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Abstract

It has recently been shown that by broadcasting the subsystems of a bipartite quantum
state, one can activate Bell nonlocality and significantly improve noise tolerance bounds
for device-independent entanglement certification. In this work we strengthen these
results and explore new aspects of this phenomenon. First, we prove new results related to
the activation of Bell nonlocality. We construct Bell inequalities tailored to the broadcast
scenario, and show how broadcasting can lead to even stronger notions of Bell nonlocality
activation. In particular, we exploit these ideas to show that bipartite states admitting
a local hidden-variable model for general measurements can lead to genuine tripartite
nonlocal correlations. We then study device-independent entanglement certification in
the broadcast scenario, and show through semidefinite programming techniques that
device-independent entanglement certification is possible for the two-qubit Werner state
in essentially the entire range of entanglement. Finally, we extend the concept of EPR
steering to the broadcast scenario, and present novel examples of activation of the two-
qubit isotropic state. Our results pave the way for broadcast-based device-independent
and semi-device-independent protocols.
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1 Introduction

One of the most fascinating aspects of quantum theory is the fact that it does not obey the same
common-sense form of causality that is observed at the macroscopic level. This is made formal
in Bell’s theorem [1], which proves that any attempt to reformulate the theory in a classical
picture of reality is doomed to fail at reproducing the predictions of certain experiments, called
Bell tests. In a Bell test, an entangled quantum system is prepared and shared between a number
of spatially separated laboratories and subsequently measured. Remarkably, measurements
made in these separate locations lead to correlations between outcomes that defy explanation
via shared classical resources alone: a phenomenon first shown by Bell [1] and consequently
called Bell nonlocality (see [2] for a review article).

The discovery of Bell nonlocality has since developed into its own field of research, and much
is now known. This research program has also inspired new notions of non-classicality that
are closely related to Bell nonlocality. The most widely studied of these is EPR steering [3–8].
Like Bell nonlocality, EPR steering is a form of non-classicality exhibited by entangled quantum
states, and relates to the fact that a measurement made on one subsystem of an entangled
state has the ability to influence or “steer” the distant quantum state of another subsystem.
EPR steering can also be understood from the perspective of Bell nonlocality, where one makes
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stronger assumptions about the physics of one of the devices; for this reason, the phenomenon
is generally easier to observe in experiments than Bell nonlocality [9,10].

Aside from foundational implications, Bell nonlocality and EPR steering also play a key
role in quantum information technologies. In particular, the phenomena serve as the fuel for
the class of device-independent (DI) [11–18], and certain types of semi-device-independent
(SDI) protocols [19–22]. The most basic of these protocols is that of entanglement certification:
since both phenomena require the use of entangled states, the observation of either implies
a certificate of entanglement in the underlying physics. Device-independent certification
of entanglement is highly desirable, since it allows us to ensure entanglement even in a
scenario where the measurements performed by the parties are untrusted and uncharacterised.
Additionally, such protocols serve as starting points for advanced protocols of cryptography [13,
23,24], randomness certification [25,26], and randomness amplification [27,28], in which
their security is not based on the internal mechanism of the devices but on the fact that events
from distant parties are space-like separated. An interesting growing body of work is also
showing how Bell nonlocality plays a key role in quantum computational advantages [29–32].

Basic questions regarding both Bell nonlocality and EPR steering still remain open however.
Perhaps the simplest of these is the one asking which entangled states are capable of exhibiting
these forms of non-classicality. In particular, it is known that entanglement alone is not sufficient
to observe neither Bell nonlocality nor EPR steering, since some mixed entangled states are
known to admit so-called local hidden-variable, or local hidden state models [33–35]. A
clearer answer to this question is desirable from a foundational perspective, but also from a
technological perspective, given their connection to quantum information technologies.

An important discovery in this respect was that of activation. The basic message is as
follows: some quantum states that show only classical behaviour in the orthodox “standard
scenario” can have their non-classicality activated, or revealed, by subjecting the state to a
more complex measurement scenario. This both expands the set of entangled states that exhibit
non-classical behaviour, and rekindles the hope of proving Bell nonlocality or EPR steering of
all entangled states. There are a number of different methods that have been shown to activate
quantum states (see [36] for a more detailed discussion). In Refs. [37,38], it is shown that Bell
nonlocality can be activated by applying local filters to the state before a Bell test. This can
be seen as a specific case of the more general sequential measurement scenario, in which a
sequence of time-ordered measurements is made on the local subsystems of the state [39]. Later,
it was shown that activation of Bell nonlocal and EPR-steering is also possible by taking multiple
copies of the state, and performing joint measurements on the local subsystems [40,41]. This
method appears to be more powerful than the sequential scenario [42], which is perhaps to be
expected given the additional resources and entanglement granted by the multiple copies.

Recently, a new technique based on broadcasting was discovered and shown to lead to
Bell nonlocality activation [36] (see also [43] for a prior related work which inspired the
definition of broadcast nonlocality). In this scenario, one or more of the local subsystems is
broadcast to a number of additional parties (see Fig. 1). The entanglement present in the
original state is thus shared between a larger number of parties, and interestingly, this can be
used to activate the Bell non-locality of the original state. The broadcast scenario also appears
to be significantly more powerful than the sequential measurement scenario: for instance, for
the two-qubit Werner state, broadcasting leads to activation of Bell nonlocality for significantly
lower visibilities [36]. This has practical implications, since although stronger examples of
activation are known by using many copies, the broadcast scenario requires the manipulation
of a single copy of the state per experimental round, does not require joint measurements, and
may thus admit a simpler implementation.

In this article we build on this initial work, and prove a number of new results related
to nonlocality, device-independent (DI) and semi-DI entanglement certification, which we
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summarize here.

• Bell nonlocality in broadcast scenarios—We give two methods to construct Bell in-
equalities tailored to the broadcast Bell scenario, starting from a Bell inequality in the
standard scenario. We also study detector inefficiencies in the broadcast scenario. For
the case of the two-qubit maximally entangled state |Φ+〉= [|00〉+ |11〉]/

p
2, we show

how one can demonstrate Bell nonlocality with lower detection inefficiencies than in the
standard scenario.

• Stronger activation through broadcasting—We prove a stronger notion of activation
than previously shown in [36]. More precisely, we show that through broadcasting, it is
possible to convert a state with a local hidden-variable (LHV) model for general (POVM)
measurements, to a state this exhibits genuinely multipartite nonlocal correlations. This
is probably the most extreme “jump” in Bell nonlocality class that has been demonstrated
using a single quantum state. Such a result highlights the extent to which notions of
locality in the standard scenario (i.e. the existence of an LHV model) are unable to
capture the strongly nonlocal properties of entangled states.

• Device-independent entanglement certification—We investigate device- independent
entanglement certification in the broadcast scenario. In Ref. [36] it was shown that
broadcasting allows entanglement certification for noise thresholds much lower than
previously known. For the case of the isotropic state of two qubits (local unitary equivalent
to the two-qubit Werner state [33]),

ρ(α) = α|Φ+〉〈Φ+|+ (1−α)1/4 , (1)

it was shown that DI entanglement certification is possible for visibilities α > 1
2 . Here,

we show that this can in fact be extended to visibilities greater than α > 0.338, using a
numerical technique based on the NPA hierarchy. Since the state is entangled for α > 1

3 ,
this is essentially the entire range of entanglement, and we suspect that this could be
lowered arbitrarily close to α = 1

3 with more computational power. This suggests the
possibility of designing device-independent protocols with much greater tolerance to
noise, which is highly desirable given the high experimental requirements that hinder
device-independent protocols.

• Broadcast steering—We extend the definition of EPR steering to the broadcast scenario,
and study the phenomenon using the two-qubit isotropic state, showing that broadcast
steering is possible for visibilities greater than 0.4945 when broadcasting to two parties
and visibility greater than 0.4679 when broadcasting to three parties. This is below the
threshold of 1

2 below which the state has a local hidden state model in the standard
scenario [3,33], and is the first example of the activation of steering using a single copy
of this state.

2 The broadcast scenario

Here we describe Bell nonlocality in the broadcasting scenario, starting with the definition of
standard bipartite Bell nonlocality.

2.1 Bell nonlocality in the standard scenario

In a Bell scenario, Alice and Bob are distant parties that can perform various local measurements
on a shared physical system. We denote by x the choice of measurements performed by Alice
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Figure 1: Three broadcast scenarios. One (or more) of the local systems is broadcast
via the application of a quantum channel, resulting in a multipartite state, sent
to distant parties. Local measurements are then performed on this state, and the
resulting statistics are used to rule out a local hidden-variable description for the
original bipartite state.

and a the output received by Alice by performing her measurement. Analogously, y and b stand
for the choice of respective measurement and outcome performed by Bob. The probability of
Alice and Bob obtaining the outcomes a and b after performing the measurements x and y is
described by p(ab|x y) and the set of all probabilities on a given scenario is referred to as a
behaviour {p(ab|x y)}.

A behaviour with probabilities p(ab|x y) is Bell local if it can be explained by a classical
mixture of independent strategies which only depend on their local input. More formally, if
the probabilities can be explained by the following: Alice and Bob share a physical system,
sometimes referred to as a hidden variable, which assumes the value λ with probability
density Π(λ). Whenever Alice performs the measurement labelled by x , she outputs a with
probability pA(a|x , λ). Whenever Bob performs the measurement labelled by y, he outputs
b with probability pB(b|y, λ). In this way, the behaviour {p(ab|x y)} admits a Bell local
decomposition if it can be written as

p(ab|x y) =

∫

Π(λ) pA(a|x , λ) pB(b|y, λ) dλ . (2)

In a seminal work [1], Bell showed that quantum correlations do not necessarily respect
(2), a phenomenon now known as Bell nonlocality. More formally, let ρAB be a quantum state
shared by Alice and Bob, i.e., ρAB is a positive semidefinite operator, ρAB ≥ 0, with unit trace,
Tr(ρAB) = 1. Let {Aa|x} be a set of POVMs representing the quantum measurement x with
output a, i.e. Aa|x is a positive semidefinite operator, Aa|x ≥ 0, and the set {Aa|x}a respects the
normalization constraint

∑

a Aa|x = 1, ∀x . Analogously, {Bb|y} is a set of POVMs representing
Bob’s measurements. The probability of Alice and Bob obtaining the outcomes a and b when
performing the quantum measurements on their shared system is given by

p(ab|x y) = Tr(ρABAa|x ⊗ Bb|y) . (3)

Bell theorem thus states that there exist quantum states and measurements such that this
behaviour does not admit a Bell local decomposition as in Eq. (2) [1,2,44].

A quantum state ρAB is separable if it admits a decomposition

ρAB =

∫

Π(λ) ρλA ⊗ρ
λ
B dλ , (4)

where ρλA and ρλB are quantum states and Π is a probability density. States which are not
separable are denoted as entangled. From (2) it is easy to see that separable states can only lead
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to Bell local behaviours, hence if a quantum behaviour does not admit a Bell local decomposition,
we certify that Alice and Bob share an entangled state.

Interestingly, there exist quantum states which, despite being entangled, can only lead
to Bell local correlations in standard Bell scenarios [7, 8, 33, 34, 45–47]. That is, there are
entangled states ρAB such that for every possible choice of local measurements performed by
Alice and Bob, the behaviour given by p(ab|x y) = Tr(ρABAa|x ⊗ Bb|y) is necessarily Bell local
(i.e. admits a decomposition (2)). Such quantum states are said to admit a local-hidden-variable
(LHV) model. Over the years, researchers have proposed extended scenarios that are able to
“activate” the Bell nonlocality of quantum states. That is, states which have an LHV model,
hence Bell local in standard Bell tests, may display nonlocal correlations in more complex
scenarios. Examples of these scenarios include allowing local filtering operations before the
Bell test [37, 42], applying sequential measurements [39, 48], using multiple copies of the
shared state [40] or distributing the bipartite state in networks [49,50].

2.2 Bell nonlocality in broadcast scenarios

Recently, Ref. [36] proposed a Bell scenario entitled broadcast nonlocality which brings novel
insights to quantum nonlocality and can also activate Bell nonlocality for some entangled states
with an LHV model. We now present the concept of broadcast nonlocality by starting with
the scenario illustrated in Fig. 1a). Let ρAB0

be a quantum state shared between Alice and
Bob0 (denoted by the black line in the figure). A quantum channel is performed on the B0
subsystem which will “broadcast” this system to two distant parties, Bob and Charlie. More
formally, let ΩB0→BC be a quantum channel, i.e., a completely positive trace preserving (CPTP)
channel, that enlarges the B0 space to a tensor product space of B and C . Due to this property
of transforming a single system into multiple systems, we refer to this channel as “broadcast
channel”. Examples of such channels are approximate cloning [51, 52] or broadcasting of
quantum information as in Ref. [53], although the channel need not be of this form. When the
quantum state ρAB0

undergoes a broadcast channel ΩB0→BC , the resulting tripartite state is

ρABC = 1⊗ΩB0→BC[ρAB0
] . (5)

Let Aa|x , Bb|y , and Cc|z be POVMs representing quantum measurements performed by Alice Bob,
and Charlie respectively. The probabilities of obtaining outcomes a, b, c when measurements
labelled by x , y, z are performed are given by

p(abc|x yz) = Tr(Aa|x ⊗ Bb|y ⊗ Cc|z ρABC) . (6)

In a standard bipartite Bell scenario under the bipartition A|BC , we would say that this behaviour
is Bell nonlocal if it cannot be written as

p(abc|x yz) =

∫

Π(λ) pA(a|x ,λ) pB(bc|yz, λ) dλ . (7)

The key difference is that, in a broadcast scenario, we assume that, since Bob and Charlie
are far apart, they are restricted by non-signalling constraints. That is, the broadcast channel
represented by Ω may provide Bob and Charlie strong non-signalling correlations (even supra-
quantum ones, such as PR-box correlations [54–56]), but they are necessarily non-signalling.
This is needed to ensure that the non-classicality in the observed correlations is not a result of
the transformation device alone (See Ref. [36] for a more detailed discussion). In mathematical
terms, a behaviour {p(abc|x yz)} is broadcast nonlocal if it cannot be written as

p(abc|x yz) =

∫

Π(λ) pA(a|x , λ) pNS
BC(b, c|y, z, λ) dλ , (8)
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where the behaviour {pNS
BC(b, c|y, z, λ)} respect the non-signalling constraints which are given

by
∑

b

pNS
BC(bc|yz, λ) =

∑

b

pNS
BC(bc|y ′z, λ) ∀y, y ′, c, z, λ , (9)

∑

c

pNS
BC(bc|yz, λ) =

∑

c

pNS
BC(bc|yz′, λ) ∀z, z′, b, y, λ . (10)

In a similar vein, one can also consider a broadcast scenario where both sides (Alice and
Bob) perform broadcast channels before the Bell test, as in example b) of Fig. 1, or that the
broadcast channel broadcasts the state into multiple parties, as in example c) of Fig. 1. The
corresponding definitions of broadcast nonlocality in these scenarios follow the same logic as
above, by allowing parties that share a common broadcast channel to share non-signalling
resources.

3 Novel results and methods for broadcast nonlocality

3.1 Promoting standard Bell inequalities to the broadcast scenario

Here we give a method to construct Bell inequalities tailored to the broadcast scenario, starting
from Bell inequalities defined in the standard scenario. In the broadcast scenario, it is shown that
one can activate nonlocality for the isotropic state, ρα = α

�

�Φ+
� 


Φ+
�

�+ (1−α)1/4, for α > 1p
3
[36].

This is certified by the inequality

I = 〈A0B0C0〉+ 〈A0B1C1〉+ 〈A1B1C1〉 − 〈A1B0C0〉
+ 〈A0B0C1〉+ 〈A0B1C0〉+ 〈A1B0C1〉 − 〈A1B1C0〉

+2 〈A2B1〉 − 2 〈A2B0〉 ≤ 4 ,

(11)

written in the standard correlator notation, where



Ax By Cz

�

=
∑

a, b, c=±1

abc p(abc|x yz) , (12)




Ax By

�

=
∑

a, b=±1

ab p(ab|x y) , (13)

〈Ax〉=
∑

a=±1

a p(a|x) . (14)

Similar definitions hold for 〈Ax Cz〉 and



By Cz

�

, and for



By

�

and 〈Cz〉. The best quantum
violation found for this inequality is 4

p
3 with the measurements and channel given in Ref. [36]

and using the isotropic state with α= 1.
Ineq. (11) can be restructured as follows

〈CHSH [A0, A1, C0, C1] (B0 + B1)〉+LCHSH〈A2 (B1 − B0)〉 ≤ 2LCHSH , (15)

where
CHSH [A0, A1, C0, C1] := (A0 − A1)C0 + (A0 + A1)C1 , (16)

and LCHSH denotes the local bound of the CHSH inequality in the standard Bell scenario, i.e.,
LCHSH = 2. Here, we slightly abuse notation so that for example 〈A2 (B1 − B0)〉 is understood as
〈A2B1〉−〈A2B0〉. The form of (15) suggests the following recipe for promoting any two-outcome
Bell inequality I [A0, . . . , Am, C0, . . . , Ck] to the broadcast scenario through the following ansatz

〈I [A0, . . . , Am, C0, . . . , Ck] (B0 + B1)〉+LI〈Am+1 (B1 − B0)〉 ≤ 2LI , (17)
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where LI is the local bound of I in the standard scenario. We prove in Appendix D that (17)
is valid so long as the Bell inequality I does not contain any 1-body correlator terms 〈Ax〉 for
Alice.

The same procedure can also be applied to the 4-partite symmetric broadcast scenario of
Fig. 1b). In [36, Sec. 4.2] an inequality is given for this scenario which can be written

〈CHSH [A0, A1, C0, C1] (B0 + B1)D0〉+LCHSH〈(B1 − B0)D1〉 ≤ 2LCHSH , (18)

where Alice and Bob are on the left side and Charlie and Dave are on the right side, as in
Fig. 1b). This inequality is also violated by the isotropic state for α > 1p

3
. Similarly to above,

this suggests the construction

〈I [A0, . . . , Am, C0, . . . , Ck] (B0 + B1)D0〉+LI〈(B1 − B0)D1〉 ≤ 2LI . (19)

We prove in Appendix D that (19) is valid so long as the Bell inequality does not contain any
1-body correlator terms 〈Ax〉 or 〈Cz〉.

We now apply these constructions to two well-known Bell inequalities in the standard
scenario, and study noise resistance with respect to the isotropic state (1). The two Bell
inequalities we consider are (i) the chained Bell inequality [57,58] in the case of both parties
having 3 input settings, and (ii) the elegant Bell inequality [59], where Alice has 3 inputs
and Bob 4 inputs. These inequalities are both maximally violated by the maximally entangled
state (α = 1), and are violated by the isotropic state for (i) α > 4

6cos π6
≈ 0.7698, and (ii)

α > 6
4
p

3
≈ 0.8660 respectively. Via a numerical see-saw optimization in the broadcast scenario,

we have found that the corresponding inequalities (17) are violated in the broadcast scenario
for visibilities (i) α > 0.6100 and (ii) α > 0.6799. Surprisingly, the same bounds are obtained
using the construction (19). Notice that for both examples this visibility is below α = 1/K3
where 0.683 < 1/K3 < 0.697 and K3 is Grothendieck’s constant [60–62]. This means that
both examples show activation of nonlocality of the isotropic state in the range in which it
has a projective-LHV model [63]. These examples however do not improve on the α > 1p

3
visibility achieved via the CHSH inequality. It would be interesting to investigate further if
other Bell inequalities (probably with more input settings) could be used to show activation of
the isotropic state below this threshold.

3.2 Robustness to detection inefficiencies

The isotropic state, ρα = α
�

�Φ+
� 


Φ+
�

�+ (1−α)14 , is a simple model for a noisy quantum state,
with α representing the probability of applying a depolarizing channel to one half of a pair of
maximally entangled qubits. From an experimental perspective, there are other interesting
notions of noise. Notably, detectors are not ideal, and they often fail to register an outcome,
opening up loopholes in Bell test experiments. Thus, it is important to study the robustness
of nonlocality with respect to detector inefficiencies. Let us first consider the standard Bell
scenario and let η represent the detection efficiency, the probability of the detector working
correctly. We take all detectors to have the same detection efficiency, and assume no detection
events of different detectors are statistically independent. Here we consider scenarios with
binary inputs taking values in {0,1} and binary outcomes taking values in {+1,−1}. When a
no detection event occurs, an outcome in {+1,−1} is chosen deterministically as a function of
the measurement input of the detector in the round. Mathematically, this is described by two
functions fA(x), fB(y) : {0, 1} → ±1 which give the corresponding outputs given a failure event
for each party and their input in that round. Given ideal statistics p(ab|x y)—computed with
the noiseless quantum state and measurements— the noisy statistics Pη(a, b|x , y) are given by

Pη(ab | x y) = η2 p(ab|x y) +η(1−η)
�

δ fA(x), a p(b|y) +δ fB(y), b p(a|x)
�

+ (1−η)2δ fA(x), aδ fB(y), b , (20)
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where δi, j is the Kronecker delta function. The critical detection threshold ηc is defined as
the lowest η such that, for all η′ > η, Pη

′
(a, b|x , y) is outside the local set. In this scenario,

the best known critical visibility for the two-qubit maximally entangled state is η = 0.8214
achieved using a Bell inequality with four settings per party [64]. This is very close to the
critical detection efficiency of η = 2(

p
2− 1)≃ 0.8284 resulting from the CHSH Bell inequality.

Here, we show that by using a single copy of the maximally entangled state in the broadcast
scenario, one can achieve a significantly lower critical detection efficiency of ηc = 0.7355. We
consider the tripartite broadcast scenario of Fig. 1a). In this case, we have three measurement
devices, and we assume again the same detection efficiency η for each device. We similarly
consider a strategy in which the detectors output either ±1 when a failure event occurs, and
describe this choice of strategy by three functions fA(x), fB(y), fC(z) : {0, 1} → ±1. The
statistics given a detection efficiency η are thus,

Pη(abc | x yz) = η3 p(abc|x yz)

+η2(1−η)
�

δ fA(x), a p(bc|yz) +δ fB(y), b p(ac|xz) +δ fC (z), c p(ab|x y)
�

+η(1−η)2
�

δ fA(x), aδ fB(y),b p(c|z) +δ fA(x), aδ fC (z), c p(c|z) +δ fB(y), bδ fC (z), c p(a|x)
�

+ (1−η)3δ fA(x), aδ fB(y), bδ fC (z), c . (21)

To find the noiseless statistics that give ηc = 0.7355, we use the see-saw algorithm from [36,
Appx. B]. This algorithm optimizes the robustness of the isotropic state with respect to the
visibility parameter α and returns a corresponding Bell inequality valid in the broadcast scenario.
We extract the channel and measurements after the algorithm converges and build the ideal
statistics p(abc|x yz) using the noiseless isotropic state (i.e. the maximally entangled two-qubit
state). Then we find η such that Pη(abc|x yz) saturates the local bound of the returned Bell
inequality, and we do this process over all possible detector strategies fA, fB and fC . The lowest
efficiency found is ηc = 0.7355, certified by the following inequality

〈CHSH [A0, A1, B0, B1]C1〉 − 〈CHSH [A0, A1, B0, B1]〉+ 2(〈C1〉 − 1)≤ 0 , (22)

where CHSH [A0, A1, B0, B1] := (A0 −A1)B0 + (A0 +A1)B1. Here, one adopts a detector failure
strategy such that fA(x) = −1 ∀x , fB(y) = 1 ∀y, fC(z) = 1 ∀z. We remark that the best
detection efficiency is not achieved for the inequality that gives the best visibility (i.e., Eq. (11)).
For this inequality, the best critical efficiency we found is ηc = 0.7997.

We note here that depending on the experimental implementation of the considered scenario,
one will not only have inefficiencies coming from detector imperfections (losses, etc.), but also
from transmission of the state, and in the case of the broadcast scenario, potential inefficiencies
coming from the implementation of the channel are expected.

Previous studies of detector inefficiencies focus on the noise from the detectors and ne-
glect other sources of noise. Therefore, we have adopted the same approach so that we can
meaningfully benchmark our results against the existing literature, e.g., Refs. [65–67].

Our result can be compared with the results of [68], where improved bounds are found
by using multiple copies of the maximally entangled two-qubit state achieving ηc = 0.8086,
ηc = 0.7399 and ηc = 0.6929 for two, three and four copies of the state respectively (and local
quantum measurements). Note that that our bound is strictly better than that achieved with
three copies of the state, while using a single copy in our scenario (plus a channel). It would be
interesting to study if the techniques presented in [68] could be used to find lower efficiency
thresholds by applying our strategy in parallel with the use of several copies of the maximally
entangled state.
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Figure 2: A vector p⃗ corresponding to a behaviour {p(abc|x yz)} is non-signalling
bilocal if it is inside the convex hull of all bipartite local polytopes (dashed line),
where distant parties respect the non-signalling constraints. Behaviours which are
not non-signalling bilocal are referred here as NS genuine tripartite Bell nonlocal.
Here, we show that using the broadcast scenario bipartite quantum states with an
LHV model for all POVMs can lead to NS genuine tripartite nonlocality.

4 Activation of non-signalling genuine multipartite nonlocality

In Refs. [65,69], the authors analyse different notions of genuine multipartite Bell nonlocality
and introduce the concept of non-signalling bilocality, which is intimately related to the idea
of broadcast nonlocality presented here. Following Ref. [65], a tripartite behaviour with
probabilities p(abc|x yz) is non-signalling bilocal (NS2-local) if it can be written as

p(abc|x yz) = q1

∑

λ

ΠA(λ)pA(a|xλ)pNS
BC(bc|yzλ) + q2

∑

λ

ΠB(λ)pB(b|yλ)pNS
AC (ac|xzλ)

+ q3

∑

λ

ΠC(λ)pC(c|zλ)pNS
AB (ab|x yλ) , (23)

where all functions q, p, π are probability distributions and pNS
AB (ab|x yλ), pNS

BC(bc|yzλ),
pNS

AC (ac|xzλ) are non-signalling behaviours. Behaviours that are not NS2-local are then referred
to as non-signalling (NS) genuine multipartite nonlocal, see Fig. 2.

We recall from Eq. (8) that a tripartite behaviour with probabilities p(abc|x yz) is broadcast
local if it can be written as

p(abc|x yz) =
∑

λ

ΠA(λ)pA(a|xλ)pNS
BC(bc|yzλ) . (24)

By direct inspection, we then see that any NS genuine multipartite nonlocal behaviour (that is,
under definition Eq. (23)) is also broadcast nonlocal. Indeed, the set of non-signalling bilocal
behaviours may be viewed as the convex hull of the set of broadcast local in every possible
bipartition.

We now present a bipartite state which admits a local hidden-variable model for all possible
local measurements but can lead to correlations that are nonlocal in the broadcast scenario.
Additionally, we will show that, despite being Bell local in bipartite scenarios, this state displays
NS genuine multipartite nonlocality, following the definition of Eq. (23). Consider the following
family of two-qubit states:

ρPOVM(α, χ) :=
1
2
ρ(α, χ) +

1
2
ρA⊗ |0〉〈0| , (25)
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where

ρ(α, χ) := α
�

�ψχ
� 


ψχ
�

�+ (1−α)
1
2
⊗ρB

χ , (26)
�

�ψχ
�

:= cosχ|00〉+ sinχ|11〉 , (27)

and

ρB
χ := TrA

�

�ψχ
� 


ψχ
�

� , ρA := TrB ρ(α, χ) . (28)

As shown in Ref. [8], if cos2(2χ)≥ 2α−1
(2−α)α3 , the state ρPOVM(α, χ) admits a local hidden-variable

model for all local POVMs performed by Alice and Bob.
We will make use of the inequalities for NS genuine tripartite nonlocality. Reference [65]

listed all non-signalling bilocal Bell inequalities in a tripartite scenario where each party has two
inputs and two outputs. Using the optimization methods detailed in Appendix B.1 of Ref. [36],
we have analysed all these inequalities to check whether there exist a channel ΩB0→BC and
local quantum measurements such that the tripartite state,

ρABC := 1⊗ΩB0→BC[ρPOVM(α,χ)] , (29)

leads to NS-bilocal nonlocality. We have identified that the inequality 16 of Ref. [65],

−2 〈C0〉+ 〈A1B0〉+ 〈A0B1〉 − 〈A0B0〉 − 〈A1B1〉+ 2 〈A1C1〉+ 2 〈B1C1〉 (30)

+ 〈A1B0C0〉 − 〈A0B0C0〉+ 〈A0B1C0〉+ 〈A1B1C0〉 ≤ 4 ,

can be used to show that the state ρPOVM(α,χ) is NS-genuine tripartite nonlocal (hence, also
broadcast nonlocal) in a region where it admits an LHV model for general POVMs. In Fig. 3 we
present the (α, χ) values for which ρPOVM(α, χ) is guaranteed to have a local hidden-variable
model (shaded region) and, for each χ, the lowest visibility α for which the state violates an
NS2 inequality (dashed blue line). In the intersection of these two regions, The POVM local
state (25) can therefore be transformed to a NS genuinely multipartite nonlocal state via the
application of a broadcast channel. We note that although standard bipartite nonlocality has
been activated from bipartite POVM-local states before, this is the first example of the creation
of genuine multipartite nonlocality using a single copy of such a state.

4.1 Broadcast activation without a broadcast channel

A reinterpretation of the above results also allows us to construct an example of broadcast
activation without a broadcast channel. That is, we consider scenario (a) of Fig. 1, and take
the broadcast channel ΩB0→BC to be the identity channel:

1⊗ΩB0→BC[ρAB0
] = ρAB0

. (31)

Let us now take the state ρPOVM defined in Eq. (25), in the activation region of Fig. 3 (i.e.
anywhere in the yellow-blue intersection). We then apply the channel ΩB0→BC which leads to
activation of NS genuine multipartite nonlocality, the final state thus being

ρΩ = 1⊗ΩB0→BC[ρPOVM]. (32)

11

https://scipost.org
https://scipost.org/SciPostPhysCore.6.2.028


SciPost Phys. Core 6, 028 (2023)

0 0.2 0.4 0.6 π/4
angle χ > 0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

vi
si

bi
lit

y
α

NS genuine tripartite nonlocal

LHV model for general measurements

Figure 3: In the shaded (yellow) region, the state ρPOVM(α,χ) admits a local hidden-
variable model for all POVM measurements. Also, above the (blue) dashed line
the state ρPOVM(α,χ), with χ > 0, violates the NS2 genuine tripartite inequality
number 16 of Ref. [65]. We can see that for small values of χ, there is a range
of visibility α such that the state ρPOVM(α,χ) is bipartite Bell local in the standard
scenario but broadcast nonlocal and NS genuine tripartite nonlocal.

Note that, since local quantum channels cannot create Bell nonlocality from states admitting
an LHV model for all POVMs [34],1 ρΩ has a POVM LHV model on the partition A|BC .

ρΩ→ Bell local for all POVMs on A|BC . (33)

However, our previous result shows that ρΩ is NS genuine tripartite nonlocal, and thus
broadcast nonlocal too.

ρΩ→ broadcast nonlocal onA|BC(using scenario (a) of Fig. 1 and inequality (30)) . (34)

From this perspective, starting with ρΩ as a bipartite state on A|BC we obtain “activation”
by performing the identity channel, i.e. no broadcast channel, and by understanding Bob
and Charlie as distinct parties (meaning here that they are restricted to local measurements
quantum mechanically and non-signalling strategies classically).

5 Device-independent entanglement certification

Here we apply the broadcast scenario to the task of DI entanglement certification. In [36]
it was shown that DI entanglement of the two-qubit isotropic state (1) is possible for α > 1

2 ,
significantly lower than previous best known bound α≈ 0.6964 [62]. This result gave promising
evidence that DI entanglement certification may be possible in the entire range α > 1

3 in which
the state is entangled. In this section, we give strong evidence this is the case, by showing that
DI entanglement certification is possible for α > 0.338. To do this, we make use of semi-definite

1Essentially because applying the dual channel on the measurements (instead of applying the channel on the
state) gives rise to the same behaviour, implying a model for all POVMs still holds for that final behaviour.
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programming (SDP) tools [70]. As we discuss below, given the proximity of 0.338 to 1
3 , we

suspect that this value could be improved to any visibility arbitrarily close to 1
3 with more

computational resources.
The broadcast scenario we consider is the four party scenario shown in Fig. 1b). Each local

subsystem of the state of the source is broadcasted to two additional parties. If one considers
an arbitrary separable state at the source

ρSEP =

∫

Π(λ)σA0
λ
⊗σC0

λ
dλ , (35)

with Π(λ) a normalized probability density, then after the application of the broadcast channels,
the most general state shared between the four parties is

ρABC D =

∫

Π(λ)σAB
λ ⊗σ

C D
λ dλ , (36)

where σAB
λ
= ΩA0→AB[σ

A0
λ
] and σC D

λ
= ΩC0→C D[σ

C0
λ
] and ΩC0→C D and ΩA0→AB are the quantum

channels describing the broadcasting. Local measurements performed on this state lead to
behaviours of the form

p(abcd|x yzw) = Tr
�

ρABC DAa|x ⊗ Bb|y ⊗ Cc|z ⊗ Dd|w
�

(37)

=

∫

Π(λ)Tr
�

σAB
λ Aa|x ⊗ Bb|y
�

Tr
�

σC D
λ Cc|z ⊗ Dd|w
�

dλ (38)

=

∫

Π(λ) pQ
AB(ab|x yλ) pQ

C D(cd|zwλ) dλ , (39)

where for each λ, pQ
AB(ab|x yλ) and pQ

C D(cd|zwλ) are behaviours from the quantum set of
correlations. Alternatively, the behaviours (39) are the most general that can be obtained by
making local measurements on a state which is separable with respect to the bipartition AB vs
CD. Since these behaviours are the most general that can be obtained from a separable source
state, it follows that if a decomposition (39) cannot be found, the source must be entangled,
and this therefore constitutes a DI certification of the entanglement of the source.

The question remains, however, of how to prove that a given behaviour does not admit a
decomposition (39). This is complicated by the fact that the states and the measurements can in
principle act on infinite dimensional Hilbert spaces. In order to tackle this, we will make use of a
semi-definite programming technique introduced in [71] and based on the NPA hierarchy [72].
For a fixed number of inputs and outputs, let us denote the set of behaviours admitting a
decomposition (39) by QAB|C D so that p ∈QAB|C D if and only if (39) is satisfied. Furthermore,
let us denote by QPPT

AB|C D the set of correlations2 obtained by using states that admit a positive
partial transpose (PPT) with respect to the bipartition AB vs CD. Since separable states are
PPT, it follows that QAB|C D ⊆QPPT

AB|C D and thus p ̸∈QPPT
AB|C D =⇒ p ̸∈QAB|C D. A certificate that

p ̸∈QPPT
AB|C D is therefore a device-independent proof of entanglement.

We now describe how one can obtain such a certificate. In [71] it is shown that the set
QPPT

AB|C D can be characterized from the outside by a sequence of semidefinite programs. The
first and simplest SDP in this sequence is constructed as follows. One defines a set

S1 = {{Ãa|x}a, x , {B̃b|y}b, y , {C̃c|z}c,z , {D̃d|w}d, w,

{Ãa|x B̃b|y}a, b, x , y , {Ãa|x C̃c|z}a, c, x , z , . . . , {C̃c|z D̃d|w}c, d, z, w, {Ãa|x B̃b|y C̃c|z}a, b, c, x , y, z , . . . ,

{B̃b|y C̃c|z D̃d|w}b, c, d, y, z, w, {Ãa|x B̃b|y C̃c|z D̃d|w}a, b, c, d, x , y, z, w} , (40)

2To be more precise, for both QAB|C D and QPPT
AB|C D we assume that a behaviour is generated by a ‘commuting

operator’ strategy, i.e. where measurement operators for different parties are assumed to commute, but a tensor
product structure does not necessarily hold.
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consisting of arbitrary measurement operators for the four parties. Measurement operators for
different parties commute since they act on different Hilbert spaces, e.g.,

[Ãa|x , B̃b|y] = 0 . (41)

Since the Hilbert space dimension is unbounded, one can assume the measurements are
projective without loss of generality, e.g.,

Ãa|x Ãa′|x = Ãa|xδa, a′ , (42)

and similarly for the other parties. A matrix Γ , called the moment matrix, is then constructed,
with elements

Γ i, j = Tr(ρABC DEi E
†
j ) , (43)

and Ei , E j ∈ S1. The matrix Γ can be shown to be positive semi-definite, and satisfies a number
of linear constraints that follow from (41) and (42). Furthermore, from the Born rule, some
elements correspond to observable probabilities p(abcd|x yzw). Finally, as operators acting on
S1 preserve the structure of each local system, operations with respect to each subsystem can
be applied to the moment matrix. For example, performing a partial transpose of ρABC D results
in a corresponding partial transposition defined on the moment matrix Γ [71]. Importantly, this
implies that if ρABC D is PPT with respect to AB|C D, a corresponding PPT constraint also holds
for Γ . Any p ∈QPPT

AB|C D therefore implies the existence of a matrix Γ with the above constraints.
For a given set of probabilities p(abcd|x yzw), these constraints give a necessary condition

for p ∈QPPT
AB|C D. Namely, if p ∈QPPT

AB|C D then there must exist a way of completing the matrix Γ
(having fixed the elements corresponding to the probabilities), such that Γ ⪰ 0, Γ satisfies
the linear constraints implied by (41) and (42), and Γ is PPT in the sense described in [71].
Conversely, if such a completion cannot be found, then the state ρAB|C D cannot be PPT, and is
therefore entangled. Note that since these constraints are linear and semi-definite with respect
to Γ , this can be cast as an instance of a semi-definite program, which in the case of infeasibility,
returns a numerical certificate that p ̸∈QAB|C D, i.e., that certifies the entanglement of the state.

Using the above, we were able to prove device-independent entanglement certification for
ρα for α > 0.338. To achieve this, we used a heuristic optimization procedure described in
Appendix A. The precise strategy involves each of the parties making one of three measurements.
The numerical values of the measurement and channels, as well as the corresponding Bell
inequality that certifies this visibility, can be found in the GitHub repository for the article.
Although we could not obtain a proof that α > 1

3 implies the possibility of a DI entanglement
certification in the broadcast scenario, our numerical analysis strongly suggests that all entan-
gled two-qubit Werner states can be DI certified in the broadcast scenario. This result suggests
that an analytic proof of DI entanglement certification for α > 1

3 may be within reach, and
would be an exciting avenue of future research. Given that this is exactly the separability limit,
one may even hope that broadcasting could activate DI entanglement cert for all entangled
states.

6 Broadcast steering

In this section, we introduce a new broadcast scenario which is based on EPR-steering from Bob
to Alice. This represents a scenario where the measurements performed by Alice are completely
characterised, but no assumption is made on the measurements made by Bob. In this broadcast
steering scenario we present a novel example of activation of EPR-steering correlations, which
does not rely on previous methods such as local filtering [35] or the multi-copy regime [41].
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Figure 4: Illustration of a steering scenario where the measurements performed by
Alice are trusted to be completely characterized (hence, represented by a circle).
Figure a) represents the standard steering scenario and b) represents the case where
a broadcast channel sends the system to two parties which only have access to non-
signalling resources.

6.1 Standard quantum steering

Before presenting the EPR-steering broadcast scenario, we review the concept of standard
EPR-steering [3]. For a more detailed introduction, we recommend the review articles [4,5].
We consider a scenario where Alice and Bob share a bipartite state ρ and Bob has access to a
set of local POVMs described by {Bb|y}. When Bob performs the measurement labelled by y
and obtains the outcome b, the physical system held by Alice is described by its assemblage, a
set of unnormalized states defined by

σb|y := TrB(1⊗ Bb|yρ) , (44)

where TrB denotes the partial trace over Bob’s subsystem and the Tr(σb|y) corresponds to the
probability of obtaining the output b given input y for Bob. An assemblage admits a local
hidden-state (LHS) model if it can be written as

σb|y =

∫

Π(λ) σλ pB(b|y,λ) dλ , (45)

where λ stands for a hidden variable and {Π(λ)}λ and {pB(b|y, λ)}b are probability distribu-
tions. We thus say that an assemblageσb|y is steerable if it does not admit an LHS decomposition
of the form (45).

6.2 Steering in the broadcast scenario

In the simplest broadcast scenario, we start with bipartite state ρAB0
, which after channel

ΩB0→BC is mapped to state ρABC , shared by Alice, Bob and Charlie (who can perform local
measurements x , y, z, with respective outcomes a, b, c). The question is then whether the
statistics observed by Alice can be explained by a local hidden-state model. That is, can the
assemblage

σbc|yz = TrBC

�

1⊗ Bb|y ⊗ Cc|z
�

1⊗ΩB0→BC(ρ)
��

, (46)

be written as

σbc|yz =

∫

Π(λ) σλ pNS
BC(b, c|y, z, λ) dλ , (47)

where pNS
BC(b, c|y, z, λ) is an arbitrary non-signalling behaviour between Bob and Charlie, for

each value λ. We refer to a violation of (47) as broadcast steering, and similarly to broadcast
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nonlocality, such a violation cannot be explained by the transformation device alone, as long as
it generates non-signalling resources only.

In this work, we also consider the scenario where the broadcast channel Ω maps the space
B0 to a tripartite space B ⊗ C ⊗ D. That is, after the channel the state is a four-partite state
ρABC D, shared between Alice, Bob, Charlie and Dave. We then consider an assemblage

σbcd|yzw = TrBC D

�

1⊗ Bb|y ⊗ Cc|z ⊗ Dd|w
�

1⊗ΩB0→BC D(ρ)
��

, (48)

which is broadcast steerable if it can be written as

σbcd|yzw =

∫

Π(λ) σλ pNS
BC D(b, c, d|y, z, wλ) dλ , (49)

where pNS
BC D(b, c, d|y, z, wλ) is an arbitrary non-signalling behaviour.

Before finishing this subsection, we remark that, in a standard steering scenario (steering
from Bob to Alice), the main hypothesis is that Alice’s measurements are trusted to be fully
characterized. In the broadcast steering case, we need an additional hypothesis, which is
that Bob and Charlie are restricted to non-signalling resources, that is, they may be strongly
correlated, but they cannot communicate. Nevertheless, this hypothesis can be imposed in a
physical and fair way by ensuring that the parties after the broadcast channel are in space-like
separated areas at the time of the measurements.

6.2.1 Other potential notions of broadcast steering

We presented broadcast steering for the case where Alice is the trusted party. In principle, one
could consider other natural configurations for defining broadcast steering:

• Bob and Charlie are the trusted parties: in that case, one wonders whether the assemblage

σa|x = TrA(Aa|x ⊗ 1B ⊗ 1C[1⊗ΩB0→BC(ρ)]) , (50)

can be written as

σa|x =

∫

Π(λ) σλ pA(a|x ,λ) dλ . (51)

Note however that, this corresponds to standard steering, where Bob and Charlie can be
seen as a single party. Thus, this scenario is trivial and no activation is possible in this
case.

• Hybrid cases: either Alice and Bob are trusted, or only Charlie is trusted. In either case,
the absence of an LHS model does not imply anything about ρAB0

, since it could be
explained by (standard) bipartite steering between Bob and Charlie.

Since these two other approaches lead to trivial definitions, we focus on the definition
described by (47) where only Alice performed trusted and characterized measurements.

6.3 Broadcast steering with the two-qubit isotropic state

We now present some steering activation results in broadcast scenarios by carefully analysing
the two-qubit isotropic state:3

ρα = α|φ+〉〈φ+|+ (1−α)
1
4

. (52)

3We remark that since the two-qubit isotropic state is local-unitary equivalent to the two-qubit Werner state, all
results presented in this subsection also hold for the two-qubit Werner state.
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The isotropic state represents a maximally entangled state which undergoes white noise. Due
to its symmetry, simplicity, and experimental relevance, the isotropic state is often used as
a benchmark for several tasks in quantum information. Up to the moment of writing this
manuscript, in the standard steering scenario, the two-qubit isotropic state was only shown to
be steerable for visibility α > 1

2 [3]. Moreover, the two-qubit isotropic state has an LHS model
for projective measurements when α ≤ 1

2 [3], and there is evidence that it also has an LHS
model for general POVMs when α≤ 1

2 [73,74]. The results presented in this subsection were
obtained with the help of the heuristic search described in the Appendix C found in the GitHub
online repository [75].

Two broadcasted parties—We first consider a scenario where there are two parties, Bob and
Charlie after the broadcast channel as in Fig. 1a). When Bob and Charlie can choose between
two dichotomic measurements each, that is, y ∈ {0, 1} and z ∈ {0, 1}, we could find a channel
Ω and measurements {Bb|y}, {Cc|z}, to certify broadcast steering for α > 0.5616. We also
investigated the scenario where Bob and Charlie have access to three dichotomic measurements
each, i.e., y ∈ {0, 1, 2} and z ∈ {0, 1, 2}. In this case, we detected broadcast steering up to
α > 0.4945.

Three broadcasted parties—We now consider the scenario where there are three parties, Bob,
Charlie and Dave, after the broadcast channel as in Fig. 1c). We focused on the scenario where
Bob, Charlie and Dave can choose between two dichotomic measurements. Since the vertices
of the non-signalling polytope for three parties performing two dichotomic measurements were
explicitly obtained at Ref. [76], we can use these vertices to run (a straightforward extension of)
our heuristic procedure presented in Appendix C. This allowed us to certify that the two-qubit
isotropic state exhibits broadcast steering for α > 0.4678, showcasing an even stronger example
of steering activation.

Note that the latter two results are example of activation of steering (relative to projective
measurements), since the isotropicc state admits a LHS model in the range α≤ 1

2 . These are
the first examples of single-copy activation of steering for this class of states.

7 Discussion

The relationship between quantum entanglement and Bell nonlocality plays a major role in
understanding quantum correlations and the development of device-independent protocols.
In a seminal paper, Werner showed that entangled states may admit a local hidden-variable
model and cannot lead to Bell nonlocal correlations in the standard Bell scenario [33]. What
seemed to be definite proof that some entangled states cannot lead to nonlocality is today
recognized as only a first (fundamental) step. Over the past years, natural extensions of Bell
scenarios revealed that states admitting local hidden-variable models may also display nonlocal
correlations [37] and we are forced to accept that the relationship between entanglement and
nonlocality is far from being fully understood.

This work investigates entanglement and nonlocality scenarios where the parties can
broadcast their systems to reveal strong correlations which are hidden in the standard Bell test.
From a foundational perspective, we provided novel examples of how to activate the nonlocality
of entangled states which admit local hidden-variable models. We presented an example of
bipartite local states leading to genuine multipartite nonlocality, introduced the concept of
broadcast device-independent entanglement certification and the concept of broadcast steering.
From a more practical aspect, we developed analytical and computational methods to analyse
entanglement and nonlocality in broadcast scenarios. Our findings advance the discussion on
whether entanglement can lead to nonlocality, and we hope that the methods presented here
may pave the way for network-based and broadcast-based device-independent protocols.

17

https://scipost.org
https://scipost.org/SciPostPhysCore.6.2.028


SciPost Phys. Core 6, 028 (2023)

All our code can be found in the GitHub online repository [75] and can be freely used under
the MIT licence.4
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A Heuristic method for device-independent entanglement certifi-
cation

To search for a witness for ρα>0.338, we employ the following heuristic optimization.

1. Pick random (projective) measurements {Aa|x}, {Bb|y}, {Cc|z}, {Dd|w}, and channels

σAB
λ
= ΩA0→AB[σ

B0
λ
], σC D

λ
= ΩC0→C D[σ

C0
λ
].

2. Find α∗ such that the resulting correlation from ρα is on the boundary of QPPT,1
AB|C D. This

can be done via a semi-definite programming described below.

3. Extract corresponding inequality F .

4. For state ρα∗ , optimize the inequality F over all POVMs {Aa|x}, {Bb|y}, {Cc|z}, {Dd|w} and

channels σAB
λ
= ΩA0→AB[σ

B0
λ
], σC D

λ
= ΩC0→C D[σ

C0
λ
].

5. Repeat point 2-4 until two successive values of α∗ are identical.

4https://opensource.org/licenses/mit
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In order to find the value such that ρα∗ is on the boundary of QPPT,1
AB|C D, one can run the

following SDP

maximise α ,

s.t. Γ (p(abcd|x yzw))⪰ 0 ,

where p(abcd|x yzw) = Tr
�

ΩA0→AB ·ΩC0→C D(ρα)Aa|x ⊗ Bb|y ⊗ Cc|z ⊗ Dd|w
�

. Here, the moment

matrix Γ represents the characterization of QPPT,1
AB|C D. In principle, one may consider a tighter ap-

proximation than the first level of the Moroder et. al. hierarchy by employing the corresponding
moment matrix in the above optimization.

B Efficient method for computing the LHS bound of steering in-
equalities

We now describe the method for computing LHS bounds of steering inequalities used in our
work. A similar formula was previously used in Refs. [78] and [79]. We derive a proof here for
completeness:

For an assemblage, σa|x a steering inequality is of the form:
∑

a, x

Tr(Fa|xσa|x)≤ L , (53)

where Fa|x are matrices of the same dimension of σa|x , and L is the LHS bound of the inequality,
that is, the maximal value attained with an LHS assemblage. Formally:

L =max
σλ

¨

∑

a,x

Tr(Fa|xσa|x)

�

�

�

�

σa|x =
∑

λ

σλD(λ)(a|x), σλ ≥ 0, Tr

�

∑

λ

σλ

�

= 1

«

, (54)

where λ runs over all deterministic strategies D(λ)(a|x). From equation (54), one can see that
the LHS bound L can be computed with an SDP optimization (linear objective function and
SDP conditions of the variables σλ). However, one can devise a more efficient formula to
compute it. Let us define Mk :=

∑

a,x Fa|x D(k)(a|x) and consider the inequality applied to an
unsteerable assemblage:

∑

a, x

Tr
�

Fa|xσ
LHS
a|x

�

=
∑

a, x

Tr

�

Fa|x

∑

k

σkD(k)(a|x)

�

(55)

=
∑

k

Tr

�

σk

∑

a, x

Fa|x D(k)(a|x)

�

(56)

=
∑

k

Tr (σkMk) =
∑

k

pk Tr (σ̂kMk) (57)

≤max
k

Tr (σ̂kMk)≤max
k
λM (Mk) , (58)

where σ̂ means Tr(σ̂) = 1 and λM (A) means the largest eigenvalue of A. Moreover, one can see
that the bound is tight (it can be achieved by setting all σk to 0 but the one corresponding to the
Mk with the maximal largest eigenvalue, which is set to the projector onto the corresponding
eigenvector). All in all we have that

L =max
k
λM (Mk) . (59)
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C Heuristic search for certifying broadcast steering of bipartite
states

Here we describe how we searched for interesting examples of steering in the broadcast scenario.
For convenience, we consider the scenario featuring 3 parties, see scenario b) of figure 4. Note
however that it extends straightforwardly to more parties. Let us consider a family of state of
the form

ρv = vρN L + (1− v)ρSEP , (60)

where ρN L is typically a Bell nonlocal state while ρSEP is separable, and the linear parameter
0≤ v ≤ 1. For example, the isotropic state of two qubits is of that form:

ρα = α|φ+〉〈φ+|+ (1−α)
1
4

. (61)

Here the goal is to find the smallest possible v such that the state exhibits broadcast steering.
We used the following procedure

1. Pick random (projective) measurements {Bb|y}, {Cc|z} and channel ΩB0→BC .

2. Find v∗ such that the resulting assemblage using state ρv is broadcast steerable. This can
be done via a semi-definite programming described below.

3. Extract corresponding steering inequality F .

4. For state ρv∗ , optimize steering inequality F over all POVMs {Bb|y}, {Cc|z} and channels
ΩB0→BC .

5. Repeat point 2-4 until two successive values of v∗ are identical.

In order to find the value such that ρv is broadcast steerable for fixed measurements and
channel (step 2), one can run the following SDP

maximise v ,

s.t. TrBC(1⊗ Bb|y ⊗ Cc|z[1⊗ΩB0→BC(ρv)]) =
∑

k

σkD(k)NS (b, c|y, z) ,

σk ≥ 0, Tr(
∑

k

σk) = 1 ,

where the σk (together with v) are the SDP variables and the D(k)NS (b, c|y, z) are the extremal
non-signalling strategies between Bob and Charlie. The dual variables of the equality constraints
of this SDP provide a witness F , that is, a steering inequality of the form

∑

a, x

Tr(Fa|xσa|x)≤ L , (62)

here Fa|x are matrices of the same dimension of σa|x , and L is the LHS bound of the inequality,
that is, the maximal value attained with an LHS assemblage. Formally:

L =max
σλ

¨

∑

a, x

Tr(Fa|xσa|x)

�

�

�

�

σa|x =
∑

λ

σλD(λ)(a|x), σλ ≥ 0, Tr

�

∑

λ

σλ

�

= 1

«

, (63)

where λ runs over all deterministic strategies D(λ)(a|x). A formula to compute the LHS bound
L of such an inequality is given in Appendix B. An algorithm to maximize such a steering
inequality (step 4) over measurements and channels is given in Appendix C.1.
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C.1 Optimizing a steering inequality

Assume one wants to maximize the violation of a steering inequality characterized by operators
Fbc|yz for a fixed state ρAB0

and over channels ΩB0→BC and POVMs {Bb|y}, {Cc|z}. This means
one wants to maximize:

Tr





∑

b, c, y, z

Fbc|yz TrB0BC(1A⊗ Bb|y ⊗ Cc|z [1A⊗ΩB0→BC(ρAB0
)]



 . (64)

Both the objective function and the constraints on the variables are thus nonlinear, making
the naive parametrization and optimization potentially inefficient. One can instead decompose
the optimization on several subsets of variables, such that each optimization can be performed
efficiently (aka see-saw optimization). Here, we used the following procedure:

1. Fix randomly POVMs {Cc|z} and channel ΩB0→BC .

2. Optimize the inequality with respect to POVMs {Bb|y}, update variables accordingly.

3. Optimize the inequality with respect to POVMs {Cc|z}, update variables accordingly.

4. Optimize the inequality with respect to channels ΩB0→BC , update variables accordingly.

5. Repeat point 2 - 4 until two successive values of the inequality are equal (up to some
desired precision).

The motivation for such a heuristic is that steps 2-4 can be written as single-shot SDPs.
Indeed, for step 2 the constraints are Bb|y ≥ 0 and

∑

b Bb|y = 1, and the objective function is
linear. Step 3 is similar. For step 4, we can use the Choi-Jamiolkowski isomorphism [77]: the
action of the map ΩB0→BC on some state σB0

can be written as

ΩB0→BC(σB0
) = Tr1(ρΩ(σ

T
B0
⊗ 1BC)) , (65)

where ρΩ ≡ d · 1⊗Ω[|Φ+〉〈Φ+|] is called the Choi state of the map ΩB0→BC (where |Φ+〉 is the
maximally entangled state of local dimension d = dim(HB0

)).
For valid channels, the Choi state satisfies ρΩ ≥ 0 and TrBC(ρΩ) = 1B0

. The Choi-
Jamiolkowski isomorphism ensures that for each state satisfying these two constraints, there is
a unique corresponding channel. We can thus use the variable ρΩ, which can be treated as an
SDP variable, to solve step 4. One can indeed write the steering inequality as a linear function
of ρΩ:

Tr





∑

b, c, y, z

Fbc|yz TrB0BC((1A⊗ 1B0
⊗ Bb|y ⊗ Cc|z) (1A⊗ρΩ)(ρ

TB0
AB0
⊗ 1BC))



 . (66)

Therefore, each step of the aforementioned procedure can be efficiently carried, since single-
shot SDPs provide global optimums in polynomial time. In practice, we indeed observe that
the entire see-saw optimization converges to what seems to be the global maximum in a few
dozens seconds, for two-qubit states on bipartite and tripartite broadcast steering scenarios.
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D Proof of the lifting ansatz in Ineq. (17)

We rewrite Ineq. (17) for convenience:

〈I [A0, . . . , Am, C0, . . . , Ck] (B0 + B1)〉+LI〈Am+1 (B1 − B0)〉 ≤ 2LI . (67)

To prove it, we follow the same logic as in [36, Sec. 4.1]. For the set of broadcast local
distributions, the extremal strategies5 consist of a deterministic strategy for Alice (this already
implies 〈Ax By Cz〉= 〈Ax〉〈By Cz〉), and, for Bob and Charlie either a local deterministic strategy
or a nonlocal extremal strategy.

Assuming a local deterministic strategy for Bob and Charlie, this further implies
〈By Cz〉= 〈By〉〈Cz〉. Ineq. (17) becomes:

〈I [A0, . . . , Am, C0, . . . , Ck]〉〈B0 + B1〉+LI〈Am+1〉〈B1 − B0〉 ≤ 2LI .

For any deterministic strategy, the values of the 1-body correlators are extremal, i.e.,
〈By〉, 〈Cz〉 ∈ {+1, −1}. As such, either 〈B0 + B1〉 = 0 and 〈B0 − B1〉 = ±2, or vice versa.
Assuming the first case, then the first term is zero, and it is direct to see that the bound is
satisfied. It is also easy to check that this is true for the other case.

Assume now a nonlocal extremal strategy for Bob and Charlie. The correlators in the second
term do not involve Charlie, and as such, it factorizes as follows:

LI〈Am+1(B1 − B0)〉= LI〈Am+1〉(〈B1〉 − 〈B0〉) .

It has been shown [80, Table. II] that for any 2-output non-local extremal distribution with 2
inputs for one party and any number of inputs for the other party, the marginals for the party
with 2 inputs are all equal to 1

2 . This means that 〈B0〉 = 〈B1〉 = 0, which implies that the second
term is zero.

Regarding the first term, expand I as a linear combination of correlators:

〈I [A0, . . . , Am, C0, . . . , Ck] (B0 + B1)〉

=
m
∑

i=0

k
∑

j=0

Mi j〈Ai〉〈(B0 + B1)C j〉+
m
∑

i=0

νi〈Ai〉(〈B0〉+ 〈B1〉) +
k
∑

j=0

µ j〈(B0 + B1)C j〉 . (68)

Notice that since 〈B0〉+〈B1〉 = 0, any contribution from the 〈Ai〉 terms in the inequality vanishes,
which might affect the bound of the inequality. From henceforth, assume that I contains no
1-body correlator terms for Alice (i.e., νi = 0). Then we can absorb B0 and B1 into the C ’s in
the following sense:

〈I [A0, . . . , Am, C0, . . . , Ck] (B0 + B1)〉= 〈I [A0, . . . , Am, B0C0, . . . , B0Ck]〉
+ 〈I [A0, . . . , Am, B1C0, . . . , B1Ck]〉 .

Now, from 〈Ax By Cz〉= 〈Ax〉〈By Cz〉 and since −1≤ 〈Ax〉 ≤ 1 and −1≤ 〈By Cz〉 ≤ 1 one has

〈I
�

A0, . . . , Am, By C0, . . . , By Ck

�

〉 ≤ max
|〈Ax 〉|, |〈By Cz〉|≤1

I
�

〈A0〉, . . . , 〈Am〉, 〈By C0〉, . . . , 〈By Ck〉
�

= max
|〈Ax 〉|, |〈Cz〉|≤1

I [〈A0〉, . . . , 〈Am〉, 〈C0〉, . . . , 〈Ck〉]

= LI , (69)

which implies the bound of 2LI .

5We use “probability distribution”, “strategy” and “behaviour” interchangeably.

22

https://scipost.org
https://scipost.org/SciPostPhysCore.6.2.028


SciPost Phys. Core 6, 028 (2023)

This concludes the proof of equation (17). The other lifting ansatz concerns the 4-partite
symmetric broadcast scenario:

〈I [A0, . . . , Am, C0, . . . , Ck] (B0 + B1)D0〉+LI〈(B1 − B0)D1〉 ≤ 2LI .

If everyone has a local deterministic strategy, then the expression simplifies to

〈I [A0, . . . , Am, C0, . . . , Ck]〉〈B0 + B1〉〈D0〉+LI〈B1 − B0〉〈D1〉 .

Since either 〈B0 + B1〉= ±2 and 〈B1 − B0〉= 0 or vice-versa, the 2LI bound follows using the
reasoning from the previous proof in this section.

If Alice and Bob share a NS resource and Charlie and Dave do a local deterministic strategy,
then the second term in the inequality is zero because 〈B0〉 = 〈B1〉 = 0. The first term simplifies
to

〈I [A0(B0 + B1), . . . , Am(B0 + B1), C0, . . . , Ck]〉〈D0〉 .

Because of the reasoning from the previous proof, this is upper-bounded by 2LI . Notice that here
we need to assume, as in the previous proof, that the Bell expression I [A0, . . . , Am, C0, . . . , Ck]
has no 1-body correlator terms for Charlie.

If Alice and Bob have a local deterministic strategy and Charlie and Dave share a NS
resource, notice that 〈D1〉= 0, therefore, the second term vanishes. The first one becomes

〈I [A0, . . . , Am, C0D0, . . . , CkD0]〉〈B0 + B1〉 .

Now for all values of 〈B0 + B1〉 ∈ {0,±2} the 2LI bound is satisfied. Here we need to assume
that I [A0, . . . , Am, C0, . . . , Ck] has no 1-body correlator terms for Alice.

Lastly, we consider the case where Alice and Bob share a NS resource and Charlie and Dave
also share a NS resource. Notice that in this case, the 4-body correlator still factorizes between
the two pairs because of the definition of broadcast nonlocality, 〈AiB jCkDl〉 = 〈AiB j〉〈CkDl〉.
The second term of the inequality vanishes and the first one, because of the factorization, can
be written as

〈I [A0(B0 + B1), . . . , Am(B0 + B1), C0D0, . . . , CkD0]〉 .

It is also clear from the arguments in the previous proof that this is upper bounded by 2LI .

E CO2 emission table

Estimation for CO2 emissions resulting from our numerical analysis, calculated using the
examples of Scientific CO2nduct [81]. Our emissions are equivalent to a car travelling 1350 km
with an average emission rate of 0.122 kgCO2

/km. The road distance from Barcelona to Vienna
is 1782 km.
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Numerical simulations in Barcelona
Total Kernel Hours [h] ≥1440
Thermal Design Power [W] 165
Total Energy Consumption Simulations [kWh] 237.6
Average Emission Of CO2 In Spain [kg/kWh] 0.265
CO2-Emission from Numerical Simulations [kg] 163
Numerical simulations in Vienna
Total Kernel Hours [h] ≥1200
Thermal Design Power [W] 15
Total Energy Consumption Simulations [kWh] 18
Average Emission Of CO2 In Vienna [kg/kWh] 0.085
CO2-Emission from Numerical Simulations [kg] 1.53
Were The Emissions Offset? No
Total CO2-Emission [kg] ≥164.64
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