices are of interest in many areas of physics
and applied mathematics [7, 8]. For example, they describe the covariance statistics of Gaus-
sian data propagated through noisy linear vector channels [1]—in other words, the covari-
ance statistics of certain linear latent variable models [24]—and transport in simple mod-
els for chaotic systems [11, 25]. Both real and complex Wishart product matrices are of
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particular interest in mathematical physics because certain features are amenable to exact
study [2–13,15].

Most commonly, Wishart product matrices are studied either at finite size or in one of three
asymptotic limits. Adopting the nomenclature that the factor dimensions nℓ are the “widths”
and the number of factors L is the “depth” of the product, these limiting regimes are as follows:

• The thermodynamic limit, in which the widths are taken to infinity proportionally, i.e.,

n0, · · · , nL →∞ , with
nℓ
n0
→ αℓ ∈ (0,∞) , (3)

for fixed depth L [1–4,8,26,27]. This is the regime on which we focus.

• The ergodic limit, in which the depth L→∞ for fixed widths nℓ [7,8,12,26,28].

• The double-scaling, or critical, regime, in which the depth L and widths nℓ tend jointly
to infinity [7,8,11,15,27–29].

Properties of the thermodynamic limit of real Wishart product matrices have recently
attracted attention in the machine learning community, as they appear as the Neural Net-
work Gaussian Process Kernel Gram matrix of a deep linear neural network with Gaussian
inputs [23, 27, 30–34, 34–36]. In this case, n0 represents the number of datapoints on which
the kernel is evaluated, n1 is the input dimensionality, and n2, . . . , nL are the widths of the
hidden layers. The spectrum of this kernel matrix determines the generalization properties of
a network in the limit of infinite hidden layer width [31–33]. The present note is based on our
recent work on deep linear networks in Ref. [31]; we direct the interested reader to that work
and references therein for more background on generalization in deep linear neural networks.

1.2 Roadmap

Our paper is organized as follows:

• In §2.1, we briefly introduce the Edwards-Jones [18] approach to computing the resol-
vent of a random matrix using the replica method.

• In §2.2, we apply the Edward-Jones method to compute the limiting spectral statistics
of Wishart product matrices with uncorrelated factors. The details of this computation
are deferred to Appendix A. This recovers a polynomial condition on the resolvent first
proved by Müller [1].

• In §2.3, we extend this approach to structured Wishart product matrices where the fac-
tors have correlated rows and columns, deferring the details of the computation to Ap-
pendix B. We obtain a condition on the resolvent in terms of the spectral generating
functions of the factor correlations, which to our knowledge as not previously been re-
ported for L > 1 [37].

• In §3.1, we introduce the spherical spin glass method for computing the averages of the
minimum and maximum eigenvalues of a random matrix using the replica trick [38–41].

• In §3.2, we apply this method to Wishart product matrices with uncorrelated factors,
with the details of the computation given in Appendix C. The resulting polynomial con-
ditions on the minimum and maximum eigenvalues match the results obtained by Ake-
mann, Ipsen, and Kieburg [5] for the complex Wishart product ensemble.
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• In §3.3, we extend this approach to ensembles with row-structured factors, deferring the
details of the calculation to Appendix D. As in our analysis of the resolvent for structured
ensembles, this result has to our knowledge not been previously reported for L > 1.

• In §4, we conclude by discussing the outlook for the application of the replica method
to product matrix ensembles.

2 Replica approach to computing the resolvent

Before summarizing our results, let us briefly record our notational conventions. We denote
vectors and matrices by bold lowercase and uppercase Roman letters, respectively, e.g., x and
X. For an integer m, Im denotes the m×m identity matrix, while 1m denotes the m-dimensional
vector with all elements equal to 1. We use∝ to denote equality up to irrelevant constants of
proportionality. Finally, we warn the reader that we will often leave implicit the domains of
integrals.

2.1 The Edwards-Jones method for computing the resolvent

In the thermodynamic limit n0, · · · , nL → ∞, nℓ/n0 → αℓ ∈ (0,∞), the eigenvalue den-
sity ρ(λ) of K is self-averaging, and can be conveniently described in terms of its Stieltjes
transform

G(z) = lim
n0,...,nL→∞

1
n0

tr
�

(K− zIn0
)−1
�

, (4)

from which the limiting density can be recovered via

ρ(λ) = lim
ε↓0

1
π

Im G(λ− iε) . (5)

To compute the the Stieltjes transform using the replica method from the statistical physics
of disordered systems [16,42,43], we follow a standard approach, introduced by Edwards and
Jones [18]. This method proceeds by writing

G(z) =
∂ g
∂ z

, (6)

for

g(z) = lim
n0,...,nL→∞

2
n0

log Z(z) , (7)

where the partition function is

Z(z) =

∫

Rn0

dw exp
�

−
i
2

w⊤(zIn0
−K)w

�

. (8)

In the thermodynamic limit, we expect g(z) to be self-averaging, i.e., to concentrate around
its expectation Eg over the random factors Xℓ. The expectation E log Z can be evaluated using
the identity E log Z = limm→0 m−1 logEZm and a standard non-rigorous interchange of limits:

g = lim
n0,...,nL→∞

2
n0
E log Z = lim

m→0
lim

n0,...,nL→∞

2
mn0

logEZm . (9)

As usual, we evaluate the moments EZm for non-negative integer m, and assume that they
can be safely analytically continued to m→ 0 [42, 43]. Here, as in other applications of the
replica trick to the Stieltjes transform, the annealed average is exact, in the sense that the
replica-symmetric saddle point is replica-diagonal [16–18] (see Appendices A and B).
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2.2 Spectral moments for unstructured factors

In Ref. [1], Müller proved that the Stieltjes transform of a Wishart product matrix with un-
structured factors (i.e., (Xℓ)i j ∼i.i.d. N (0, 1)) satisfies the polynomial equation

zG(z) + 1
G(z)

=
L
∏

ℓ=1

�

1−
zG(z) + 1
αℓ

�

, (10)

see also Refs. [3–5, 9, 10]. As noted by Burda et al. [3], the condition (10) can be expressed
more compactly as

z =
M(z) + 1

M(z)

L
∏

ℓ=1

�

1+
M(z)
αℓ

�

, (11)

in terms of the moment generating function

M(z) =
∞
∑

k=1

1
zk

1
n0

tr(Kk) =
1
n0

tr
�

(zIn0
−K)−1K

�

= −zG(z)− 1 , (12)

where we assume that the formal series converges. Our first result is a derivation, presented
in Appendix A, of (10) using the Edwards-Jones method outlined in §2.1.

In the case L = 1, the equation for the Stieltjes transform reduces to

zG(z) + 1
G(z)

= 1−
zG(z) + 1
α1

, (13)

which can be re-written as

0= z +
1

G(z)
−

α1

α1 + G(z)
, (14)

which is the familiar result for a Wishart matrix. In the equal-width case α1 = · · · = αL = α,
we have the simplification

zG(z) + 1
G(z)

=
�

1−
zG(z) + 1
α

�L

. (15)

In the context of deep linear neural networks, this special case has a natural interpretation as
a network with hidden layer widths equal to the input dimensions. If L = 2, this is a cubic
equation, which can be solved in radicals, though the result is not particularly illuminating
[9,23]. In the square case α1 = · · ·= αL = 1, we have the further simplification

0= zLG(z)L+1 − zG(z)− 1 . (16)

As shown in previous works, this can be solved to obtain an exact expression for the eigen-
value density [10]. More generally, the equation (10) must be solved numerically. We show
examples for L = 1 and L = 2 in Figure 1, demonstrating excellent agreement with numerical
experiment. We direct the reader to previous work by Burda et al. [3] and by Dupic and Pérez
Castillo [9] for further examples.
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Figure 1: Eigenvalue densities for unstructured Wishart product matrices for depths
L = 1 (left) and L = 2 (right) for varying widths α1 = · · · = αL = α, indicated by
shades of red. Solid lines show the result of solving equation (15) numerically, while
shaded areas show the results of numerical eigendecompositions of matrices of size
n0 = 2048. Importantly, each empirical histogram is obtained for a single realization
of the random matrix.

2.3 Spectral moments for structured factors

Importantly, the replica approach is not limited to the study of ensembles where the factors
have independent and identically distributed entries. It also allows one to tackle with relative
ease the more general setting where the factors are independent matrix Gaussian random
variables, i.e.,

E[(Xℓ)i j] = 0 , (17)

E[(Xℓ)i j(Xℓ)kl] = (Σℓ)ik(Γℓ) jl , (18)

for row-wise covariance matrices

Σℓ ∈ Rnℓ×nℓ , (19)

and column-wise covariance matrices

Γℓ ∈ Rnℓ−1×nℓ−1 . (20)

For the thermodynamic limit to be well-defined, we have in mind an ensemble defined by
sequences of covariance matrices Σℓ(nℓ), Γℓ(nℓ−1) such that the bulk spectral statistics of these
matrices tend to deterministic limits (see Appendix B for a more precise statement of our
assumptions on these matrices).

We can equivalently define this ensemble by

K=
1

nL · · ·n1
Γ1/2

1 Z⊤1Σ
1/2
1 · · ·Γ

1/2
L Z⊤LΣLZLΓ

1/2
L · · ·Σ

1/2
1 Z1Γ

1/2
1 , (21)

for Zℓ an unstructured Ginibre matrix with standard Gaussian elements (Zℓ)i j ∼N (0, 1). This
re-writing makes it clear that we may take the columns of all factors except X1 to be uncorre-
lated without loss of generality, as the ensemble with

E[(Xℓ)i j] = 0 , (22)

E[(Xℓ)i j(Xℓ)kl] = (Σ̃ℓ)ikδ jl , (ℓ= 2, . . . , L) , (23)

E[(X1)i j(X1)kl] = (Σ̃1)ik(Γ1) jl , (24)
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for

Σ̃ℓ = Σ
1/2
ℓ
Γℓ+1Σ

1/2
ℓ

, (25)

is identically distributed, where we write ΓL+1 = InL
for brevity. As a result, we henceforth set

Γℓ = Inℓ−1
, for ℓ= 2, . . . , L , (26)

hence Σ̃ℓ = Σℓ for all ℓ = 1, . . . , L. Moreover, we may take the covariance matrices Σℓ to be
diagonal without loss of generality, as the random Gaussian factors are rotation-invariant. In
the case where the columns of the first factor are uncorrelated, i.e., Γ1 = In0

, then the ensem-
ble is rotation-invariant, and one can consider only row structure without loss of generality.
This ensemble describes the kernel of a deep linear neural network with independent input
examples, or more generally the covariance of a linear latent variable model [24].

For matrices from this correlated ensemble, we show in Appendix B that the moment gen-
erating function M(z) of K satisfies the self-consistent equation

z = M−1
Γ1
(M(z))

L
∏

ℓ=1

�

M(z)
αℓ

M−1
Σℓ

�

M(z)
αℓ

��

. (27)

Here, the functions

MΣℓ(z) = lim
nℓ→∞

1
nℓ

tr
�

(zInℓ −Σℓ)
−1Σℓ

�

, (28)

are the moment generating functions of the matrices Σℓ, and the inverse functions M−1
Σℓ
(z)

satisfy (M−1
Σℓ
◦MΣℓ)(z) = z. We can re-write this as

M(z) = MΓ1





z
∏L
ℓ=1

�

M(z)
αℓ

M−1
Σℓ

�

M(z)
αℓ

��



 . (29)

This condition can of course be equivalently written in terms of the resolvent G(z). Moreover,
the inverses of the spectral generating functions can be equivalently expressed in terms of the
S-transform from free probability theory [26].

In the case L = 1, this ensemble reduces to the ordinary correlated Wishart ensemble [37,
44, 45], and (27) recapitulates the result previously obtained by Burda et al. [37]. However,
the general L > 1 case does not appear to have been reported in the literature [24,37,44–46].

In the case in which the first factor has uncorrelated columns, i.e., Γ1 = In0
, we have

MΓ1
(z) =

1
z − 1

, (30)

and

M−1
Γ1
(z) = 1+

1
z

, (31)

hence we obtain the simplified condition

z =
M(z) + 1

M(z)

L
∏

ℓ=1

�

M(z)
αℓ

M−1
Σℓ

�

M(z)
αℓ

��

. (32)
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Figure 2: Eigenvalue densities for structured Wishart product matrices for depths
L = 1 (left) and L = 2 (right) of width α1 = · · · = αL = α = 4. The correlation
structure is as described in the main text, with MΣ1

(z) given by (37) with γ = 1/8
and varying signal eigenvalues σ, indicated by shades of green. Solid lines show
the result of solving equation (38) numerically, while shaded areas show the results
of numerical eigendecompositions of matrices of size n0 = 2048. Importantly, each
empirical histogram is obtained for a single realization of the random matrix.

If L = 1, we can further simplify this condition to

MΣ1

�

α1z
M(z) + 1

�

=
M(z)
α1

, (33)

recapitulating the result of Burda et al. [37]. It is easy to confirm that this result reduces to
that which we obtained before for the unstructured case. For Σℓ = Inℓ , we have

MΣℓ(z) =
1

z − 1
, (34)

and

M−1
Σℓ
(z) = 1+

1
z

, (35)

hence (32) reduces to (11). Another simplifying case is when all layers are identically struc-
tured, i.e., MΣ1

(z) = · · · = MΣL
(z), and the widths are equal, i.e., α1 = · · · = αL = α. Then,

we have the simplified condition

MΣ1

�

α

M(z)

�

M(z)z
1+M(z)

�1/L�

=
M(z)
α

. (36)

To gain intuition for how the structured case differs from the unstructured setting, we
consider a simple example. With the application of neural network kernels in mind, we include
structured correlations only in X1, corresponding to the case in which the dataset is composed
of independent samples drawn from a Gaussian distribution with correlated dimensions. We
keep the remaining factors unstructured—i.e., Σℓ = Inℓ for ℓ = 2, . . . , L—corresponding to a
setting in which the weights of the network are drawn independently. This is the standard
setting for deep linear neural networks, where the weights at initialization are assumed to be
independent and identically distributed [27,30,32,33].

As a toy model for structured data, we consider a gapped model in which a fraction
γ ∈ [0,1] of the eigenvalues of Σ1 are equal to σ > 1, while the remainder are equal to
unity. In the case γ = 0, this reduces to the unstructured spectrum considered before. For
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Figure 3: Eigenvalue densities for structured Wishart product matrices for depths
L = 1 (left) and L = 2 (right) of width α1 = · · ·= αL = α= 4. The correlation struc-
ture is as described in the main text, with MΣ1

(z) = · · ·= MΣL
(z) given by (37) with

γ= 1/8 and varying signal eigenvalues σ, indicated by shades of purple. Solid lines
show the result of solving equation (36) numerically, while shaded areas show the
results of numerical eigendecompositions of matrices of size n0 = 2048. Importantly,
each empirical histogram is obtained for a single realization of the random matrix.

simplicity, we restrict our attention to equal-width factors α1 = · · ·= αL = α. With this setup,
we have

MΣ1
(z) = γ

σ

z −σ
+ (1− γ)

1
z − 1

, (37)

and the simplified condition on the generating function

MΣ1

�

αz
(1+M(z))(1+M(z)/α)L−1

�

=
M(z)
α

. (38)

We show examples of this model for L = 1 and L = 2 in Figure 2, demonstrating excellent
agreement with numerical experiment. As the signal eigenvalue σ increases, we see that the
bulk density separates into two components. It will be interesting to investigate this effect,
and other effects of structured correlations, in future work.

For this simple data model, we can also study the case in which all layers include identical
structure, i.e., MΣ1

(z) = M2(z) = · · · = MΣL
(z). In the equal-width case α1 = · · · = αL = α,

this gives the simplified condition noted above in (36). In Figure 3, we compare the results
of solving (36) for this model to numerical experiments, showing excellent agreement. Inter-
estingly, in this case the gap in the spectrum that is present for L = 1 (for which this model is
identical to that considered above and in Figure 2) is not present at L = 2.

3 Replica approach to computing the extremal eigenvalues

3.1 The spherical spin glass method for computing extremal eigenvalues

In the thermodynamic limit, we expect the typical minimum and maximum eigenvalues of
K, which define the edges of the bulk spectrum, to be self-averaging. Conditions on these
eigenvalues can be obtained from the condition (10) on the Stieltjes transform (see Ref. [5]),
but they can also be computed using a direct, physically meaningful method.

In this approach, the eigenvalues are interpreted as the ground-state energies of a spherical
spin glass, as studied by Kosterlitz, Thouless, and Jones [38], and in subsequent random matrix
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theory works [39–41]. Our starting point is the min-max characterization of the minimum and
maximum eigenvalues as Rayleigh quotients:

λmin(K) = min
w∈Rn0 ,∥w∥=1

w⊤Kw , λmax(K) = max
w∈Rn0 ,∥w∥=1

w⊤Kw . (39)

We first consider the computation of the minimimum eigenvalue. We introduce a Gibbs distri-
bution at inverse temperature β > 0 over vectors in the sphere Sn0−1(pn0) of radius

p
n0 in

n0 dimensions, with density

p(w;β ,K) =
1

Z(β ,K)
exp[−βE(w,K)] , (40)

with respect to the Lebesgue measure on the sphere. Here,

E(w,K) =
1
2

w⊤Kw , (41)

is the energy function associated to the minimization problem (39), and the partition function
is

Z(β ,K) =

∫

Sn0−1(pn0)
dw exp[−βE(w,K)] . (42)

As β →∞, the Gibbs distribution (40) will concentrate on the ground state of (41), which
is the eigenvector of K corresponding to its minimum eigenvalue. We denote averages with
respect to the Gibbs distribution (40) by 〈·〉β ,K. Then, recalling our definition of E in (41) and
the Rayleigh quotient (39), we have

Eλmin(K) = lim
β→∞
E

2
n0
〈E〉β ,K = lim

β→∞

∂ g(β ,K)
∂ β

, (43)

where we have defined the reduced free energy per site

g(β ,K) = −
2
n0
E log Z(β ,K) . (44)

In the thermodynamic limit, we expect log Z to be self-averaging, and it can be computed using
the replica method.

We can also use this setup to compute the minimum eigenvalue. We can see that this
computation is identical up to a sign, and that

Eλmax(K) = − lim
β→∞
E

2
n0
〈E〉−β ,K = lim

β→∞

∂ g(−β ,K)
∂ β

. (45)

As the rank of K is at most min{n0, . . . , nL},

λmin(K) = 0 , if min{α1, . . . ,αL}< 1 . (46)

If min{α1, . . . ,αL}> 1, then we expect the minimum eigenvalue to be almost surely positive.

3.2 Extremal eigenvalues for unstructured factors

As in our study of the Stieltjes transform, we first consider an ensemble with unstructured
factors, i.e., (Xℓ)i j ∼i.i.d. N (0,1). Deferring the details of the replica computation to §C, we
find that the edges of the spectrum can be written as

Eλmin/max =
�

1+
1
A

� L
∏

ℓ=1

�

1+
A
αℓ

�

, (47)
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Figure 4: Maximum (left) and minimum (right) eigenvalues of Wishart product ma-
trices for varying depths L (with higher values indicated by lighter shades of blue)
and varying widths α1 = α2 = · · · = αL = α. In each panel, the theoretical predic-
tions from equations (50) and (52), respectively, are plotted as solid lines, while the
open circles show the results of numerical eigendecompositions for 10 realizations
of matrices of size n0 = 1000.

where A is a solution to the equation

A=
1

∑L
ℓ=1

A
αℓ+A

− 1 . (48)

This computation is somewhat more tedious than that of the Stieltjes transform, as the replica-
symmetric saddle point is not replica-diagonal.

These conditions are identical to those obtained by Akemann, Ipsen, and Kieburg [5] for
the complex Wishart ensemble. In general, one must determine which of the solutions to
these equations give the edges of the spectrum. However, as noted by Akemann, Ipsen, and
Kieburg [5], they are exactly solvable in the equal-width case α1 = · · · = αL = α. With this
constraint, A is determined by the quadratic equation LA2 + (L − 1)A−α= 0, which gives

A=

p

4Lα+ (L − 1)2 − (L − 1)
2L

, (49)

and thus

Eλmax =
α+ A

α− (L − 1)A

�

1+
A
α

�L

. (50)

Considering the minimum eigenvalue, we have the quadratic equation LB2− (L−1)B−α= 0
for B = −A, which yields

B =

p

4Lα+ (L − 1)2 + (L − 1)
2L

, (51)

and thus

Eλmin =
α− B

α+ (L − 1)B

�

1−
B
α

�L

. (52)

If L = 1, this recovers the familiar results for Wishart matrices. In the square case α = 1, we
have the further simplification

Eλmax = (L + 1)
�

1+
1
L

�L

, (53)

while λmin = 0, as noted previously by Dupic and Pérez Castillo [9]. In Figure 4, we show that
these results display excellent agreement with numerical eigendecompositions.
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3.3 Extremal eigenvalues for factors with correlated rows

As in our analysis of the resolvent in §2.3, we can extend the computation of the extremal
eigenvalues to ensembles with correlated factors. For the sake of simplicity, we focus on en-
sembles with only row-wise structure, i.e.,

E
�

(Xℓ)i j

�

= 0 , (54)

E
�

(Xℓ)i j(Xℓ)kl

�

= (Σℓ)ikδ jl . (55)

As discussed in §2.3, this restriction can be made without loss of generality so long as Γ1 = In0
.

We provide further discussion of why this restriction simplifies the computation in §D; briefly,
it is compatible with the spherical constraint.

Then, deferring the details of the computation to §D, we find that the edges of the spectrum
are determined by

Eλmin/max =
�

1+
1
A

� L
∏

ℓ=1

A
αℓ

M−1
Σℓ

�

A
αℓ

�

, (56)

where A is a solution of

A=
1

∑L
ℓ=1(µℓ(A)− 1)/µℓ(A)

− 1 , (57)

for

µℓ(A) = −
αℓ
A

M−1
Σℓ
(A/αℓ)

(M−1
Σℓ
)′(A/αℓ)

. (58)

Here, (M−1
Σℓ
)′ denotes the first derivative of M−1

Σℓ
with respect to its argument; µℓ is there-

fore proportional to the multiplicative inverse of the logarithmic derivative of M−1
Σℓ

. As in the
unstructured case, one must determine which of the solutions to (57) give the edges of the
spectrum [5].

In the unstructured case, we have

µℓ(z) = 1+
z
αℓ

, (59)

for ℓ= 1, . . . , L, hence we recover the result of §3.2.
To demonstrate the effects of structure, we revisit the equal-width model with structure

in the first layer and no structure elsewhere, as introduced in §2.3. In this case, we have
µℓ(z) = 1+ z/α for ℓ= 2, . . . , L, hence we have the simplified equation

Eλmin/max =
�

1+
1
A

�

A
α

M−1
Σ1

�

A
α

��

1+
A
α

�L−1

, (60)

where A is a solution of

[(LA+α)µ1(A)− (α+ A)] (1+ A) = (α+ A)µ1(A) . (61)

In Figure 5, we show that this result agrees with with numerical eigendecompositions for
matrices with varying fraction of signal eigenvalues γ.
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Figure 5: Maximum (left) and minimum (right) eigenvalues for structured Wishart
product matrices for depths L = 1 (top) and L = 2 (bottom) of varying widths
α1 = · · · = αL = α. The correlation structure is as described in the main text, with
MΣ1
(z) given by (37) with signal eigenvalues σ = 100 and varying signal fraction γ,

indicated by shades of green. Solid lines show the result of solving equation (60) nu-
merically, while the open circles show the results of numerical eigendecompositions
for 10 realizations of matrices of size n0 = 1000.

4 Conclusion

We have shown that the replica method affords a useful approach to the study of product ran-
dom matrices. These derivations are straightforward, but they are of course not mathemati-
cally rigorous [42, 43]. We conclude by briefly discussing the utility of these results vis-à-vis
open questions in the study of product random matrices.

The most notable utility of statistical physics methods, including the replica trick, in ran-
dom matrix theory is that they allow for the study of non-invariant ensembles. Dating back
to the seminal work of Bray and Rogers [17, 47], sparse ensembles have been of particular
interest [9,17,41]. We hope that the methods described in this work will enable further inves-
tigation of products of sparse random matrices and of other non-invariant product ensembles.
It will also be interesting to investigate Gaussian ensembles with general correlations between
the factor matrices [9,37,45,46]. We remark that the approaches used in this work are partic-
ularly simple due to the independence of different factors, i.e., E[(Xℓ)i j(Xℓ′)kl] = 0 if ℓ ̸= ℓ′,
hence studying ensembles with correlated factors would require a somewhat different replica-
theoretic setup.

In the context of neural networks, the structured ensemble with row-wise correlations
studied in this work has a natural interpretation as the neural network Gaussian process ker-
nel of a deep linear network where the features and input dimensions are correlated but the
datapoints are independent samples. It will be interesting to study the spectra of such kernel
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matrices in greater detail in future work. To enable future studies of generalization in deep
nonlinear random feature models and wide neural networks [31, 48], it will be important to
extend to extend these approaches to the nonlinear setting [34–36, 49]. Finally, it will be in-
teresting to investigate the spectra resulting from the non-Gaussian factor distributions that
arise in trained Bayesian neural networks [32,33].
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A Computing the Stieltjes transform for unstructured factors

In this appendix, we derive the result (10) for the Stieltjes transform of a Wishart product ma-
trix with unstructured factors. Our starting point is the partition function (8) in the Edwards-
Jones [18] approach. We divide the details of the derivation into two parts. In §A.1, we eval-
uate the moments of the partition function. Then, in §A.2, we derive the replica-symmetric
saddle point equations and use them to obtain the desired condition on G(z) and M(z).

A.1 Step I: Evaluating the moments of the partition function

Introducing replicas indexed by a = 1, . . . , m, the moments of the partition function (8) expand
as

EZm=

∫ m
∏

a=1

dwa exp

�

−
iz
2

m
∑

a=1

∥wa∥2
�

Eexp

�

i
2nL · · ·n1

m
∑

a=1

(wa)⊤X⊤1 · · ·X
⊤
L XL · · ·X1wa

�

. (A.1)

Using the fact that the rows of XL are independent and identically distributed standard Gaus-
sian random vectors in RnL−1 , we have

EXL
exp

�

i
2nL · · ·n1

m
∑

a=1

(wa)⊤X⊤1 · · ·X
⊤
L XL · · ·X1wa

�

(A.2)

= det

�

InL−1
−

i
nL · · ·n1

m
∑

a=1

XL−1 · · ·X1wa(wa)⊤X⊤1 · · ·X
⊤
L−1

�−nL/2

(A.3)

= det(Im −CL)
−nL/2 , (A.4)

where in the last line we have applied the Weinstein–Aronszajn identity to express the deter-
minant in terms of the Wick-rotated overlap matrix

Cab
L ≡

i
nL · · ·n1

(wa)⊤X⊤1 · · ·X
⊤
L−1XL−1 · · ·X1wb . (A.5)
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We enforce the definition of these order parameters using Fourier representations of the δ-
distribution with corresponding Lagrange multipliers Ĉab

L , writing

1=

∫

dCL dĈL

(4πi/nL)m(m+1)/2
exp

�

−
nL

2
tr(CLĈL)

�

exp

 

i
2nL−1 · · ·n1

m
∑

a,b=1

Ĉ ab
L (w

a)⊤X⊤1 · · ·X
⊤
L−1XL−1 · · ·X1wb

!

. (A.6)

Here, the integrals over CL are taken over m × m imaginary symmetric matrices, while the
integrals over ĈL are taken over imaginary symmetric matrices. This yields

EZm =

∫

dCL dĈL

(4πi/nL)m(m+1)/2
exp

�

−
nL

2
[tr(CLĈL) + logdet(Im −CL)]

�

∫ m
∏

a=1

dwa exp

�

−
iz
2

m
∑

a=1

∥wa∥2
�

×EX1,...,XL−1
exp

 

i
2nL−1 · · ·n1

m
∑

a,b=1

Ĉ ab
L (w

a)⊤X⊤1 · · ·X
⊤
L−1XL−1 · · ·X1wb

!

. (A.7)

We can easily see that XL−1 may be integrated out using a similar procedure, and that this
may be iterated backwards by introducing order parameters

Cab
ℓ ≡

i
n1 · · ·nℓ

(wa)⊤X⊤1 · · ·X
⊤
ℓ−1Xℓ−1 · · ·X1wb , (A.8)

yielding

EZm =

∫

dC1 dĈ1

(4πi/n1)m(m+1)/2
· · ·
∫

dCL dĈL

(4πi/nL)m(m+1)/2
exp

�

−
1
2

L
∑

ℓ=1

nℓ[tr(CℓĈℓ) + logdet(Im −CℓĈℓ+1)]

�

×
∫ m
∏

a=1

dwa exp

 

−
iz
2

m
∑

a=1

∥wa∥2 +
i
2

m
∑

a,b=1

Ĉ ab
1 (w

a)⊤wb

!

, (A.9)

where we have defined ĈL+1 ≡ Im for brevity. We then can evaluate the remaining Gaussian
integral over wa:

∫ m
∏

a=1

dwa exp

 

−
iz
2

m
∑

a=1

∥wa∥2 +
i
2

m
∑

a,b=1

Ĉ ab
1 (w

a)⊤wb

!

=

∫ m
∏

a=1

dwa exp

 

−
i
2

m
∑

a,b=1

(zδab − Ĉ ab
1 )(w

a)⊤wb

!

∝ det(Ĉ1 − zIm)
−n0/2 , (A.10)

where we discard an irrelevant constant of proportionality. Therefore, we have

EZm∝
∫

dC1 dĈ1

(4πi/n1)m(m+1)/2
· · ·
∫

dCL dĈL

(4πi/nL)m(m+1)/2
exp

�

−
n0m

2
S(C1, Ĉ1, . . . ,CL , ĈL)

�

, (A.11)

for

S(C1, Ĉ1, . . . ,CL , ĈL) =
1
m

log det(Ĉ1 − zIm) +
1
m

L
∑

ℓ=1

αℓ
�

tr(CℓĈℓ) + log det(Im −CℓĈℓ+1)
�

, (A.12)

where we recall the definition ĈL+1 ≡ Im. In the thermodynamic limit n0, n1, . . . , nL →∞,
this integral can be evaluated using the method of steepest descent, yielding

−
2
n0
E log Z = extr

C1,Ĉ1,...,CL ,ĈL

S , (A.13)

where the notation extr means that S should be evaluated at the saddle point

∂ S
∂ Cℓ

=
∂ S

∂ Ĉℓ
= 0 , (ℓ= 1, . . . , L) . (A.14)
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A.2 Step II: The replica-symmetric saddle point equations

As is standard in the replica method (see e.g. Ref. [42]), we will consider replica-symmetric
(RS) saddle points, where the order parameters take the form

Cℓ = qℓIm + cℓ1m1⊤m , (A.15)

Ĉℓ = q̂ℓIm + ĉℓ1m1⊤m . (A.16)

Under this Ansatz, we will now simplify S in the limit m → 0 using standard identities (see
Ref. [31] and Refs. [42,43]). We have

lim
m→0

1
m

tr(CℓĈℓ) = lim
m→0
[qℓq̂ℓ + qℓ ĉℓ + cℓq̂ℓ +mcℓ ĉℓ] (A.17)

= qℓq̂ℓ + qℓ ĉℓ + cℓq̂ℓ . (A.18)

Using the matrix determinant lemma, we have

lim
m→0

1
m

logdet(Ĉ1 − zIm) = lim
m→0

1
m

logdet
�

(q̂1 − z)Im + ĉ11m1⊤m
�

(A.19)

= log(q̂1 − z) + lim
m→0

1
m

log
�

1+
mĉ1

q̂1 − z

�

(A.20)

= log(q̂1 − z) +
ĉ1

q̂1 − z
, (A.21)

and, similarly,

lim
m→0

1
m

logdet(Im −CℓĈℓ+1) = log(1− qℓq̂ℓ+1)−
qℓ ĉℓ+1 + cℓq̂ℓ+1

1− qℓq̂ℓ+1
. (A.22)

This gives

lim
m→0

S = log(q̂1 − z) +
ĉ1

q̂1 − z
+

L
∑

ℓ=1

αℓ

�

qℓq̂ℓ + qℓ ĉℓ + cℓq̂ℓ + log(1− qℓq̂ℓ+1)−
qℓ ĉℓ+1 + cℓq̂ℓ+1

1− qℓq̂ℓ+1

�

, (A.23)

with the boundary condition q̂L+1 = 1, ĉL+1 = 0.
We also have

G(z) = − lim
m→0

∂ S
∂ z
= −

1
z − q̂1

−
ĉ1

(z − q̂1)2
, (A.24)

where the order parameters are to be evaluated at their saddle point values.
From the equation ∂ S/∂ qℓ = 0, we have

0= q̂ℓ + ĉℓ −
q̂ℓ+1

1− qℓq̂ℓ+1
−

ĉℓ+1

1− qℓq̂ℓ+1
−

qℓ ĉℓ+1 + cℓq̂ℓ+1

(1− qℓq̂ℓ+1)2
q̂ℓ+1 , (A.25)

for ℓ= 1, . . . , L. From the equations ∂ S/∂ q̂ℓ = 0, we have

0= −
1

z − q̂1
−

ĉ1

(z − q̂1)2
+α1(q1 + c1) , (A.26)

if ℓ= 1, and

0= αℓ(qℓ + cℓ)−αℓ−1

�

qℓ−1

1− qℓ−1q̂ℓ
+

cℓ−1

1− qℓ−1q̂ℓ
+

qℓ−1 ĉℓ + cℓ−1q̂ℓ
(1− qℓ−1q̂ℓ)2

qℓ−1

�

, (A.27)
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if ℓ > 1. From ∂ S/∂ cℓ = 0, we have

0= q̂ℓ −
q̂ℓ+1

1− qℓq̂ℓ+1
, (A.28)

for ℓ= 1, . . . , L. Finally, from ∂ S/∂ ĉℓ = 0 we have

0= −
1

z − q̂1
+α1q1 , (A.29)

if ℓ= 1 and

0= αℓqℓ −αℓ−1
qℓ−1

1− qℓ−1q̂ℓ
, (A.30)

for ℓ > 1.
Simplifying, we find that the replica-nonuniform components are determined by the system

q̂ℓ =
q̂ℓ+1

1− qℓq̂ℓ+1
, (ℓ= 1, . . . , L) , (A.31)

q1 =
1
α1

1
z − q̂1

, (A.32)

qℓ =
αℓ−1

αℓ

qℓ−1

1− qℓ−1q̂ℓ
, (ℓ= 2, . . . , L) , (A.33)

while the uniform components are determined by

ĉℓ =
ĉℓ+1 + cℓq̂

2
ℓ+1

(1− qℓq̂ℓ+1)2
, (ℓ= 1, . . . , L) , (A.34)

c1 =
1
α1

ĉ1

(z − q̂1)2
, (A.35)

cℓ =
αℓ−1

αℓ

cℓ−1 + q2
ℓ−1 ĉℓ

(1− qℓ−1q̂ℓ)2
, (ℓ= 2, . . . , L) . (A.36)

Recalling the boundary condition q̂L+1 = 1, ĉL+1 = 0, it is easy to see that we should have
cℓ = ĉℓ = 0 for all ℓ = 1, . . . , L. Then, the Stieltjes transform is given by G(z) = −α1q1, where
q1 is determined by the system

q̂ℓ =
q̂ℓ+1

1− qℓq̂ℓ+1
, (ℓ= 1, . . . , L) , (A.37)

q1 =
1
α1

1
z − q̂1

, (A.38)

qℓ =
αℓ−1

αℓ

qℓ−1

1− qℓ−1q̂ℓ
, (ℓ= 2, . . . , L) . (A.39)

These equations can be simplified with a bit of algebra, as in our prior work [31]. From
the equation

q̂ℓ =
q̂ℓ+1

1− qℓq̂ℓ+1
, (A.40)

we have

qℓ =
q̂ℓ − q̂ℓ+1

q̂ℓq̂ℓ+1
, (A.41)
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for ℓ= 1, . . . , L. Then, for ℓ= 2, . . . , L, the equation

qℓ =
αℓ−1

αℓ

qℓ−1

1− qℓ−1q̂ℓ
, (A.42)

yields

q̂ℓ − q̂ℓ+1

q̂ℓq̂ℓ+1
=
αℓ−1

αℓ

q̂ℓ−1

q̂ℓ

q̂ℓ−1 − q̂ℓ
q̂ℓ−1q̂ℓ

. (A.43)

If we define A by

α1q1q̂1 = A , (A.44)

such that
q̂1 − q̂2

q̂1q̂2
=

A
α1q̂1

, (A.45)

we have
q̂2 − q̂3

q̂2q̂3
=
α1

α2

q̂1

q̂2

q̂1 − q̂2

q̂1q̂2
(A.46)

=
A
α2q̂2

. (A.47)

It is then easy to see that

qℓ =
q̂ℓ − q̂ℓ+1

q̂ℓq̂ℓ+1
=

A
αℓq̂ℓ

, (A.48)

for ℓ= 1, . . . , L. This yields the backward recurrence

q̂ℓ =
�

1+
A
αℓ

�

q̂ℓ+1 , (A.49)

for ℓ= 1, . . . , L, which can be solved using the endpoint condition q̂L+1 = 1, yielding

q̂ℓ =
L
∏

j=ℓ

�

1+
A
α j

�

. (A.50)

Then, using the fact that q1 and q̂1 are related by the equation

q1 =
1
α1

1
z − q̂1

, (A.51)

we have

q̂1 = −
1− zα1q1

α1q1
, (A.52)

so

A= −(1− zα1q1) . (A.53)

Therefore, we have the equation

−
1− zα1q1

α1q1
=

L
∏

ℓ=1

�

1−
1− zα1q1

αℓ

�

, (A.54)

which, substituting in G(z) = −α1q1, yields the condition

zG(z) + 1
G(z)

=
L
∏

ℓ=1

�

1−
zG(z) + 1
αℓ

�

, (A.55)

on the Stieltjes transform. This is the result claimed in (10).
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B Computing the Stieltjes transform for structured factors

In this appendix, we derive the result (27) for the Stieltjes transform of a Wishart product
matrix with correlated factors. This computation parallels our analysis of the unstructured
case in §A. Again, our starting point is the Edwards-Jones [18] partition function, and we once
again first evaluate its moments in §B.1 and then derive and simplify the replica-symmetric
saddle point equations in §B.2.

B.1 Step I: Evaluating the moments of the partition function

Introducing replicas indexed by a = 1, . . . , m, the moments of the partition function (8) expand
as

EZm =

∫ m
∏

a=1

dwa exp

�

−
iz
2

m
∑

a=1

∥wa∥2
�

Eexp

�

i
2nL · · ·n1

m
∑

a=1

(wa)⊤X⊤1 · · ·X
⊤
L XL · · ·X1wa

�

. (B.1)

We will first integrate out XL . For brevity, define the matrix AL ∈ RnL−1×m by

(AL) ja =
1

p
nL · · ·n1

(XL−1 · · ·X1wa) j , (B.2)

such that the required expectation is

EXL
exp

�

i
2nL · · ·n1

m
∑

a=1

(wa)⊤X⊤1 · · ·X
⊤
L XL · · ·X1wa

�

= EXL
exp

�

i
2

tr[A⊤L X⊤L XLAL]
�

. (B.3)

Let ZL ∈ RnL×nL−1 be a real Ginibre random matrix, with independent and identically dis-
tributed elements Zi j ∼N (0,1), such that

XL = Σ
1/2
L ZLΓ

1/2
L , (B.4)

in distribution. Then, we can easily evaluate the expectation using column-major vectoriza-
tion:

EXL
exp

�

i
2

tr[A⊤L X⊤L XLAL]
�

= EZL
exp

�

i
2

tr[Z⊤LΣLZLΓ
1/2
L ALA⊤L Γ

1/2
L ]

�

(B.5)

= EZL
exp

�

i
2

vec(ZL)
⊤[(Γ1/2

L ALA⊤L Γ
1/2
L )⊗ΣL]vec(ZL)

�

(B.6)

= det(InL nL−1
− i(Γ1/2

L ALA⊤L Γ
1/2
L )⊗ΣL)

−1/2 , (B.7)

where vec(·) denotes the column-major vectorization of a matrix and ⊗ denotes the Kro-
necker product [50]. Using the mixed-product property of the Kronecker product and the
Weinstein–Aronszajn identity [50,51], we have

det
�

InL nL−1
− i(Γ1/2

L ALA⊤L Γ
1/2
L )⊗ΣL

�

= det
�

InL nL−1
− i(Γ1/2

L AL ⊗ΣL)(A
⊤
L Γ

1/2
L ⊗ InL

)
�

(B.8)

= det
�

ImnL
− i(A⊤L Γ

1/2
L ⊗ InL

)(Γ1/2
L AL ⊗ΣL)

�

(B.9)

= det(ImnL
− i(A⊤L ΓLAL)⊗ΣL) . (B.10)

We now introduce the Wick-rotated order parameters

Cab
L ≡ i(A⊤L ΓLAL)ab =

i
nL · · ·n1

(wa)⊤X⊤1 · · ·X
⊤
L−1ΓLXL−1 · · ·X1wb , (B.11)
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which differs from the order parameters used in our previous computation due to the inclusion
of the column correlation matrix Γℓ.

We enforce the definition of these order parameters using Fourier representations of the
δ-distribution with corresponding Lagrange multipliers Ĉab

L , which gives

EZm =

∫

dCL dĈL

(4πi/nL)m(m+1)/2
exp

�

−
nL

2

�

tr(CLĈL) +
1
nL

log det(ImnL
−CL ⊗ΣL)

��

×
∫ m
∏

a=1

dwa exp

�

−
iz
2

m
∑

a=1

∥wa∥2
�

×EX1,...,XL−1
exp

 

i
2nL−1 · · ·n1

m
∑

a,b=1

Ĉab
L (w

a)⊤X⊤1 · · ·X
⊤
L−1ΓLXL−1 · · ·X1wb

!

. (B.12)

We now integrate out XL−1. Define the nL−2 ×m matrix

(AL−1) ja =
1

p
nL−1 · · ·n1

(XL−2 · · ·X1wa) j , (B.13)

such that

EXL−1
exp

 

i
2nL−1 · · ·n1

m
∑

a,b=1

Ĉab
L (w

a)⊤X⊤1 · · ·X
⊤
L−1ΓLXL−1 · · ·X1wb

!

(B.14)

= EXL−1
exp

�

i
2

tr
�

ĈLA⊤L−1X⊤L−1ΓLXL−1AL−1

�

�

(B.15)

= EZL−1
exp

�

i
2

tr
�

ĈLA⊤L−1Γ
1/2
L−1Z⊤L−1Σ

1/2
L−1ΓLΣ

1/2
L−1ZL−1Γ

1/2
L−1AL−1

�

�

, (B.16)

where we write

XL−1 = Σ
1/2
L−1ZL−1Γ

1/2
L−1 , (B.17)

for a standard nL−1 × nL−2 Ginibre random matrix ZL−1. Defining the matrix

Σ̃L−1 ≡ Σ
1/2
L−1ΓLΣ

1/2
L−1 ∈ R

nL−1×nL−1 , (B.18)

we can see that we can evaluate and simplify the expectation over ZL−1 in the same way as
we did the expectation over ZL , yielding

det(ImnL−1
− i(ĈLA⊤L−1ΓL−1AL−1)⊗ Σ̃L−1)

−1/2 . (B.19)

This can in turn be written in terms of the order parameters

CL−1 = iA⊤L−1ΓL−1AL−1 . (B.20)

Then, as in the unstructured case, we can see that we can iterate this procedure backward by
introducing order parameters

Cab
ℓ ≡

i
n1 · · ·nℓ

(wa)⊤X⊤1 · · ·X
⊤
ℓ−1ΓℓXℓ−1 · · ·X1wb , (B.21)

yielding

EZm =

∫

dC1 dĈ1

(4πi/n1)m(m+1)/2
· · ·
∫

dCL dĈL

(4πi/nL)m(m+1)/2

exp

�

−
1
2

L
∑

ℓ=1

nℓ

�

tr(CℓĈℓ) +
1
nℓ

log det[Imnℓ − (CℓĈℓ+1)⊗ Σ̃ℓ]
�

�

×
∫ m
∏

a=1

dwa exp

 

−
iz
2

m
∑

a=1

∥wa∥2 +
i
2

m
∑

a,b=1

Ĉab
1 (w

a)⊤Γ1wb

!

, (B.22)
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where for the sake of brevity we have defined

Σ̃ℓ = Σ
1/2
ℓ
Γℓ+1Σ

1/2
ℓ

, (B.23)

for ℓ= 1, . . . , L − 1 and

Σ̃L = ΣL , (B.24)

and ĈL+1 ≡ Im. The integral over wa is now once again a matrix Gaussian, and yields

det(Ĉ1 ⊗ Γ1 − zImn0
)−1/2 , (B.25)

up to an irrelevant constant of proportionality. Therefore, we obtain

EZm∝
∫

dC1 dĈ1

(4πi/n1)m(m+1)/2
· · ·
∫

dCL dĈL

(4πi/nL)m(m+1)/2
exp

�

−
n0m

2
S(C1, Ĉ1, . . . ,CL , ĈL)

�

, (B.26)

for

S(C1, Ĉ1, . . . ,CL , ĈL) =
1

mn0
det(Ĉ1 ⊗ Γ1 − zImn0

)

+
1
m

L
∑

ℓ=1

αℓ

�

tr(CℓĈℓ) +
1
nℓ

log det[Imnℓ − (CℓĈℓ+1)⊗ Σ̃ℓ]
�

, (B.27)

where we recall the definition ĈL+1 ≡ Im.
In the thermodynamic limit, we expect that

1
nℓ

logdet[Imnℓ − (CℓĈℓ+1)⊗Σℓ]∼O(1) , (B.28)

provided that the spectrum of Σℓ is sufficiently generic. It clearly holds in the unstructured
case Σℓ = σℓInℓ , in which we have

1
nℓ

logdet[Imnℓ − (CℓĈℓ+1)⊗Σℓ] = log det[Im −σℓCℓĈℓ+1] . (B.29)

Under the assumption that this scaling is valid, we can evaluate the required integrals using
the method of steepest descent.

B.2 Step II: The replica-symmetric saddle point equations

We now make an RS Ansatz

Cℓ = qℓIm + cℓ1m1⊤m , (B.30)

Ĉℓ = q̂ℓIm + ĉℓ1m1⊤m . (B.31)

The fist set of new terms relative to our calculation in the unstructured case are

1
mnℓ

log det[Imnℓ − (CℓĈℓ+1)⊗ Σ̃ℓ] . (B.32)

More generally, we have

det[Imnℓ − (CℓĈℓ+1)⊗ Σ̃ℓ] = det[Imnℓ− qℓq̂ℓ+1Im ⊗ Σ̃ℓ
− (qℓ ĉℓ+1+ cℓq̂ℓ+1+mcℓ ĉℓ+1)(1m1⊤m)⊗ Σ̃ℓ] (B.33)

= det[Im⊗ (Inℓ− qℓq̂ℓ+1Σ̃ℓ)

− (qℓ ĉℓ+1+ cℓq̂ℓ+1+mcℓ ĉℓ+1)(1m⊗Σℓ)(1⊤m⊗ Inℓ)] . (B.34)
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Assuming that Inℓ − qℓq̂ℓ+1Σ̃ℓ is invertible, we may use the multiplicative property of the de-
terminant and the mixed-product property of the Kronecker product to expand this as

det(Inℓ − qℓq̂ℓ+1Σ̃ℓ)
m

× det
�

Imnℓ − (qℓ ĉℓ+1 + cℓq̂ℓ+1 +mcℓ ĉℓ+1)[1m ⊗ (Inℓ − qℓq̂ℓ+1Σ̃ℓ)
−1Σℓ](1

⊤
m ⊗ Inℓ)

	

. (B.35)

Then, by the Weinstein-Aronszajn identity, we have

det
�

Imnℓ − (qℓ ĉℓ+1 + cℓq̂ℓ+1 +mcℓ ĉℓ+1)[1m ⊗ (Inℓ − qℓq̂ℓ+1Σ̃ℓ)
−1Σℓ](1

⊤
m ⊗ Inℓ)

	

(B.36)

= det
�

Inℓ − (qℓ ĉℓ+1 + cℓq̂ℓ+1 +mcℓ ĉℓ+1)(1
⊤
m ⊗ Inℓ)[1m ⊗ (Inℓ − qℓq̂ℓ+1Σ̃ℓ)

−1Σℓ]
	

(B.37)

= det
�

Inℓ −m(qℓ ĉℓ+1 + cℓq̂ℓ+1 +mcℓ ĉℓ+1)(Inℓ − qℓq̂ℓ+1Σ̃ℓ)
−1Σℓ

�

. (B.38)

This yields

1
mnℓ

det[Imnℓ − (CℓĈℓ+1)⊗ Σ̃ℓ] =
1
nℓ

log det(Inℓ − qℓq̂ℓ+1Σ̃ℓ)

+
1

mnℓ
logdet

�

Inℓ −m(qℓ ĉℓ+1 + cℓq̂ℓ+1 +mcℓ ĉℓ+1)(Inℓ − qℓq̂ℓ+1Σ̃ℓ)
−1Σℓ

�

. (B.39)

Here, we write Eσ̃ℓ for expectation with respect to the limiting empirical distribution of eigen-
values of the matrix Σ̃ℓ. Assuming no issues arise in interchanging limits in m and nℓ, we can
then use the series expansion of the log-determinant near the identity [33] to obtain

1
mnℓ

log det
�

Inℓ −m(qℓ ĉℓ+1 + cℓq̂ℓ+1 +mcℓ ĉℓ+1)(Inℓ − qℓq̂ℓ+1Σ̃ℓ)
−1Σℓ

�

(B.40)

= −(qℓ ĉℓ+1 + cℓq̂ℓ+1)
1
nℓ

tr[(Inℓ − qℓq̂ℓ+1Σ̃ℓ)
−1Σℓ] +O(m) (B.41)

= −(qℓ ĉℓ+1 + cℓq̂ℓ+1)Eσ̃ℓ

�

σ̃ℓ
1− qℓq̂ℓ+1σ̃ℓ

�

+O(m) . (B.42)

Therefore, we have

1
mnℓ

det
�

Imnℓ − (CℓĈℓ+1)⊗ Σ̃ℓ
�

= Eσ̃ℓ log(1− qℓq̂ℓ+1σ̃ℓ)

− (qℓ ĉℓ+1 + cℓq̂ℓ+1)Eσ̃ℓ

�

σ̃ℓ
1− qℓq̂ℓ+1σ̃ℓ

�

+O(m) . (B.43)

By an identical argument, we have

1
mn0

det(Ĉ1 ⊗ Γ1 − zImn0
) = Eγ1

log(γ1q̂1 − z) +Eγ1

�

γ1 ĉ1

γ1q̂1 − z

�

+O(m) . (B.44)

Combining these results, we obtain

lim
m→0

S = Eγ1
log(γ1q̂1 − z) +Eγ1

�

γ1 ĉ1

γ1q̂1 − z

�

− log(2π)

+
L
∑

ℓ=1

αℓ

�

qℓq̂ℓ+ qℓ ĉℓ+ cℓq̂ℓ+Eσℓ log(1− qℓq̂ℓ+1σℓ)

− (qℓ ĉℓ+1+ cℓq̂ℓ+1)Eσℓ

�

σℓ
1− qℓq̂ℓ+1σℓ

��

, (B.45)

with the boundary condition q̂L+1 = 1, ĉL+1 = 0.
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Moreover, we have

G(z) = − lim
m→0

∂ S
∂ z
= −Eγ1

�

1
z − γ1q̂1

�

−Eγ1

�

γ1 ĉ1

(z − γ1q̂1)2

�

, (B.46)

where the order parameters are to be evaluated at their saddle point values.
From the equations ∂ S/∂ qℓ = 0, we have

0= q̂ℓ + ĉℓ − (q̂ℓ+1 + ĉℓ+1)Eσ̃ℓ

�

σ̃ℓ
1− qℓq̂ℓ+1σ̃ℓ

�

− (qℓ ĉℓ+1 + cℓq̂ℓ+1)q̂ℓ+1Eσ̃ℓ

�

�

σ̃ℓ
1− qℓq̂ℓ+1σ̃ℓ

�2
�

, (B.47)

for all ℓ= 1, . . . , L. From the equations ∂ S/∂ q̂ℓ = 0, we have

0= −Eγ1

�

γ1

z − γ1q̂1

�

−Eγ1

�

γ2
1 ĉ1

(z − γ1q̂1)2

�

+α1(q1 + c1) , (B.48)

for ℓ= 1 and

0= αℓ(qℓ + cℓ)−αℓ−1(qℓ−1 + cℓ−1)Eσ̃ℓ−1

�

σ̃ℓ−1

1− qℓ−1q̂ℓσ̃ℓ−1

�

−αℓ−1(qℓ−1 ĉℓ + cℓ−1q̂ℓ)qℓ−1Eσ̃ℓ−1

�

�

σ̃ℓ−1

1− qℓ−1q̂ℓσ̃ℓ−1

�2
�

, (B.49)

for ℓ= 2, . . . , L. From ∂ S/∂ cℓ = 0, we have

0= q̂ℓ − q̂ℓ+1Eσ̃ℓ

�

σ̃ℓ
1− qℓq̂ℓ+1σ̃ℓ

�

, (B.50)

for ℓ= 1, . . . , L. Finally, from ∂ S/∂ ĉℓ = 0, we have

0= −Eγ1

�

γ1

z − γ1q̂1

�

+α1q1 , (B.51)

for ℓ= 1 and

0= αℓqℓ −αℓ−1qℓ−1Eσ̃ℓ−1

�

σ̃ℓ−1

1− qℓ−1q̂ℓσ̃ℓ−1

�

, (B.52)

for ℓ= 2, . . . , L.
As in the unstructured case, we can decouple the replica-uniform components from the

replica-uniform components. This yields the system

q̂ℓ = q̂ℓ+1Eσ̃ℓ

�

σ̃ℓ
1− qℓq̂ℓ+1σ̃ℓ

�

, (ℓ= 1, . . . , L) , (B.53)

q1 =
1
α1
Eγ1

�

γ1

z − γ1q̂1

�

, (B.54)

qℓ =
αℓ−1

αℓ
qℓ−1Eσ̃ℓ−1

�

σ̃ℓ−1

1− qℓ−1q̂ℓσ̃ℓ−1

�

, (ℓ= 2, . . . , L) , (B.55)

for the non-uniform components. Given a solution to that system, the replica-uniform compo-
nents are determined by the linear system

ĉℓ = ĉℓ+1Eσ̃ℓ

�

σ̃ℓ
1− qℓq̂ℓ+1σ̃ℓ

�

+ (qℓ ĉℓ+1 + cℓq̂ℓ+1)q̂ℓ+1Eσ̃ℓ

�

�

σ̃ℓ
1− qℓq̂ℓ+1σ̃ℓ

�2
�

, (ℓ= 1, . . . , L) , (B.56)

c1 =
1
α1
Eγ1

�

γ2
1 ĉ1

(z − γ1q̂1)2

�

, (B.57)

cℓ =
αℓ−1

αℓ
cℓ−1Eσ̃ℓ−1

�

σ̃ℓ−1

1− qℓ−1q̂ℓσ̃ℓ−1

�

+
αℓ−1

αℓ
(qℓ−1 ĉℓ + cℓ−1q̂ℓ)qℓ−1Eσ̃ℓ−1

�

�

σ̃ℓ−1

1− qℓ−1q̂ℓσ̃ℓ−1

�2
�

,

(ℓ= 2, . . . , L) . (B.58)
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Recalling the boundary condition q̂L+1 = 1, ĉL+1 = 0, it is easy to see that we should have
cℓ = ĉℓ = 0 for all ℓ = 1, . . . , L. Thus, as in the unstructured case, the annealed average is
exact.

Our task is therefore to solve the system of equations for the replica non-uniform compo-
nents of the order parameters,

q̂ℓ = q̂ℓ+1Eσ̃ℓ

�

σ̃ℓ
1− qℓq̂ℓ+1σ̃ℓ

�

, (ℓ= 1, . . . , L) , (B.59)

q1 =
1
α1
Eγ1

�

γ1

z − γ1q̂1

�

, (B.60)

qℓ =
αℓ−1

αℓ
qℓ−1Eσ̃ℓ−1

�

σ̃ℓ−1

1− qℓ−1q̂ℓσ̃ℓ−1

�

, (ℓ= 2, . . . , L) , (B.61)

subject to the boundary condition q̂L+1 = 1, in terms of which the resolvent is given as

G(z) = −Eγ1

�

1
z − γ1q̂1

�

. (B.62)

As a sanity check, we can see immediately that this reduces to our earlier result in the unstruc-
tured case Σℓ = Inℓ , Γℓ = Inℓ−1

.
We start by writing these equations in terms of standard objects in random matrix theory.

We have

Eσ̃ℓ

�

qℓq̂ℓ+1σ̃ℓ
1− qℓq̂ℓ+1σ̃ℓ

�

= MΣ̃ℓ

�

1
qℓq̂ℓ+1

�

, (B.63)

for MΣ̃ℓ(z) the moment generating function of Σ̃ℓ. Similarly, we have

Eγ1

�

q̂1γ1

z − γ1q̂1

�

= MΓ1

�

z
q̂1

�

. (B.64)

Then, we have

qℓq̂ℓ = MΣ̃ℓ

�

1
qℓq̂ℓ+1

�

, (ℓ= 1, . . . , L) , (B.65)

q1q̂1 =
1
α1

MΓ1

�

z
q̂1

�

, (B.66)

qℓq̂ℓ =
αℓ−1

αℓ
MΣ̃ℓ−1

�

1
qℓ−1q̂ℓ

�

, (ℓ= 2, . . . , L) . (B.67)

Moreover, we observe that the equation for G(z) implies that

α1q1q̂1 = Eγ1

�

γ1q̂1

z − γ1q̂1

�

(B.68)

= Eγ1

�

z
z − γ1q̂1

�

− 1 (B.69)

= −zG(z)− 1 (B.70)

= M(z) . (B.71)

Thus, for ℓ= 2, . . . , L, we have

qℓq̂ℓ =
αℓ−1

αℓ
MΣ̃ℓ−1

�

1
qℓ−1q̂ℓ

�

(B.72)

=
αℓ−1

αℓ
qℓ−1q̂ℓ−1 . (B.73)
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This relation can easily be iterated backward to give

qℓq̂ℓ =
α1

αℓ
q1q̂1 , (B.74)

for all ℓ= 1, . . . , L, where the ℓ= 1 case is of course a tautology. But, we have α1q1q̂1 = M(z),
hence we obtain

M(z) = αℓqℓq̂ℓ = αℓMΣ̃ℓ

�

1
qℓq̂ℓ+1

�

, (B.75)

for ℓ= 1, . . . , L. Assuming the invertibility of MΣ̃ℓ , we therefore have

1
qℓq̂ℓ+1

= M−1
Σ̃ℓ

�

M(z)
αℓ

�

, (B.76)

for ℓ= 1, . . . , L. Using the boundary condition q̂L+1 = 1, we have

1
qL
= M−1

Σ̃L

�

M(z)
αL

�

. (B.77)

For ℓ= 1, . . . , L − 1, we can multiply through by qℓ+1q̂ℓ+1 to obtain

qℓ+1

qℓ
=

M(z)
αℓ+1

M−1
Σ̃ℓ

�

M(z)
αℓ

�

. (B.78)

This gives

1
qℓ
=

1
qL

L−1
∏

ℓ= j

q j+1

q j
(B.79)

= M−1
Σ̃L

�

M(z)
αL

� L−1
∏

j=ℓ

�

M(z)
α j+1

M−1
Σ̃ j

�

M(z)
α j

��

(B.80)

=
αℓ

M(z)

L
∏

j=ℓ

�

M(z)
α j

M−1
Σ̃ j

�

M(z)
α j

��

. (B.81)

Using the relation αℓqℓq̂ℓ = M(z), we have

q̂ℓ =
L
∏

j=ℓ

�

M(z)
αℓ

M−1
Σ̃ j

�

M(z)
αℓ

��

. (B.82)

We can now finally use the equation

M(z) = α1q1q̂1 = MΓ1

�

z
q̂1

�

, (B.83)

to write

q̂1 =
z

M−1
Γ1
(M(z))

, (B.84)

hence we obtain the closed equation

z

M−1
Γ1
(M(z))

=
L
∏

ℓ=1

�

M(z)
αℓ

M−1
Σ̃ℓ

�

M(z)
αℓ

��

. (B.85)

This is the result claimed in (27).
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C Computing the extremal eigenvalues for unstructured factors

In this appendix, we use the method outlined in §3.1 to obtain the conditions reported in §3.2
on the maximum and minimum eigenvalues of Wishart product matrices with unstructured
factors. As in our derivation of the Stieljes transform in §A, we divide the replica computation
of the minimum and maximum eigenvalues into two parts. We first compute the moments of
the partition function in §C.1, and then simplify the replica-symmetric saddle point equations
in §C.2.

C.1 Step I: Evaluating the moments of the partition function

Again, we introduce replicas indexed by a = 1, . . . , m, which gives the moments of the partition
function for the spherical spin glass (42) as

EZm =

∫

∏

a

dwa

� m
∏

a=1

δ

�

1−
1
n0
∥wa∥2

�

�

Eexp

�

−β
2nL · · ·n1

m
∑

a=1

(wa)⊤X⊤1 · · ·X
⊤
L XL · · ·X1wa

�

, (C.1)

where we enforce the spherical constraints with δ-distributions. It is easy to see that the
matrices Xℓ can be integrated out much as before, except for the fact that the order parameters
we introduce should be real, i.e.,

Cab
ℓ ≡

1
n1 · · ·nℓ

(wa)⊤X⊤1 · · ·X
⊤
ℓ−1Xℓ−1 · · ·X1wb , (C.2)

and that the boundary condition is now ĈL+1 = −βIm. Iterating backwards, this yields

EZm =

∫

dC2 dĈ2

(4πi/n2)m(m+1)/2
· · ·
∫

dCL dĈL

(4πi/nL)m(m+1)/2
exp

�

−
1
2

L
∑

ℓ=2

nℓ[tr(CℓĈℓ) + logdet(Im −CℓĈℓ+1)]

�

×
∫ m
∏

a=1

dwa

�

m
∏

a=1

δ

�

1−
1
n0
∥wa∥2

�

�

det(Im −C1Ĉ2)
−n1/2 , (C.3)

where we recall that

Cab
1 =

1
n1
(wa)⊤wb . (C.4)

By the spherical constraint, we have

Caa
1 =

n0

n1
=

1
α1

. (C.5)

It is therefore useful to instead introduce order parameters

F ab =
1
n0
(wa)⊤wb , (C.6)

via Fourier representations of the δ-distribution, such that F aa = 1 and C1 = F/α1. Integrating
over F with F aa = 1, the corresponding Lagrange multipliers F̂ aa automatically enforce the
spherical constraint. Then, after evaluating the remaining unconstrained Gaussian integral
over wa, we obtain

EZm∝
∫

dF dF̂
(4πi/n0)m(m+1)/2

∫

dC2 dĈ2

(4πi/n2)m(m+1)/2
· · ·
∫

dCL dĈL

(4πi/nL)m(m+1)/2
exp

�n0m
2

S
�

, (C.7)
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for

S(F, F̂,C2, Ĉ2, · · · ,CL , ĈL) =
1
m

tr(FF̂)−
1
m

logdet(F̂)−
1
m
α1 log det(Im −α−1

1 FĈ2)

−
1
m

L
∑

ℓ=2

αℓ
�

tr(CℓĈℓ) + logdet(Im −CℓĈℓ+1)
�

. (C.8)

As in our computation of the Stieltjes transform, this integral can be evaluated using the
method of steepest descent, yielding

g = − extr
C1,Ĉ1,...,CL ,ĈL

S . (C.9)

Again, we will consider only replica-symmetric saddle points.

C.2 Step II: The replica-symmetric saddle point equations

We make an RS Ansatz

F= (1− f )Im + f 1m1⊤m , (C.10)

F̂= (F̂ − f̂ )Im + f̂ 1m1⊤m , (C.11)

Cℓ = qℓIm + cℓ1m1⊤m , (ℓ= 2, . . . , L) , (C.12)

Ĉℓ = q̂ℓIm + ĉℓ1m1⊤m , (ℓ= 2, . . . , L) . (C.13)

Again, we use standard identities to obtain

lim
m→0

1
m

logdet(F̂) = log(F̂ − f̂ ) +
f̂

F̂ − f̂
, (C.14)

lim
m→0

1
m

tr(FF̂) = F̂ − f f̂ , (C.15)

and

lim
m→0

1
m

logdet(Im −α−1
1 FĈ2) = log(1−α−1

1 (1− f )q̂2)−
α−1

1 (1− f )ĉ2 +α−1
1 f q̂2

1−α−1
1 (1− f )q̂2

, (C.16)

yielding

lim
m→0

S = F̂ − f f̂ − log(F̂ − f̂ )−
f̂

F̂ − f̂
−α1

�

log(1−α−1
1 (1− f )q̂2)−

α−1
1 (1− f )ĉ2 +α−1

1 f q̂2

1−α−1
1 (1− f )q̂2

�

−
L
∑

ℓ=2

αℓ

�

qℓq̂ℓ + qℓ ĉℓ + cℓq̂ℓ + log(1− qℓq̂ℓ+1)−
qℓ ĉℓ+1 + cℓq̂ℓ+1

1− qℓq̂ℓ+1

�

, (C.17)

where we recall the endpoint condition q̂L+1 = −β , ĉL+1 = 0.
For brevity, we define q1 = α−1

1 (1 − f ) and c1 = α−1
1 f . Then, by comparison with our

previous results, the saddle point equations for ℓ= 2, . . . , L are

q̂ℓ =
q̂ℓ+1

1− qℓq̂ℓ+1
, (C.18)

qℓ =
αℓ−1

αℓ

qℓ−1

1− qℓ−1q̂ℓ
, (C.19)

ĉℓ =
ĉℓ+1 + cℓq̂

2
ℓ+1

(1− qℓq̂ℓ+1)2
, (C.20)

cℓ =
αℓ−1

αℓ

cℓ−1 + q2
ℓ−1 ĉℓ

(1− qℓ−1q̂ℓ)2
. (C.21)
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The saddle point equation ∂ S/∂ F̂ = 0 yields

0= 1+
f̂

(F̂ − f̂ )2
−

1

F̂ − f̂
, (C.22)

while the equation ∂ S/∂ f̂ = 0 yields

0= − f −
f̂

(F̂ − f̂ )2
, (C.23)

hence we have

F̂ − f̂ =
1

1− f
, (C.24)

and

f̂ = −
f

(1− f )2
. (C.25)

Finally, the equation ∂ S/∂ f = 0 yields

0= − f̂ −
q̂2

2c1 + ĉ2

(1− q1q̂2)2
. (C.26)

Then, we can easily eliminate the Lagrange multipliers F̂ and f̂ . The remaining system can be
written compactly as

q̂ℓ =
q̂ℓ+1

1− qℓq̂ℓ+1
, (ℓ= 2, . . . , L) , (C.27)

qℓ =
αℓ−1

αℓ

qℓ−1

1− qℓ−1q̂ℓ
, (ℓ= 2, . . . , L) , (C.28)

ĉℓ =
ĉℓ+1 + cℓq̂

2
ℓ+1

(1− qℓq̂ℓ+1)2
, (ℓ= 1, . . . , L) , (C.29)

cℓ =
αℓ−1

αℓ

cℓ−1 + q2
ℓ−1 ĉℓ

(1− qℓ−1q̂ℓ)2
, (ℓ= 2, . . . , L) , (C.30)

where we have the definitions

q1 ≡ α−1
1 (1− f ) , (C.31)

c1 ≡ α−1
1 f , (C.32)

ĉ1 ≡
f

(1− f )2
, (C.33)

and the endpoint conditions

q̂L+1 = −β , (C.34)

ĉL+1 = 0 . (C.35)

Moreover, we have

Eλmin = − lim
β→∞

lim
m→0

∂ S
∂ β

(C.36)

= lim
β→∞

lim
m→0

∂ S
∂ q̂L+1

(C.37)

= −αL lim
β→∞

∂

∂ q̂L+1

�

log(1− qL q̂L+1)−
cL q̂L+1

1− qL q̂L+1

�

(C.38)

= αL lim
β→∞

�

qL

1+ βqL
+

cL

(1+ βqL)2

�

, (C.39)
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where the order parameters are to be evaluated at their saddle point values. Our task is
therefore to solve the saddle point equations in the zero temperature limit.

We first simplify the replica-nonuniform saddle point equations using the same trick as
before. To do so, it is useful to define an auxiliary variable q̂1 by

q̂1 =
q̂2

1− q1q̂2
, (C.40)

such that the system of equations is identical to what we encountered in §A.2. Then, letting

A= α1q1q̂1 , (C.41)

we have the backward recurrence

q̂ℓ =
�

1+
A
αℓ

�

q̂ℓ+1 , (C.42)

for ℓ= 1, . . . , L, which can be solved using the endpoint condition q̂L+1 = −β , yielding

q̂ℓ = −β
L
∏

j=ℓ

�

1+
A
α j

�

. (C.43)

This shows that we should have q̂ℓ ∼O(β) and qℓ ∼O(1/β). With these scalings, we have

Eλmin = αL lim
β→∞

cL

(1+ βqL)2
. (C.44)

To obtain qL , we use the equation

qℓ =
A
αℓq̂ℓ

, (C.45)

which gives

qL =
A
αL q̂L

= −
A

β(αL + A)
, (C.46)

hence

Eλmin = αL lim
β→∞

�

αL + A
αL

�2

cL . (C.47)

The equations for the replica-uniform components can be simplified after a bit of tedious
but straightforward algebra. Deferring the details of this computation to Appendix C.3, we
obtain an expression for cL in terms of c1,

cL =
α1c1

αL

q̂2
1

q̂2
L

 

L
∏

j=1

α j

α j + A

!

1

1−
∑L

j=1
A

a j+A

, (C.48)

along with the condition

ĉ1 =
q̂1

q1
c1

∑L
j=1

A
α j+A

1−
∑L

j=1
A
α j+A

, (C.49)
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where we again have defined A= α1q1q̂1. Recalling the definitions

q1 ≡ α−1
1 (1− f ) , (C.50)

c1 ≡ α−1
1 f , (C.51)

ĉ1 ≡
f

(1− f )2
, (C.52)

we can use the condition on ĉ1 to obtain a closed equation for A,

1
A
=

∑L
j=1

A
α j+A

1−
∑L

j=1
A
α j+A

. (C.53)

Then, recalling that

q̂ℓ = −β
L
∏

j=ℓ

�

1+
A
α j

�

, (C.54)

we have

q̂2
1

q̂2
L

=
L−1
∏

j=1

�

α j + A

α j

�2

, (C.55)

so

Eλmin = lim
β→∞

αL

�

αL + A
αL

�2

cL (C.56)

= lim
β→∞

f
1

1−
∑L

j=1
A

a j+A

L
∏

ℓ=1

αℓ + A
αℓ

. (C.57)

To solve these equations in the limit β →∞, it is clear that we should have q̂1 ∼ O(β)
and 1− f ∼O(1/β), such that A= α1q1q̂1 = (1− f )q̂1 ∼O(1). Then, A is determined by the
limiting equation

1
A
=

∑L
ℓ=1

A
αℓ+A

1−
∑L
ℓ=1

A
αℓ+A

, (C.58)

and the minimum eigenvalue is given by

Eλmin =
1

1−
∑L
ℓ=1

A
αℓ+A

L
∏

ℓ=1

�

1+
A
αℓ

�

. (C.59)

We can re-write the equation for A as

A=
1

∑L
ℓ=1

A
αℓ+A

− 1 , (C.60)

and the equation for the minimum eigenvalue as

Eλmin =
�

1+
1
A

� L
∏

ℓ=1

�

1+
A
αℓ

�

. (C.61)

For self-consistency with the fact that we should have q1 > 0, we expect to have A < 0.
Then, letting B = −A, we obtain the result claimed in §3.2. Similarly, considering the maximum
eigenvalue, we must take β →−∞ through negative values of β , hence we expect A∼O(1)
to be positive. Then, we can read off the result reported in §3.2. It is easy to confirm that
this condition for the edges of the spectrum is identical to the condition given in equations
(70) and (71) of Akemann, Ipsen, and Kieburg [5] for the complex Wishart case, with their
v̂ℓ = αℓ − 1 and û0 = −(A+ 1).
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C.3 Simplifying the recurrence for the replica-uniform order parameters

In this appendix, we solve the saddle point equations for the replica-uniform components of
the order parameters in our computation of the minimum and maximum eigenvalues. This
analysis amounts to solving a recurrence relation, and follows our approach in [31].

We first eliminate the variables cℓ by solving the equation

ĉℓ =
ĉℓ+1 + cℓq̂

2
ℓ+1

(1− qℓq̂ℓ+1)2
, (C.62)

to obtain

cℓ =
�

1− qℓq̂ℓ+1

q̂ℓ+1

�2

ĉℓ −
1

q̂2
ℓ+1

ĉℓ+1 , (ℓ= 1, . . . , L) . (C.63)

Then, for ℓ= 2, . . . , L, the equation

cℓ =
αℓ−1

αℓ

cℓ−1 + q2
ℓ−1 ĉℓ

(1− qℓ−1q̂ℓ)2
, (C.64)

yields a three-term recurrence

αℓ−1

αℓ
ĉℓ−1 =

�

q̂2
ℓ

q̂2
ℓ+1

(1− qℓq̂ℓ+1)
2 +
αℓ−1

αℓ

1− q2
ℓ−1q̂2

ℓ

(1− qℓ−1q̂ℓ)2

�

ĉℓ −
q̂2
ℓ

q̂2
ℓ+1

ĉℓ+1 , (C.65)

for ℓ= 2, . . . , L, with initial difference condition

c1 =
�

1− q1q̂2

q̂2

�2

ĉ1 −
1

q̂2
2

ĉ2 , (C.66)

and endpoint condition ĉL+1 = 0. Substituting in the formula

qℓ =
A
αℓq̂ℓ

, (C.67)

and using the recurrence

q̂ℓ =
�

1+
A
αℓ

�

q̂ℓ+1, (C.68)

we have

qℓq̂ℓ+1 =
A
αℓ

q̂ℓ+1

q̂ℓ
=

A
αℓ + A

, (C.69)

hence we obtain the simplified recurrence

αℓ−1

αℓ
ĉℓ−1 =

αℓ +αℓ−1 + 2A
αℓ

ĉℓ −
�

αℓ + A
αℓ

�2

ĉℓ+1 , (C.70)

and the initial difference condition

q̂2
1c1 = ĉ1 −

�

α1 + A
α1

�2

ĉ2 . (C.71)

We now further simplify our task by defining new variables ûℓ such that

ĉℓ = α1q̂2
1c1ûℓ , (C.72)
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which obey the recurrence

αℓ−1

αℓ
ûℓ−1 =

αℓ +αℓ−1 + 2A
αℓ

ûℓ −
�

αℓ + A
αℓ

�2

ûℓ+1 , (C.73)

for ℓ= 2, . . . , L, with the initial difference condition

1
α1
= û1 −

�

α1 + A
α1

�2

û2 , (C.74)

and endpoint condition ûL+1 = 0. If L = 1, we simply have û1 = 1/α1.
To solve this recurrence for L > 1, we observe that it can be re-written as

αℓ + A
αℓ

ûℓ+1 − ûℓ =
αℓ−1

αℓ

αℓ
αℓ + A

�

αℓ−1 + A
αℓ−1

ûℓ − ûℓ−1

�

, (C.75)

for ℓ= 2, . . . , L. Then, it is easy to see that

αℓ + A
αℓ

ûℓ+1 − ûℓ =
αℓ−1

αℓ

αℓ
αℓ + A

�

αℓ−1 + A
αℓ−1

ûℓ − ûℓ−1

�

(C.76)

=
αℓ−1

αℓ

αℓ−2

αℓ−1

αℓ
αℓ + A

αℓ−1

αℓ−1 + A

�

αℓ−2 + A
αℓ−2

ûℓ−1 − ûℓ−2

�

(C.77)

=
α1

αℓ

αℓ
αℓ + A

αℓ−1

αℓ−1 + A
· · ·

α2

α2 + A

�

α1 + A
α1

û2 − û1

�

, (C.78)

hence

ûℓ =
αℓ + A
αℓ

ûℓ+1 +
1
αℓ

αℓ
αℓ + A

αℓ−1

αℓ−1 + A
· · ·

α2

α2 + A
[α1û1 − (α1 + A)û2] . (C.79)

By the endpoint condition ûL+1 = 0, we then have

ûL =
1
αL

αL

αL + A
αL−1

αL−1 + A
· · ·

α2

α2 + A
[α1û1 − (α1 + A)û2] , (C.80)

hence

ûL−1 =
�

1
αL + A

+
1

αL−1 + A

�

αL−2

αL−2 + A
· · ·

α2

α2 + A
[α1û1 − (α1 + A)û2] . (C.81)

Iterating backward, we obtain

ûℓ = [α1û1 − (α1 + A)û2]

 

L
∑

j=ℓ

1
α j + A

! 

ℓ−1
∏

j=2

α j

α j + A

!

, (C.82)

for ℓ= 2, . . . , L. In particular, we have

û2 = [α1û1 − (α1 + A)û2]
L
∑

j=2

1
α j + A

. (C.83)

We now use the initial difference condition to write û2 in terms of û1,

û2 =
�

α1

α1 + A

�2�

û1 −
1
α1

�

, (C.84)
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which gives a closed equation for û1 :

α1û1 − 1= (1+ Aû1)(α1 + A)
L
∑

j=2

1
α j + A

, (C.85)

and, for ℓ= 2, . . . , L, an expression for ûℓ in terms of û1:

ûℓ = (1+ Aû1)

 

L
∑

j=ℓ

1
α j + A

! 

ℓ−1
∏

j=1

α j

α j + A

!

. (C.86)

The equation for û1 simplifies to

û1

1+ Aû1
=

L
∑

j=1

1
α j + A

, (C.87)

which yields

û1 =

∑L
j=1

1
α j+A

1− A
∑L

j=1
1
α j+A

. (C.88)

If L = 1, this recovers the expected result that û1 = 1/α1. From this result, we have

ĉ1 = α1q̂2
1c1û1 (C.89)

=
q̂1

q1
c1

∑L
j=1

A
α j+A

1−
∑L

j=1
A
α j+A

, (C.90)

which will allow us to obtain a self-consistent equation given the definition of ĉ1 in terms of f .
Recalling from §C.2 that Eλmin is given in terms of cL , we use the condition

q̂2
LcL = ĉL −

�

αL + A
αL

�2

ĉL+1 , (C.91)

to obtain

cL =
1

q̂2
L

ĉL =
α1c1

αL

q̂2
1

q̂2
L

(1+ Aû1)

 

L
∏

j=1

α j

α j + A

!

, (C.92)

as ĉL+1 = 0 and ĉℓ = α1q̂2
1c1ûℓ by definition, and

ûL =
1
αL
(1+ Aû1)

 

L
∏

j=1

α j

α j + A

!

. (C.93)

Substituting in the value of û1, we find that

cL =
α1c1

αL

q̂2
1

q̂2
L

 

L
∏

j=1

α j

α j + A

!

1

1−
∑L

j=1
A

a j+A

. (C.94)

These are the results reported in §C.2.
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D Computing the extremal eigenvalues for row-structured factors

D.1 Step I: Evaluating the moments of the partition function

As in our study of the unstructured case, we consider the moments of the partition function of
the spherical spin glass:

EZm =

∫

∏

a

dwa

� m
∏

a=1

δ

�

1−
1
n0
∥wa∥2

�

�

Eexp

�

−β
2nL · · ·n1

m
∑

a=1

(wa)⊤X⊤1 · · ·X
⊤
L XL · · ·X1wa

�

. (D.1)

Again, we can integrate out the matrices Xℓ iteratively, introducing the order parameters

Cab
ℓ ≡

1
n1 · · ·nℓ

(wa)⊤X⊤1 · · ·X
⊤
ℓ−1Xℓ−1 · · ·X1wb , (D.2)

and the modified boundary condition ĈL+1 = −βIm. Then, iterating backwards until only the
vectors wa remain, we have

EZm =

∫

dC2 dĈ2

(4πi/n1)m(m+1)/2
· · ·
∫

dCL dĈL

(4πi/nL)m(m+1)/2

exp

�

−
1
2

L
∑

ℓ=2

nℓ

�

tr(CℓĈℓ) +
1
nℓ

log det[Imnℓ − (CℓĈℓ+1)⊗Σℓ]
�

�

×
∫ m
∏

a=1

dwa

� m
∏

a=1

δ

�

1−
1
n0
∥wa∥2

�

�

det(Imn1
− (C1Ĉ2)⊗Σ1)

−n1/2 , (D.3)

where we recall that

Cab
1 =

1
n1
(wa)⊤wb . (D.4)

As in the unstructured case, the spherical constraint means that it is useful to introduce order
parameters

F ab =
1
n0
(wa)⊤wb , (D.5)

via Fourier representations of the δ-distribution, such that F aa = 1 and C1 = F/α1. It is this
step—and, concretely, the spherical constraint—that would be difficult to tackle in the pres-
ence of column-wise correlations in the first factor, as one would have Cab

1 = (wa)⊤Γ1wb/n1,
which is not immediately compatible with the spherical constraint.

Then, after evaluating the remaining unconstrained Gaussian integral over wa, we obtain

EZm∝
∫

dF dF̂
(4πi/n0)m(m+1)/2

∫

dC2 dĈ2

(4πi/n2)m(m+1)/2
· · ·
∫

dCL dĈL

(4πi/nL)m(m+1)/2
exp

�n0m
2

S
�

, (D.6)

for

S(F, F̂,C2, Ĉ2, · · · ,CL , ĈL) =
1
m

tr(FF̂)−
1
m

log det(F̂)−
1
m
α1

1
n1

logdet(Imn1
−α−1

1 (FĈ2)⊗Σ1)

−
1
m

L
∑

ℓ=2

αℓ

�

tr(CℓĈℓ) +
1
nℓ

logdet[Imnℓ − (CℓĈℓ+1)⊗Σℓ]
�

. (D.7)

Again, under the assumption that the spectra of the matrices Σℓ are sufficiently generic, the
action S is O(1), and the integral can be evaluated using the method of steepest descent.
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D.2 Step II: The replica-symmetric saddle point equations

As elsewhere, we make an RS Ansatz

F= (1− f )Im + f 1m1⊤m , (D.8)

F̂= (F̂ − f̂ )Im + f̂ 1m1⊤m , (D.9)

Cℓ = qℓIm + cℓ1m1⊤m , (ℓ= 2, . . . , L) , (D.10)

Ĉℓ = q̂ℓIm + ĉℓ1m1⊤m , (ℓ= 2, . . . , L) . (D.11)

Combining our analysis of the extremal eigenvalues in the unstructured case with our analysis
of the Stieltjes transform in the structured case, we have

lim
m→0

S = F̂ − f f̂ − log(F̂ − f̂ )−
f̂

F̂ − f̂
−α1

�

Eσ1
log(1− q1q̂2σ1)

−(q1 ĉ2 + c1q̂2)Eσ1

�

σ1

1− q1q̂2σ1

��

−
L
∑

ℓ=2

αℓ

�

qℓq̂ℓ + qℓ ĉℓ + cℓq̂ℓ +Eσℓ log(1− qℓq̂ℓ+1σℓ)

− (qℓ ĉℓ+1 + cℓq̂ℓ+1)Eσℓ

�

σℓ
1− qℓq̂ℓ+1σℓ

��

, (D.12)

where we recall the endpoint condition q̂L+1 = −β , ĉL+1 = 0 and, for brevity, we define
q1 = α−1

1 (1− f ) and c1 = α−1
1 f .

Then, by comparison with our previous results, we can read off that, after eliminating F̂
and f̂ , the saddle point equations can be written as

q̂ℓ = q̂ℓ+1Eσℓ

�

σℓ
1− qℓq̂ℓ+1σℓ

�

, (ℓ= 2, . . . , L) , (D.13)

qℓ =
αℓ−1

αℓ
qℓ−1Eσℓ−1

�

σℓ−1

1− qℓ−1q̂ℓσℓ−1

�

, (ℓ= 2, . . . , L) , (D.14)

ĉℓ = ĉℓ+1Eσℓ

�

σℓ
1− qℓq̂ℓ+1σℓ

�

+ (qℓ ĉℓ+1 + cℓq̂ℓ+1)q̂ℓ+1Eσℓ

�

�

σℓ
1− qℓq̂ℓ+1σℓ

�2
�

, (ℓ= 1, . . . , L) , (D.15)

cℓ =
αℓ−1

αℓ
cℓ−1Eσℓ−1

�

σℓ−1

1− qℓ−1q̂ℓσℓ−1

�

+
αℓ−1

αℓ
(qℓ−1 ĉℓ + cℓ−1q̂ℓ)qℓ−1Eσℓ−1

�

�

σℓ−1

1− qℓ−1q̂ℓσℓ−1

�2
�

,

(ℓ= 2, . . . , L) , (D.16)

where we have the definitions

q1 ≡ α−1
1 (1− f ) , (D.17)

c1 ≡ α−1
1 f , (D.18)

ĉ1 ≡
f

(1− f )2
, (D.19)

and the endpoint conditions

q̂L+1 = −β , (D.20)

ĉL+1 = 0 . (D.21)
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Moreover, we have

Eλmin = − lim
β→∞

lim
m→0

∂ S
∂ β

(D.22)

= αL lim
β→∞

∂

∂ β

�

EσL
log(1+ βqLσL) + β cLEσL

�

σL

1+ βqLσL

��

(D.23)

= αL lim
β→∞

�

EσL

�

qLσL

1+ βqLσL

�

+ cLEσL

�

σL

1+ βqLσL

�

−cLβqLEσL

�

�

σL

1+ βqLσL

�2
��

, (D.24)

where the order parameters are to be evaluated at their saddle point values. Our task is
therefore to solve the saddle point equations in the zero temperature limit.

To solve for the replica-uniform components, we define an auxiliary variable q̂1 by

q̂1 = q̂2Eσ1

�

σ1

1− q1q̂2σ1

�

, (D.25)

such that we have the same system of equations as in our analysis of the Stieltjes transform.
Writing

A= α1q1q̂1 , (D.26)

we have

qℓq̂ℓ =
A
αℓ

, (D.27)

for all ℓ= 1, . . . , L, and the expression

1
qℓq̂ℓ+1

= M−1
Σℓ

�

A
αℓ

�

, (D.28)

for all ℓ= 1, . . . , L in terms of the moment generating functions of the correlation matrices.
Then, using the boundary condition q̂L+1 = −β , we have

1
qL
= −βM−1

ΣL

�

A
αL

�

. (D.29)

For ℓ= 1, . . . , L, we multiply through by qℓ+1q̂ℓ+1 to obtain

qℓ+1

qℓ
=

A
αℓ+1

M−1
Σℓ

�

A
αℓ

�

, (D.30)

hence we can iterate backward to obtain

qL

qℓ
=

qℓ+1

qℓ

qℓ+2

qℓ+1
· · ·

qL

qL−1
(D.31)

=
L−1
∏

j=ℓ

A
α j+1

M−1
Σ j

�

A
α j

�

, (D.32)

whence

1
qℓ
= −β

αℓ
A

L
∏

j=ℓ

A
α j

M−1
Σ j

�

A
α j

�

, (D.33)
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and

q̂ℓ = −β
L
∏

j=ℓ

A
α j

M−1
Σ j

�

A
α j

�

. (D.34)

The equations for replica-uniform components can be simplified after a bit of algebra,
which we defer to §D.3. This computation results in the condition

ĉ1 = c1
q̂1

q1

∑L
j=1(µ j − 1)/µ j

1−
∑L

k=1(µk − 1)/µk

, (D.35)

and the equation

cL =
qL

q1
c1

1
µL

1

1−
∑L

k=1(µk − 1)/µk

, (D.36)

where we define

µℓ = −
αℓ
A

M−1
Σℓ
(A/αℓ)

(M−1
Σℓ
)′(A/αℓ)

, (D.37)

to express

Eσℓ

�

�

qℓq̂ℓ+1σℓ
1− qℓq̂ℓ+1σℓ

�2�

=
A
αℓ
(µℓ − 1) , (D.38)

in terms of MΣℓ .
When combined with the definitions

q1 ≡ α−1
1 (1− f ) , (D.39)

c1 ≡ α−1
1 f , (D.40)

ĉ1 ≡
f

(1− f )2
, (D.41)

the equation for ĉ1 gives a closed equation for A= α1q1q̂1 = (1− f )q̂1:

1
A
=

∑L
ℓ=1(µℓ − 1)/µℓ

1−
∑L
ℓ=1(µℓ − 1)/µℓ

. (D.42)

Using the results of §D.3, we may re-write the expression obtained above for Eλmin in
terms of MΣL

and µL:

Eλmin = αL lim
β→∞

�

EσL

�

qLσL

1+ βqLσL

�

+ cLEσL

�

σL

1+ βqLσL

�

−cLβqLEσL

�

�

σL

1+ βqLσL

�2
��

(D.43)

= αL lim
β→∞

�

−
1
β

A
αL
−

1
βqL

A
αL

cL − cL
1
βqL

A
αL
(µL − 1)

�

(D.44)

= − lim
β→∞

�

AµL

βqL
cL +

A
β

�

, (D.45)

37

https://scipost.org
https://scipost.org/SciPostPhysCore.6.2.026


SciPost Phys. Core 6, 026 (2023)

as

EσL

�

qLσL

1+ βqLσL

�

= −
1
β

MΣL

�

1
qL q̂L+1

�

(D.46)

= −
1
β

A
αL

, (D.47)

and

EσL

�

�

βqL

1+ βqL

�2�

= EσL

�

�

qL q̂L+1σℓ
1− qL q̂L+1σL

�2�

(D.48)

=
A
αL
(µL − 1) . (D.49)

Given the results we have obtained thus far, we expect that qℓ ∼O(1/β), q̂ℓ ∼O(β), A∼O(1),
and

c1 =
f
α1
=

1
α1
− q1 =

1
α1
+O(1/β) , (D.50)

as β →∞. Then,

Eλmin = − lim
β→∞

AµL

βqL
cL (D.51)

= − lim
β→∞

AµL

βq1
c1

1
µL

1

1−
∑L

k=1(µk − 1)/µk

(D.52)

=
1

1−
∑L

k=1(µk − 1)/µk

L
∏

j=1

A
α j

M−1
Σ j

�

A
α j

�

, (D.53)

where we use the fact that

1
q1
= −β

α1

A

L
∏

j=1

A
α j

M−1
Σ j

�

A
α j

�

. (D.54)

We thus have found that

Eλmin =
�

1+
1
A

� L
∏

ℓ=1

A
αℓ

M−1
Σℓ

�

A
αℓ

�

, (D.55)

where A satisfies

1
A
=

∑L
ℓ=1(µℓ(A)− 1)/µℓ(A)

1−
∑L
ℓ=1(µℓ(A)− 1)/µℓ(A)

, (D.56)

or, equivalently,

A=
1

∑L
ℓ=1(µℓ(A)− 1)/µℓ(A)

− 1 , (D.57)

for

µℓ(A) = −
αℓ
A

M−1
Σℓ
(A/αℓ)

(M−1
Σℓ
)′(A/αℓ)

. (D.58)

This is the result claimed in §3.3.
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D.3 Simplifying the recurrence for the replica-uniform order parameters

In this section, we simplify the recurrence, derived in §D.2 that determines the replica-uniform
order parameters in the extremal eigenvalue computation for row-structured matrices. We
want to simplify the linear system

ĉℓ = ĉℓ+1Eσℓ

�

σℓ
1− qℓq̂ℓ+1σℓ

�

+ (qℓ ĉℓ+1 + cℓq̂ℓ+1)q̂ℓ+1Eσℓ

�

�

σℓ
1− qℓq̂ℓ+1σℓ

�2
�

, (ℓ= 1, . . . , L) , (D.59)

cℓ =
αℓ−1

αℓ
cℓ−1Eσℓ−1

�

σℓ−1

1− qℓ−1q̂ℓσℓ−1

�

+
αℓ−1

αℓ
(qℓ−1 ĉℓ + cℓ−1q̂ℓ)qℓ−1Eσℓ−1

�

�

σℓ−1

1− qℓ−1q̂ℓσℓ−1

�2
�

,

(ℓ= 2, . . . , L) , (D.60)

for fixed c1, using the boundary condition ĉL+1 = 0.
Regrouping terms, we have

qℓq̂ℓ+1 ĉℓ =

�

Eσℓ

�

qℓq̂ℓ+1σℓ
1− qℓq̂ℓ+1σℓ

�

+Eσℓ

�

�

qℓq̂ℓ+1σℓ
1− qℓq̂ℓ+1σℓ

�2��

ĉℓ+1

+

�

q̂ℓ+1

qℓ
Eσℓ

�

�

qℓq̂ℓ+1σℓ
1− qℓq̂ℓ+1σℓ

�2��

cℓ , (ℓ= 1, . . . , L) , (D.61)

αℓ
αℓ−1

qℓ−1q̂ℓcℓ =

�

Eσℓ−1

�

qℓ−1q̂ℓσℓ−1

1− qℓ−1q̂ℓσℓ−1

�

+Eσℓ−1

�

�

qℓ−1q̂ℓσℓ−1

1− qℓ−1q̂ℓσℓ−1

�2��

cℓ−1

+

�

qℓ−1

q̂ℓ
Eσℓ−1

�

�

qℓ−1q̂ℓσℓ−1

1− qℓ−1q̂ℓσℓ−1

�2��

ĉℓ , (ℓ= 2, . . . , L) . (D.62)

As in our analysis of the replica nonuniform components, we write the expectations in terms
of the spectral generating function. As noted before, we have

Eσℓ

�

qℓq̂ℓ+1σℓ
1− qℓq̂ℓ+1σℓ

�

= MΣℓ

�

1
qℓq̂ℓ+1

�

, (D.63)

for all ℓ= 1, . . . , L. Similarly,

Eσℓ

�

�

qℓq̂ℓ+1σℓ
1− qℓq̂ℓ+1σℓ

�2�

= −MΣℓ

�

1
qℓq̂ℓ+1

�

−
1

qℓq̂ℓ+1
M ′Σℓ

�

1
qℓq̂ℓ+1

�

, (D.64)

where M ′Σℓ(z) denotes the first derivative of MΣℓ with respect to its argument. From our
analysis above, letting

A= α1q1q̂1 , (D.65)

we have

MΣℓ

�

1
qℓq̂ℓ+1

�

=
A
αℓ

, (D.66)

for all ℓ= 1, . . . , L. Thus,

Eσℓ

�

qℓq̂ℓ+1σℓ
1− qℓq̂ℓ+1σℓ

�

=
A
αℓ

, (D.67)

while

Eσℓ

�

�

qℓq̂ℓ+1σℓ
1− qℓq̂ℓ+1σℓ

�2�

= −
A
αℓ
−

1
qℓq̂ℓ+1

M ′Σℓ

�

M−1
Σℓ

�

A
αℓ

��

. (D.68)
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Writing

µℓ ≡ −
αℓ
A

1
qℓq̂ℓ+1

M ′Σℓ

�

M−1
Σℓ

�

A
αℓ

��

(D.69)

= −
αℓ
A

M−1
Σℓ

�

A
αℓ

�

M ′Σℓ

�

M−1
Σℓ

�

A
αℓ

��

(D.70)

= −
αℓ
A

M−1
Σℓ
(A/αℓ)

(M−1
Σℓ
)′(A/αℓ)

, (D.71)

such that

Eσℓ

�

�

qℓq̂ℓ+1σℓ
1− qℓq̂ℓ+1σℓ

�2�

=
A
αℓ
(µℓ − 1) , (D.72)

we have

qℓq̂ℓ+1 ĉℓ =
A
αℓ
µℓ ĉℓ+1 +

q̂ℓ+1

qℓ

A
αℓ
(µℓ − 1)cℓ , (ℓ= 1, . . . , L) , (D.73)

qℓ−1q̂ℓcℓ =
A
αℓ
µℓ−1cℓ−1 +

qℓ−1

q̂ℓ

A
αℓ
(µℓ−1 − 1)ĉℓ , (ℓ= 2, . . . , L) . (D.74)

Using the fact that

qℓq̂ℓ =
A
αℓ

, (D.75)

we can re-write this as

q̂ℓ+1

q̂ℓ
ĉℓ = µℓ ĉℓ+1 +

q̂ℓ+1

qℓ
(µℓ − 1)cℓ , (ℓ= 1, . . . , L) , (D.76)

qℓ−1

qℓ
cℓ = µℓ−1cℓ−1 +

qℓ−1

q̂ℓ
(µℓ−1 − 1)ĉℓ , (ℓ= 2, . . . , L) . (D.77)

We now solve the first equation for cℓ, yielding

cℓ =
1

µℓ − 1
qℓ

q̂ℓ+1

�

q̂ℓ+1

q̂ℓ
ĉℓ −µℓ ĉℓ+1

�

, (D.78)

for ℓ= 1, . . . , L. Substituting this into the second equation, we have

1
µℓ − 1

q̂ℓ
q̂ℓ+1

�

q̂ℓ+1

q̂ℓ
ĉℓ −µℓ ĉℓ+1

�

=
µℓ−1

µℓ−1 − 1

�

q̂ℓ
q̂ℓ−1

ĉℓ−1 −µℓ−1 ĉℓ

�

+ (µℓ−1 − 1)ĉℓ . (D.79)

Expanding and adding ĉℓ to both sides, we have

µℓ
µℓ − 1

ĉℓ −
µℓ
µℓ−1

q̂ℓ
q̂ℓ+1

ĉℓ+1 =
µℓ−1

µℓ−1 − 1
q̂ℓ

q̂ℓ−1
ĉℓ−1 −

µℓ−1

µℓ−1 − 1
ĉℓ , (D.80)

or

µℓ
µℓ − 1

�

q̂ℓ+1

q̂ℓ
ĉℓ − ĉℓ+1

�

=
q̂ℓ+1

q̂ℓ

µℓ−1

µℓ−1 − 1

�

q̂ℓ
q̂ℓ−1

ĉℓ−1 − ĉℓ

�

. (D.81)
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This can be iterated backward, yielding

µℓ
µℓ − 1

�

q̂ℓ+1

q̂ℓ
ĉℓ − ĉℓ+1

�

=
q̂ℓ+1

q̂ℓ

µℓ−1

µℓ−1 − 1

�

q̂ℓ
q̂ℓ−1

ĉℓ−1 − ĉℓ

�

(D.82)

=
q̂ℓ+1

q̂ℓ−1

µℓ−2

µℓ−2 − 1

�

q̂ℓ−1

q̂ℓ−2
ĉℓ−2 − ĉℓ−1

�

(D.83)

... (D.84)

=
q̂ℓ+1

q̂2

µ1

µ1 − 1

�

q̂2

q̂1
ĉ1 − ĉ2

�

, (D.85)

for all ℓ= 2, . . . , L. Re-arranging, this gives

ĉℓ =
q̂ℓ

q̂ℓ+1
ĉℓ+1 +

q̂ℓ
q̂2

µℓ − 1
µℓ

µ1

µ1 − 1

�

q̂2

q̂1
ĉ1 − ĉ2

�

, (D.86)

for ℓ= 2, . . . , L. Using the boundary condition ĉL+1 = 0, we then have

ĉL =
q̂L

q̂2

µL − 1
µL

µ1

µ1 − 1

�

q̂2

q̂1
ĉ1 − ĉ2

�

, (D.87)

hence we obtain

ĉℓ =
q̂ℓ
q̂2

µ1

µ1 − 1

�

q̂2

q̂1
ĉ1 − ĉ2

� L
∑

j=ℓ

µ j − 1

µ j
, (D.88)

for ℓ= 2, . . . , L. To obtain a closed equation for ĉ1, we use the condition

c1 =
1

µ1 − 1
q1

q̂2

�

q̂2

q̂1
ĉ1 −µ1 ĉ2

�

. (D.89)

As in our previous analysis, it is useful to make the change of variables

ĉℓ = α1q̂2
1c1ûℓ , (D.90)

which satisfy

ûℓ =
q̂ℓ
q̂2

µ1

µ1 − 1

�

q̂2

q̂1
û1 − û2

� L
∑

j=ℓ

µ j − 1

µ j
, (D.91)

for ℓ= 2, . . . , L, and the condition

1=
A

µ1 − 1
q̂1

q̂2

�

q̂2

q̂1
û1 −µ1û2

�

. (D.92)

This condition can be solved for û2 in terms of û1,

û2 =
1
µ1

q̂2

q̂1

�

û1 −
µ1 − 1

A

�

, (D.93)

which gives the self-consistency condition (from û2 = û2)

(Aû1 + 1)−µ1 = µ1 (Aû1 + 1)
L
∑

j=2

µ j − 1

µ j
. (D.94)
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This can be re-written as

Aû1

Aû1 + 1
=

L
∑

j=1

µ j − 1

µ j
, (D.95)

which gives

û1 =
1
A

∑L
j=1(µ j − 1)/µ j

1−
∑L

j=1(µ j − 1)/µ j

. (D.96)

For ℓ= 2, . . . , L, we can then write

ûℓ =
q̂ℓ
q̂1

Aû1 + 1
A

L
∑

j=ℓ

µ j − 1

µ j
, (D.97)

hence

ûℓ =
q̂ℓ
q̂1

1
A

∑L
j=ℓ(µ j − 1)/µ j

1−
∑L

k=1(µk − 1)/µk

, (D.98)

for all ℓ= 1, . . . , L.
In terms of the original variables, we then have

ĉℓ = α1q̂2
1c1ûℓ (D.99)

= c1
α1q̂1q̂ℓ

A

∑L
j=ℓ(µ j − 1)/µ j

1−
∑L

k=1(µk − 1)/µk

(D.100)

= c1
q̂ℓ
q1

∑L
j=ℓ(µ j − 1)/µ j

1−
∑L

k=1(µk − 1)/µk

. (D.101)

Finally, for ℓ= 2, . . . , L, we obtain

cℓ =
qℓ
q1

c1
1
µℓ

1−µℓ
∑L

j=ℓ+1(µ j − 1)/µ j

1−
∑L

k=1(µk − 1)/µk

, (D.102)

with

cL =
qL

q1
c1

1
µL

1

1−
∑L

k=1(µk − 1)/µk

, (D.103)

in particular. These are the results reported in §D.2.
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