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Abstract

We motivate and describe a method based on fits with polynomials to test the smooth-
ness of differential distributions. As a demonstration, we apply the method to several
measurements of inclusive jet double-differential cross section in the jet transverse mo-
mentum and rapidity at the Tevatron and LHC. This method opens new possibilities to
test the quality of differential distributions used for the extraction of physics quantities
such as the strong coupling.
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1 Introduction

The limited resolution of detectors, the reconstruction algorithms, the analysis techniques,
certain approximations, or a combination of all these may cause artificial deviations of ex-
perimental distributions from an expected smooth behaviour. An example is the inclusive jet
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differential cross section at hadronic colliders, such as the Tevatron and LHC [1,2], where the
data points play a crucial role in the extraction of the strong coupling [3] and of the parton
distribution functions (PDFs) [4]. These measurements cover a large phase space and the dif-
ferential cross sections span over several orders of magnitude, with a statistical precision of
the level of one percent. In practice, it has been reported that the inclusive jet measurements
with data from LHC Run 1 are difficult to include in the global PDF fits [5–7].

Typical sources for deviations from a smooth behaviour in such a spectrum are:

• different triggers to obtain a spectrum over a large range of values (which may appear
in the form of steps in the spectrum);

• calibrations as a function of the same variables as the observable (especially if the calibra-
tions are provided with a coarser binning scheme than the one used for the observable,
also resulting in steps);

• the neglecting of correlations between the bins of the spectrum (e.g. for multi-count ob-
servables, or for any observable after a procedure of unfolding [8], resulting for instance
in the apparent movements of adjacent points in opposite directions).

Tests of smoothness performed at all stages of the analysis help assess the impact of every
step of the data reduction, and estimate the quality of a spectrum before any use in global
PDF fits. A compact description of distributions is also useful in the searches for New Physics,
which are often expected to manifest as a bump on top of a smooth Standard Model back-
ground [9]. Alternatively, a smooth fit of a spectrum may be useful as a smoothing procedure,
e.g. to estimate smooth systematic variations when the original estimate suffers from statistical
fluctuations due to the limited statistics of the simulation in an unfolding procedure.

In this article, we present an iterative method to perform a smooth fit of a spectrum with a
large number of points, based on expansion of polynomials, and present several applications
in the context of inclusive jet production in hadronic collisions [10–14]. We discuss the de-
termination of the optimal order of the polynomial with various stopping criteria. We also
provide an implementation of the test so that it may be applied to other observables, possibly
beyond high energy physics.

2 Method

The method was primarily developed using Chebyshev polynomials of the first kind [15], which
are defined iteratively as follows:

T0(x) = 1 , (1)

T1(x) = x , (2)

Ti+1(x) = 2x Ti(x)− Ti−1(x) , (3)

with x ∈ [−1,1]. The first polynomials are shown in Figure 1a. A spectrum f can be approxi-
mated by a polynomial fn of order n:

fn(x) =
n
∑

i=0

bi Ti(x) . (4)

The interpolation with such polynomials ensures that the original coefficients of fn stay similar
when a term of higher order is added, which helps set up an iterative fit procedure. The method
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Figure 1: First orders of Chebyshev polynomials of first kind (left) and Legendre
polynomials (right).

also works with other bases such as Legendre polynomials [16], shown in Figure 1b, with the
same first two terms and the following recursive formula:

(i + 1)Ti+1(x) = (2i + 1)x Ti(x)− iTi−1(x) , (5)

also with x ∈ [−1,1]. However, for the present purpose, it is sufficient to find one basis that
satisfies these properties.

In the case of inclusive jet cross section differential in the transverse momentum pT, the
range of the variable should be mapped to the range of the measurement; as it is steeply
falling, we also take the logarithm of pT and the exponential of the expansion to avoid biasing
the fit toward one part of the spectrum and have a numerically more stable result despite the
different orders of magnitude:

fn(pT) = exp

� n
∑

i=0

bi Ti

�

2
log pT/ log pmin

T

log pmax
T / log pmin

T

− 1

�

�

, (6)

where n is the degree of the polynomial. To find the optimal value of n to fit the spectrum
within given uncertainties, the following objective function is defined:

χ2
n =min

bi≤n

��

x− ybi≤n

�⊺
V−1
�

x− ybi≤n

��

, (7)

where

• x corresponds to the binned differential distribution;

• ybi≤n
corresponds to the integral of fn normalised to the bin width for a given set of

parameters bi≤n;

• V is the covariance matrix of x describing the uncertainties.

The iterative fit procedure is the following:

1. the two lowest-order coefficients b0 and b1 are obtained from the first and last points of
the spectrum;
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2. the next coefficient bn (n = 2 for the first iteration) is released and a fit is run with
coefficients b0, b1, . . . , bn free in the fit;

3. the previous step is iterated until a stopping criterion is satisfied.

Four flavours of the test are proposed, corresponding to four different stopping criteria, sum-
marised in Table 1 and whose choice is left to the user:

• The degree of the polynomial has reached a predefined, maximal value.

• The χ2
n divided by the number of degrees of freedom (ndf) has reached a plateau and is

no longer decreasing, or is compatible with unity within k standard deviations:

|χ2
n − ndf|< k
p

2 ndf . (8)

• A F-test [17] is run to compare the fits with degrees n and n+1. The iterative process is
then interrupted if the obtained p-value is lower than a predefined threshold p.

• We apply cross-validation techniques [18] on statistical replicas of the original data set.
First we arrange these replicas into set of N pairs, each pair including a training and a
validation replica. We compare the fits of degrees n and n+1 performed on the training
replica by evaluating the χ2

n and χ2
n+1 on the corresponding validation replica. We stop

if the χ2 improves, i.e. χ2
n+1 < χ

2
n , for smaller fraction of replicas than a predefined

threshold p.

In the present study, we investigate all stopping criteria, but the results shown in the various
figures are all based on cross validation with N = 10, 000 pairs of replicas (respectively for
training and validation) and a threshold of 90% (p = 0.9).

The fit Ansatz is general and only assumes a smooth distribution. No other hypothesis is
made on the nature of the distribution under scrutiny.

The tool, called STEP,1 consists in a header-only file written in C++17 and relies only
on ROOT and STL.2 It is available on GitLab at CERN [20] under free license, along with its
Doxygen documentation and several applications that will be described in the next section. The
test of smoothness can be run using a simple call of the function Step::GetSmoothFit(),
which takes templates arguments:

• the basis (by default Chebyshev polynomials)

• and possible options to rescale the input and output variables (logarithm and exponential
in the case of inclusive jet spectrum, as shown in Eq. 6);

and normal arguments:

• a histogram in ROOT format,

• a covariance matrix (optional),

• the maximal degree allowed in the iterative procedure (n),

• an interval of bins of the histograms in which the fit should be performed (optional),

• options to control the stopping criterion (optional, see Table 1).

The results of each iteration from the last call of the function are stored in a global variable
Step::chi2s. The Doxygen documentation may be found in the GitLab repository.

1Smoothness Tests with Expansion of Polynomials.
2During the review of the present paper, an independent version of the algorithm written in Python has also

been provided [19].
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Table 1: Stopping criteria, with options in the tool and parameter of the method.

method option parameter
none None degree of polynomial (n).
Eq. 8 Chi2ndf number of standard deviations.
F-test fTest threshold for p-value.
Cross validation xVal threshold for fraction of validation replicas with better χ2/ndf.

3 Applications

We illustrate the method with different cases in the context of inclusive jet production mea-
sured at the Tevatron and LHC used in global PDF fits [10–14]. All examples are available
on the GitLab repository of the tool. The measurements are investigated in the chronological
order of publication.

3.1 Measurements at Tevatron with
p

s = 1.96 TeV

The CDF and DØ Collaborations have provided measurements of double-differential inclusive
jet cross sections in proton-antiproton collisions at a centre-of-mass energy

p
s = 1.96 TeV [21,

22]; jets are clustered using the midpoint algorithms with a distance parameter R= 0.7 [23].
No description of the bin-to-bin statistical correlations is provided by any collaboration. The
DØ measurement includes an additional bin-to-bin uncorrelated systematic uncertainty at the
percent level.

Tests of smoothness are performed in each rapidity y bin separately on the CDF (DØ)
measurement, accounting for statistical uncertainties only (both statistical and bin-to-bin un-
correlated systematic uncertainties). The χ2/ndf and fit probabilities are shown in Table 2
(Table 4) for polynomials of various degrees up to n = 5 (n = 6). In the upper panel of Fig-
ure 2 (Figure 4), we also show the ratio to another fit Ansatz inspired from Ref. [9], labelled
Harris and Kousouris (HK):

HK(pT) = p0

�

1− pT
p4

�p2

pp1+p3 log(pT)
T

. (9)

In its original form (i.e. dijet mass instead of pT, with p3 ≡ 0, and with p4 ≡
p

s), this function is
inspired from physics expectations in the context of dijet mass cross sections; the p3 parameter
is introduced to cover higher orders, and the p4 parameter let free, to adapt to the inclusive
jet pT spectrum. For the same number of parameters (three last y bins of each measurement;
second and three last y bins of DØ measurement), we can directly compare the Step and
HK fits: they do show a similar fit performance, although Step fits have converged more easily
and required less tuning of the initial parameters and parameter ranges. In the lower panel of
the same figures, the pulls (i.e. normalised residuals) are shown for both fits, to help identify
outliers. It also allows to see certain bins that were not visible in the vertical axis range of the
upper panel.

The results from the F-test and cross validation are shown in Table 3 (Table 5). Figure 3
(Figure 5) shows the average χ2s obtained from the validation replicas. Finally, an Asimov
data set [24] is generated using PYTHIA 8.2 [25]Monte Carlo generator. This generated sample
has much higher number of events than recorded at the Tevatron to ensure a smooth spectrum
by construction; the binning and the uncertainties are by construction always taken from the
respective data set. In each y bin, the fit is repeated also on the Asimov data set; however, the
same polynomial degree as obtained for the fit to data is forced (also shown in Figures 2-4).

In the first y bin of the CDF measurement, Figure 2, where statistical uncertainties are the
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(a) The red points (green plain line) show(s) the ratio to the smooth fit with the expansion of poly-
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(b) Bin-by-bin pulls, shown with the same convention. The horizontal, dotted lines correspond to one
standard deviation.

Figure 2: Tests of smoothness in each y bin of CDF measurement [21]. In the y axis
title, σ (smooth(σ)) stands for cross section (smooth fit of the cross section); δ
indicates the total bin-to-bin uncorrelated uncertainties.

largest, the fit performance on the Asimov data and real data is the same, showing that no effect
besides the statistical fluctuations is noticeable. In both cases, the fit is driven by the bins with
smaller statistical uncertainties. The lower fit performance in the second y bin seems related
to the presence of steps in the pT spectrum at 146 GeV. Similar steps can be seen in the third
and fourth y bin at 96 GeV, but the statistical uncertainties are also much larger. These steps
are also visible with the HK function, but not visible with the Asimov data set, and correspond
to trigger thresholds (which is also confirmed by the decrease of the statistical uncertainties
in the spectrum). In other words, we see here some strong indication for uncorrected trigger
inefficiencies.

Such steps due to trigger inefficiencies can also be suspected in the three first y bins of the
DØ measurement with both the Step and HK fits, Figure 4: more visible on the pulls (lower
panel), the degree of the polynomial is one unity higher and the χ2/ndf values of the Asimov
data lower than in the three last y bins. The F-test and the cross validation also indicate the
need of higher orders in the second y bin. Instead, in these three last y bins, such steps are no
longer noticeable, probably negligible in comparison with the larger bin-to-bin uncertainties,
and none of the three stopping criteria indicate any need to increase the order.
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Table 2: Fit performance in each y bin of the CDF measurement [21].

(a) χ2
n/ndf±

p
2ndf

n |y|< 0.1 0.1< |y|< 0.7 0.7< |y|< 1.1 1.1< |y|< 1.6 1.6< |y|< 2.1
1 237.97± 0.38 2791.94± 0.38 1482.33± 0.39 2012.18± 0.41 1729.24± 0.47
2 11.09± 0.39 131.61± 0.39 78.41± 0.41 77.92± 0.43 55.35± 0.50
3 1.09± 0.41 12.75± 0.41 10.81± 0.43 2.39± 0.45 2.69± 0.53
4 0.65± 0.43 1.61± 0.43 0.45± 0.45 0.50± 0.47 0.69± 0.58
5 0.71± 0.45 0.84± 0.45 0.48± 0.47 0.43± 0.50 0.26± 0.63

(b) Fit probabilities

n |y|< 0.1 0.1< |y|< 0.7 0.7< |y|< 1.1 1.1< |y|< 1.6 1.6< |y|< 2.1
3 0.36 0.00 0.00 0.01 0.01
4 0.79 0.09 0.92 0.87 0.66
5 0.71 0.59 0.89 0.91 0.94

n
1 2 3 4 5

1.6 < |y| < 2.1

validation

1 2 3 4 5

1.1 < |y| < 1.6

1 2 3 4 5

0.7 < |y| < 1.1

(R = 0.7)
midpoint

1 2 3 4 5

0.1 < |y| < 0.7

1.96 TeV
1−10

1

10

210

310

410〉
/n

df
n2 χ 〈

1 2 3 4 5

|y| < 0.1

CDF

Figure 3: Average χ2
n/ndf from validation replicas and fits of validation replicas in

each y bin of the CDF measurement [21].

3.2 Measurements at LHC with
p

s = 8 TeV

The CMS and ATLAS Collaborations have provided measurements of double-differential inclu-
sive jet cross sections in proton-proton collisions at a centre-of-mass energy

p
s = 8 TeV [26,

27], where jets are clustered using the anti-kT algorithm with respective distance parameters
R= 0.7 and R= 0.6 [28,29].

The CMS measurement is provided with correlation tables for each y bin, describing the
correlations among the pT bins; it also includes a 1% bin-to-bin uncorrelated systematic un-
certainty to account for small inefficiencies (e.g. trigger, jet identification). The ATLAS mea-
surement is provided with ten thousand replicas that can be used to extract similar correlation
tables with the bootstrap method [30]; additionally, among the systematic uncertainties, many
result from the limited statistics of the Monte Carlo sample used in the data reduction, and
may affect the shape of the spectrum only locally.

Tests of smoothness are performed in each y bin separately on the CMS (ATLAS) mea-
surement by accounting for both statistical and bin-to-bin uncorrelated systematic uncertain-
ties (statistical uncertainties and systematic uncertainties related to the limited statistics of
the numerical analysis). The χ2/ndf and fit probabilities are shown in Table 6 (Table 8) for
polynomials of various degrees. The results from the F-test and cross validation are shown
in Table 7 (Table 9), and the average χ2/ndf values for the validation replicas in Figure 7
(Figure 9). For CMS, the tests of smoothness in the six y bins lead to χ2/ndf systemati-
cally lower than one. The low χ2/ndf values suggest the additional bin-to-bin systematic
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Table 3: Comparing F-test and cross validation results for CDF measurement with
different numbers of parameters.

(a) |y|< 0.1

F-test

3 4
4 0.9883
5 0.9512 0.0204

Cross validation

3 4
4 0.8895
5 0.8898 0.5009

(b) 0.1< |y|< 0.7

3 4
4 1
5 1 0.9923

3 4
4 1
5 1 0.9392

(c) 0.7< |y|< 1.1

3 4
4 1
5 1 0.4107

3 4
4 1
5 1 0.5715

(d) 1.1< |y|< 1.6

3 4
4 0.9998
5 0.9996 0.8537

3 4
4 0.9868
5 0.9879 0.6998

(e) 1.6< |y|< 2.1

3 4
4 0.9963
5 0.9988 0.9795

3 4
4 0.9765
5 0.9820 0.7998

uncertainty of 1% to be too conservative; Table 6a shows that given the bin-to-bin uncorre-
lated uncertainties, polynomials of degree 4 should in principle suffice. Instead, apart in the
first y bin, the cross validation has led to polynomials of degree 5. For ATLAS, the tests in
the two first y bins terminate with χ2/ndf systematically larger than 1, and increasing the
number of parameters does not show any improvement; in the four next y bins, polynomi-
als of degree 5 are found with χ2/ndf compatible with unity. For both measurements, the
F-test shows a similar tendency as the cross validation to increase the order in contrast to the
criterion based on the χ2/ndf.

The tests obtained with cross validation are shown in upper panel of Figure 6 (Figure 8).
As for the Tevatron experiment, certain bins may not be visible because of the vertical axis
range, but these bins usually have large statistical uncertainties. Correlations matrices are also
provided in the lower panel: the CMS measurement exhibits correlations and anti-correlations
with a regular pattern, which is a known feature of the unfolding algorithm used in that analy-
sis; the ATLAS measurements does not exhibit any anti-correlations, but regions centred at 90,
300, and 700 GeV show rather large correlations due to their in-situ calibration methods. With
such correlations, it is more difficult to identify a clear step or an obvious outlier. Neverthe-
less, one can still observe steps possibly due to trigger inefficiencies in the CMS measurement,
Figure 6, for instance at 507 GeV, especially in the three first y bins. This value is explicitly
mentioned as a trigger threshold in Ref. [26]. However, as they are outperformed in all y bins
by the Step fits, the HK fits are not shown; additional orders seem necessary to catch all effects
in the shape of the spectrum.
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(a) The red points (green plain line) show(s) the ratio to the smooth fit with the expansion of poly-
nomials (HK function); the blue dotted line shows the ratio of Asimov data fitted with a polynomial of
the same degree as for the real data in the same y bin. The vertical bars on the red points show the
statistical contribution only, while the shaded areas show the statistical and systematic uncertainties
related to the limited statistics of the numerical analysis added in quadrature.
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(b) Bin-by-bin pulls, shown with the same convention. The horizontal, dotted lines correspond to one
standard deviation.

Figure 4: Tests of smoothness in each y bin of DØ measurement [22]. In the y axis
title, σ (smooth(σ)) stands for cross section (smooth fit of the cross section); δ
indicates the total bin-to-bin uncorrelated uncertainties.

The figures also include Asimov data sets produced with proton-proton collisions at 8 TeV,
similarly as for the Tevatron measurements. In general, in all y bins of both measurements,
the low χ2/ndf values indicate that a lower degree would be sufficient at describing the shape
of the measurement within the given uncertainties and correlations. In fact, although this is
not shown in the figures, polynomials of degree 4 would be sufficient in all y bins.

Additional decorrelation may still arise from the combination of distinct systematic ef-
fects, even though these are bin-to-bin fully correlated. These were not included to run the
Step fits, but may be considered (except the ones related to the luminosity) to compute a
global χ2/ndf, also accounting for cross y correlations. Doing so, one obtains global values of
χ2/ndf= 46.54/148= 0.3144 for CMS and χ2/ndf= 123.8/135= 0.9171 for ATLAS.
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Table 4: Fit performance in each y bin of the DØ measurement [22].

(a) χ2
n/ndf±

p
2ndf

n |y|< 0.4 0.4< |y|< 0.8 0.8< |y|< 1.2 1.2< |y|< 1.6 1.6< |y|< 2.0 2.0< |y|< 2.4
1 1185.74± 0.31 1687.53± 0.32 1473.09± 0.33 795.89± 0.37 618.56± 0.39 571.77± 0.43
2 70.88± 0.32 102.90± 0.32 99.75± 0.34 67.52± 0.38 47.81± 0.41 36.64± 0.45
3 8.89± 0.32 10.90± 0.33 8.43± 0.35 4.81± 0.39 4.48± 0.43 2.73± 0.47
4 1.02± 0.33 1.57± 0.34 1.05± 0.37 0.99± 0.41 0.49± 0.45 0.30± 0.50
5 0.69± 0.34 0.86± 0.35 0.62± 0.38 0.65± 0.43 0.14± 0.47 0.30± 0.53
6 0.73± 0.35 0.57± 0.37 0.54± 0.39 0.57± 0.45 0.14± 0.50 0.24± 0.58

(b) Fit probabilities

n |y|< 0.4 0.4< |y|< 0.8 0.8< |y|< 1.2 1.2< |y|< 1.6 1.6< |y|< 2.0 2.0< |y|< 2.4
4 0.43 0.06 0.40 0.45 0.90 0.97
5 0.82 0.62 0.85 0.79 1.00 0.95
6 0.77 0.90 0.90 0.84 1.00 0.96

n
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Figure 5: Average χ2
n/ndf from validation replicas and fits of validation replicas in

each y bin of the DØ measurement [22].

3.3 Interpretation

For all y bins of all four measurements, smooth fits with six or less parameters (i.e. n ≤ 5)
seem to be sufficient to describe the spectra within the given uncertainties and correlations. In
general, it is remarkable to find that such a small number of parameters is sufficient to describe
the shape of the inclusive jet spectrum over such a large range. This value may change for
different stopping criteria, but usually not more than by one unity and only in certain y bins.

The fits with Asimov data often indicate that less parameters are necessary to describe the
shape within the given uncertainties and correlations: it likely indicates effects introduced in
the data reduction, e.g. the combination of different triggers.

The HK function performs reasonably well for the Tevatron measurements, with a similar
performance from the Step function; for the LHC measurements, however, the Step Ansatz
significantly outperforms the HK one. One may include higher orders in Eq. 9, but this would
return to a polynomial expansion. Furthermore, given the respective precisions of the mea-
surements, the Asimov data show that five parameters are already sufficient to describe the
shape of the spectrum; , adding more terms to the HK function seems unnecessarily compli-
cated for these measurements.

To conclude, tests of smoothness may be useful to identify tensions before the data are pub-
lished and handed over to global PDF collaborations. The respective measurements by ATLAS
and CMS provide here two different examples. The set of systematic uncertainties provided
with the ATLAS measurement covers the scattering of all points around a smooth behaviour,
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Table 5: Comparing F-test and cross validation results for DØ measurement with
different numbers of parameters.

(a) |y|< 0.4

F-test

3 4 5
4 1
5 1 0.9933
6 1 0.9726 0.2181

Cross validation

3 4 5
4 1
5 1 0.9003
6 1 0.9011 0.5545

(b) 0.4< |y|< 0.8

3 4 5
4 1
5 1 0.9987
6 1 0.9998 0.9918

3 4 5
4 1
5 1 0.9661
6 1 0.9840 0.8662

(c) 0.8< |y|< 1.2

3 4 5
4 1
5 1 0.9956
6 1 0.9947 0.8929

3 4 5
4 1
5 1 0.9119
6 1 0.9336 0.7427

(d) 1.2< |y|< 1.6

3 4 5
4 1
5 1 0.9801
6 1 0.9748 0.8530

3 4 5
4 0.9995
5 0.9997 0.8693
6 1 0.9029 0.7256

(e) 1.6< |y|< 2.0

3 4 5
4 1
5 1 0.9993
6 1 0.9969 0.6202

3 4 5
4 0.9996
5 0.9997 0.8314
6 0.9997 0.8404 0.5769

(f) 2.0< |y|< 2.4

3 4 5
4 1
5 0.9998 0.6302
6 0.9996 0.7857 0.8584

3 4 5
4 0.9910
5 0.9917 0.5983
6 0.9913 0.6889 0.6622

i.e. possible tensions in QCD interpretation would rather be related to missing physics effects
on the global shape of the inclusive jet spectrum (either in experimental data or in theoretical
predictions) or to issues of smoothness in the theoretical predictions. For the CMS measure-
ment, instead, the more generous uncertainties will cover effects not explicitly included (if
any), but at the cost of reducing the potential impact of the CMS data in the global PDF fits.

4 Summary & Conclusions

We have presented a simple method to test the smoothness of binned differential distributions,
including bin-to-bin correlations, and applied it to four measurements of inclusive jet cross
section in proton-antiproton or proton-proton collisions. These tests help assess the quality of
a spectrum independently of and prior to a QCD interpretation.
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(a) The red points show the ratio to the smooth fit with the expansion of polynomials; the blue dotted
line shows the ratio of Asimov data fitted with a polynomial of the same degree as for the real data
in the same y bin. The vertical bars on the red points show the statistical contribution only, while the
shaded areas show the statistical and systematic uncertainties related to the limited statistics of the
numerical analysis added in quadrature. In the y axis title, σ (smooth(σ)) stands for cross section
(smooth fit of the cross section).
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Figure 6: Tests of smoothness in each y bin of the CMS measurement [26].

Table 6: Fit performance in each y bin of the CMS measurement [26].

(a) χ2
n/ndf±

p
2ndf

n |y|< 0.5 0.5< |y|< 1.0 1.0< |y|< 1.5 1.5< |y|< 2.0 2.0< |y|< 2.5 2.5< |y|< 3.0
1 813.05± 0.24 1027.01± 0.25 430.17± 0.25 962.41± 0.26 934.92± 0.29 982.00± 0.35
2 46.73± 0.24 67.97± 0.25 115.66± 0.25 187.30± 0.26 190.05± 0.30 69.44± 0.37
3 6.50± 0.25 6.97± 0.25 13.09± 0.25 20.57± 0.27 16.99± 0.31 3.35± 0.38
4 0.71± 0.25 0.90± 0.26 1.04± 0.26 1.04± 0.27 0.79± 0.32 0.66± 0.39
5 0.65± 0.25 0.63± 0.26 0.49± 0.26 0.50± 0.28 0.44± 0.32 0.34± 0.41
6 0.66± 0.26 0.65± 0.27 0.45± 0.27 0.33± 0.28 0.32± 0.33 0.33± 0.43
7 0.68± 0.26 0.67± 0.27 0.45± 0.27 0.35± 0.29 0.34± 0.34 0.34± 0.45

(b) Fit probabilities

n |y|< 0.5 0.5< |y|< 1.0 1.0< |y|< 1.5 1.5< |y|< 2.0 2.0< |y|< 2.5 2.5< |y|< 3.0
4 0.89 0.62 0.40 0.41 0.73 0.80
5 0.94 0.94 0.99 0.98 0.98 0.98
6 0.92 0.92 0.99 1.00 1.00 0.98
7 0.90 0.90 0.99 1.00 0.99 0.97

The tests of smoothness are general and may be applied to other observables, such as the
dijet mass cross section, or to any measurement beyond jet physics where a smooth behaviour
is expected. A tool to perform such tests of smoothness, called STEP, is provided, as well as all
examples provided in this article.
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Figure 7: Average χ2
n/ndf from validation replicas and fits of validation replicas in

each y bin of the CMS measurement [26].
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Figure 8: Tests of smoothness in each y bin of ATLAS measurement [27].
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Table 7: Comparing F-test and cross validation results for CMS measurement with
different numbers of parameters.

(a) |y|< 0.5

F-test

4 5 6
5 0.9522
6 0.8698 0.3628
7 0.7553 0.1686 0.2997

Cross validation

4 5 6
5 0.7920
6 0.8011 0.5768
7 0.8062 0.6031 0.5654

(b) 0.5< |y|< 1.0

4 5 6
5 0.9993
6 0.9964 0
7 0.9885 0.0035 0.0664

4 5 6
5 0.9358
6 0.9358 0.4940
7 0.9349 0.5146 0.5145

(c) 1.0< |y|< 1.5

4 5 6
5 1
6 1 0.9438
7 1 0.8833 0.5987

4 5 6
5 0.9816
6 0.9851 0.7528
7 0.9858 0.7727 0.6131

(d) 1.5< |y|< 2.0

4 5 6
5 1
6 1 0.9991
7 1 0.9953 0.0133

4 5 6
5 0.9726
6 0.9878 0.8614
7 0.9877 0.8616 0.5091

(e) 2.0< |y|< 2.5

4 5 6
5 0.9993
6 0.9999 0.9894
7 0.9994 0.9582 0.0740

4 5 6
5 0.9145
6 0.9410 0.7917
7 0.9414 0.7910 0.5127

(f) 2.5< |y|< 3.0

4 5 6
5 0.9968
6 0.9910 0.6993
7 0.9778 0.5615 0.5612

4 5 6
5 0.8573
6 0.8645 0.6232
7 0.8714 0.6460 0.5835
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Table 8: Fit performance in each y bin of the ATLAS measurement [27].

(a) χ2
n/ndf±

p
2ndf

n |y|< 0.5 0.5< |y|< 1.0 1.0< |y|< 1.5 1.5< |y|< 2.0 2.0< |y|< 2.5 2.5< |y|< 3.0
1 513.84± 0.25 424.00± 0.25 568.23± 0.26 589.03± 0.27 634.22± 0.30 457.83± 0.35
2 18.36± 0.25 26.47± 0.26 55.22± 0.26 82.56± 0.27 111.67± 0.31 71.58± 0.37
3 6.16± 0.26 6.86± 0.26 12.36± 0.27 13.57± 0.28 13.88± 0.32 12.57± 0.38
4 1.75± 0.26 2.71± 0.27 2.88± 0.27 2.65± 0.28 2.17± 0.32 2.20± 0.39
5 1.45± 0.27 1.42± 0.27 0.85± 0.28 1.03± 0.29 0.93± 0.33 0.88± 0.41
6 1.47± 0.27 1.43± 0.28 0.87± 0.28 1.00± 0.29 0.69± 0.34 0.93± 0.43
7 1.43± 0.28 1.48± 0.28 0.72± 0.29 1.04± 0.30 0.73± 0.35 0.74± 0.45

(b) Fit probabilities

n |y|< 0.5 0.5< |y|< 1.0 1.0< |y|< 1.5 1.5< |y|< 2.0 2.0< |y|< 2.5 2.5< |y|< 3.0
4 0.01 0.00 0.00 0.00 0.00 0.01
5 0.06 0.07 0.68 0.43 0.54 0.57
6 0.05 0.07 0.64 0.46 0.82 0.51
7 0.07 0.06 0.83 0.40 0.76 0.68

Table 9: Comparing F-test and cross validation results for ATLAS measurement with
different numbers of parameters.

(a) |y|< 0.5

F-test

4 5 6
5 0.9869
6 0.9638 0.555
7 0.9583 0.6749 0.8002

Cross validation

4 5 6
5 0.9427
6 0.9515 0.6851
7 0.9707 0.8244 0.7868

(b) 0.5< |y|< 1.0

4 5 6
5 1
6 0.9999 0.6467
7 0.9996 0.3746 0.2386

4 5 6
5 0.9985
6 0.9989 0.7096
7 0.9987 0.7217 0.5752

(c) 1.0< |y|< 1.5

4 5 6
5 1
6 1 0.4720
7 1 0.9490 0.9804

4 5 6
5 1
6 1 0.6189
7 1 0.8693 0.8583

(d) 1.5< |y|< 2.0

4 5 6
5 1
6 1 0.7827
7 1 0.5337 0.1527

4 5 6
5 0.9994
6 0.9995 0.7357
7 0.9997 0.7388 0.5417

(e) 2.0< |y|< 2.5

4 5 6
5 0.9999
6 1 0.9853
7 0.9999 0.9439 0.0021

4 5 6
5 0.994
6 0.9973 0.8712
7 0.9973 0.8711 0.5056

(f) 2.5< |y|< 3.0

4 5 6
5 0.9993
6 0.9965 0.4138
7 0.9971 0.8238 0.9187

4 5 6
5 0.9841
6 0.9843 0.5951
7 0.9901 0.8122 0.8055
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Figure 9: Average χ2
n/ndf from validation replicas and fits of validation replicas in

each y bin of the ATLAS measurement [27].
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