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Abstract

We investigate the temperature dependence of quasiparticle interference in the high
Tc-cuprates using an exact-diagonalization +Monte-Carlo based scheme to simulate the
d-wave superconducting order parameter. The quasiparticle interference patterns have
features largely resulting from the scattering vectors of the octet model at lower temper-
ature. Our findings suggest that the features of quasiparticle interference in the pseu-
dogap region of the phase diagram are also dominated by the set of scattering vectors
belonging to the octet model because of the persisting antinodal gap beyond the su-
perconducting transition Tc. However, beyond a temperature when the antinodal gap
becomes very small, a set of scattering vectors different from those belonging to the
octet model are responsible for the quasiparticle interference patterns. With a rise in
temperature, the patterns are increasingly broadened.
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1 Introduction

The appearance of a pseudogap phase at higher temperature remains a puzzling feature of
the phase diagram of high-Tc cuprates [1–6]. A significant part of our understanding of this
phase is based on the scanning-tunneling microscopy (STM) and angle-resolved photoemis-
sion spectroscopy (ARPES) [7–18]. Quasiparticle interference (QPI) determined by the STM
has become one of the most powerful techniques in recent times for exploring the electronic
properties of different phases of various correlated electron systems [19,20]. Not only can the
QPI reveals the electronic structure in the vicinity of the Fermi surface [21–25] but it may also
be used as a phase-sensitive tool to investigate the nature of superconducting order parame-
ter [26–35].

The structure of QPI patterns is determined by three major factors. First of all, the basic
features of the patterns result from the topology of the constant energy contours (CEC) [24,26,
36]. Secondly, they are also dependent on the nature of scatterers. For instance, a magnetic
or a non-magnetic impurity potential may give rise to entirely different patterns especially
when the order parameter changes sign in the Brillouin zone [30]. For a magnetic impurity
in the superconducting state, the pattern is dominated by those scattering vectors which con-
nect the parts of CECs with the same sign of the superconducting order parameter. While in
the case of non-magnetic impurities, the QPI patterns have enhanced features corresponding
to the scattering vectors connecting the sections of CECs having opposite signs of the order
parameter [26]. Furthermore, the antisymmetrized local density of states (LDOS) summed
over momenta can show very different frequency-dependent behavior for a sign changing and
preserving superconducting order parameter [34]. Thirdly, there will also be a larger modu-
lation in the DOS for the scattering vectors joining the sections of CECs with a high spectral
density [24].

The CECs in the d-wave superconducting state assume the shape of a bent ellipse which
is similar to the cross-section of a banana when cut along its length [23]. The predominant
features of the patterns in a d-wave superconductor are widely believed to be captured within
the so-called octet model. There are altogether seven scattering vectors which connect the
tips of the bananas’ cross-section and are expected to play a crucial role in the formation of
QPI patterns [26, 37, 38]. However, it is not clear as to what will be the pseudogap-specific
fingerprints in the QPI patterns across the superconducting transition. Only a few experimental
studies have been carried out because of the difficulties associated with the rapid growth of
thermal fluctuation in the energy of a tunneling electron with increasing temperature [39] and
the scenario remains largely similar with regard to theoretical studies.

The pseudogap phase is marked by a dip in the density of states persistent above Tc up to a
temperature T ∗ [9]. The shape of the dip is similar to the d-wave gap, but it is comparatively
shallower, [11] and accompanied by the Fermi arc formation. The Fermi arc size increases with
temperature [4,15] and the normal state Fermi surface is recovered at the onset temperature
T ∗ for the pseudogap phase, whereas the Fermi points are protected against thermal phase
fluctuations below Tc [14]. The CECs for the finite non-zero energy may exhibit characteristics
within the temperature range Tc < T < T ∗ similar to those below Tc and therefore the QPI
patterns are expected to carry largely similar features [39].

In this paper, we examine the QPI features of the pseudogap phase at finite temperature,
we adopt an approach based on the exact diagonalization + Monte Carlo (ED+MC) scheme,
which was used previously to capture several spectral characteristics of the pseudogap phase
within a minimal model of d-wave superconductors [40]. The momentum-resolved spectral
function for a larger system was possible to study with the approach. Two-peak structures
with a shallow dip for zero energy on approaching the antinodal point were found to exist
beyond the superconducting transition temperature indicating the loss of long-range phase

2

https://scipost.org
https://scipost.org/SciPostPhysCore.6.2.033


SciPost Phys. 6, 033 (2023)

correlation. Thermally equilibrated superconducting order parameter on the lattice points
are used to construct temperature-dependent Green’s function, which, then, can be used to
calculate Green’s function modulated by the presence of an impurity potential.

The structure of the paper is as follows. In section II, we discuss the model and provide the
details of methodologies. Section III is used to discuss the major results whereas we conclude
in section IV.

2 Model and Method

We consider the following one-band effective Hamiltonian

He f f = −
∑

i,δ′,σ

ti,i+δ′d
†
iσdi+δ′σ−µ
∑

i

ni−
∑

i,δ

�

d†
i↑d

†
i+δ↓ + d†

i+δ↑d
†
i↓

�

∆δi +H.c.+
1
V

∑

i

�

�∆δi

�

�

2
. (1)

The first term describes the kinetic energy term originating from the first and second nearest
neighbor hoppings. t and t ′ are the corresponding hopping parameters. d†

iσ(diσ) creates
(destroys) an electron at site i with spin σ. δ′ has been used for the position of both the first
and second nearest neighbors whereas δ denotes the first neighbor only. The unit of energy
is set to be t throughout and t ′ = -0.4 [12]. In the second term, µ is the chemical potential,
which has been chosen to correspond to n ∼ 0.9. The third term is the bilinear term in the
electron field operators and the fourth term is a scalar term. The temporal fluctuations of
the order parameters are ignored and the spatial fluctuations are retained. The fourth term,
ignored in the Hartree-Fock meanfield theoretic approach, plays a critical role in the simulation
carried out here. The last two terms of the Hamiltonian are obtained by using the Hubbard-
Stratanovich transformation in the d-wave pairing channel of the nearest-neighbor attractive
interaction, while ignoring other channels such as charge-density etc.

We focus on the interaction parameter V ∼ 4t2/U ≈ 1 though a larger value will further
increase the temperature window of pseudogap phase as noted earlier. We set V ∼ 1.2. The
d-wave order parameter∆δi = 〈di↓di+δ↑〉= |∆i|eiφδ is treated as a complex classical field. It is
a link variable and can be expressed as a product of two variables, one of them is a site variable
|∆i| and other is a link variable φδ (δ = x , y). The equilibrium configuration {∆i ,φ

x
i ,φ y

i } of
the amplitude and phase fields are obtained by the Metropolis algorithm in accordance with
the distribution {∆i ,φ

x
i ,φ y

i }∝ Trdd† e−βHe f f .
Here, we use a combination of two techniques, i. e.,“traveling-cluster approximation

(TCA) [41] + twisted-boundary condition (TBC)” [42] to examine the changes in the spec-
tral function resulting from the impurities in a system of large size. First, the equilibrated
configuration for 14 × 14 lattice size is obtained with the help of a traveling cluster of size
6 × 6. Secondly, TBCs are used along the x and y directions in such a way that it becomes
equivalent to repeating an equilibrated configuration Ns = 12 times along both directions. In
other words, the impurity induced modulation in the spectral function is obtained by using
Bloch’s theorem for an effective lattice of size 168 × 168.

In the earlier work [40], the temperature-dependent behavior of the single-particle spectral
function within the minimal model of d-wave given by Eq. 1 was examined. For V ∼ 1, as also
considered in the current work, the long-range phase correlation was found to develop near
T ∼ Tc , whereas the short-range phase correlation continued to exist up even up to higher
temperature. The antinodal gap in the form of two-peak structure with a shallow dip near
ω= 0 was shown to exist beyond the superconducting-transition temperature Tc . For T < Tc ,
there exists a Fermi surface in the form of Fermi points against thermal phase fluctuations
whereas all the non-nodal points in the normal-state Fermi surface are accompanied with a
two-peak spectral features with a dip at ω = 0. Beyond Tc , the Fermi points are transformed
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into arcs, characterized by a single quasiparticle peak. With an increasing temperature, the
Fermi arcs grow in size resulting into the recovery of the normal state Fermi surface at a
temperature T ∗ > Tc . For V ∼ 1, it was found that T ∗ ∼ 1.5Tc .

In order to calculate the modification introduced into the Green’s function by a single-
impurity atom, we require the bare Green’s function. It can be obtained by using the real-space
complex classical fields configuration corresponding to the d-wave superconductivity as below

Ĝ0(k,ω) =
∑

αl

1
ω− Eαl + iη

�

|〈uαl |k〉|2 −〈uαl |k〉∗〈vαl |k〉∗

−〈uαl |k〉〈vαl |k〉 |〈vαl |k〉|2

�

+
∑

αl

1
ω+ Eαl + iη

�

|〈vαl |k〉|2 〈uαl |k〉∗〈vαl |k〉∗

〈uαl |k〉〈vαl |k〉 |〈uαl |k〉|2

�

, (2)

where |uαl〉 and |vαl〉 form the eigenvectors of the Bogoliubov−de Gennes Hamiltonian cor-
responding to the eigenvalues Eαl . The subscript α indicates a particular lattice site while l
identifies a particular lattice in the superlattice structure. Thus, the spectral function is ob-
tained as

A(k,ω) =
∑

q,λ

�
�

�〈k|uq,λ〉
�

�

2
δ(ω− Eq,λ) +
�

�〈k|vq,λ〉
�

�

2
δ(ω+ Eq,λ)
�

,

where
〈k|uq,α〉=
∑

l

∑

i

〈k|l, i〉〈l, i|uq,λ〉 , (3)

l is the superlattice index and i is a site index within the superlattice.
Impurity-induced contribution to the Green’s function based on the perturbation theory is

given by [30,31,36]
δĜ(k,k′,ω) = Ĝ0(k,ω)T̂ (ω)Ĝ0(k′,ω) . (4)

Ĝ0(k,ω) =
�

Î− Ĥ(k)
�−1

is the bare Green’s function. Ĥ(k) is the Hamiltonian in the absence
of any impurity and Î is a 2×2 identity matrix. The matrix T̂ (ω) is given by

T̂ (ω) = (̂I− V̂n/mĜ(ω))−1V̂n/m , (5)

where

Ĝ(ω) = 1
N

∑

k

Ĝ0(k,ω) . (6)

The matrix V̂n/m is

V̂n/m = V◦

�

1 0
0 ∓1

�

, (7)

Vn and Vm are the matrices for nonmagnetic and magnetic impurities. We set the impurity
scattering strength V◦ ∼ 0.1. g-map or the fluctuation δN(q,ω) in the LDOS due to a delta-
like impurity scatterer is given by

δN(q,ω) =
i

2π

∑

k

g(k,q,ω) , (8)

with
g(k,q,ω) =
∑

i

�

δĜ ii(k,k′,ω)−δĜ ii∗(k′,k,ω)
�

, (9)

where k− k′ = q.
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Figure 1: (a-c) The CECs for the quasiparticle energies in steps of 0.4∆o within the
range 0 ≤ ω ≤ ∆o. The banana-shaped CECs can be seen to exist up to ∆o. (d-f)
g-maps and (g-i) z-maps for various quasiparticle energies in similar steps when a
non-magnetic impurity is present. The QPI patterns are dominated by the scattering
vectors q2, q3, q6, and q7. There is no significant difference between the two sets of
map.

The tunneling-matrix element is dependent on the distance between the tip and sample.
However, Z(q,ω), a quantity independent of tunneling-matrix element between the STM tip
and sample surface, is defined as the following ratio

Z(r, E) =
N(r, E)

N(r,−E)
. (10)

The Fourier transform of Z(r, E) is obtained as

Z(q, E)≈
N0(ω)

N0(−ω)

�

δN(q,ω)
N0(ω)

−
δN(q,−ω)

N0(−ω)

�

, (11)

where δ(q) is not included and N0(ω) is the density of states. Various quantities mentioned
above are obtained by calculating their average over different field configurations at a given
temperature.

The QPIs in the d-wave state can also be examined at low temperature by ignoring the
scalar term in the Hamiltonian given by Eq. 1 and by Fourier transforming the electron creation
and annihilation operator, which leads to

H =
∑

k

Ψ†(k) Ĥ(k)Ψ(k)

=
∑

k

Ψ†(k)

�

ϵ(k) ∆†
k

∆k −ϵ(k)

�

Ψ(k) , (12)
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Figure 2: (a-c) g-maps and (d-f) z-maps for the quasiparticle energies in steps of
0.4∆o when the impurity atom is magnetic. The patterns have enhanced features
corresponding to the scattering vectors q1, q4, and q5.

where the electron-field operator is defined within the Nambu formalism as Ψ†
k↑ = (d

†
k , d†
−k).

ϵ(k) = −2t(cos kx + cos ky) + 4t ′ cos kx cos ky . ∆(k) =∆o(cos kx − cos ky)/2.

3 Results and Discussion

Figs. 1(a-c) show the CECs in the d-wave superconducting state as a function of quasiparticle
energy. The banana-shaped CECs exist when ω ≲ ∆0, where ∆0 ∼ 0.5. We find that the
spectral density along the CECs are peaked at the tips. As a result, the scattering vectors
joining the tips are expected to dominate the QPI patterns. There are altogether eight such
tips in the set of four Fermi surfaces and joining of these tips results into seven scattering
vectors giving rise to the so-called octet model (See Fig. 4 also).

Figs. 1(d-f) show the g-map for the quasiparticle energy in steps of∆ω= 0.4∆0 when the
impurity scatterers are non-magnetic in nature. The QPI patterns forω≲ 0.5∆0 are dominated
by the scattering vectors q2,q3,q6, and q7. This is mainly because they join those parts of CECs
where the superconducting order parameter has the opposite signs. The coherence factor is
expected to get significantly suppressed for those qis which connect the regions with the order
parameters having the same sign. The features due to q2,q3,q6, and q7 can be seen clearly
when∆ω∼ 0.5∆0. On increasingω further untilω≲∆0, these features approach each other.
Figs. 1(g-i) show the corresponding z-map. We find the z-map to be qualitatively similar to
the g-map except only a few minor differences until ω ≲ ∆0. The differences are significant
only beyond ω∼∆0 (not shown here).

Figs. 2 (a-c) and (d-f) show the QPI patterns when the impurity atoms are magnetic. For
small ω, the patterns due to both q1 and q5 almost coincide near (π, 0). With an increase in
ω, the patterns shift towards (0, 0) along the line joining the points (0, 0) and (π, 0). The
features due to q5 are found near (π,π), which continue to shift towards the line joining the
points (0,0) and (π, 0), and merge finally on approaching ω ∼ ∆0. Note the suppression of
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Figure 3: Evolution of quasiparticle spectral function A(k,ω) forω= (a-c) 0.15t and
(d-f) 0.3t as a function of temperature. kx and ky are along horizontal and vertical
directions, respectively, with each having range [-π, π]. Corresponding QPIs forω=
(g-i) 0.15t and (j-l) 0.3t.

patterns due to scattering vectors such as q2, q7 etc. as they don’t connect sections of CECs
having sign of d-wave superconducting order parameters opposite to each other.

The major features of the spectral properties of single-particle spectral functions, using
the approach described in the current work, have been shown earlier to be in agreement with
ARPES measurements [15, 40] . The Fermi points exist up to the superconducting transi-
tion temperature Tc although the phase fluctuations do result in the spectral weight transfer
from the nodal to nearby points. Beyond Tc , the Fermi arcs appear, and they exist up to
T ∗ the onset temperature of the pseudogap phase. We examine A(k,−ω)+ A(k,ω) first.
Figs. 3(a)-(f) show the CECs for the quasiparticle energy ω = 0.15 and 0.30. The antinodal
gap ∆an(T ) survives up to Tc and beyond. ∆an(0) ∼ 2∆an(Tc) while ∆an(Tc) ∼ 0.5t. The
banana-shaped CECs can be seen up to ω∼∆an(Tc) for T = 0.5Tc while the same is not true
for T ∼ Tc . With the gap near the nodal points about getting filled, the banana-shaped CECs
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(d) (e)
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Figure 4: (a) The schematics of the banana-shaped CECs in the d-wave supercon-
ducting state. The CECs at non-zero (b) finite energy ω ≳ ∆an in the temperature
regime Tc < T < T ∗ or when T > T ∗ and (c) ω = 0. The scattering vectors q8 and
q9 are mainly responsible for the QPI patterns at high energy and high temperature.
(d), (e) and (f) indicate scattering vectors and corresponding patterns.

are highly elongated and rather look like the FSs in the normal state.
Figs. 3(g)-(l) show the QPI patterns Z(q,ω) in the presence of non-magnetic impurity. At

low energy and temperature, the patterns are clearly dominated by the three set of scattering
vectors q2, q3, and q7 (from the “octet” model). It should be noted that q6 can be obtained by a
π/2 rotation of q2. We first examine the QPI patterns for T/Tc = 0.5. When ω∼ 0.5∆an(Tc),
the dominant patterns in the QPI owing mainly to the scattering vectors q2 (or q6), q3, and q7
can easily be identified. As quasiparticle energy increases to ω = ∆an(Tc), the size of q7 in-
creases as well, leading to an enlarged four-petaled flower-like pattern around (0, 0). Note that
the average size of q2 remains almost the same, and only a weak semicircular pattern around
(0, ±π) is seen. The signature of reduction in the d-wave order parameter with temperature is
also reflected in the patterns for T/Tc ∼ 1, which is anticipated because∆an(Tc)∼ 0.5∆an(0).
The patterns forω∼ 0.5∆an(Tc) near Tc look similar to that forω∼∆an(Tc) near T/Tc ∼ 0.5,
which is not surprising given the similar structure of the CECs.

In the pseudogap phase, i.e., beyond Tc , an important difference from the normal state QPI
pattern that is expected is the survival of the pattern corresponding to the scattering vectors
such as q3 and q7. Fig. 3 (i) shows the corresponding patterns, which is purely originating
from the persistence of the anti-nodal gap otherwise absent in the normal state. This is a
consequence of the persisting antinodal gap persisting beyond Tc up to T ∗. In the vicinity of T ∗

and beyond, the QPI patterns exhibit robust behavior against the change in temperature. These
high-temperature features originate from the scattering vectors not belonging to the “octet”
model. Instead, we find a set consisting of scattering vectors q8 and q9 that are responsible
for the persistent features at elevated temperatures (Fig. 4). Note that the CECs have nearly
a circular shape in the extended Brillouin zone, therefore, the dominant scattering vector will
have magnitude twice of the radius of the circular Fermi surface. With this as a radius, if circles
are drawn then the scattering vectors such as q8 and q9 with tips at the intersections of such
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two circles will lead to the dominating features of the QPI. Clearly, the scattering vectors q8
and q9 are different from those of the “octet” model.

Recent works have highlighted the importance of using continuum Green’s function within
a Wannier basis in order to take into account the electronic cloud around the lattice point with
an appropriate phase associated with a particular orbital such as dx2−y2 orbital in cuprates [35,
43,44]. QPI based on such a realistic electronic cloud around the lattice point provides a better
description of the scanning-tunneling microscopy results. However, our focus, in this work,
was to primarily examine the temperature dependence of QPI. The spatial distribution of the
electronic cloud is going to be largely unaffected with a rise in temperature. Thus, the essential
difference between the cases with and without the electronic clouds at low temperatures as
shown in earlier work is expected to be present even at finite temperatures.

The pseudogap phase is a rather complex phase. Although it is widely believed that the
pseudogap-like feature may originate from short-range magnetic correlations [45–47], sig-
natures of short-range phase coherence [48, 49], nematic order without four-fold rotation
symmetry revealed by the anisotropy in the magnetic susceptibility measurements [6], charge-
density order [50], pair-density wave order [51] etc. have also been obtained. Therefore, a
more realistic study requires additional terms in the Hamiltonian to account for such sym-
metry breaking and it will be interesting to see the associated features in the quasiparticle
interference.

4 Conclusions

To conclude, we have examined the quasiparticle interference in a minimal model of high-Tc
cuprates. Our findings suggest that the low temperatures features of the quasiparticle interfer-
ence agrees well with the octet model, which is reflected in both g- and z-map obtained due to
magnetic or nonmagnetic impurities. There is no significant difference in g- and z-map, par-
ticularly when ω ≤ ∆o, whereas beyond ω = ∆o, the differences may get enhanced. When
the temperature increases, the size of the contour of constant energy surface increases because
of a reduction in the antinodal gap. Accordingly, the patterns are modified . At further higher
temperature, that is near the onset of pseudogap to d-wave superconducting transition tem-
perature and beyond the quasiparticle interference pattern is dominated by two new scattering
vectors in addition to the ones that connect antinodal regions.
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