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Abstract

We construct a discrete subset of Narain CFTs from quantum stabilizer codes with qudit
(including qubit) systems whose dimension is a prime number. Our construction exploits
three important relations. The first relation is between qudit stabilizer codes and clas-
sical codes. The second is between classical codes and Lorentzian lattices. The third is
between Lorentzian lattices and Narain CFTs. In particular, we study qudit Calderbank-
Shor-Steane (CSS) codes as a special class of qudit stabilizer codes and the ensembles
of the Narain code CFTs constructed from CSS codes. We obtain exact results for the
averaged partition functions over the ensembles and discuss their implications for holo-
graphic duality.
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1 Introduction

The main goal of this paper is to construct a class of non-chiral conformal field theories (CFTs)
from quantum error-correcting codes. It has been known for many years that a certain class
of chiral CFTs can be constructed from classical error-correcting codes [1–3]. In recent years,
an analogous construction for non-chiral CFTs has been developed in [4] based on a specific
type of quantum error-correcting codes called qubit stabilizer codes, which results in a discrete
subset of Narain CFTs named Narain code CFTs. We generalize this construction of Narain code
CFTs to qudit stabilizer codes. The qudit system is a natural generalization of the qubit system
to higher dimensions with d-level quantum states |x〉 (x = 0, 1, · · · , d − 1). Quantum error-
correcting codes with qudit systems can be formulated in the same way [5] as in the binary
case [6,7]. In this paper, we extend the construction from binary systems to d-ary systems for
d = p being a prime number.

We establish the relationship between qudit stabilizer codes, Lorentzian lattices, and
Narain code CFTs in a similar manner to the binary case [4].1 To this end, we leverage the
following results in the literature:

• Some qudit stabilizer codes are associated with classical codes [8–10].

• Some Lorentzian lattices can be constructed from classical p-ary codes [11].

We combine these ingredients to construct Lorentzian lattices from qudit stabilizer codes (see
figure 1). Then, we define a Narain code CFT by regarding each resulting Lorentzian lattice
as the momentum lattice of the CFT. We show that the modular invariance of the Narain code
CFT is guaranteed by certain conditions satisfied by the stabilizer code or equivalently by the
classical code. The correspondences between qudit codes, Lorentzian lattices, and Narain CFTs
are summarized in table 1.

In particular, our construction reveals a concrete relation among certain functions associ-
ated with codes, lattices, and CFTs. Let C be the classical code that specifies a qudit stabilizer

1While our construction closely follows the one in [4], there is a major difference between the binary and p-ary
cases with odd-prime p. In our construction, equivalent qudit stabilizer codes do not necessarily yield the same
Narain code CFT unless p = 2. See the comment in section 2.2.3 for more details.
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Qudit stabilizer codes Classical codes C Lorentzian lattices eΛ(C)

[11]
[8–10]

Figure 1: An illustration of our construction of Lorentzian lattices from qudit sta-
bilizer codes. There is a class of classical codes associated with qudit stabilizer
codes [8–10] (the light orange region in the middle ellipse). On the other hand,
Lorentzian lattices can be built out of a certain class of classical codes [11] (the light
green region in the middle ellipse). Focusing on the intersection of the two classes
of classical codes allows us to construct a Lorentzian lattice from a qudit stabilizer
code (the red arrows).

code. Then the CFT torus partition function ZC(τ, τ̄), the lattice theta function Θ
eΛ(C)(τ, τ̄) for

the lattice eΛ(C), and the complete enumerator polynomial WC({xab}) of C are related as

ZC(τ, τ̄) =
Θ
eΛ(C)(τ, τ̄)

|η(τ)|2n
=

1
|η(τ)|2n

WC({ψab}) . (1)

Here τ is the modulus of the torus, η is the Dedekind eta function, and ψab are functions of
τ and τ̄.2 Thus the spectrum of the CFT can be read off from any of the three functions.

While our construction of Narain code CFTs is limited to a part of qudit stabilizer codes,
it can be applied to an important class of quantum codes known as qudit Calderbank-Shor-
Steane (CSS) codes. The CSS codes are quantum error-correcting codes defined by a pair
(C (1), C (2)) of classical codes [12, 13]. In this sense, CSS codes form a subset of quantum
codes closely related to classical codes. Therefore, we can exploit the fundamental features
of classical linear codes to analyze the CSS codes. Let us consider a CSS code defined by the
pair (C (1), C (2)) = (C , C⊥) for a classical code C , where C⊥ is the dual code of C . Then, a
Narain code CFT associated with the CSS code can be constructed, whose partition function
is uniquely determined by the complete joint weight enumerator WC ({xab}) of C and C⊥

introduced in [14]:

Z (CSS)
C ,C⊥

(τ, τ̄) =
1

|η(τ)|2n
WC ({ψab}) , (2)

where C = C × C⊥. The complete joint weight enumerator was originally introduced in the
study of classical codes. We will also give a few simple examples for Narain code CFTs based
on CSS codes and exemplify our construction in more detail in section 4.3.

To investigate the universal aspects of the Narain code CFTs we construct, we consider
the partition functions averaged over a class of CSS codes. Recently, ensemble averaging
of Narain CFTs has attracted much attention with a view to seeking a holographic duality
[15, 16] (see [17–29] for related works). In this paper, we focus on CSS codes C given by

2Explicitly, ψab(τ, τ̄) are defined in (90) and can be rewritten as (95).
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(C (1), C (2)) = (C , C) and average over self-dual classical codes C . The partition function of
the Narain code CFT based on a single such CSS code C turns out to be the genus-2 complete
enumerator polynomial W2,C({xab}) of the self-dual code C:

Z (CSS)
C ,C (τ, τ̄) =

1
|η(τ)|2n

W2,C ({ψab}) . (3)

Then, the average over self-dual codes takes the form

Z
(CSS)
n,p (τ, τ̄) :=

1
|Mn,p|

∑

C ∈Mn,p

Z (CSS)
C ,C (τ, τ̄) =

1
|η(τ)|2n

1
|Mn,p|

∑

C ∈Mn,p

W2,C({ψab}) , (4)

where Mn,p is the set of all classical p-ary self-dual codes of length n. Hence, our problem
amounts to calculating the average of the enumerator polynomials over self-dual codes C .

While we are mainly concerned with the genus-2 case, we address the more general prob-
lems of calculating the average of the genus-g complete enumerator polynomial Wg,C over the
set Mn,p ,

E(g)n,p({xv}) =
1
|Mn,p|

∑

C ∈Mn,p

Wg,C({xv}) . (5)

The formula for the average of the genus-g complete enumerator polynomial over doubly-
even self-dual codes was given in [30, 31]. To our best knowledge, however, the averaged
genus-g complete enumerator polynomial for self-dual codes has not been derived yet. The
properties of classical self-dual codes allow us to explicitly write down the formula for p = 2
in Theorem 5.2 and for odd prime p in Theorem 5.4. Therefore, focusing on the genus-2
case, we obtain the exact averaged partition functions (3) of the CSS codes. We find that the
averaged partition function reproduces an averaged partition function conjectured in [28] for
a similar but different ensemble of codes in the large central charge limit. We will discuss the
implications of the averaged Narain code CFTs for holographic duality in section 6 along the
line of [15,16].

The organization of this paper is as follows. In section 2, we review the qudit stabilizer
formalism and in particular the symplectic representation that we use. After introducing these
elements, we concretely illustrate qudit codes by giving some examples of CSS codes. In
section 3, we examine the conditions for a qudit stabilizer code to yield an even self-dual lattice
and point out that a class of CSS codes satisfies the conditions automatically. In section 4, the
resulting Lorentzian even self-dual lattices are lifted to Narain code CFTs, and the dictionary
between codes, lattices, and CFTs is given. In section 5, we consider the averaged theory of
Narain code CFTs. We give the general formula for the average of the higher-genus weight
enumerators, which reduces to the averaged partition function for g = 2. We point out that our
result exactly agrees with the conjectural partition function of the averaged theory associated
with error-correcting codes in [28]. Section 6 concludes with discussions and future directions.
Appendix A lists our notations used throughout this paper. In appendix B, we give details for
a saddle point computation in section 5.

2 Qudit stabilizer codes

In this section, we will review quantum error correction on qudit systems, which is the gen-
eralization of a qubit to higher dimensions following [5,32,33]. We illustrate quantum error-
correcting codes focusing on stabilizer codes in section 2.2. In section 2.3, we introduce CSS
codes, a class of stabilizer codes constructed from a pair of classical codes. We will see later
that CSS codes are compatible with our construction of Narain CFTs.
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2.1 Qudit system

We consider a d-level quantum system called a qudit system (refer to Appendix A.1 in [34]
and section 2 in [35]). For simplicity, we set the number of states with the qudit system as a
prime d = p. Then, a qudit state takes over a finite field Fp = Z/pZ. An orthonormal basis on

a qudit system Hp is given by {|x〉}x=p−1
x=0 . The elementary actions on the Hilbert space Hp are

given by

Xp |x〉= |x + 1〉 , Zp |x〉=ωx
p |x〉 , (6)

where ωp = e2πi/p and x ∈ Fp: x ∼ x + p. These operators are called the qudit Pauli X and Z
operator [5]. The qudit Pauli operators are represented by

Xp =
p−1
∑

x=0

|x + 1〉 〈x | , Zp =
p−1
∑

x=0

ωx
p |x〉 〈x | . (7)

Therefore, we have the following commutation relation:

ZpXp =ωp XpZp . (8)

For example, these operators become Pauli X and Pauli Z when the system is a qubit (p = 2).
In the case of a qutrit (p = 3), these operators are 3× 3 matrices.

X3 =







0 0 1

1 0 0

0 1 0






, Z3 =







1 0 0

0 ω3 0

0 0 ω2
3






, (9)

where ω3 = e2πi/3. We define generalized Pauli operators that act on a qudit system as

g(α,β) =ωκ Xαp Zβp =ω
κ

p−1
∑

x=0

ωxβ
p |x +α〉 〈x | , (10)

where α,β ∈ Fp = {0,1, · · · , p − 1}. We suppress the dependence on κ in g(α,β) because it
plays no role for our construction of Narain CFTs. The global phase factor is given by

ωκ =

�

iκ , if p = 2 ,

ωκp , if p odd prime ,
(11)

where κ ∈ {0, 1,2, 3} for p = 2 and κ ∈ Fp for an odd prime. This ensures that there exists
a choice of κ in operators g(α,β) such that g(α,β)p = 1 for any α,β ∈ Fp [5]. There are p2

operators up to phases, which act on a qudit system in an analogous way to four operators
{I , X , Y, Z} in a qubit system. The commutation relations are

g(α,β)g(α′,β ′) =ω−αβ
′+βα′

p g(α′,β ′)g(α,β) . (12)

Then two operators commute if and only if αβ ′ − βα′ = 0 mod p.
We can easily generalize this representation to the n-qudit system. An orthonormal basis

in the n-qudit system is the n-fold tensor products of {|x〉}x=p−1
x=0 . The p2n operators that act

on the n-qudit system are given by

g(α,β) = g(α1,β1)⊗ · · · ⊗ g(αn,βn) =ω
κ Xα1

p Zβ1
p ⊗ · · · ⊗ Xαn

p Zβn
p , (13)
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where α= (α1, · · · ,αn) ∈ Fn
p, β = (β1, · · · ,βn) ∈ Fn

p and the global phase is given by (11). We

call the group that acts on the n-qudit system the n-qudit Pauli group P(p)n . For odd prime p,
the elements of P(p)n have eigenvaluesωi

p for i = 0, 1, · · · , p−1. For the case of qubits (p = 2),

the group P(2)n consists of all n-fold tensor products of the Pauli matrices multiplied by ±1 or
±i. These elements have eigenvalues of either ±1 or ±i. The commutation relations are given
by

g(α,β) g(α′,β ′) =ω−α·β
′+β ·α′

p g(α′,β ′) g(α,β) , (14)

where we introduce the dot product

α · β = (α1, · · · ,αn) · (β1, · · · ,βn) =
n
∑

i=1

αiβi , (15)

where arithmetic is performed in Fp (modulo p). It may be useful to introduce the following
symplectic product [8]:

〈(α,β), (α′,β ′)〉= α · β ′ − β ·α′. (16)

Then, the commutation relations imply that a pair of operators g(α,β), g(α′,β ′) commute
each other if and only if the symplectic product vanishes: 〈(α,β), (α′,β ′)〉= 0 mod p.

2.2 Stabilizer codes

Error-correcting codes were invented to communicate with others via a noisy channel. We
send an original message encoded as an appropriate signal to be able to correct some noise. In
quantum error-correcting codes, we send a quantum state as an encoded signal. For specifying
an encoded quantum state, some group theoretic methods are useful. Such a class of quantum
codes is called stabilizer codes.

2.2.1 Stabilizer formalism

In order to understand stabilizer codes, we must develop a stabilizer formalism. The stabilizer
formalism is convenient for representing the state vector compactly in a clever use of group
theory. Stabilizer codes were originally considered for qubits by Gottesman [6]. After that,
the notion of stabilizer codes was generalized to qudits in [36–38].

Suppose that S is an abelian subgroup of P(p)n , called the stabilizer group. The set of valid
codewords forms a subspace of the full n qudit Hilbert space, the code subspace of the quantum
code. For a stabilizer group S, a code subspace VS is composed of states that are fixed by all
elements of S: for |ψ〉 ∈ VS ,

g |ψ〉= |ψ〉 , g ∈ S . (17)

The projector on the code subspace VS is given by

PS =
1
|S|

∑

g∈S

g . (18)

Actually, this operator satisfies P2
S = PS due to the group structure of the stabilizer group S.

A qubit stabilizer code with a nontrivial code subspace VS must have an abelian stabilizer
group S that does not contain ±i I [39]. A similar proposition holds for odd prime p.
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Proposition 2.1
Let S be a subgroup of the n-qudit Pauli group P(p)n for odd prime p. The group S is an abelian
group which does not contain ωi

p I (i = 1,2, · · · , p − 1) if the stabilizer code has a nontrivial
code subspace VS .

Proof. In the following, we prove that a code subspace becomes trivial assuming that the
stabilizer group is non-abelian or has a nontrivial multiple of the identity.

Firstly, let us consider the case when a non-abelian subgroup S of P(p)n stabilizes
a code subspace VS . Suppose that M , N ∈ S stabilize a state |ψ〉 ∈ VS . Then
|ψ〉 = MN |ψ〉 = ωi

p N M |ψ〉 = ωi
p |ψ〉 for some i ∈ {1,2, · · · , p − 1}. This implies the en-

coded state |ψ〉 is trivial: |ψ〉 = 0. Next, assume that an abelian stabilizer group S con-
tains a nontrivial multiple of identity. Then we have ωi

p I ∈ S where i = 1, 2, · · · , p − 1, so

VS ∋ |ψ〉=ωi
p I |ψ〉=ωi

p |ψ〉. We conclude that |ψ〉= 0.

The stabilizer group can be characterized by n − k independent generators g1, · · · , gn−k.
More concretely, the stabilizer group is generated by g (α(1),β (1)), · · · , g (α(n−k),β (n−k)) on an
n qudit system where (α(i),β (i)) ∈ Fn

p×F
n
p specifies the generators of the stabilizer group. The

stabilizer generator gi ∈ S divides the entire pn-dimensional Hilbert space into p subspaces
of equal dimension by its eigenvalue. Since there are (n − k) stabilizer generators, VS is a
pk-dimensional vector space. In this case, a stabilizer code is called [[n, k]]p code.

Stabilizer groups S stabilize states in the code subspace VS . On the other hand, there are
operators that change states from the code subspace into other states in the code subspace.
These operators are called logical operators. Logical operators do not map the encoded state
|ψ〉 ∈ VS into a non-code subspace. It follows that stabilizer operators and logical operators
commute. Let us illustrate this fact. Suppose that an operator EL does not commute with a
stabilizer operator g ∈ S. Then we have

g EL |ψ〉=ωκ EL g |ψ〉=ωκ EL |ψ〉 , |ψ〉 ∈ VS , (19)

where the phase factor is nontrivial (κ ̸= 0). The stabilizer operator g ∈ S does not stabilize
the state EL |ψ〉 and then EL |ψ〉 /∈ VS . This implies that if an operator EL does not commute
with a stabilizer operator, then the action of EL on a coding state |ψ〉 ∈ VS put into a non-
code subspace: EL |ψ〉 /∈ VS . Therefore, to stay in a code subspace under the action of an
operator EL , this operator EL has to commute with a stabilizer group S.

We can write logical operators as the n-fold tensor products (13). Since the number of all
operators that act on k qudits is p2k up to global phase factors, the same number of logical
operators act on the encoded subspace. Then, we have 2k generators of such transformations.
There are p2n operators that act on the n-qudits system in all. pn−k of them are stabilizer
operators, and p2k of them are logical operators. Other pn−k operators that anticommute with
the stabilizer group are called error operators.

These operators can be recast in a more group theoretically sophisticated manner. Let us
pick up an abelian subgroup S of the n-qudit Pauli group P(p)n . For each stabilizer group S,
we introduce the normalizer (or centralizer) N(S) of S in P(p)n , i.e., the subgroup of P(p)n
containing all elements that commutes with every element of S. Then, logical operators are
defined as elements of N(S)\S. Also, error operators that anticommute with each element
of S are given by elements of P(p)n \N(S). Note that the set of logical operators and the set of
error operators cannot have the group structure since the identity is always in the stabilizer
group S.
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2.2.2 Symplectic representation

In the above, we have described a stabilizer code using an operator formalism. We can encode
a stabilizer group S into an (n− k)× 2n check matrix [8]:

H=













α(1) β (1)

α(2) β (2)

...
...

α(n−k) β (n−k)













, (20)

where (α(i),β (i)) ∈ Fn
p × F

n
p characterizes the generators of the stabilizer group S. In general,

a stabilizer generator has a phase factor ωκ that is not considered in the above check matrix:

g(α,β) =ωκ Xα1 Zβ1 ⊗ · · · ⊗ Xαn Zβn , (21)

where α= (α1, · · · ,αn) and β = (β1, · · · ,βn). By code equivalence we can set ωκ to 1 for odd
prime p and to iα·β for p = 2.3

A stabilizer group S is mapped to a check matrix H. The commutation relation in the
stabilizer group is also encoded into a symplectic product on the vector space spanned by the
check matrix. We define a 2n× 2n matrix W as

W =

�

0 In

−In 0

�

, (22)

where the In in the off-diagonals is an n× n identity matrix. Elements g(α,β) and g(α′,β ′)
commute if and only if (α,β)W (α′,β ′)T = 〈(α,β), (α′,β ′)〉 = 0. Then the abelian structure
of a stabilizer group reduces to the following condition:

HWHT = 0 mod p , (23)

where 0 on the right-hand side denotes a (n− k)× (n− k) matrix.
We introduce the generator matrix G over Fp such that

HWGT = 0 mod p , (24)

where G is a (n+ k)× 2n matrix with rank (G) = n+ k and its component is given by

G=







α(1) β (1)

...
...

α(n+k) β (n+k)






. (25)

This implies that the operators generated by rows of the generator matrix commute with
the stabilizer group. The generator matrix G generates the normalizer N(S) of the stabilizer
group S in P(p)n , which consists of stabilizer operators and logical operators. We can choose
the generator matrix G such that the first (n − k) rows and the remaining 2k rows generate
stabilizer operators and the set of logical operators, respectively.

3This statement follows from Proposition 2.2.
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2.2.3 Code equivalence

There is a subgroup of unitary transformations that do not change the form (13) of the sta-
bilizer generators. The group with this property is called the Clifford group. The Clifford
group is characterized by the property that it leaves the n-qudit Pauli group P(p)n invariant
under conjugation. Hence, it is a normalizer of the qudits Pauli group: N

�

P(p)n

�

in the uni-
tary group U(pn). The Clifford group generates equivalence classes of the stabilizer codes by
conjugation. The stabilizer codes in the same equivalence class are called equivalent.

For the case with qubits (p = 2), the Clifford group is generated by the Hadamard trans-
formation: X → Z , Z → X and the phase gate: X → PX P−1, Z → Z where P = diag(1, i), and
the CNOT gate:

X ⊗ I → X ⊗ X , I ⊗ X → I ⊗ X ,

Z ⊗ I → Z ⊗ I , I ⊗ Z → Z ⊗ Z .
(26)

For qudits where p is an odd prime, there are the following transformations in the Clifford
group [5], called the discrete Fourier transformation: Xp→ Zp, Zp→ X−1

p and the phase gate:
Xp→ Xp Zp, Zp→ Zp, and the SUM gate:

Xp ⊗ I → Xp ⊗ Xp , I ⊗ Xp→ I ⊗ Xp ,

Zp ⊗ I → Zp ⊗ I , I ⊗ Zp→ Z−1
p ⊗ Zp .

(27)

Furthermore, we need the S gate to generate the Clifford group: Xp → X a
p , Zp → Z b

p where

ab = 1 mod p. These four operators generate the Clifford group N
�

P(p)n

�

. Then a stabilizer
code is equivalent to another code obtained by the conjugation generated by these operators.

Related to the code equivalence, we can show the following proposition. This statement
ensures the existence of an equivalent stabilizer code with trivial phases.

Proposition 2.2
Suppose that the stabilizer generators be gi where i = 1, 2, · · · , n− k. For fixed i, there exists
g ∈ P(p)n such that g gi g−1 =ωκp gi for κ ∈ {1, 2, · · · , p− 1} and g g j g−1 = g j for j ̸= i.

Proof. Suppose that a check matrix H of a stabilizer group S is of the form (20) where the rows
are linearly independent. Then there exists a 2n-dimensional row vector x = (α,β) ∈ Fn

p ×F
n
p

which satisfies

HW x T = ei , (28)

where ei is the (n+k)-dimensional column vector with 1 at the i-th position and 0s elsewhere.
Let σ ∈ P(p)n be an operator such that

σ = g(α,β) . (29)

Let gi ∈ S be a generator of the stabilizer group encoded in the i-th row of the check matrix H.
Then we have the following relation from (28): gi σ =ω−1

p σ gi , and g j σ = σ g j where j ̸= i.

This implies that σ = g(α,β) ∈ P(p)n acts as σ gi σ
−1 = ωp gi and σ g jσ

−1 = g j . Hence, we
obtain the result g gi g−1 =ωκp gi and g g j g−1 = g j where g = σκ.

Since the Clifford group is the normalizer of the Pauli group P(p)n , it contains the Pauli
group P(p)n . Proposition 2.2 states that there exists an equivalent stabilizer code that is the
same as the original code except for phase factors. Therefore, it allows us to remove the phase
factors in front of the stabilizer generators by an appropriate equivalent transformation.

Associated with the equivalence of quantum codes, we make a comment on our construc-
tion of Lorentzian lattices from qudit stabilizer codes illustrated in section 3.
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Comment: Suppose that a qudit stabilizer code has a check matrix H. When constructing a
Lorentzian lattice, we will introduce a Lorentzian metric η into a vector space generated by
the matrix H by hand. In the binary case (p = 2), the symplectic structure W inherited from
quantum codes also undertakes the role of the Lorentzian metric as a result of the modulo-two
operation: W = η mod 2. However, they do not match and must be defined separately for an
odd prime p. Therefore, the Lorentzian metric and symplectic structure impose independent
conditions when constructing Narain CFTs for an odd prime p. The Clifford group preserves
only the symplectic structure and changes the Lorentzian metric. Thus, even if a quantum
code satisfies the conditions for the construction of Narain CFTs, it is not guaranteed that an
equivalent quantum code after the action of the Clifford group meets the same conditions
when p is an odd prime.

2.3 CSS codes

There is a class of stabilizer codes that can be constructed from a pair of classical codes. These
codes are called CSS codes [12,13]. CSS codes give nontrivial examples for our construction
of Narain CFTs. To introduce CSS codes, we first illustrate classical linear codes briefly (see
[40–45] for more details).

Let us define a p-ary classical linear code that encodes a k-bit message into an n-bit signal.
A classical linear code C has the generator matrix GC and the parity check matrix HC that
satisfies

GC HT
C = 0 mod p , (30)

where GC and HC are a k×n matrix of rank k and an (n−k)×n matrix of rank n−k, respectively.
The codewords are generated by the generator matrix GC as follows:

c = x GC , (31)

where x ∈ Fk
p is a k-dimensional row vector. These codewords determine the code subspace

C =
¦

c ∈ Fn
p | c = x GC , x ∈ Fk

p

©

⊂ Fn
p . (32)

For all codewords c ∈ C , the parity check matrix HC satisfies c HT
C = 0 mod p due to the con-

dition (30). Then, the parity check matrix gives an alternative definition of the code subspace
C

C =
¦

c ∈ Fn
p | c HT

C = 0 mod p
©

. (33)

To characterize the error-correcting property of a linear code, let us introduce the distance in
the vector space Fn

p. The Hamming distance d (c, c′) between vectors c , c′ ∈ Fn
p is given by

the number of nonzero components of the vector c − c′ ∈ Fn
p. For a linear code, the Hamming

weight is also useful. The Hamming weight wt(c) of a vector c ∈ Fn
p is defined as the num-

ber of nonzero components of the vector c. For example, the Hamming weight of the vector
c = (0,0, 4,3) ∈ F4

5 is wt(c) = 2. Using the Hamming distance or weight, we define the mini-
mum distance of a linear code. The minimum distance d (C) of a linear code C is given by the
minimum nonzero Hamming distance for any pair of codewords:

d (C) = min
c, c′∈C , c ̸=c′

d (c, c′) = min
c∈C , c ̸=0

wt(c) , (34)

where we use the fact that for a linear code C , c−c′ ∈ C if c and c′ are codewords. A linear code
with the minimum distance d can correct up to ⌊(d−1)/2⌋ bit errors, so the minimum distance
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captures the characteristics of the error-correcting property well. We call a p-ary linear code
that encodes k bits into n bits with the minimum distance d as an [n, k, d]p code. Often the
minimum distance is omitted and simply referred to as an [n, k] code.

A key ingredient in the CSS codes is the dual construction of classical codes. The dual
code C⊥ for a code C is defined by

C⊥ = {c′ ∈ Fn
p | c · c

′ = 0 mod p , c ∈ C} . (35)

We call a code self-orthogonal if C ⊆ C⊥, and self-dual if C = C⊥.
Suppose C is a p-ary classical linear code with a k×n generator matrix GC and an (n−k)×n

parity check matrix HC . We assume the Euclidean metric c · c′ =
∑n

i=1 ci c′i . Then the dual
code C⊥ is the code with an (n−k)×n generator matrix HC and a k×n parity check matrix GC .
The codewords c ∈ C are generated by the generator G: c = x GC where x ∈ Fk

p is a k-

dimensional row vector. Also, the codewords c′ ∈ C⊥ are given by c′ = y HC where y ∈ Fn−k
p is

an (n−k)-dimensional row vector. The inner product of these vectors is c ·c′ = x GC HT
C y T = 0

mod p from the relation (30).
Suppose that CX and CZ are [n, kX ]p and [n, kZ]p linear codes with the generator matrices

GX , GZ and the parity check matrices HX , HZ , respectively. Also, we assume the following
condition:

C⊥X ⊆ CZ . (36)

This condition implies that the dual code of CX is a subspace of the other code CZ , so all
codewords generated by HX are contained in the code subspace CZ . Then we reach

HX HT
Z = 0 mod p . (37)

In this case, the CSS code can be defined by the following check matrix:

H(CX , CZ ) =

�

HX 0

0 HZ

�

, (38)

where the block HX (HZ) represents the parity check matrix of the classical linear code CX
(CZ). To see that this construction defines a stabilizer code, let us examine if the check matrix
satisfies the commutativity condition (23): H(CX , CZ )WHT

(CX , CZ )
= 0 (mod p). Now we have

the relation (37), then

H(CX , CZ )WHT
(CX , CZ )

=

�

0 HX HT
Z

−HZ HT
X 0

�

= 0 mod p . (39)

Therefore, the CSS code with the check matrix (38) is a subclass of the stabilizer code. The
resulting qudit code is [[n, kX + kZ − n]]p type.

For self-dual codes C , we can choose the generator matrix as GC = HC . From (30), we have
HC HT

C = 0 and this implies that if we choose CX = CZ = C , the commutativity condition (37)
holds automatically. We can always construct the CSS code by setting CX = CZ = C with a
self-dual code C . In this case, we obtain a quantum [[n, 0]]p code since the classical self-dual
codes satisfy k = n/2.

An example of the CSS codes is the three-qutrit code. Consider a classical ternary code C
with the generator matrix G3 and the parity check matrix H3:

G3 =

�

1 1 1

0 1 2

�

, H3 =
�

1 1 1
�

. (40)
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This code satisfies C⊥ ⊆ C but is not self-dual C ̸= C⊥. We set CX = CZ = C . The commutativity
condition (37) is satisfied for HX = HZ = H3. Then the CSS code is given by

H(C ,C) =

�

1 1 1 0 0 0

0 0 0 1 1 1

�

. (41)

This check matrix gives us the stabilizer generators g1 = X ⊗ X ⊗ X and g2 = Z ⊗ Z ⊗ Z . The
stabilizer group generated by these operators stabilizes the following quantum codewords:4

|0̄〉=
1
p

3
(|000〉+ |111〉+ |222〉) ,

|1̄〉=
1
p

3
(|012〉+ |120〉+ |201〉) ,

|2̄〉=
1
p

3
(|021〉+ |102〉+ |210〉) .

(42)

We give one more example of the CSS codes. There is a self-dual code C over F5 of length
n= 2. This classical code is given by the following generator matrix:

G5 =
�

1 2
�

. (43)

Since the above code is self-dual, we can choose the parity matrix H5 = G5. For the same
reason, we can choose HX = HZ = H5 while satisfying the commutativity condition. Then the
corresponding CSS code is

H(C ,C) =

�

1 2 0 0

0 0 1 2

�

. (44)

The stabilizer generators generated by the above check matrix are g1 = X⊗X 2 and g2 = Z⊗Z2.
These operators generate the stabilizer group S and stabilize the following encoded state:

|ψ〉=
1
p

5
(|00〉+ |12〉+ |24〉+ |31〉+ |43〉) . (45)

3 Construction of Lorentzian even self-dual lattices

Classical binary codes are known to give rise to Euclidean lattices and chiral CFTs [3]. In
the previous section, we have described qudit stabilizer codes. In what follows, we will give
an explicit construction of Lorentzian lattices from qudit stabilizer codes. In particular, we
will illustrate that our construction works for the CSS codes. This is the generalization of the
work [4], where the authors focus on the binary quantum stabilizer codes.

3.1 Lorentzian lattices via Construction A

A stabilizer code is defined by an abelian subgroup of the Pauli group P(p)n , and the generators
of each code are given by the rows of the check matrix (20). We define a classical code gen-
erated by the check matrix of a stabilizer code. We construct the Lorentzian lattice from the
classical code and connect the property of a classical code and a lattice. In the following, we
focus on an [[n, 0]]p qudit stabilizer code where the check matrix is an n× 2n matrix.

4The three-qutrit code can be seen as the simplest model of holography [46]. The relation between CSS codes
and holography is also discussed in [47].
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Suppose that a stabilizer code has the n× 2n check matrix

H=













α(1) β (1)

α(2) β (2)

...
...

α(n) β (n)













, (46)

where the rows are linearly independent since each row corresponds to an independent gen-
erator of the stabilizer group S. Then the rank of the check matrix is rank (H) = n.

Consider a classical code generated by the check matrix. To avoid confusion, we define
the n× 2n generator matrix GH of the classical code as

GH = H=







α(1) β (1)

...
...

α(n) β (n)






. (47)

The code subspace C ⊂ F2n
p is

C =
¦

c ∈ F2n
p | c = x GH, x ∈ Fn

p

©

, (48)

where x ∈ Fn
p is an n-dimensional row vector. This classical code is a [2n, n]p code since the

check matrix H has rank n. We introduce the off-diagonal Lorentzian metric η to the classical
code C:

η=

�

0 In

In 0

�

, (49)

where In is the n× n identity. This metric is different from the symplectic form W introduced
earlier for p ̸= 2 by (22). We denote the inner products with respect to the off-diagonal
Lorentzian metric η by ⊙. Note that the norm of a codeword c = (α,β) ∈ C with respect to
the metric η is always even:

c ⊙ c ≡ cη cT = 2α · β ∈ 2Z , (50)

where the dot denotes the Euclidean inner product.
We define the dual code C⊥ with respect to the metric η by

C⊥ =
¦

c′ ∈ F2n
p | c

′ ⊙ c = 0 mod p, c ∈ C
©

. (51)

The classical code C is called self-orthogonal if C ⊆ C⊥, and self-dual if C = C⊥. Note that the
notion of self-orthogonality and self-duality depends on the metric. In this section, we focus
on the off-diagonal Lorentzian metric η.

For a [2n, k′]p code C with the generator matrix GH, one can take as the generator ma-
trix G⊥H of the dual code C⊥ any matrix such that

G⊥H ηGT
H = 0 mod p , (52)

and rank (G⊥H) = 2n−k′. In the case of a self-orthogonal code C, the following relation holds:

GHηGT
H = 0 mod p . (53)

If k′ = n, the self-orthogonality condition (53) ensures self-duality C = C⊥ as follows from the
proposition below.
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Proposition 3.1
Suppose that a [[n, 0]]p qudit stabilizer code has a n× 2n check matrix H. Then, the classical
code with the generator matrix GH = H is self-dual with respect to the metric η if and only if
the check matrix satisfies the self-orthogonal condition: HηHT = 0 mod p.

Proof. The generator matrix GH = H has rank n due to the independence of the stabilizer
generators. If the self-orthogonality condition (53) holds, the matrix GH is also the generator
matrix of the dual code C⊥ from (52) since it satisfies rank (GH) = n. Then both the original
code C and its dual C⊥ are generated by the matrix GH. This implies the classical code C is self-
dual with respect to the metric η: C = C⊥. On the other hand, if a classical code is self-dual,
then the self-orthogonal condition is automatically satisfied.

The constructions of a lattice from a classical code are useful to search dense sphere pack-
ings and are well-studied by mathematicians (refer to [42] and the references therein). The
simplest construction of them is called Construction A. The Construction A lattice Λ(C) from
a classical code C is defined by

Λ(C) =
�

v/
p

p | v ∈ Z2n, v = c (mod p), c ∈ C
	

. (54)

The lattice Λ(C) is a Lorentzian lattice with respect to the off-diagonal Lorentzian metric η
in (49). We use ⊙ for the notation of the inner products between lattice vectors with the
off-diagonal Lorentzian metric η as in the case of a classical code C.

By analogy with classical codes, we define the dual lattice with respect to the metric η as
follows:

Λ∗ =
�

λ′ ∈ Rn,n |λ′ ⊙λ ∈ Z, λ ∈ Λ
	

. (55)

The lattice Λ is integral if and only if Λ ⊆ Λ∗ and self-dual if and only if Λ = Λ∗. We call the
lattice Λ even if and only if λ⊙λ ∈ 2Z for λ ∈ Λ.

The lattice Λ(C) reduces to the classical code C by identifying λ ∼ λ + ppZ2n, where
λ ∈ Λ(C). This implies that different codes give different lattices via Construction A. Then
Λ(C) = Λ(C′) if and only if C = C′.

3.2 Even self-dual lattices

The above prescription defines the map between the classical code C derived from a qudit
stabilizer code and the Lorentzian lattice Λ(C), which associates the properties of the codes
with those of the lattices. In this section, we describe the conditions for a classical code to
give an even self-dual lattice via Construction A, some of which were obtained in [11]. For
completeness we provide proofs in our notations. Then we translate the conditions into those
on qudit stabilizer codes.

Starting with a qudit stabilizer code, we obtain a check matrix. We regard it as the genera-
tor matrix of a classical code C over Fp and construct a Lorentzian lattice Λ(C). This construc-
tion connects a self-dual code C with the metric η to a self-dual lattice Λ(C) with the metric η.
It can be summarized by the following proposition.

Proposition 3.2 ( [11, Proposition 3.2])
For a prime p, the Construction A lattice Λ(C) is self-dual with the off-diagonal Lorentzian
metric η if and only if a classical code C is self-dual with the Lorentzian metric η.

Proof. We first prove Λ(C⊥) ⊃ Λ(C)∗. Let us consider a vector λ′ = (λ′1,λ′2) ∈ Λ(C)
∗. A lattice

vector in the Construction A lattice is given by λ= (λ1,λ2) ∈ Λ(C) where

λ1 =
α+ p k1p

p
, λ2 =

β + p k2p
p

, k1, k2 ∈ Zn , (56)
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which is labeled by a codeword c = (α,β) ∈ C. Since the vector λ′ is in the dual lattice
Λ(C)∗, the inner product with λ ∈ Λ(C) must be an integer. Let λ ∈ Λ(C) be λ1 =

p
p k1 and

λ2 =
p

p k2. Then the inner product becomes

λ⊙λ′ =ppλ′2 · k1 +
p

pλ′1 · k2 , k1, k2 ∈ Zn . (57)

To satisfy λ⊙ λ′ ∈ Z, the lattice vector in the dual lattice has to be λ′ ∈ (Z/pp)n. Then the
lattice vector λ′ = (λ′1,λ′2) ∈ Λ(C)

∗ can be written as the form

λ′1 =
α′ + p k′1p

p
, λ′2 =

β ′ + p k′2p
p

, k′1, k′2 ∈ Z
n , (58)

where c′ = (α′,β ′) ∈ Fn
p × F

n
p. The inner product between λ ∈ Λ(C) and λ′ ∈ Λ(C)∗ is

λ⊙λ′ =
α′ · β +α · β ′

p
+ (α′ · k2 + k′1 · β + p k′1 · k2 +α · k′2 + k1 · β ′ + p k1 · k′2) . (59)

The assumption λ⊙ λ′ ∈ Z gives us c ⊙ c′ = α · β ′ + α′ · β = 0 mod p. This implies c′ ∈ C⊥
and λ′ ∈ Λ(C⊥).

To prove Λ(C⊥) ⊂ Λ(C)∗, we assume λ ∈ Λ(C) and λ′ ∈ Λ(C⊥) take the same forms as
(56) and (58), respectively, where c = (α,β) ∈ C and c′ = (α′,β ′) ∈ C⊥. Then, the inner
product λ⊙ λ′ given in (59) for any λ ∈ Λ(C) becomes integer as c ⊙ c′ = α · β ′ + α′ · β = 0
mod p, which means λ′ ∈ Λ(C)∗.

We have shown the lattice Λ(C⊥) is the dual lattice of Λ(C): Λ∗(C) = Λ(C⊥). Thus, for C
a self-dual code C = C⊥, the Construction A lattice is self-dual: Λ∗(C) = Λ(C). The inverse is
also true because Λ(C) = Λ(C′) if and only if C = C′. Therefore, Λ(C) is self-dual with respect
to η if and only if C is self-dual with respect to η.

Next, we construct an even lattice Λ(C) with the Lorentzian metric from a classical code C
with an appropriate property. This property is associated with the norm of a classical code C
as in the following proposition. Note that there is a subtle difference between p = 2 and the
other cases.

Proposition 3.3 ( [11, Proposition 3.1])
For a prime p ̸= 2, the Construction A lattice Λ(C) is even with the Lorentzian metric η if and
only if a classical code C is self-orthogonal with the off-diagonal Lorentzian metric η.

Proof. Suppose that a codeword c = (α,β) ∈ C. The Construction A lattice is given by
λ= (λ1,λ2) ∈ Λ(C) where

λ1 =
α+ p k1p

p
, λ2 =

β + p k2p
p

, k1, k2 ∈ Zn . (60)

The norm of the lattice vector is

λ⊙λ=
2
p

�

α · β + pα · k2 + pβ · k1 + p2 k1 · k2

�

. (61)

Let C be a self-orthogonal code. Then the codeword satisfies c ⊙ c = 2α · β = 0 mod p. This
implies α · β ∈ pZ since α · β ∈ Z and p and 2 are coprime for an odd prime p ̸= 2. Thus,
we conclude the norm of the lattice vector is even. On the other hand, let Λ(C) be even with
respect to the metric η. Then we obtain (α ·β)/p ∈ Z. This implies c ⊙ c = 2α ·β = 0 mod p.
The relation (c + c′)⊙ (c + c′) = c ⊙ c + c′ ⊙ c′ + 2 c ⊙ c′ for c, c′ ∈ C ensures self-orthogonality
of the classical code C for an odd prime p ̸= 2: c ⊙ c′ ∈ pZ for any pair of c, c′ ∈ C.
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Proposition 3.4
For p = 2, the Construction A lattice Λ(C) is even with respect to the off-diagonal Lorentzian
metric η if and only if a classical code C is doubly-even with respect to the metric η: c⊙ c = 0
mod 4 where c ∈ C.

Proof. Suppose that a lattice vector λ= (λ1,λ2) in the Construction A lattice Λ(C) is

λ1 =
α+ 2 k1p

2
, λ2 =

β + 2 k2p
2

, k1, k2 ∈ Zn , (62)

where c = (α,β) ∈ C is a codeword. The norm of this vector is

λ⊙λ= α · β + 2α · k2 + 2β · k1 + 4 k1 · k2 . (63)

Let C be doubly-even: c ⊙ c = 2α · β = 0 mod 4. Then we have α · β = 0 mod 2, so the norm
of a lattice vector is even. On the other hand, suppose that the Construction A lattice is even.
Then, it results in α ·β = 0 mod 2, which is equivalent to doubly-evenness: c⊙ c = 2α ·β = 0
mod 4.

Proposition 3.2 and Proposition 3.3 or 3.4 lead to the following theorem that ensures that
a class of qudit stabilizer codes yields Lorentzian even self-dual lattices via Construction A.

Theorem 3.5 ( [11, Proposition 3.3] for p ̸= 2)
For a prime p ̸= 2, a self-dual code C with the off-diagonal Lorentzian metric η gives an even
self-dual lattice Λ(C) with the metric η via Construction A. For p = 2, a doubly-even self-dual
code C with the metric η endows an even self-dual lattice Λ(C) with the metric η.

We now combine the above theorem and Proposition 3.1 to obtain the conditions for a
qudit stabilizer code to give a Lorentzian even self-dual lattice.

Corollary 3.6
Suppose that a [[n, 0]]p qudit stabilizer code has an n×2n check matrixH satisfyingHηHT = 0
mod p. For an odd prime p ̸= 2, a p-ary classical code C generated by the matrix GH = H
prepares an even self-dual lattice Λ(C) with yields to the off-diagonal Lorentzian metric η.

For p = 2, we must consider the additional condition to ensure doubly-evenness of the
classical code C. It also reduces to a simple condition for the generator matrix.

Corollary 3.7
Suppose that a [[n, 0]]2 binary stabilizer code has an n × 2n check matrix H that satisfies
HηHT = 0 mod 2 and diag (HηHT ) = 0 mod 4. Then, a binary classical code C generated by
the matrix GH = H gives an even self-dual lattice Λ(C) with respect to the metric η.

Proof. We already know that the condition HηHT = 0 mod 2 guarantees that the classical
code generated by GH = H is self-dual from Proposition 3.1. Thus, we only have to verify that
the assumptions HηHT = 0 mod 2 and diag (HηHT ) = 0 mod 4 ensure the classical code to
be doubly-even. Let c(i) (i = 1,2, · · · , n) be the i-th row of the generator matrix GH. These
vectors form a basis of the code subspace C. Then, a codeword c is written as c =

∑

i si c(i) and
its norm is given by

c ⊙ c =
∑

i, j

sis j c(i) ⊙ c( j) =
∑

i

s2
i c(i) ⊙ c(i) + 2

∑

i< j

sis j c(i) ⊙ c( j) . (64)

The condition HηHT = 0 mod 2 reduces to c(i) ⊙ c( j) = 0 mod 2. The other condition
diag (HηHT ) = 0 mod 4 implies c(i) ⊙ c(i) = 0 mod 4. From (64), the norm c ⊙ c becomes
a multiple of 4: c ⊙ c ∈ 4Z for any codeword c ∈ C. That is, the classical code C is doubly-
even.
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While we have discussed the construction of Lorentzian lattice for qubit cases and qudit
cases in parallel, we emphasize the difference between them mentioned in section 2.2.3. The
Clifford group preserves the group structure of the Pauli group, so a stabilizer group is kept
abelian under the action of the Clifford group. In the language of a check matrix, this property
implies that the symplectic form W is invariant with the Clifford group transformation. For
example, let us consider the Hadamard transformation: Xp→ Zp, Zp→ X−1

p . If the Hadamard
transformation acts on the i-th qudit, the i-th column and the (i + n)-th column in the check
matrix are swapped with −1 on one side. It keeps the symplectic form invariant. However,
the Hadamard transformation does change the inner products with respect to the off-diagonal
metric η. Therefore, the Clifford group does not preserve the structure of the Lorentzian metric
η for an odd prime p. On the other hand, for qubits (p = 2), the symplectic form W coincides
with the metric η introduced later, so the Clifford group also preserves the metric η in this
case [4].

3.3 CSS construction

We have described the conditions for a qudit stabilizer code to give a Lorentzian even self-dual
lattice. We now explain that the CSS codes reviewed in section 2.3 satisfy the conditions and
discuss an explicit example of the construction of lattices from CSS codes, which we will use
heavily later in this paper.

We start with a classical [n, k]p code C with a generator matrix GC and a parity check ma-
trix HC . Then, the dual code C⊥ has the generator matrix HC and the parity check matrix GC .
Note that we do not require the code C to be self-orthogonal or self-dual. As a special case
of CX and CZ satisfying (36), we choose CX = C and CZ = C⊥. Then, the code CX = C has
the generator matrix GX = GC and the parity check matrix HX = HC . On the other hand, the
code CZ = C⊥ has the generator matrix GZ = HC and the parity check matrix HZ = GC . For
this choice, the condition (37) reduces to GC HT

C = 0 mod p, and it is satisfied due to the rela-
tion (30) between the generator matrix and the parity check matrix. Then, the n× 2n check
matrix of the CSS code is as follows:

H(C ,C⊥) =

�

HC 0

0 GC

�

. (65)

We denote a classical code generated by the matrix GH = H(C ,C⊥) as C:

C =
¦

(c1, c2) ∈ Fn
p × F

n
p | c1 ∈ C⊥ , c2 ∈ C

©

. (66)

The following theorem verifies that the CSS code C leads to an even self-dual lattice through
Construction A, giving explicit examples of the construction of a Lorentzian even self-dual
lattice from a qudit stabilizer code.

Theorem 3.8
Suppose that a CSS code has a check matrix (65) with a classical [n, k]p code C and the dual
code C⊥. Let C be the classical code with the generator matrix H(C ,C⊥). Then, the Construction
A lattice Λ(C) is even self-dual with respect to the metric η.

Proof. For a prime p ̸= 2, all we have to do is to check self-duality of the code C with respect
to the Lorentzian metric η. The dual code with the metric η is defined by

C⊥ =
¦

(c′1, c′2) ∈ F
n
p × F

n
p | (c

′
1, c′2)⊙ (c1, c2) = 0 mod p, (c1, c2) ∈ C

©

. (67)

Since the metric is given by (49), this implies that (c′1, c′2) is in the dual code if and only if
c′1 · c2+ c′2 · c1 = 0 mod p for any c1 ∈ C⊥ and c2 ∈ C . Thus, the above definition reduces to the
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following condition: c′1 · c2 = 0 mod p and c′2 · c1 = 0 mod p. Equivalently, c′1 GT
C = c′2 HT

C = 0
mod p. This means c′1 ∈ C⊥ and c′2 ∈ C through (33):

C⊥ =
¦

(c′1, c′2) ∈ F
n
p × F

n
p | c
′
1 ∈ C⊥ , c′2 ∈ C

©

≡ C . (68)

Therefore, a classical code obtained through the CSS construction is self-dual with respect to
the metric η. For a prime p ̸= 2, Theorem 3.5 states the CSS code C generated by a classical
p-ary self-dual code gives an even self-dual lattice Λ(C).

To ensure that the Construction A lattice is even for p = 2, an additional condition should
be imposed. In this case, we require the CSS code C to be doubly-even with respect to the
metric η as dictated by Theorem 3.5. Then, for a classical binary [n, k]2 code C , we have

c ⊙ c = 2 c1 · c2 ∈ 4Z , c1 ∈ C⊥ , c2 ∈ C , (69)

where c = (c1, c2) ∈ C and the dot denotes the Euclidean inner product on the classical code C .
The condition for a doubly-even code is c1 · c2 = 0 mod 2 and this is satisfied as an inner
product between the code C and the dual code C⊥ vanishes modulo 2. There are no additional
requirements for doubly-evenness in the case of the CSS construction.

Therefore, the classical code C starting with a classical [n, k]p code C becomes self-dual
for a prime p and doubly-even for p = 2. Hence, the Construction A lattice from the CSS code
is even and self-dual with respect to the off-diagonal Lorentzian metric η.

We can choose a classical code C to be self-dual. Following the above prescription, we give
the CSS code constructed from a pair of classical codes CX , CZ such that CX = CZ = C . Then,
the check matrix of the CSS code is

H(C ,C) =

�

HC 0

0 HC

�

. (70)

The classical code with the generator matrix GH = H(C ,C) is given by

C =
¦

(c1, c2) ∈ Fn
p × F

n
p | c1 , c2 ∈ C

©

. (71)

This is an example of the construction dictated in Theorem 3.8. In this case, of course, the
classical code C gives an even self-dual lattice via Construction A. In section 5, we will consider
the averaged theory over the CSS codes defined from a classical self-dual code.

Corollary 3.9
Suppose that a CSS code has a check matrix (70) with a classical [n, n/2]p self-dual code C .
Let C be the classical code with the generator matrix H(C ,C). Then, the Construction A lattice
Λ(C) is even self-dual with respect to the off-diagonal Lorentzian metric η.

4 Narain code CFTs

We have seen that an even self-dual Lorentzian lattice can be constructed from a qudit stabilizer
code with appropriate conditions via Construction A. In this section, we assume that Λ(C) is
a Lorentzian even self-dual lattice obtained through Construction A. We associate the lattice
with a Narain CFT [48, 49], a free boson theory with a torus target space. We refer to the
Narain CFTs constructed from codes as Narain code CFTs.
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4.1 Construction of Narain CFTs

From a qudit stabilizer code, we can construct a Narain lattice, i.e., an even self-dual lattice
as in Corollary 3.6 and 3.7. Naively, a Narain CFT is given by choosing the Construction A
lattice as the momentum lattice. However, there is a subtlety in this naive construction. The
Construction A lattices are equipped with an off-diagonal Lorentzian metric η, so they are
given in the coordinates:

λ= (λ1,λ2) =
�

pL + pRp
2

,
pL − pRp

2

�

∈ Λ(C) , (72)

rather than the coordinates of the left- and right-moving momentum (pL , pR). The norm of
λ= (λ1,λ2) ∈ Λ(C) with respect to the off-diagonal Lorentzian metric η is

(λ1,λ2)⊙ (λ1,λ2) = p2
L − p2

R = (pL , pR) ◦ (pL , pR) , (73)

where we follow the notation of Polchinski’s textbook [50,51]. This is associated with a natural
metric for the left- and right-moving momentum in the Narain lattices:

eη=

�

In 0

0 −In

�

, (74)

where In is the n×n identity matrix. To show it explicitly, we have to move onto the momentum
basis by the orthogonal transformation:

(pL , pR) = (λ1,λ2) P , P =
1
p

2

�

In In

In −In

�

. (75)

The left- and right-moving momentum are given by points (pL , pR) ∈ eΛ(C) in the momentum
lattice eΛ(C). The vertex operators in the Narain code CFTs are given by

VpL ,pR
(z, z̄) = : eipL X L(z)+ipRXR(z̄) : , (76)

where (pL , pR) ∈ eΛ(C). We omit the cocycle factors, which do not matter for our analysis.
These operators correspond to the momentum states |pL , pR〉 via the state-operator isomor-
phism. We have the oscillators αi

k and α̃i
k (i = 1,2, · · · , n) that satisfy the following algebra:

[αi
k ,α j

l ] = [α̃
i
k , α̃ j

l ] = kδk+l,0δ
i, j , k, l ∈ Z . (77)

The Hilbert space of the Narain code CFT is given by

H(C) =
¦

α
i1
−k1
· · ·αir

−kr
α̃

j1
−l1
· · · α̃ js

−ls
|pL , pR〉 | (pL , pR) ∈ eΛ(C)

©

, (78)

with k1, · · · , kr ∈ Z>0 and l1, · · · , ls ∈ Z>0. Therefore, we arrive at the following proposition:

Proposition 4.1
Let Λ(C) be the Construction A lattice that is even self-dual with respect to the off-diagonal
Lorentzian metric η. Suppose that eΛ(C) is the lattice obtained by the orthogonal transforma-
tion (75) of the Construction A lattice Λ(C). Then, a Narain CFT is provided by giving the left-
and right-moving momenta as (pL , pR) ∈ eΛ(C).

By combining this proposition with Corollary 3.6 and 3.7, we finally get the following
theorems that summarize our construction of the Narain code CFTs:
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Theorem 4.2
Suppose that a [[n, 0]]p qudit stabilizer code has an n×2n check matrixH satisfyingHηHT = 0
mod p. Let C be a classical code generated by the matrix GH = H. For an odd prime p ̸= 2, the
Construction A lattice eΛ(C) followed by the orthogonal transformation (75) provides a Narain
CFT by giving the left- and right-moving momenta as (pL , pR) ∈ eΛ(C).

Theorem 4.3
Suppose that a [[n, 0]]2 qubit stabilizer code has an n × 2n check matrix H that satisfies
HηHT = 0 mod 2 and diag (HηHT ) = 0 mod 4. Let C be a binary classical code gener-
ated by the matrix GH = H. Then, the Construction A lattice eΛ(C) followed by the orthogonal
transformation (75) provides a Narain CFT by giving the left- and right-moving momenta as
(pL , pR) ∈ eΛ(C).

The torus partition function of the resulting Narain code CFT is as follows:

ZC(τ, τ̄) = TrH(C) q
L0−

n
24 q̄ L̄0−

n
24 =

Θ
eΛ(C)(τ, τ̄)

|η(τ)|2n
, (79)

where η(τ) is the Dedekind eta function. The lattice theta function of the Narain lattice is

Θ
eΛ(C)(τ, τ̄) =

∑

p∈eΛ(C)

q
p2

L
2 q̄

p2
R
2 , (80)

where q = e2πiτ and τ = τ1 + iτ2 is the modulus of the torus. Note that the CFT partition
function (79) explicitly depends on the decomposition of the lattice eΛ(C) into the left-moving
momentum pL and the right-moving momentum pR. However, the inner product does not
depend on the coordinate (73), so eΛ(C) is also even and self-dual with respect to the diagonal
Lorentzian metric eη. Therefore, the modular invariance of the partition function constructed
from the momentum lattice eΛ(C) follows directly from that the Construction A lattice Λ(C) is
even self-dual.

4.2 Partition function

We have obtained the direct connection (79) between the partition function and the lattice
theta function. Both of these quantities characterize each spectrum. There is also a quantity
that measures the spectrum of codes, which is called the enumerator polynomial. The con-
struction above gives a simple relation between the spectrum of Narain CFTs, lattices, and
codes. Using this relationship, it is straightforward to calculate the partition function of the
Narain CFT in terms of the code enumerator polynomial. In what follows, we will determine
the partition function of the Narain CFT constructed from a qudit code and explain how each
spectrum is tied together.

The Construction A lattice has a concrete representation by a codeword c = (α,β) ∈ C
where α= (α1, · · · ,αn) ∈ Fn

p and β = (β1, · · · ,βn) ∈ Fn
p:

λ1 =
α+ p k1p

p
, λ2 =

β + p k2p
p

, k1, k2 ∈ Zn . (81)

Therefore, the partition function of the Narain code CFT can be expressed in terms of code-
words c = (α,β) ∈ C:

ZC(τ, τ̄) =
1

|η(τ)|2n

∑

(α,β)∈C

∑

k1,k2∈Zn

q
p
4

�

α+β
p +k1+k2

�2

q̄
p
4

�

α−β
p +k1−k2

�2

. (82)
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We can associate the partition function with the complete enumerator polynomial of the
code C. The complete enumerator polynomial of a code C is defined by ( [52,53])

WC ({xab}) =
∑

c∈C

∏

(a,b)∈Fp×Fp

xwtab(c)
ab , (83)

where wtab(c) is the number of components ci = (αi ,βi) ∈ Fp×Fp that equal to (a, b) ∈ Fp×Fp
for a codeword c ∈ C:

wtab(c) = |{i | ci = (a, b)}| , (84)

which is called the composition of c ∈ C in [40, 53]. The complete enumerator polynomial of
the dual code C⊥ is uniquely determined by the one of C. We obtain the complete enumerator
polynomial of the dual code C⊥ from the MacWilliams identity [54,55] (see also Theorem 10
of Chapter 5 in [40] and Example 2.2.7 in [53]):

WC⊥({xab}) =WC({ x̃ab}) , (85)

where for v = (a, b) ∈ Fp × Fp

x̃v =
1
p

∑

w∈Fp×Fp

e
2πi
p wη2 vT

xw , (86)

with the non-degenerate symmetric bilinear form η2 on Fp × Fp:

η2 =

�

0 1

1 0

�

. (87)

We can also write the relation as

xv =
1
p

∑

w∈Fp×Fp

e−
2πi
p wη2 vT

x̃w . (88)

Then, for a self-dual code C = C⊥, the complete enumerator polynomial is invariant under the
change of variables xai bi

↔ x̃ai bi
. The invariance of the complete enumerator polynomial is

closely related to the modular invariance for the partition functions of Narain code CFTs. We
will see it later in this section.

We can explicitly relate the complete enumerator polynomial to the partition function.

Proposition 4.4
Let C ⊂ Fn

p × F
n
p be a classical code whose complete enumerator polynomial WC is given by

(83). Then, the partition function of the Narain CFT constructed from the code C is

ZC(τ, τ̄) =
Θ
eΛ(C)(τ, τ̄)

|η(τ)|2n
=

1
|η(τ)|2n

WC({ψab}) , (89)

where the variables xab in the complete enumerator polynomial are replaced by

ψab(τ, τ̄) =
∑

k1,k2∈Z
q

p
4

�

a+b
p +k1+k2

�2

q̄
p
4

�

a−b
p +k1−k2

�2

. (90)
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Proof. We start with the complete enumerator polynomial

WC({ψab}) =
∑

c∈C

∏

(a,b)∈Fp×Fp

ψab(τ, τ̄)wtab(c) . (91)

The composition of a codeword c ∈ C is given by the sum of wtab(ci) for each component:

wtab(c) =
n
∑

i=1

wtab(ci) , (92)

where, for each component of a codeword, we define

wtab(ci) =

�

1 , ci = (a, b) ,

0 , ci ̸= (a, b) .
(93)

Then, we have

WC({ψab}) =
∑

c∈C

n
∏

i=1

∏

(a,b)∈Fp×Fp

ψab(τ, τ̄)wtab(ci)

=
∑

(α,β)∈C

n
∏

i=1

ψαiβi
(τ, τ̄)

=
∑

(α,β)∈C

∑

k1,k2 ∈Zn

q
p
4

�

α+β
p +k1+k2

�2

q̄
p
4

�

α−β
p +k1−k2

�2

= Θ
eΛ(C)(τ, τ̄) .

(94)

The lattice theta function of the Construction A lattice from a classical code C appears. From
(79), we divide the complete enumerator polynomial by |η(τ)|2n to show the statement.

It is useful to write the function ψab as

ψab(τ, τ̄) = Θa+b, p(τ) Θ̄a−b, p(τ̄) +Θa+b−p, p(τ) Θ̄a−b−p, p(τ̄) , (95)

where (a, b) ∈ Fp × Fp and Θm, k(τ) is the theta function

Θm, k(τ) =
∑

n∈Z
qk (n+ m

2k )
2

. (96)

For an integer m ∈ Z, the modular transformations of the theta functions are

Θm, k(τ+ 1) = e2πi m2
4k Θm, k(τ) , (97)

Θm, k(−1/τ) =
p

−iτ
∑

m′∈Z2k

M (k)mm′ Θm′,k(τ) , (98)

where M (k)mm′ =
1p
2k

e−2πi mm′
2k .

Let us return to the modular invariance for the partition functions of Narain code CFTs.
We can derive it directly from the property of the code C. To see it, let us focus on the modular
property of the lattice theta function in (89) since the modular transformation of the Dedekind
eta function is given by

η(τ+ 1) = e2πi 1
24 η(τ) , η(−1/τ) =

p

−iτη(τ) . (99)
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It is straightforward to see that the function ψab behaves as follows under the modular trans-
formation:

ψab(τ, τ̄)→ e2πi ab
p ψab(τ, τ̄) , (τ→ τ+ 1) ,

ψab(τ, τ̄)→
|− iτ|

p

∑

w1,w2∈Fp

e−
2πi
p (w1,w2)η2(a,b)Tψw1w2

(τ, τ̄) , (τ→−1/τ) .
(100)

Under the modular transformation τ→ τ+ 1, the lattice theta function behaves as

Θ
eΛ(C)(τ+ 1, τ̄+ 1) =WC({e

2πi ab
p ψab}) =

∑

c∈C
e

2πi
p

∑

a,b∈Fp ab wtab(c)
∏

(a,b)∈Fp×Fp

ψ
wtab(c)
ab . (101)

Our Narain code CFTs are based on doubly-even self-dual codes for p = 2 and self-dual codes
for odd prime p. Then, the norm c ⊙ c = 2α ·β = 2

∑

a,b∈Fp
ab wtab(c) becomes a multiple of

4 for p = 2 and a multiple of p for odd prime p. Since 2 and p are coprime for odd prime p,
we have

∑

a,b∈Fp

ab wtab(c) = 0 mod p . (102)

Therefore, the lattice theta function is invariant under the modular transformation τ→ τ+ 1
from (101). Note that the invariance of the lattice theta function directly follows from doubly-
evenness for p = 2 and self-orthogonality for odd prime p. From the modular property (99) of
the Dedekind eta function, we obtain the immediate consequence that the partition function
is also invariant under τ→ τ+ 1.

On the other hand, the lattice theta function transforms as follows under the modular
transformation τ→−1/τ:

Θ
eΛ(C)(−1/τ,−1/τ̄) = | − iτ|n WC({Ψab}) , (103)

where

Ψab(τ, τ̄) =
1
p

∑

w1,w2∈Fp

e−
2πi
p (w1,w2)η2(a,b)Tψw1w2

(τ, τ̄) , (104)

where we use the fact that the complete enumerator polynomial is a homogeneous polynomial
of degree n. We observe that the relation between Ψab and ψw1w2

is same as one between
xv and x̃w in (88). Hence, the MacWilliams identity ensures that the complete enumerator
polynomial is invariant under the linear transformation Ψab ↔ ψab for a self-dual code C:
WC({Ψab}) = WC({ψab}). We conclude that, under the modular transformation τ → −1/τ,
the lattice theta function behaves as WC({ψab})→ |− iτ|n WC({ψab}). The term | − iτ|n that
appears from the complete enumerator polynomial cancels with the one from the modular
transformation (99) of the Dedekind eta function in the partition function. Therefore, the
partition functions of our Narain code CFTs are invariant under τ→−1/τ.

In this section, we have connected the properties and quantities of codes, lattices, and
CFTs. For example, the complete enumerator polynomial determines the lattice theta function
of the Construction A lattice and the partition function of the Narain code CFT. We show a
list summarizing the main relations in table 1 while omitting some items for quantum codes
because it does not matter in our construction.
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Table 1: The properties of codes, lattices and CFTs.

Quantum code Classical code Lattice CFT

number of qudits length rank central charge

stabilizer element g(α,β) codeword c lattice vector λ momentum (pL , pR)

norm c ⊙ c length λ⊙λ spin h− h̄

WC({xab}) Θ
eΛ(C)(τ, τ̄) ZC(τ, τ̄)

(p ̸= 2) HηHT = 0 mod p self-orthogonal
even modular T invariance

(p = 2) diag (HηHT ) = 0 mod 4 doubly-even

[[n, 0]]p code

s.t. HηHT = 0 mod p
self-dual self-dual modular S invariance

4.3 Example: CSS construction

Let us turn back to the partition functions of our Narain code CFTs. As in Proposition 4.4,
the partition function is uniquely determined by the complete enumerator polynomial of a
classical code C. We give some examples for Narain code CFTs focusing on the CSS construction
described in Theorem 3.8.

Suppose that a CSS code has a check matrix H(C ,C⊥) with a classical [n, k]p code C and its
dual code C⊥. Let C be a classical code generated by the matrix GH = H(C ,C⊥). The complete
enumerator polynomial of the code C is given by

W (CSS)
C ,C⊥

({xab}) :=WC ({xab}) =
∑

c∈C , c′ ∈C⊥

∏

(a,b)∈Fp×Fp

xwtab(c,c′)
ab , (105)

where c = (c1, · · · , cn) ∈ C and c′ = (c′1, · · · , c′n) ∈ C⊥. Here, for (a, b) ∈ Fp × Fp, we set

wtab(c, c′) =
�

�

�{ j ∈ {1, · · · , n} | c j = a, c′j = b}
�

�

� . (106)

The complete enumerator polynomial of the CSS code is given in terms of a pair of classical
codes C and C⊥. We point out that the complete enumerator polynomial can be understood
as the 2-fold complete joint weight enumerator of classical codes C and C⊥.

Let us consider r classical [n, ki]p codes C (i) (possibly distinct) where i = 1,2, · · · , r, and
define their product C = C (1) × · · · × C (r). The r-fold complete joint weight enumerator for C
is given by ( [14])

WC ({xv}) =
∑

(c(1), ··· , c(r))∈C

∏

v∈Fr
p

x
wtv(c(1), ··· , c(r))
v , (107)

where v = (v1, · · · , vr) ∈ Fr
p, c(i) = (c(i)1 , · · · , c(i)n ) ∈ C (i), and

wtv(c
(1), · · · , c(r)) =

�

�

�

�

�

j ∈ {1, · · · , n}
�

�

�

�

c(i)j = vi , i = 1, 2, · · · , r

��

�

�

�

. (108)
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Note that this is a generalization of (106). If we set r = 2 and (C (1), C (2)) = (C , C⊥), we arrive
at the complete enumerator polynomial (105) for the CSS code. Then, we obtain

W (CSS)
C ,C⊥

({xab}) =WC ({xab}) , (109)

where C = C × C⊥. As dictated in Proposition 4.4, the partition functions of the Narain code
CFTs are determined by the complete enumerator polynomial of the associated classical code.
Therefore, the partition function for the CSS construction turns out to be

Z (CSS)
C ,C⊥

(τ, τ̄) =
1

|η(τ)|2n
W (CSS)

C ,C⊥
({ψab}) . (110)

Our CSS construction can be applied to a CSS code based on a classical self-dual code
C = C⊥. Then, the 2-fold complete joint enumerator of C and C⊥ = C reduces to the genus-2
weight enumerator of C , which will be introduced in section 5 because it plays a significant
role when averaging the partition functions over the CSS codes.

Finally, we give some examples of the CSS construction. Let us consider a trivial [1,0]2
code C such that the generator matrix is GC = [0] and the check matrix is HC = [1]. Then,
the CSS construction gives the check matrix

H(C ,C⊥) =
�

1 0
�

, (111)

where we omit the row that comes from the generator matrix GC in (65) because it does not
contribute to nontrivial generators. The stabilizer generator of the CSS code is the Pauli X .
The corresponding complete enumerator polynomial is given by

W (CSS)
C ,C⊥

({xab}) = x00 + x10 . (112)

Here, we have

ψ00 =
ϑ3 ϑ̄3 + ϑ4 ϑ̄4

2
, ψ01 =ψ10 =

ϑ2 ϑ̄2

2
, ψ11 =

ϑ3 ϑ̄3 − ϑ4 ϑ̄4

2
, (113)

where ϑi (i = 2, 3,4) are the Jacobi theta functions, ϑ2(τ) ≡
∑

n∈Z q
1
2(n− 1

2)
2

,

ϑ3(τ) ≡
∑

n∈Z q
n2
2 , ϑ4(τ) ≡

∑

n∈Z (−1)n q
n2
2 , q = e2πiτ. Then, the partition function of the

Narain code CFT becomes

Z (CSS)
C ,C⊥

(τ, τ̄) =
ϑ2 ϑ̄2 + ϑ3 ϑ̄3 + ϑ4 ϑ̄4

2 |η(τ)|2
. (114)

As another example, we consider the [2,1]5 self-dual code C whose generator matrix is
given by GC = [12 ]. The parity check matrix is also HC = [1 2 ] because of self-duality. The
check matrix of the corresponding CSS code is

H(C ,C) =

�

1 2 0 0

0 0 1 2

�

. (115)

The complete enumerator polynomial is

W (CSS)
C ,C ({xab}) = x2

00 + x01 x02 + x01 x03 + x02 x04 + x03 x04 + x10 x20 + x13 x21

+ x11 x22 + x14 x23 + x12 x24 + x10 x30 + x12 x31 + x14 x32

+ x11 x33 + x13 x34 + x20 x40 + x30 x40 + x23 x41 + x32 x41

+ x21 x42 + x34 x42 + x24 x43 + x31 x43 + x22 x44 + x33 x44 .

(116)
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We obtain the partition function of the Narain code CFT

Z (CSS)
C ,C (τ, τ̄) =

1
|η(τ)|4

W (CSS)
C ,C ({ψab}) , (117)

where we substitute (95) to the variables xab.

5 Averaged partition function

Recently, the relation between an averaged theory over the whole Narain moduli and U(1)
Chern-Simons theory with topological sum has been pointed out [15, 16]. In this section, we
consider the averaged theory of the Narain code CFTs based on a class of CSS codes. Then,
the average is a sum over the discrete points in the whole Narain moduli space. For a class
of CSS codes defined by a single self-dual code C , we exactly compute the averaged partition
functions of the associated Narain code CFTs. We will discuss the holographic implication of
the averaged partition functions in section 6.

5.1 Higher-genus weight enumerator

We introduced the CSS construction for a pair (C , C⊥) with a classical code C in section 4.3.
In this section, we focus on a pair (C , C) with self-dual codes C .

Let H(C ,C) be a check matrix of a CSS code that is constructed from a single self-dual code C
over Fp via (65). Suppose that C is a classical code generated by the matrix GH = H(C ,C). The
complete enumerator polynomial of the classical code C is given by

W (CSS)
C ,C ({xab}) =

∑

(c, c′)∈C2

∏

(a,b)∈Fp×Fp

xwtab(c,c′)
ab , (118)

where, for codewords c = (c1, · · · , cn) ∈ C and c′ = (c′1, · · · , c′n) ∈ C , we define

wtab(c, c′) =
�

�

�{ j ∈ {1, · · · , n} | c j = a , c′j = b}
�

�

� . (119)

We aim to average the above complete enumerator polynomial over a classical self-dual
code C over Fp for fixed length n. Before taking the average, we interpret the complete enu-
merator polynomial of a quantum CSS code as a genus-2 weight enumerator of a classical
self-dual code C . It is helpful for our task since the average of genus-g weight enumerators
over doubly-even self-dual codes was considered in [30,31] for a binary case.

Let us introduce higher-genus weight enumerators of a classical code C of length n. The
genus-g weight enumerator of a classical code C over Fp is defined by

Wg, C({xv}) =
∑

(c(1), ··· , c(g))∈C g

∏

v∈Fg
p

x
wtv(c(1), ··· , c(g))
v , (120)

where for v = (v1, · · · , vg) ∈ F
g
p and c(i) = (c(i)1 , · · · , c(i)n ) ∈ C , the term wtv

�

c(1), · · · , c(g)
�

is
given by the following:

wtv(c
(1), · · · , c(g)) =

�

�

�

�

�

j ∈ {1, · · · , n}
�

�

�

�

c(i)j = vi , i = 1, 2, · · · , g

��

�

�

�

. (121)

Note that wtv

�

c(1), · · · , c(g)
�

is a generalization of (119) for g ≥ 2 and reduces to (119) for
g = 2. For g = 1, the above genus-g weight enumerator becomes the usual complete enumer-
ator polynomial of a classical code C .
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The higher-genus weight enumerators are a reduced form of the complete joint weight enu-
meratorWC({xv}) introduced in section 4.3. Let us compare these definitions (107) and (120).
The only difference is that the complete joint weight enumerator can deal with a product of
different classical codes C = C (1)×· · ·×C (r). If we set C = C r , the r-fold complete joint weight
enumerator reduces to the genus-r weight enumerator of a classical code C:

WC({xv}) =Wr,C({xv}) . (122)

Let us return to the complete enumerator polynomial (118) of the CSS code. In sec-
tion 4.3, we pointed out the coincidence (109) between the 2-fold complete joint enumerator
of C = C×C⊥ and the complete enumerator polynomial of the classical code generated by the
matrix H(C ,C⊥): W (CSS)

C ,C⊥
({xab}) =WC ({xab}). Focusing on a self-dual code C = C⊥, we get

W (CSS)
C ,C ({xab}) =WC ({xab}) , (123)

where C = C × C . The relation (122) implies the following result:

W (CSS)
C ,C ({xab}) =W2,C({xab}) . (124)

Therefore, the complete weight enumerator of the CSS code can be understood as the genus-2
weight enumerator of the classical code C . Average of W (CSS)

C ,C ({xab}) over self-dual codes C
reduces to the sum of the genus-2 weight enumerator over classical self-dual codes.

Now we give an alternative expression of the higher-genus weight enumerator (120),
which will be useful when we consider the average over the CSS codes in the next subsec-
tion.

Let c be a tuple of g elements c(i) ∈ Fn
p (i = 1, 2, · · · , g), denoted by c=

�

c(1), · · · , c(g)
�

. We

associate c to a tuple A(c) = (ev(c) | v ∈ F
g
p) by

ev(c) = wtv

�

c(1), · · · , c(g)
�

. (125)

To catch the meaning of this definition, consider n = 4, g = 2 and p = 3 case. Suppose we
take two elements in Fn=4

p=3 as

c(1) = (1,2, 0,1) , c(2) = (0,1, 2,0) . (126)

The tuple A(c) can be read off from the four column vectors of the matrix whose rows are c(i):
�

c(1)

c(2)

�

=

��

1

0

� �

2

1

� �

0

2

� �

1

0

��

. (127)

It follows from the definitions (121) and (125) that ev(c) counts the number of column vectors
which match v. In this example, we have

e10(c) = 2 , e21(c) = 1 , e02(c) = 1 , ev ̸=10,21,02(c) = 0 . (128)

Note that ev(c) are a partition of n

n=
∑

v∈Fg
p

ev(c) , (129)

which is verified in the above example.
With the tuple A(c), one can rewrite the genus-g weight enumerator (120) as

Wg,C({xv}) =
∑

c∈C g

xA(c) , (130)

where xA(c) =
∏

v∈Fg
p

x ev(c)
v .
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5.2 Average of higher-genus weight enumerator

We have found that the average of the complete enumerator polynomial over the CSS codes
reduces to the sum of the genus-2 weight enumerator of self-dual codes. This section tackles
more general problems: averaging the genus-g weight enumerator over self-dual codes.

Let Mn,p be a set of classical self-dual codes C ⊂ Fn
p with n and p fixed:

Mn,p = {self-dual codes over Fp of length n} . (131)

The average of the genus-g weight enumerators over a set of self-dual codes Mn,p is given by

E(g)n,p({xv}) =
1
|Mn,p|

∑

C ∈Mn,p

Wg,C({xv}) . (132)

For doubly-even self-dual codes over F2 of length n ∈ 8Z, these polynomials E(g)n,p({xv}) are
called Eisenstein polynomials as being the counterpart of the Eisenstein series for lattices [31].
The genus-g Eisenstein polynomials E(g)n,p are given explicitly in [30,31].

In the following, we consider the averaged genus-g weight enumerators over self-dual
codes C ⊂ Fn

2 and C ⊂ Fn
p for an odd prime p, respectively.

5.2.1 For p = 2

Let us introduce some notions needed to describe our statements.

Type-I-admissible tuples We define a tuple A =
�

ev | v ∈ F
g
2

�

where ev ∈ Z≥0. We define
the dimension of a tuple A as the dimension of the vector space spanned by the vectors (1v)
satisfying ev > 0:

dim2(A) = dimF2
〈 {(1v) ∈ Fg+1

2 | ev > 0} 〉 , (133)

where (1v) ∈ Fg+1
2 is the binary vector such that the first component is 1 and the remain-

ing components are v, and 〈{a, b, c, · · · }〉 denotes the vector space spanned by the vectors
a, b, c, · · ·

We call A a type-I-admissible tuple if a tuple A is a partition of even n:

n=
∑

v∈Fg
2

ev = 0 mod 2 , (134)

and it satisfies
∑

v∈Fg
2

ev

�

v Sd vT
�

= 0 mod 2 ,
∑

v∈Fg
2

ev

�

v Snd vT
�

= 0 mod 4 , (135)

where v = (v1, · · · , vg) ∈ F
g
2 for all integral diagonal g × g matrices Sd and all integral sym-

metric g × g matrices Snd with 0s in diagonal elements.
Let us illustrate the above definition of the dimension of a tuple by an example. Con-

sider the genus-two (g = 2) and n = 8 case where v is a two-dimensional binary vector,
v ∈ {00,01, 10,11}= F2

2. Let us take a tuple A=
�

ev | v ∈ F2
2

�

= (e00, e01, e10, e11) such that

e00 = 2 , e01 = 4 , e10 = 2 , e11 = 0 . (136)

Then its dimension is given by

dim2(A) = dimF2
〈 {(1v) ∈ F3

2 | ev > 0} 〉= dimF2
〈 {100,101, 110}〉= 3 . (137)
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To see if the tuple A is type-I-admissible, we examine the conditions (135) for 2× 2 matrices
of the forms:

Sd =

�

a 0

0 b

�

, Snd =

�

0 c

c 0

�

, (a, b, c ∈ Z) . (138)

Then, the conditions (135) become
∑

v1,v2 ∈F2

ev (a v2
1 + b v2

2 ) = a (e10 + e11) + b (e01 + e11) = 0 mod 2 ,

2
∑

v1,v2 ∈F2

ev c v1 v2 = 2 c e11 = 0 mod 4 .
(139)

For the tuple (136), these equations hold for any integer a, b, c. Thus, the tuple A is type-I-
admissible in this example.

Self-orthogonal codes and type-I-admissible tuples For a tuple of g elements
c= (c(1), · · · , c(g)) ∈ (Fn

2)
g , we define C as the [n, s(c)]2 code generated by 1n and c(1), · · · , c(g)

where s(c) is the dimension of the code. On the other hand, we associate c to a tuple
A(c) = (ev(c) | v ∈ F

g
2) as in (125). There is a simple relation between the tuple A(c) and

the dimension s(c):

dim2(A(c)) = s(c) . (140)

To show this equality, note that the dimension of a code generated by 1n and c(1), · · · , c(g) ∈ Fn
2

is given by the following:

s(c) = rank













1 1 · · · 1

c(1)1 c(1)2 · · · c(1)n
...

...
...

c(g)1 c(g)2 · · · c(g)n













. (141)

Elementary column operations reduce the right hand side to the dimension of the vector
space spanned by the vectors {(1v) ∈ Fg+1

2 | ev > 0}. Therefore, we arrive at the relation
s(c) = dim2(A(c)).

Now we state an important relation between the code C and the tuple A(c) which will play
a key role in deriving the averaged weight enumerator:

Proposition 5.1
Let c be a tuple of g elements c= (c(1), · · · , c(g)) ∈ (Fn

2)
g . Then, the code C generated by 1n and

c is self-orthogonal code of length n if and only if the associated tuple A(c) is type-I-admissible.

Proof. Assume that C is self-orthogonal. Let c(i) (i = 1,2, · · · , g) be elements in the tuple c.
The code C generated by 1n and c(i) (i = 1, 2, · · · , g) is self-orthogonal if and only if 1n ·1n = 0
mod 2, 1n · c(i) = c(i) · c(i) = 0 mod 2, and c(i) · c( j) = 0 mod 2 for i ̸= j. The first condition
implies n=

∑

v∈Fg
2

ev(c) = 0 mod 2. Let us denote a binary vector v = (v1, · · · , vg) ∈ F
g
2 where

vi ∈ F2 for convenience. Then

c(i) · c(i) =
∑

vi=1,v j ̸=i∈F2

ev1···vg
(c) =

∑

vi ∈F2

v2
i

∑

v j ̸=i∈F2

ev1···vg
(c)

=
∑

v1,··· ,vg ∈F2

ev1···vg
(c) v2

i =
∑

v∈Fg
2

ev(c)
�

v S(i)d vT
�

,
(142)
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where S(i)d is the diagonal g × g matrix with 1 at the (i, i)-th position and 0s elsewhere. The
condition c(i) · c(i) = 0 mod 2 for i = 1, 2, · · · , g implies

∑

v∈Fg
2

ev(c)
�

v Sd vT
�

= 0 mod 2 , (143)

for all integral diagonal g × g matrices Sd. Also, we have for i ̸= j

c(i) · c( j) =
∑

v1,··· ,vg ∈F2

ev1···vg
(c) vi v j =

1
2

∑

v∈Fg
2

ev(c)
�

v S(i, j)nd vT
�

, (144)

where S(i, j)nd is the symmetric g × g matrix with 1 at the (i, j)-th and ( j, i)-th positions, and 0s
elsewhere. Then the other condition c(i) · c( j) = 0 mod 2 becomes

∑

v∈Fg
2

ev(c)
�

v Snd vT
�

= 0 mod 4 , (145)

for all integral symmetric g × g matrices Snd with 0s in diagonal elements. Therefore, self-
orthogonality for C means that a tuple A(c) is type-I-admissible. If A(c) = (ev(c) | v ∈ F

g
2) is

type-I-admissible, we can trace the above discussion backwards.

Main theorem and its proof The following theorem gives the average of genus-g weight
enumerators for self-dual codes over F2. For doubly-even self-dual codes, it was shown in
[30, 31]. To our best knowledge, however, the formula for self-dual codes over F2 has not
been stated explicitly in literature.

Theorem 5.2
Let Mn,2 be a set of classical self-dual codes over F2 of length n ∈ 2Z. Then the average of
genus-g weight enumerators is given by

E(g)n,2({xv}) :=
1
|Mn,2|

∑

C ∈Mn,2

Wg,C({xv})

=
∑

A

1
�

2
n
2−1 + 1

�

· · ·
�

2
n
2−dim2(A)+1 + 1

�

�

n
A

�

xA ,
(146)

where the sum is extended over all type-I-admissible tuples A = (ev | v ∈ F
g
2). We denote

xA =
∏

v∈Fg
2

x ev
v and

�

n
A

�

=
n!

∏

v∈Fg
2

ev!
. (147)

Proof. We prove the theorem following [30] where the averaged genus-g weight enumerator
over doubly-even self-dual codes over F2 is given.

First, we use the tuple representation (130) of Wg,C ({xv}) to rewrite the averaged weight
enumerator:

E(g)n,2({xv}) =
1
|Mn,2|

∑

C ∈Mn,2

Wg,C({xv})

=
(130)

1
|Mn,2|

∑

C ∈Mn,2

∑

c∈C g

xA(c)

=
1
|Mn,2|

∑

c∈Fng
2

�

�{C ∈Mn,2 with c ∈ C g}
�

� xA(c) ,

(148)
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where
�

�{C ∈Mn,2 with c ∈ C g}
�

� is the number of binary self-dual codes of length n such
that C g contains a tuple c.

The number of binary self-dual [n, n/2]2 codes, which contain a self-orthogonal [n, s]2
code including 1n ∈ Fn

2, is [56, Theorem 2.1]

n
2−s
∏

i=1

(2i + 1) . (149)

Note that self-dual codes contain only self-orthogonal codes because any subspaces of self-dual
codes are self-orthogonal.

Since all binary self-dual codes contain the all-ones vector 1n, self-dual codes containing
c(i) (i = 1,2, · · · , g) always contain the code C. It is obvious that self-dual codes contain the
codewords c(i) (i = 1,2, · · · , g) if they contain the code C. Hence, we get

|{C ∈Mn,2 with c ∈ C g}|= |{C ∈Mn,2 with C ⊂ C}| . (150)

Using the enumeration (149), we count the number of self-dual codes C such that c ∈ C g as
follows

|{C ∈Mn,2 , with c ∈ C g}|=











n
2−s(c)
∏

i=1

(2i + 1) , if C self-orthogonal,

0 , otherwise.

(151)

Consider the case with s = 1 in (149). The formula returns the number of self-dual codes
containing a self-orthogonal [n, 1]2 code C that contains 1n ∈ Fn

2. All binary self-dual codes
contain the [n, 1]2 code that consists of the all-zeros vector and the all-ones vector. Therefore,
(149) gives the number of whole binary self-dual codes enumerated in [57]

|Mn,2|=

n
2−1
∏

i=1

(2i + 1) . (152)

Therefore, the averaged genus-g weight enumerator can be written as

E(g)n,2({xv}) =
1
|Mn,2|

∑

c∈Fng
2

�

�{C ∈Mn,2 with c ∈ C g}
�

� xA(c)

=
(151)
(140)

∑

C⊂C⊥

1
�

2
n
2−1 + 1

�

· · ·
�

2
n
2−dim2(A(c))+1 + 1

� xA(c)

=
∑

A

1
�

2
n
2−1 + 1

�

· · ·
�

2
n
2−dim2(A)+1 + 1

�

�

n
A

�

xA .

(153)

In the second line, the sum is extended over tuples c such that C is self-orthogonal. In the last
line, we take the sum over type-I-admissible tuples A. The last line follows from Proposition 5.1
and the fact that, for a type-I-admissible tuple A = (ev | v ∈ F

g
2), there are

�n
A

�

tuples c which
are different only in the order of coordinates.

For g = 1, the genus-g weight enumerator reduces to the usual complete enumerator poly-
nomial. Then its average gives a well-known formula for the averaged enumerator polynomial
over self-dual codes C ⊂ Fn

2 (see for example p.329 in [53]):

E(1)n,2({x0, x1}) = xn
0 + xn

1 +
1

2
n
2−1 + 1

n
2−1
∑

i=1

�

n
2i

�

x2i
0 xn−2i

1 . (154)
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5.2.2 For odd prime p ̸= 2

p-admissible tuples For a tuple A= (ev | v ∈ F
g
p), we define the dimension of the tuple

dimp(A) = dimFp
〈 {v ∈ Fg

p | ev > 0} 〉 . (155)

We call a tuple A as p-admissible if

n=
∑

v∈Fg
p

ev =

�

0 mod 2 , (p = 1 mod 4) ,

0 mod 4 , (p = 3 mod 4) ,
(156)

and
∑

v∈Fg
p

ev

�

v S vT
�

= 0 mod p , (157)

for all integral symmetric g × g matrices S where v = (v1, · · · , vg) ∈ F
g
p .

Self-orthogonal codes and p-admissible tuples Let us take a tuple of g elements
c = (c(1), · · · , c(g)) ∈ (Fn

p)
g . For each tuple c, we define C as the [n, s(c)]p code generated

by c(1), · · · , c(g) where s(c) is the dimension of the code. On the other hand, we associate c to
a tuple A(c) = (ev(c) | v ∈ F

g
p) as in (125). There is a relation dimp(A(c)) = s(c) because the

dimension of the code C generated by c(1), · · · , c(g) is given by

s(c) = rank







c(1)1 c(1)2 · · · c(1)n
...

...
...

c(g)1 c(g)2 · · · c(g)n






, (158)

which reduces to s(c) = dimp(A(c)) through the elementary column operations.

Proposition 5.3
Let c be a tuple of g elements c =

�

c(1), · · · , c(g)
�

∈ (Fn
p)

g . Then, the code C generated by c is
self-orthogonal code of length n if and only if the associated tuple A(c) is p-admissible.

Proof. Let c(i) (i = 1, · · · , g) be elements in a tuple c. Note that C is self-orthogonal if and only
if c(i) · c(i) = 0 mod p, and c(i) · c( j) = 0 mod p for i ̸= j. Let us denote v = (v1, · · · , vg) ∈ F

g
p

for convenience. Then we have

c(i) · c(i) =
∑

vi=1,v j ̸=i∈Fp

ev1···vg
=
∑

vi ∈Fp

v2
i

∑

v j ̸=i ∈Fp

ev1···vg
(c)

=
∑

v1,··· ,vg ∈Fp

ev1···vg
(c) v2

i =
∑

v∈Fg
p

ev(c)
�

v Sd vT
�

,
(159)

where Sd is the diagonal g × g matrix with 1 at the (i, i)-th position and 0s elsewhere. There-
fore, c(i) · c(i) = 0 mod p if and only if

∑

v∈Fg
p

ev(c)
�

v Sd vT
�

= 0 mod p. Also, we have for
i ̸= j

c(i) · c( j) =
∑

v1,··· ,vg ∈Fp

ev1···vg
(c) vi v j =

1
2

∑

v∈Fg
p

ev(c)
�

v Snd vT
�

, (160)

where Snd is the symmetric g×g matrix with 1 at the (i, j)-th and ( j, i)-th position, and 0s else-
where. Since we have c(i) ·c( j) ∈ Z, c(i) ·c( j) = 0 mod p if and only if

∑

v∈Fg
p

ev(c)
�

v Snd vT
�

= 0

mod p. Hence, a code C is self-orthogonal if and only if
∑

v∈Fg
p

ev(c)
�

v S vT
�

= 0 mod p for
all integral symmetric g × g matrices S. Let us consider the other condition (156) for a p-
admissible tuple. Since we have n=

∑

v∈Fg
p

ev(c), (156) holds automatically by the assumption
in Theorem 5.4. Therefore, a code C is self-orthogonal if and only if A(c) is p-admissible.
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Main theorem and its proof

Theorem 5.4
Let Mn,p be a set of classical self-dual codes C ⊂ Fn

p for an odd prime p. (Then n ∈ 2Z for
p = 1 mod 4 and n ∈ 4Z for p = 3 mod 4.) The average of genus-g weight enumerators is
given by

E(g)n,p({xv}) :=
1
|Mn,p|

∑

C ∈Mn,p

Wg,C({xv}) =
∑

A

1
�

p
n
2−1 + 1

�

· · ·
�

p
n
2−dimp(A) + 1

�

�

n
A

�

xA , (161)

where we take the sum over all p-admissible tuples. We denote xA =
∏

v∈Fg
p

x ev
v and

�

n
A

�

=
n!

∏

v∈Fg
p

ev!
. (162)

Proof. The proof is similar to the case with p = 2. The number of p-ary self-dual [n, n/2]p
codes that contain a self-orthogonal [n, s]p code is [58]

2

n
2−s−1
∏

i=1

(pi + 1) . (163)

Then the number of p-ary self-dual codes that contain the code C is given by

|{C ∈Mn,p with c ∈ C g}|=











2

n
2−s(c)−1
∏

i=1

(pi + 1) , if C self-orthogonal,

0 , otherwise.

(164)

For s = 0, (163) reduces to the number of p-ary self-dual codes of length n enumerated in [57]

|Mn,p|= 2

n
2−1
∏

i=1

(pi + 1) . (165)

The averaged genus-g weight enumerator is

E(g)n,p({xv}) =
1
|Mn,p|

∑

C ∈Mn,p

Wg,C({xv})

=
1
|Mn,p|

∑

C ∈Mn,p

∑

c∈C g

xA(c)

=
1
|Mn,p|

∑

c∈Fg
p

|{C ∈Mn,p with c ∈ C g}| xA(c)

=
∑

C⊂C⊥

1
�

p
n
2−1 + 1

�

· · ·
�

p
n
2−dimp(A(c)) + 1

� xA(c)

=
∑

A

1
�

p
n
2−1 + 1

�

· · ·
�

p
n
2−dimp(A) + 1

�

�

n
A

�

xA .

(166)

In the fourth line, the sum is taken over tuples c such that C is self-orthogonal. In the last
line, we take the sum over p-admissible tuples A. We obtain the last line because, for a p-
admissible tuple A= (ev | v ∈ F

g
p), there are

�n
A

�

tuples c which are different only in the order
of coordinates.
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5.3 Averaging over CSS codes

Let us go back to the complete enumerator polynomial of a CSS code whose check matrix
is given by H(C ,C). As discussed in section 5.1, the complete enumerator polynomial can be
written as the genus-2 weight enumerator of the associated classical self-dual code C:

W (CSS)
C ,C ({xab}) =W2,C({xab}) . (167)

Therefore, the average of the complete enumerator polynomials over a set of self-dual codes
Mn,p reduces to the averaged genus-2 weight enumerator over Mn,p:

W
(CSS)
n,p ({xab}) =

1
|Mn,p|

∑

C ∈Mn,p

W (CSS)
C ,C ({xab})

=
1
|Mn,p|

∑

C ∈Mn,p

W2,C({xab})

= E(2)n,p({xab})

=















∑

A

1
�

2
n
2−1 + 1

�

· · ·
�

2
n
2−dim2(A)+1 + 1

�

�

n
A

�

xA , if p = 2 ,

∑

A

1
�

p
n
2−1 + 1

�

· · ·
�

p
n
2−dimp(A) + 1

�

�

n
A

�

xA , if p odd prime.

(168)

Let us evaluate W
(CSS)
n,p ({xab}) in the large-n limit. To approximate the sums by integrals,

we define variables
zab :=

eab

n
. (169)

Since the tuple A= (eab|a, b ∈ Fp) is a partition of n, we have zab ≥ 0 and
∑

a,b zab = 1. In the
large-n limit the sums over A become (p2 − 1)-dimensional integrals over

�

zab|(a, b) ̸= (0, 0)
�

in the region defined by zab ≥ 0 and
∑

(a,b)̸=(0,0) zab ≤ 1. When p = 2, for the tuple A to be
type-I admissible, eab must satisfy the conditions

e01 = e10 = e11 = 0 mod 2 , (170)

which follow from (139). When p is an odd prime integer, for A to be p-admissible, eab must
obey

∑

a,b∈Fp

a2 eab =
∑

a,b∈Fp

b2 eab =
∑

a,b∈Fp

a b eab = 0 mod p , (171)

as follow from (156). Given generic values of the variables (zab|a ̸= 0, b ̸= 0), the condi-
tion (170) or (171) reduces the number of allowed values of (z01, z10, z11) by p3 in either case.
We also note that for generic A, the dimension defined by (133) and (155) is dimp(A) = 3
for p = 2 and dimp(A) = 2 for odd prime p. In both cases, in the large-n limit, (168) is
approximated by a (p2 − 1)-dimensional integral over the region defined above

W
(CSS)
n,p ({xab})≃ p−n

� n
2π

�

p2−1
2

∫ �

∏

(a,b)̸=(0,0)

dzab

�

∏

a,b

�

xab

zab

�nzab

z
− 1

2
ab , (172)

where we used Stirling’s formula n!= (2πn)1/2(n/e)n(1+O(n−1)). In Appendix B we evaluate
the integral (172) by the saddle point method. We find that

W
(CSS)
n,p ({xab}) = p−n

 

∑

a,b

xab

!n

(1+O(n−1)) . (173)

34

https://scipost.org
https://scipost.org/SciPostPhysCore.6.2.035


SciPost Phys. Core 6, 035 (2023)

To explore the density of states, let us simplify the averaged partition function by fixing
the torus moduli τ = iτ2 = iβ/2π (τ1 = 0). Then we have q = q̄ = e−β and ψab = ψaψb
where

ψa(iτ2) =
∑

k∈Z
q

p
2

�

a
p+k

�2

. (174)

Due to the relation (117) between the partition function and the enumerator polynomial, the
averaged partition function reduces, for large n, to

Z
(CSS)
n,p (iτ2)≃

1
pn |η(iτ2)|2n

 

∑

a∈Fp

ψa(iτ2)

!2n

=
1

pn |η(iτ2)|2n

�

∑

k∈Z
e−πτ2

k2
p

�2n

=
ϑ3(iτ2/p)2n

pn|η(iτ2)|2n
.

(175)

The above partition function exactly agrees with the averaged partition function over the B-
form codes in the large-n limit, which was conjectured in [28].

6 Discussion

In this paper, we constructed a class of Narain code CFTs from p-ary qudit stabilizer codes for a
prime p. Our construction was based on two fundamental relations: one between qudit codes
to classical codes [8–10] and the other between classical codes and Lorentzian lattice [11]. The
former is actually not limited to the case we considered but holds between pm-ary stabilizer
codes and self-orthogonal classical codes over Fp2m for arbitrary integer m ≥ 1 [10]. The
latter relation is also likely to hold true for a broader class of classical codes [11]. Thus, we
speculate that there is a class of Narain code CFTs associated with pm-ary stabilizer codes for
any integer m≥ 1.

In section 5, we considered the CSS codes as a special class of qudit codes and examined
the averaged theory over the corresponding Narain code CFTs along the line of [15, 16]. We
showed that the averaged partition function over the CSS codes takes the same form as the
conjectured form of the partition function averaged over the B-form codes in the large-n limit.
Our definition of the averaged partition function is different from theirs as we take the average
over all CSS codes associated with self-dual classical codes including equivalent ones while
their averaging is over inequivalent qudit stabilizer codes. In the large-n limit, this difference
may be ignorable. Also our result implies that the CSS codes sample a typical set of quantum
codes in this limit.

In section 5.3, we calculated the averaged partition function over the CSS codes (175).
By noting that |η(iτ2)|2n in the denominator accounts for the descendant contributions, the

density of primary states ρ(∆) for the averaged code CFT can be read off from Z
(CSS)
n,p (iτ2)

with τ2 =
β
2π as

ϑ3(iβ/2πp)2n

pn
=

∫ ∞

0

d∆ e−β∆ρ(∆) . (176)
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Narain code CFTs
(p : small)

Narain code CFTs
(p : large)

increase p

Figure 2: The discrete subset of Narain code CFTs constructed from the CSS codes
(the black dots) in the whole Narain moduli space (the green region), which depends
on a prime number p. For small p, the corresponding Narain code CFTs make a
relatively small subset (black dots on the left). On the other hand, for large p, the
number of the Narain code CFTs grows (black dots on the right) and we expect that
the averaged theory over the ensemble resembles the one over the whole Narain
moduli.

The asymptotic form of ρ(∆) in ∆→∞ is5

ρ(∆)≃
(2π)n∆n−1

Γ (n)
. (177)

Numerical experiments suggest that this asymptotic form is valid for ∆≳ 1
p log n and is likely

to be exact when p is large enough compared to log n.6 The density of states (177) is the same
as the one for the averaged CFT of central charge c = n over the whole Narain moduli, which
is shown to have a spectral gap∆= c

2πe in the large-c limit [16]. We expect that our averaged
Narain code CFT over the CSS codes has the same spectral gap in the large-n limit for a large
prime integer p and that there exists a Narain CSS code CFT with the spectral gap ∆= c

2πe .
In recent studies, ensemble averaging is seen as a key to understanding holographic dual-

ity [60]. The average of Narain CFTs has a large spectral gap and has been proposed to have
a holographic interpretation in terms of an abelian Chern-Simons theory [15, 16]. We expect
that our averaged theory over the CSS codes also has a large spectral gap, and may have a dual
gravity description in the large-n limit. Note that our ensemble average depends on the choice
of a prime number p. We conjecture that each ensemble has a different gravity description
as in [17, 18, 21, 22, 27–29]. In our case, the size of the ensemble increases for larger p as
in (165) and we expect the averaged theory tends to the one over the whole Narain moduli
space (see figure 2).

Even without averaging, a Narain code CFT is related to an abelian Chern-Simons theory.
Indeed (89) and (95) imply that the partition function is given as a finite sum involving U(1)2p
charactersΘm,p(τ)/η(τ) and is therefore a rational CFT with an extended chiral algebra corre-
sponding to the U(1)n2p Chern-Simons theory. (See for example [61].) It would be interesting
to see if the conjectural holographic description above can be obtained from an ensemble of
Chern-Simons theories.

There are also other directions of research related to quantum codes and CFTs [62–68].
It deserves further investigation to see whether our construction is relevant to these recent
developments.

5This statement follows from the direct calculation or Tauberian theorem (see, for example, Theorem 15.3 of
section 1 in [59]).

6Note that we are focused on the large-n limit of the averaged theory here.
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A List of notations

Symbol Definition See

p A prime number.

Fq The field of order q.

Hp Hilbert space of a qudit system with p states .

ωp The primitive p-th root of unity (ωp = e2πi/p).

g(α,β) The generalized Pauli operator on the single-qudit system. Eq.(10)

g(α,β) The generalized Pauli operator on the n-qudit system. Eq.(13)

P(p)n The n-qudit Pauli group.

〈·, ·〉 The symplectic bilinear form on F2n
p .

S A stabilizer group.

VS The code subspace stabilized by a stabilizer group S.

N(G) The normalizer of a subgroup G in an appropriate group.

H The check matrix of a stabilizer code. Eq.(20)

G The generator matrix of a stabilizer code. Eq.(25)

W A matrix that defines the symplectic product 〈·, ·〉 on F2n
p . Eq.(22)

In The n× n identity matrix.

U(n) The unitary group of degree n.

C A classical code on Fn
p.

GC The generator matrix of a classical code C .

HC The parity check matrix of a classical code C .

c A codeword of a classical code (written as a row vector on Fn
p).

· The Euclidean inner product over Fn
p.

C⊥ The dual code of a classical code C with respect to the Euclidean inner
product.

Eq.(35)

H(CX ,CZ ) The check matrix of the CSS code constructed from CX and CZ . Eq.(38)

GH The generator matrix of the classical code with a check matrix H. Eq.(47)

C The classical code generated by the matrix GH. Eq.(48)
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η The off-diagonal Lorentzian metric. Eq.(49)

⊙ The inner product with respect to the metric η.

C⊥ The dual code of a classical code C with respect to the metric η. Eq.(51)

Λ(C) The Construction A lattice from a classical code C. Eq.(54)

Λ∗ The dual lattice of a lattice Λ with respect to the metric η. Eq.(55)

λ A lattice vector written as a row vector.

eη The diagonal Lorentzian metric. Eq.(74)

◦ The inner product with respect to the metric eη. Eq.(73)
eΛ(C) The momentum lattice obtained by a linear transformation from the

Construction A lattice Λ(C).
(pL , pR) A momentum vector that is an element of a momentum lattice.

ZC The partition function of a Narain code CFT. Eq.(79)

Θ
eΛ(C) The lattice theta function of the momentum lattice obtained from a

classical code C.
Eq.(80)

WC The complete enumerator polynomial of a classical code C. Eq.(83)

W (CSS)
C ,C⊥

The complete enumerator polynomial of a classical code based on a
CSS code with a check matrix H(C ,C⊥).

Eq.(105)

C The product of r classical codes: C = C (1) × · · · × C (r)

WC The r-fold complete joint weight enumerator for C = C (1)×· · ·×C (r). Eq.(107)

Z (CSS)
C ,C⊥

The partition function of a Narain code CFT based on a CSS code with
a check matrix H(C ,C⊥).

W (CSS)
C ,C The complete enumerator polynomial of a classical code based on a

CSS code with a check matrix H(C ,C) for a self-dual code C .
Eq.(118)

Wg,C The genus-g weight enumerator of a classical code C . Eq.(120)

Mn,p The set of classical self-dual codes C ⊂ Fn
p. Eq.(131)

E(g)n,p The average of genus-g weight enumerators over the set Mn,p. Eq.(132)

A A tuple of non-negative integers ev where v ∈ Fg
p .

dim2(A) The dimension of a tuple A for p = 2. Eq.(133)

dimp(A) The dimension of a tuple A for odd prime p. Eq.(155)

c A tuple of g codewords: c= (c(1), · · · , c(g)).

C The classical code generated by 1n and c for p = 2 and by c for odd
prime p.

W
(CSS)
n,p The averaged complete enumerator polynomial of CSS codes over

self-dual codes C ∈Mn,p.
Eq.(168)

Z
(CSS)
n,p The averaged partition function of Narain code CFTs based on a class

of CSS codes.
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B Saddle point computation

In this appendix we perform a saddle point computation of the integral (172) to derive the
result (173). For this purpose, let us introduce the function

f (z) :=
∑

a,b

zab log
zab

xab
. (B.1)

We treat zab with (a, b) ̸= (0,0) as independent variables. Using the relation
z00 = 1−

∑

(a,b)̸=(0,0) zab, we find for (a, b) ̸= (0,0) and (c, d) ̸= (0, 0)

∂ f
∂ zab

= log
�

zab

z00

x00

xab

�

, Hab;cd :=
∂ 2 f

∂ zab∂ zcd
=
δacδbd

zab
+

1
z00

. (B.2)

The saddle point z∗ defined as the solution of ∂ f /∂ zab = 0 is

z∗ab =
xab

∑

c,d∈Fp
xcd

. (B.3)

After several non-trivial cancellations in the saddle point computation of the integral, we are
left with

W
(CSS)
n,p ({xab}) = p−n

�

∑

a,b

xab

�n�∏

(a,b)

z∗ab

�−1/2

(det H|z=z∗)
−1/2

�

1+O(n−1)
�

. (B.4)

The Hessian matrix H given in (B.2) is of the form

diag
�

1
y1

, . . . ,
1
yL

�

+
1
x







1
...

1







�

1 . . . 1
�

=
1
x

diag
�

1
y1

, . . . ,
1
yL

�

(x I + B) , (B.5)

where

B =







y1
...

yL







�

1 . . . 1
�

. (B.6)

The determinant of x I + B is the characteristic polynomial of −B, which is given by
x L−1(x+ y1+. . .+ yL) because the eigenvalues of B are 0 with multiplicity L−1 and y1+. . .+ yL .
Then we find

det H|z=z∗ =
�

∏

(a,b)

z∗ab

�−1

. (B.7)

Thus the third and the fourth factors in (B.4) exactly cancel out, giving the result (173).
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